Fall Detection Based on Recurrent Neural Networks and Accelerometer Data from Smartphones

An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or health. One of such events is a fall, which is a common cause (or consequence) of injuries among the elderly, that can lead to health problems or...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 12; p. 6688
Main Authors Bartczak, Natalia, Glanowska, Marta, Kowalewicz, Karolina, Kunin, Maciej, Susik, Robert
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15126688

Cover

Abstract An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or health. One of such events is a fall, which is a common cause (or consequence) of injuries among the elderly, that can lead to health problems or even death. Fall may be also a symptom of a serious health problem, such as a stroke or a heart attack. This study addresses the fall detection problem. We propose a fall detection solution based on accelerometer data from smartphone devices. The proposed model is based on a Recurrent Neural Network employing a Gated Recurrent Unit (GRU) layer. We compared the results with the state-of-the-art solutions available in the literature using the UniMiB SHAR dataset containing accelerometer data collected using smartphone devices. The dataset contains the validation dataset prepared for evaluation using the Leave-One-Subject-Out (LOSO-CV) and 5-Fold Cross-Validation (CV) strategies; consequently, we used them for evaluation. Our solution achieves the highest result for Leave-One-Subject-Out and a comparable result for the k-Fold Cross-Validation strategy, achieving 98.99% and 99.82% accuracy, respectively. We believe it has the potential for adoption in production devices, which could be helpful, for example, in nursing homes, improving the provision of assistance especially when combined into a multimodal system with other sensors. We also provide all the data and code used in our experiments publicly, allowing other researchers to reproduce our results.
AbstractList An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or health. One of such events is a fall, which is a common cause (or consequence) of injuries among the elderly, that can lead to health problems or even death. Fall may be also a symptom of a serious health problem, such as a stroke or a heart attack. This study addresses the fall detection problem. We propose a fall detection solution based on accelerometer data from smartphone devices. The proposed model is based on a Recurrent Neural Network employing a Gated Recurrent Unit (GRU) layer. We compared the results with the state-of-the-art solutions available in the literature using the UniMiB SHAR dataset containing accelerometer data collected using smartphone devices. The dataset contains the validation dataset prepared for evaluation using the Leave-One-Subject-Out (LOSO-CV) and 5-Fold Cross-Validation (CV) strategies; consequently, we used them for evaluation. Our solution achieves the highest result for Leave-One-Subject-Out and a comparable result for the k-Fold Cross-Validation strategy, achieving 98.99% and 99.82% accuracy, respectively. We believe it has the potential for adoption in production devices, which could be helpful, for example, in nursing homes, improving the provision of assistance especially when combined into a multimodal system with other sensors. We also provide all the data and code used in our experiments publicly, allowing other researchers to reproduce our results.
Audience Academic
Author Kunin, Maciej
Glanowska, Marta
Susik, Robert
Bartczak, Natalia
Kowalewicz, Karolina
Author_xml – sequence: 1
  givenname: Natalia
  surname: Bartczak
  fullname: Bartczak, Natalia
– sequence: 2
  givenname: Marta
  surname: Glanowska
  fullname: Glanowska, Marta
– sequence: 3
  givenname: Karolina
  surname: Kowalewicz
  fullname: Kowalewicz, Karolina
– sequence: 4
  givenname: Maciej
  surname: Kunin
  fullname: Kunin, Maciej
– sequence: 5
  givenname: Robert
  orcidid: 0000-0003-0653-433X
  surname: Susik
  fullname: Susik, Robert
BookMark eNptUcluFDEQtVCQCElO_IAljmgS73YfhywQKSISy4GTVW2XQw897cbuEeLvYzIIghTXoRa99_TK9ZIcTHlCQl5xdiplx85gnrnmwhjnnpFDwaxZScXtwaP6BTmpdcPa67h0nB2Sr1cwjvQCFwzLkCf6FipG2oqPGHal4LTQD7grMLa0_Mzle6UwRboOAUcseduIhV7AAjS1jn7aQlnmb81YPSbPE4wVT_7kI_Ll6vLz-fvVze276_P1zSrIji-rztpOJGVFNCb0PHClmQPVmT7pJHq0iRttAzPWWcMVxN5Z18sONQahpZJH5HqvGzNs_FyGZuGXzzD4h0Eud755GsKIXkOPwGMSUinlOgtSRVAuWsusRsGa1uu91lzyjx3WxW_yrkzNvpdCSGelYfIf6g6a6DClvBQI26EGv3ZKG8k47xrq9AlUi4jbIbQfSkOb_0d4syeEkmstmP4uw5n_fWH_6MLyHgEDlxY
Cites_doi 10.1111/mice.12845
10.1038/323533a0
10.1007/978-3-030-77964-1_4
10.1145/3065386
10.3115/v1/W14-4012
10.1109/EHB.2017.7995502
10.1007/s11063-020-10400-x
10.1109/JSEN.2020.2978772
10.1109/JSEN.2025.3547060
10.1001/jama.1993.03500010075035
10.1037/e471672008-001
10.3389/fpubh.2023.1086671
10.1016/j.bspc.2024.106412
10.3390/s18020679
10.1109/ICASSP40776.2020.9054074
10.1108/SR-05-2021-0157
10.20944/preprints201706.0033.v1
10.1007/BF00994018
10.1109/TII.2022.3165875
10.1109/ISPA48434.2019.8966875
10.3390/s23146360
10.1109/72.279181
10.1016/j.cmpb.2014.09.005
10.1007/BF00342633
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15126688
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_5abea1df23444897a34da48d77075e20
A845630119
10_3390_app15126688
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c391t-97792f472d66cb1c14508a496bf5f2be7f1657c06787614adb878b39e5ec25343
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:02 EDT 2025
Fri Jun 27 07:41:11 EDT 2025
Thu Jul 03 03:13:06 EDT 2025
Tue Jul 01 05:45:04 EDT 2025
Thu Jul 03 08:26:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-97792f472d66cb1c14508a496bf5f2be7f1657c06787614adb878b39e5ec25343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0653-433X
OpenAccessLink https://www.proquest.com/docview/3223873603?pq-origsite=%requestingapplication%
PQID 3223873603
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_5abea1df23444897a34da48d77075e20
proquest_journals_3223873603
gale_infotracmisc_A845630119
gale_infotracacademiconefile_A845630119
crossref_primary_10_3390_app15126688
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tinetti (ref_2) 1993; 269
Fukushima (ref_29) 1975; 20
Teng (ref_13) 2020; 20
Bengio (ref_26) 1994; 5
Dahou (ref_17) 2023; 19
ref_12
ref_10
Abidine (ref_15) 2022; 42
ref_30
Eltouny (ref_25) 2023; 38
ref_19
ref_18
Cortes (ref_4) 1995; 20
Kanjilal (ref_14) 2021; 53
ref_16
Rumelhart (ref_22) 1986; 323
(ref_8) 2009; 33
ref_24
Kwolek (ref_7) 2014; 117
ref_23
ref_21
ref_20
Qian (ref_6) 2003; 9
Krizhevsky (ref_11) 2017; 60
ref_1
ref_3
ref_28
ref_27
ref_9
ref_5
References_xml – volume: 33
  start-page: 197
  year: 2009
  ident: ref_8
  article-title: Fall detection and activity recognition with machine learning
  publication-title: Informatica
– ident: ref_30
– volume: 38
  start-page: 271
  year: 2023
  ident: ref_25
  article-title: Large-scale structural health monitoring using composite recurrent neural networks and grid environments
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12845
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_22
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref_24
  doi: 10.1007/978-3-030-77964-1_4
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_11
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_28
  doi: 10.3115/v1/W14-4012
– ident: ref_9
  doi: 10.1109/EHB.2017.7995502
– volume: 53
  start-page: 561
  year: 2021
  ident: ref_14
  article-title: The future of human activity recognition: Deep learning or feature engineering?
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10400-x
– volume: 20
  start-page: 7265
  year: 2020
  ident: ref_13
  article-title: The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2978772
– ident: ref_21
  doi: 10.1109/JSEN.2025.3547060
– ident: ref_16
– volume: 269
  start-page: 65
  year: 1993
  ident: ref_2
  article-title: Predictors and prognosis of inability to get up after falls among elderly persons
  publication-title: JAMA
  doi: 10.1001/jama.1993.03500010075035
– ident: ref_5
  doi: 10.1037/e471672008-001
– ident: ref_1
– ident: ref_18
  doi: 10.3389/fpubh.2023.1086671
– ident: ref_20
  doi: 10.1016/j.bspc.2024.106412
– ident: ref_10
  doi: 10.3390/s18020679
– volume: 9
  start-page: 1
  year: 2003
  ident: ref_6
  article-title: Fall Detection for the Elderly by Accelerometers
  publication-title: Int. J. Inf. Technol.
– ident: ref_27
– ident: ref_23
  doi: 10.1109/ICASSP40776.2020.9054074
– volume: 42
  start-page: 384
  year: 2022
  ident: ref_15
  article-title: Activity recognition on smartphones using an AKNN based support vectors
  publication-title: Sens. Rev.
  doi: 10.1108/SR-05-2021-0157
– ident: ref_3
  doi: 10.20944/preprints201706.0033.v1
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_4
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 19
  start-page: 144
  year: 2023
  ident: ref_17
  article-title: Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity Recognition Using Wearable Sensors
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3165875
– ident: ref_12
  doi: 10.1109/ISPA48434.2019.8966875
– ident: ref_19
  doi: 10.3390/s23146360
– volume: 5
  start-page: 157
  year: 1994
  ident: ref_26
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 117
  start-page: 489
  year: 2014
  ident: ref_7
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– volume: 20
  start-page: 121
  year: 1975
  ident: ref_29
  article-title: Cognitron: A self-organizing multilayered neural network
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00342633
SSID ssj0000913810
Score 2.3196604
Snippet An aging society increases the demand for solutions that enable quick reactions, such as calling for help in response to events that may threaten life or...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6688
SubjectTerms accelerometer
cellphone
Datasets
fall detection
Heart attack
Neural networks
recurrent neural networks
Smart phones
Smartphones
Support vector machines
UniMiB SHAR
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyI8hCFgjxUAoaIOH7FY3lUFRIdgEowWY7tTFChNvx_7pIU0gGxsEWJZVl3ufvu7LvPhAwNBKElQF8iIRhOsLUycV7zJPhUezxqcxy7kR-majIT9y_ypXPVF9aENfTAjeCupCuiY6HMuIBMwmjHRXAiD1oD2MWsztZTk3aSqdoHG4bUVU1DHoe8Hs-DEdxUc8fKDwTVTP2_-eMaZMa7ZKeNDumoWVWPbMT5HtnucAbukV5rjUt60VJGX-6T17F7e6O3saoLq-b0GrApUHh4xO10JGCiyMIBU0-bsu8ldfNAR94D6iBhAUiX3rrKUWw3oU_vIBcsWo_LAzIb3z3fTJL20oTEc8OqBOI5k5VCZ0EpXzDPBIRgThhVlLLMiqhLpiSoAUBKAzS7UOQ6L7iJMvpMcsEPyeYc5j8i1Jc8OK0ihmWCeZ7LIKQp8qDAJ_LA-2S4kqP9aLgxLOQUKG7bEXefXKOMv4cgoXX9AtRsWzXbv9TcJ-eoIYtmVy2cd233AKwUCazsKBfIdMaY6ZPB2kgwF7_-eaVj25rr0oJX47nmKuXH_7HYE7KV4TXB9WbNgGxWi894CrFLVZzVv-kXpLjpKw
  priority: 102
  providerName: Directory of Open Access Journals
Title Fall Detection Based on Recurrent Neural Networks and Accelerometer Data from Smartphones
URI https://www.proquest.com/docview/3223873603
https://doaj.org/article/5abea1df23444897a34da48d77075e20
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VuMABFUrVBbryAantIeo6fuZU7Ra2qFJXFS0SPVmO7XChC92E_9-ZxMvj0N6ixLKiefgbjz3fAJxUGIQ2CH2FwmC4oNLKwgcjihgmJtBRmxdUjfxtoc8v5dcrdZUTbm2-VrleE_uFOt4GypF_RMMT1gg9EZ_u_hTUNYpOV3MLjQ3Y4og0ZOd2_uUhx0Kcl5ZPhrI8gbt7OhUmiNNDp5VHIOr5-v-1KvdQM38JuzlGZNNBqXvwIi33YecJc-A-7GWfbNn7TBz94RX8mvubG3aauv561ZLNEKEiw4cLSqoTDRMjLg6cejFc_m6ZX0Y2DQGxh2gLUMbs1HeeUdEJ-_EbzYqurqf2AC7nZz8_nxe5dUIRRMW7AqO6qmykKaPWoeaBSwzEvKx03aimrJNpuFaoDIQqgwDtY22NrUWVVAqlElK8hs0lzv8GWGhE9EYnCs4kD8KqKFVV26hxZRRRjOBkLUd3NzBkONxZkLjdE3GPYEYyfhhCtNb9i9vVtcte4pSvk-exKYXEbWNlvJDRSxuNwcgmlZMRvCMNOXK-buWDzzUE-KdEY-WmVhLfGefVCI6fjUSnCc8_r3XsstO27tHEDv__-Qi2S2oD3CdjjmGzW92ntxibdPW4N8AxbM3OFt8vxv0O_y9KWON4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IFpALBTwoVXLISKOnTg-ILTLdrWl7aoqrVROxrEdLmVbNkGIP8VvZCaPPg5w6y2KLcuaGc_Lnm8ANjU6oSWavihFZzii0srIOiUi72Ll6KrNCqpGPpxns1P56Sw9W4E_fS0MPavsdWKjqP2Foxz5OxQ8kSuRxeLD5Y-IukbR7WrfQqMVi_3w-xeGbNX7vQnydytJprsnH2dR11UgckLzOkKHRyelVInPMldwxyX6KFbqrCjTMimCKnmW4j5Ri2OIL60vcpUXQoc0uCQVUuC692BVUkXrAFbHu_Oj46usDqFs5jxuCwGF0DHdQ5NRzdreLtemr-kQ8C870Bi36WN41HmlbNSK0RqshMU6PLyBVbgOa50WqNhOB1X99gl8mdrzczYJdfOga8HGaBM9w49jSuMT8BMj9A9cet4-N6-YXXg2cg6tHQElIFfZxNaWUZkL-_wdBZkey4fqKZzeCVmfwWCB6z8H5krhrcoCuYOSO5GnXqa6yH2Gulh4MYTNno7mssXkMBjLELnNDXIPYUw0vppCQNrNj4vlN9OdS5PaIljuy0RIDFS1skJ6K3OvFPpSIYmHsE0cMnTc66V1tqtawJ0ScJYZ5ZIQ1jjXQ9i4NROPqbs93PPYdGqiMtdC_eL_w2_g_uzk8MAc7M33X8KDhJoQN6mgDRjUy5_hFXpGdfG6E0cGX-_6BPwFvvEd1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsaWAD0XAIWoc23FyqNAu21VLYVUVKpWT69gOl7JtN6kq_hq_rjN59HGAW29RYlnOzHhmPJ75BmAjRye0RNMXKXSGIyqtjKzTIvIu1o6u2qygauRvs3TnUH45UkdL8LevhaG0yl4nNoranzqKkW-i4IlMizQWm2WXFrE_mX46O4-ogxTdtPbtNFoR2Qt_LvH4Vm3tTpDX75Jkuv3j807UdRiInMh5HaHzkyel1IlPU1dwxyX6K1bmaVGqMimCLnmqcM2o0fG4L60vMp0VIg8quEQJKXDeB7Cs8R_lAJbH27P9g-sIDyFuZjxuiwKFyGO6kyYDm7Z9Xm7MYNMt4F82oTF006fwpPNQ2agVqRVYCvNVeHwLt3AVVjqNULEPHWz1x2fwc2pPTtgk1E1y15yN0T56hg8HFNInEChGSCA49axNPa-YnXs2cg4tH4EmIIfZxNaWUckL-_4bhZoS50P1HA7vhawvYDDH-V8Cc6XwVqeBXEPJnciUlyovMp-iXhZeDGGjp6M5a_E5DJ5riNzmFrmHMCYaXw8hUO3mxenil-n2qFG2CJb7MhESD625tkJ6KzOvNfpVIYmH8J44ZGjr1wvrbFfBgCslEC0zyiShrXGeD2H9zkjcsu7u557HplMZlbkR8LX_f34LD1Hyzdfd2d4reJRQP-ImKrQOg3pxEV6jk1QXbzppZHB83xvgCufqIgE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fall+Detection+Based+on+Recurrent+Neural+Networks+and+Accelerometer+Data+from+Smartphones&rft.jtitle=Applied+sciences&rft.au=Bartczak%2C+Natalia&rft.au=Glanowska%2C+Marta&rft.au=Kowalewicz%2C+Karolina&rft.au=Kunin%2C+Maciej&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=12&rft_id=info:doi/10.3390%2Fapp15126688&rft.externalDocID=A845630119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon