Fall Detection Based on Recurrent Neural Networks and Accelerometer Data from Smartphones
An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or health. One of such events is a fall, which is a common cause (or consequence) of injuries among the elderly, that can lead to health problems or...
Saved in:
Published in | Applied sciences Vol. 15; no. 12; p. 6688 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app15126688 |
Cover
Abstract | An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or health. One of such events is a fall, which is a common cause (or consequence) of injuries among the elderly, that can lead to health problems or even death. Fall may be also a symptom of a serious health problem, such as a stroke or a heart attack. This study addresses the fall detection problem. We propose a fall detection solution based on accelerometer data from smartphone devices. The proposed model is based on a Recurrent Neural Network employing a Gated Recurrent Unit (GRU) layer. We compared the results with the state-of-the-art solutions available in the literature using the UniMiB SHAR dataset containing accelerometer data collected using smartphone devices. The dataset contains the validation dataset prepared for evaluation using the Leave-One-Subject-Out (LOSO-CV) and 5-Fold Cross-Validation (CV) strategies; consequently, we used them for evaluation. Our solution achieves the highest result for Leave-One-Subject-Out and a comparable result for the k-Fold Cross-Validation strategy, achieving 98.99% and 99.82% accuracy, respectively. We believe it has the potential for adoption in production devices, which could be helpful, for example, in nursing homes, improving the provision of assistance especially when combined into a multimodal system with other sensors. We also provide all the data and code used in our experiments publicly, allowing other researchers to reproduce our results. |
---|---|
AbstractList | An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or health. One of such events is a fall, which is a common cause (or consequence) of injuries among the elderly, that can lead to health problems or even death. Fall may be also a symptom of a serious health problem, such as a stroke or a heart attack. This study addresses the fall detection problem. We propose a fall detection solution based on accelerometer data from smartphone devices. The proposed model is based on a Recurrent Neural Network employing a Gated Recurrent Unit (GRU) layer. We compared the results with the state-of-the-art solutions available in the literature using the UniMiB SHAR dataset containing accelerometer data collected using smartphone devices. The dataset contains the validation dataset prepared for evaluation using the Leave-One-Subject-Out (LOSO-CV) and 5-Fold Cross-Validation (CV) strategies; consequently, we used them for evaluation. Our solution achieves the highest result for Leave-One-Subject-Out and a comparable result for the k-Fold Cross-Validation strategy, achieving 98.99% and 99.82% accuracy, respectively. We believe it has the potential for adoption in production devices, which could be helpful, for example, in nursing homes, improving the provision of assistance especially when combined into a multimodal system with other sensors. We also provide all the data and code used in our experiments publicly, allowing other researchers to reproduce our results. |
Audience | Academic |
Author | Kunin, Maciej Glanowska, Marta Susik, Robert Bartczak, Natalia Kowalewicz, Karolina |
Author_xml | – sequence: 1 givenname: Natalia surname: Bartczak fullname: Bartczak, Natalia – sequence: 2 givenname: Marta surname: Glanowska fullname: Glanowska, Marta – sequence: 3 givenname: Karolina surname: Kowalewicz fullname: Kowalewicz, Karolina – sequence: 4 givenname: Maciej surname: Kunin fullname: Kunin, Maciej – sequence: 5 givenname: Robert orcidid: 0000-0003-0653-433X surname: Susik fullname: Susik, Robert |
BookMark | eNptUcluFDEQtVCQCElO_IAljmgS73YfhywQKSISy4GTVW2XQw897cbuEeLvYzIIghTXoRa99_TK9ZIcTHlCQl5xdiplx85gnrnmwhjnnpFDwaxZScXtwaP6BTmpdcPa67h0nB2Sr1cwjvQCFwzLkCf6FipG2oqPGHal4LTQD7grMLa0_Mzle6UwRboOAUcseduIhV7AAjS1jn7aQlnmb81YPSbPE4wVT_7kI_Ll6vLz-fvVze276_P1zSrIji-rztpOJGVFNCb0PHClmQPVmT7pJHq0iRttAzPWWcMVxN5Z18sONQahpZJH5HqvGzNs_FyGZuGXzzD4h0Eud755GsKIXkOPwGMSUinlOgtSRVAuWsusRsGa1uu91lzyjx3WxW_yrkzNvpdCSGelYfIf6g6a6DClvBQI26EGv3ZKG8k47xrq9AlUi4jbIbQfSkOb_0d4syeEkmstmP4uw5n_fWH_6MLyHgEDlxY |
Cites_doi | 10.1111/mice.12845 10.1038/323533a0 10.1007/978-3-030-77964-1_4 10.1145/3065386 10.3115/v1/W14-4012 10.1109/EHB.2017.7995502 10.1007/s11063-020-10400-x 10.1109/JSEN.2020.2978772 10.1109/JSEN.2025.3547060 10.1001/jama.1993.03500010075035 10.1037/e471672008-001 10.3389/fpubh.2023.1086671 10.1016/j.bspc.2024.106412 10.3390/s18020679 10.1109/ICASSP40776.2020.9054074 10.1108/SR-05-2021-0157 10.20944/preprints201706.0033.v1 10.1007/BF00994018 10.1109/TII.2022.3165875 10.1109/ISPA48434.2019.8966875 10.3390/s23146360 10.1109/72.279181 10.1016/j.cmpb.2014.09.005 10.1007/BF00342633 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app15126688 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_5abea1df23444897a34da48d77075e20 A845630119 10_3390_app15126688 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c391t-97792f472d66cb1c14508a496bf5f2be7f1657c06787614adb878b39e5ec25343 |
IEDL.DBID | 8FG |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:02 EDT 2025 Fri Jun 27 07:41:11 EDT 2025 Thu Jul 03 03:13:06 EDT 2025 Tue Jul 01 05:45:04 EDT 2025 Thu Jul 03 08:26:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-97792f472d66cb1c14508a496bf5f2be7f1657c06787614adb878b39e5ec25343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0653-433X |
OpenAccessLink | https://www.proquest.com/docview/3223873603?pq-origsite=%requestingapplication% |
PQID | 3223873603 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5abea1df23444897a34da48d77075e20 proquest_journals_3223873603 gale_infotracmisc_A845630119 gale_infotracacademiconefile_A845630119 crossref_primary_10_3390_app15126688 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Tinetti (ref_2) 1993; 269 Fukushima (ref_29) 1975; 20 Teng (ref_13) 2020; 20 Bengio (ref_26) 1994; 5 Dahou (ref_17) 2023; 19 ref_12 ref_10 Abidine (ref_15) 2022; 42 ref_30 Eltouny (ref_25) 2023; 38 ref_19 ref_18 Cortes (ref_4) 1995; 20 Kanjilal (ref_14) 2021; 53 ref_16 Rumelhart (ref_22) 1986; 323 (ref_8) 2009; 33 ref_24 Kwolek (ref_7) 2014; 117 ref_23 ref_21 ref_20 Qian (ref_6) 2003; 9 Krizhevsky (ref_11) 2017; 60 ref_1 ref_3 ref_28 ref_27 ref_9 ref_5 |
References_xml | – volume: 33 start-page: 197 year: 2009 ident: ref_8 article-title: Fall detection and activity recognition with machine learning publication-title: Informatica – ident: ref_30 – volume: 38 start-page: 271 year: 2023 ident: ref_25 article-title: Large-scale structural health monitoring using composite recurrent neural networks and grid environments publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12845 – volume: 323 start-page: 533 year: 1986 ident: ref_22 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref_24 doi: 10.1007/978-3-030-77964-1_4 – volume: 60 start-page: 84 year: 2017 ident: ref_11 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_28 doi: 10.3115/v1/W14-4012 – ident: ref_9 doi: 10.1109/EHB.2017.7995502 – volume: 53 start-page: 561 year: 2021 ident: ref_14 article-title: The future of human activity recognition: Deep learning or feature engineering? publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10400-x – volume: 20 start-page: 7265 year: 2020 ident: ref_13 article-title: The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2978772 – ident: ref_21 doi: 10.1109/JSEN.2025.3547060 – ident: ref_16 – volume: 269 start-page: 65 year: 1993 ident: ref_2 article-title: Predictors and prognosis of inability to get up after falls among elderly persons publication-title: JAMA doi: 10.1001/jama.1993.03500010075035 – ident: ref_5 doi: 10.1037/e471672008-001 – ident: ref_1 – ident: ref_18 doi: 10.3389/fpubh.2023.1086671 – ident: ref_20 doi: 10.1016/j.bspc.2024.106412 – ident: ref_10 doi: 10.3390/s18020679 – volume: 9 start-page: 1 year: 2003 ident: ref_6 article-title: Fall Detection for the Elderly by Accelerometers publication-title: Int. J. Inf. Technol. – ident: ref_27 – ident: ref_23 doi: 10.1109/ICASSP40776.2020.9054074 – volume: 42 start-page: 384 year: 2022 ident: ref_15 article-title: Activity recognition on smartphones using an AKNN based support vectors publication-title: Sens. Rev. doi: 10.1108/SR-05-2021-0157 – ident: ref_3 doi: 10.20944/preprints201706.0033.v1 – volume: 20 start-page: 273 year: 1995 ident: ref_4 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 19 start-page: 144 year: 2023 ident: ref_17 article-title: Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity Recognition Using Wearable Sensors publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3165875 – ident: ref_12 doi: 10.1109/ISPA48434.2019.8966875 – ident: ref_19 doi: 10.3390/s23146360 – volume: 5 start-page: 157 year: 1994 ident: ref_26 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – volume: 117 start-page: 489 year: 2014 ident: ref_7 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.005 – volume: 20 start-page: 121 year: 1975 ident: ref_29 article-title: Cognitron: A self-organizing multilayered neural network publication-title: Biol. Cybern. doi: 10.1007/BF00342633 |
SSID | ssj0000913810 |
Score | 2.3196604 |
Snippet | An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 6688 |
SubjectTerms | accelerometer cellphone Datasets fall detection Heart attack Neural networks recurrent neural networks Smart phones Smartphones Support vector machines UniMiB SHAR |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyI8hCFgjxUAoaIOH7FY3lUFRIdgEowWY7tTFChNvx_7pIU0gGxsEWJZVl3ufvu7LvPhAwNBKElQF8iIRhOsLUycV7zJPhUezxqcxy7kR-majIT9y_ypXPVF9aENfTAjeCupCuiY6HMuIBMwmjHRXAiD1oD2MWsztZTk3aSqdoHG4bUVU1DHoe8Hs-DEdxUc8fKDwTVTP2_-eMaZMa7ZKeNDumoWVWPbMT5HtnucAbukV5rjUt60VJGX-6T17F7e6O3saoLq-b0GrApUHh4xO10JGCiyMIBU0-bsu8ldfNAR94D6iBhAUiX3rrKUWw3oU_vIBcsWo_LAzIb3z3fTJL20oTEc8OqBOI5k5VCZ0EpXzDPBIRgThhVlLLMiqhLpiSoAUBKAzS7UOQ6L7iJMvpMcsEPyeYc5j8i1Jc8OK0ihmWCeZ7LIKQp8qDAJ_LA-2S4kqP9aLgxLOQUKG7bEXefXKOMv4cgoXX9AtRsWzXbv9TcJ-eoIYtmVy2cd233AKwUCazsKBfIdMaY6ZPB2kgwF7_-eaVj25rr0oJX47nmKuXH_7HYE7KV4TXB9WbNgGxWi894CrFLVZzVv-kXpLjpKw priority: 102 providerName: Directory of Open Access Journals |
Title | Fall Detection Based on Recurrent Neural Networks and Accelerometer Data from Smartphones |
URI | https://www.proquest.com/docview/3223873603 https://doaj.org/article/5abea1df23444897a34da48d77075e20 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuMABFUrVBbryAantIeo6fuZU7Ra2qFJXFS0SPVmO7XChC92E_9-ZxMvj0N6ixLKiefgbjz3fAJxUGIQ2CH2FwmC4oNLKwgcjihgmJtBRmxdUjfxtoc8v5dcrdZUTbm2-VrleE_uFOt4GypF_RMMT1gg9EZ_u_hTUNYpOV3MLjQ3Y4og0ZOd2_uUhx0Kcl5ZPhrI8gbt7OhUmiNNDp5VHIOr5-v-1KvdQM38JuzlGZNNBqXvwIi33YecJc-A-7GWfbNn7TBz94RX8mvubG3aauv561ZLNEKEiw4cLSqoTDRMjLg6cejFc_m6ZX0Y2DQGxh2gLUMbs1HeeUdEJ-_EbzYqurqf2AC7nZz8_nxe5dUIRRMW7AqO6qmykKaPWoeaBSwzEvKx03aimrJNpuFaoDIQqgwDtY22NrUWVVAqlElK8hs0lzv8GWGhE9EYnCs4kD8KqKFVV26hxZRRRjOBkLUd3NzBkONxZkLjdE3GPYEYyfhhCtNb9i9vVtcte4pSvk-exKYXEbWNlvJDRSxuNwcgmlZMRvCMNOXK-buWDzzUE-KdEY-WmVhLfGefVCI6fjUSnCc8_r3XsstO27tHEDv__-Qi2S2oD3CdjjmGzW92ntxibdPW4N8AxbM3OFt8vxv0O_y9KWON4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IFpALBTwoVXLISKOnTg-ILTLdrWl7aoqrVROxrEdLmVbNkGIP8VvZCaPPg5w6y2KLcuaGc_Lnm8ANjU6oSWavihFZzii0srIOiUi72Ll6KrNCqpGPpxns1P56Sw9W4E_fS0MPavsdWKjqP2Foxz5OxQ8kSuRxeLD5Y-IukbR7WrfQqMVi_3w-xeGbNX7vQnydytJprsnH2dR11UgckLzOkKHRyelVInPMldwxyX6KFbqrCjTMimCKnmW4j5Ri2OIL60vcpUXQoc0uCQVUuC692BVUkXrAFbHu_Oj46usDqFs5jxuCwGF0DHdQ5NRzdreLtemr-kQ8C870Bi36WN41HmlbNSK0RqshMU6PLyBVbgOa50WqNhOB1X99gl8mdrzczYJdfOga8HGaBM9w49jSuMT8BMj9A9cet4-N6-YXXg2cg6tHQElIFfZxNaWUZkL-_wdBZkey4fqKZzeCVmfwWCB6z8H5krhrcoCuYOSO5GnXqa6yH2Gulh4MYTNno7mssXkMBjLELnNDXIPYUw0vppCQNrNj4vlN9OdS5PaIljuy0RIDFS1skJ6K3OvFPpSIYmHsE0cMnTc66V1tqtawJ0ScJYZ5ZIQ1jjXQ9i4NROPqbs93PPYdGqiMtdC_eL_w2_g_uzk8MAc7M33X8KDhJoQN6mgDRjUy5_hFXpGdfG6E0cGX-_6BPwFvvEd1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsaWAD0XAIWoc23FyqNAu21VLYVUVKpWT69gOl7JtN6kq_hq_rjN59HGAW29RYlnOzHhmPJ75BmAjRye0RNMXKXSGIyqtjKzTIvIu1o6u2qygauRvs3TnUH45UkdL8LevhaG0yl4nNoranzqKkW-i4IlMizQWm2WXFrE_mX46O4-ogxTdtPbtNFoR2Qt_LvH4Vm3tTpDX75Jkuv3j807UdRiInMh5HaHzkyel1IlPU1dwxyX6K1bmaVGqMimCLnmqcM2o0fG4L60vMp0VIg8quEQJKXDeB7Cs8R_lAJbH27P9g-sIDyFuZjxuiwKFyGO6kyYDm7Z9Xm7MYNMt4F82oTF006fwpPNQ2agVqRVYCvNVeHwLt3AVVjqNULEPHWz1x2fwc2pPTtgk1E1y15yN0T56hg8HFNInEChGSCA49axNPa-YnXs2cg4tH4EmIIfZxNaWUckL-_4bhZoS50P1HA7vhawvYDDH-V8Cc6XwVqeBXEPJnciUlyovMp-iXhZeDGGjp6M5a_E5DJ5riNzmFrmHMCYaXw8hUO3mxenil-n2qFG2CJb7MhESD625tkJ6KzOvNfpVIYmH8J44ZGjr1wvrbFfBgCslEC0zyiShrXGeD2H9zkjcsu7u557HplMZlbkR8LX_f34LD1Hyzdfd2d4reJRQP-ImKrQOg3pxEV6jk1QXbzppZHB83xvgCufqIgE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+Detection+Based+on+Recurrent+Neural+Networks+and+Accelerometer+Data+from+Smartphones&rft.jtitle=Applied+sciences&rft.au=Bartczak%2C+Natalia&rft.au=Glanowska%2C+Marta&rft.au=Kowalewicz%2C+Karolina&rft.au=Kunin%2C+Maciej&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=12&rft_id=info:doi/10.3390%2Fapp15126688&rft.externalDocID=A845630119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |