Phod-harboring bacterial communities mediated slow and fast phosphorus transformation in alkaline soil of a Robinia pseudoacacia afforestation chronosequence
Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD -harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in agi...
Saved in:
Published in | Plant and soil Vol. 488; no. 1-2; pp. 517 - 532 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0032-079X 1573-5036 |
DOI | 10.1007/s11104-023-05990-z |
Cover
Loading…
Abstract | Background and aims
Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions,
phoD
-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear.
Methods
Soil samples were collected from 8-, 18-, and 30-year-old stands of a
Robinia pseudoacacia
afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity,
phoD
gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes.
Results
Soil inorganic P (Pi) and organic P (Po) in
R. pseudoacacia
afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of
phoD
genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry.
Conclusion
SOC appears to be an important regulator of Po turnover in P deficient soils via
phoD
gene-harboring microbes. |
---|---|
AbstractList | BACKGROUND AND AIMS: Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. METHODS: Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. RESULTS: Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. CONCLUSION: SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes. Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD -harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. Methods Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. Results Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. Conclusion SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes. Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. Methods Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. Results Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, [alpha] diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. Conclusion SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes. Background and aimsSoil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear.MethodsSoil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes.ResultsSoil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry.ConclusionSOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes. |
Audience | Academic |
Author | Kang, Haibin Yang, Lin Li, Yan Wang, Ying Dong, Liguo Yu, Xuan Bai, Xiaoxiong Cui, Yongxing Zhang, Jiawen Zhang, Min |
Author_xml | – sequence: 1 givenname: Ying surname: Wang fullname: Wang, Ying organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 2 givenname: Lin surname: Yang fullname: Yang, Lin organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 3 givenname: Jiawen surname: Zhang fullname: Zhang, Jiawen organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 4 givenname: Yan surname: Li fullname: Li, Yan organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 5 givenname: Haibin surname: Kang fullname: Kang, Haibin organization: Department of Forestry, College of Forestry, Northwest A&F University, School of Plant Biology, University Western Australia – sequence: 6 givenname: Xiaoxiong surname: Bai fullname: Bai, Xiaoxiong organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 7 givenname: Yongxing surname: Cui fullname: Cui, Yongxing organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University – sequence: 8 givenname: Min surname: Zhang fullname: Zhang, Min organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 9 givenname: Liguo surname: Dong fullname: Dong, Liguo organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry – sequence: 10 givenname: Xuan surname: Yu fullname: Yu, Xuan email: yux@nwsuaf.edu.cn organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry |
BookMark | eNp9kc9qHSEUh6Wk0Ju0L9CV0E03k-g4zozLEPoPAi0li-7kjB5zTR291RlK8i5913ozhUIWAUWO_D71-J2Sk5giEvKWs3PO2HBROOesa1grGiaVYs3DC7LjchCNZKI_ITvGRNuwQf14RU5LuWPHmvc78ufbPtlmD3lK2cdbOoFZMHsI1KR5XqNfPBY6o_WwoKUlpN8UoqUOykIP-1TqzGuhS4ZYXMozLD5F6iOF8BOCj0hL8oEmR4F-T5OPHuih4GoTGDC1AFcxLMsGmn1OMRX8tWI0-Jq8dBAKvvm3npGbjx9urj43118_fbm6vG6MUHxplIAOpJoEs9KMQqGVvOsl7zu0bhCuNWKaFB9HQDVIix3jBroB5YS9GgdxRt5vxx5yqheXRc--GAwBIqa1aMFlHd0geI2-exK9S2uO9XG6HWXLVSeEqqnzLXULAbWPLtX_qe2Cxdmbqs75un859FxI2TNZgXEDTE6lZHTa-O1HKuiD5kwfPevNs66e9aNn_VDR9gl6yH6GfP88JDaoHI7aMf9v4xnqLxX-wVY |
CitedBy_id | crossref_primary_10_1007_s11104_024_06800_w crossref_primary_10_1016_j_agee_2025_109568 crossref_primary_10_1016_j_micres_2024_127657 crossref_primary_10_1016_j_jhazmat_2024_134975 crossref_primary_10_1016_j_foreco_2024_122434 crossref_primary_10_1016_j_jhazmat_2025_137997 crossref_primary_10_3389_fmicb_2024_1455891 crossref_primary_10_3390_land13111923 crossref_primary_10_1016_j_indcrop_2024_118624 |
Cites_doi | 10.1002/iub.1217 10.1016/j.soilbio.2021.108274 10.1046/j.1469-8137.2000.00569.x 10.2136/sssaj2002.9990 10.1007/s10482-014-0146-z 10.1016/j.geoderma.2010.04.023 10.3389/fpls.2021.699618 10.1016/j.scitotenv.2021.146556 10.1007/s13205-014-0263-4 10.1016/j.geoderma.2018.09.042 10.1016/S0003-2670(00)88444-5 10.1097/00010694-197802000-00006 10.3389/fmicb.2020.571209 10.1016/j.scitotenv.2019.134977 10.1016/j.foreco.2018.06.011 10.1016/j.chemosphere.2015.06.015 10.1007/s11104-017-3516-2 10.1007/978-3-642-15271-9_9 10.1128/MRA.00848-19 10.3389/fmicb.2013.00291 10.1126/science.1124234 10.1016/j.jclepro.2017.09.173 10.3389/fmicb.2014.00508 10.3389/fmicb.2014.00326 10.1007/s00374-017-1183-3 10.1038/nmeth.f.303 10.13870/j.cnki.stbcxb.2019.05.035 10.1002/mbo3.474 10.3390/f12121707 10.1007/s00374-016-1137-1 10.1128/mSystems.00162-20 10.1007/s00572-016-0744-x 10.1007/s11032-011-9628-0 10.1016/j.scitotenv.2018.02.263 10.1007/s10021-019-00450-1 10.1093/femsec/fiw212 10.1016/j.scitotenv.2019.03.172 10.1016/j.soilbio.2020.107918 10.3389/fmicb.2018.02193 10.1111/j.1747-0765.2007.00210.x 10.3389/fmicb.2020.605955 10.1007/978-1-4612-3144-8_1 10.1016/j.still.2021.104946 10.1007/s00248-021-01740-9 10.1016/j.soilbio.2019.107632 10.1038/s41396-019-0567 10.1016/0038-0717(94)90146-5 10.1016/j.micres.2013.09.012 10.1007/s00374-012-0755-5 10.1038/s41396-018-0065-5 10.1016/j.foreco.2007.10.040 10.1016/j.geoderma.2016.05.023 10.1016/j.soilbio.2020.108048 10.3389/fpls.2021.640789 10.2134/agronmonogr9.2.2ed.c31 10.1016/j.soilbio.2019.03.017 10.1016/j.quaint.2014.06.050 10.1007/s00248-012-0025-y 10.1016/j.soilbio.2014.09.012 10.1007/s11104-019-04351-z 10.3390/agronomy11081552 10.1016/j.soilbio.2018.12.025 10.1099/ijsem.0.002900 10.1128/AEM.01823-15 10.1007/s42729-021-00459-3 10.1071/SR13204 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-023-05990-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 532 |
ExternalDocumentID | A761355605 10_1007_s11104_023_05990_z |
GeographicLocations | Australia China |
GeographicLocations_xml | – name: China – name: Australia |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2452018345 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 31670629 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2016M60082 – fundername: National Key Research and Development Program of China grantid: 2016YFC0501706-1 – fundername: Tang Scholar Program of Northwest A&F University grantid: Tang Scholar Program of Northwest A&F University |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c391t-93a4a59b30d5c839ed51465164edf73f2c3bb9188ae975de401ca47e5be69873 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Tue Aug 05 10:22:27 EDT 2025 Fri Jul 25 19:02:02 EDT 2025 Tue Jun 10 21:07:04 EDT 2025 Tue Jul 01 01:47:21 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Fri Feb 21 02:43:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Alkaline phosphatase Phosphorus fractions gene SOC Phosphorus mobilization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-93a4a59b30d5c839ed51465164edf73f2c3bb9188ae975de401ca47e5be69873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2852194339 |
PQPubID | 54098 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3153154731 proquest_journals_2852194339 gale_infotracacademiconefile_A761355605 crossref_citationtrail_10_1007_s11104_023_05990_z crossref_primary_10_1007_s11104_023_05990_z springer_journals_10_1007_s11104_023_05990_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230700 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | ZhaoYFZouXQZhangJXCaoLGXuXWHZhangKXChenYYSpatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012Quatern Int201434919620610.1016/j.quaint.2014.06.050 GillSRPopMDeBoyRTEckburgPBTurnbaughPJSamuelBSGordonJIRelmanDAFraser-LiggettCMNelsonKEMetagenomic analysis of the human distal gut microbiomeScience20063125778135513591:CAS:528:DC%2BD28XltVOht7c%3D10.1126/science.1124234167411153027896 WangYLFanTWangXDZhangYLLiLMZhengMJLiuYXAnalysis of phosphorus availability and its relationship with soil properties in the Loess Plateau under long-term imbalanced phosphorus inputJ Soil Water Conserv20193323724210.13870/j.cnki.stbcxb.2019.05.035(In Chinese) WuHLXiangWHChenLOuyangSXiaoWFLiSGSoil phosphorus bioavailability and recycling increased with stand age in chinese fir plantationsEcosystems20192397398810.1007/s10021-019-00450-1 ZhangWLiuWCXuMPDengJHanXHYangGHFengYZRenGXResponse of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, ChinaGeoderma20193372802891:CAS:528:DC%2BC1cXhvVCqs7fN10.1016/j.geoderma.2018.09.042 RosenbergEThe Prokaryotes-Alphaproteobacteria and Betaproteobacteria2014Berlin HeidelbergSpringer961962 WeiXMHuYJRazaviBSZhouJShenJLNannipieriPWuJSGeTDRare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralizationSoil Biol Biochem201913162701:CAS:528:DC%2BC1MXjs1eiug%3D%3D10.1016/j.soilbio.2018.12.025 ZhaoFZRenCJHanXHYangGHWangJDoughtyRChanges of soil microbial and enzyme activities are linked to soil C, N, and P stoichiometry in afforested ecosystemFor Ecol Manag201842728929510.1016/j.foreco.2018.06.011 EtesamiHJeongBRGlickBRContribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plantFront Plant Sci20211212910.3389/fpls.2021.699618 MurphyJRileyJPA modified single solution method for the determination of phosphate in natural watersAnal Chim Acta19622731361:CAS:528:DyaF38XksVyntr8%3D10.1016/S0003-2670(00)88444-5 WangCQXueLJiaoRZSoil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical chinese fir plantationsSoil Till Res202120911010.1016/j.still.2021.104946 FishJAChaiBWangQSunYBrownCTTiedjeJMColeJRFunGene: the functional gene pipeline and repositoryFront Microbiol2013411410.3389/fmicb.2013.00291 WangFZhangYXiaYCuiZBCaoCYSoil microbial community succession based on PhoD and gcd genes along a chronosequence of sand-fixation forestForests20211211610.3390/f12121707 LagosLMAcuñaJJMaruyamaFOgramAMoraMLJorqueraMAEffect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsiitesBiol Fert Soils201652100710191:CAS:528:DC%2BC28Xht1KrsLjO10.1007/s00374-016-1137-1 ChenHJiangWApplication of high-throughput sequencing in understanding human oral microbiome related with health and diseaseFront Microbiol201451610.3389/fmicb.2014.00508 HolsteEKKobeRKGehringCAPlant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungiMycorrhiza2017272112231:CAS:528:DC%2BC28XhvVOhtrfM10.1007/s00572-016-0744-x27838856 Perez-MorenoJReadDJMobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plantsNew Phytol200014523013091:CAS:528:DC%2BD3cXisVarsbk%3D10.1046/j.1469-8137.2000.00569.x KimKKLeeKCEomMKKimJSKimDSKoSHKimBHLeeJSVariibacter gotjawalensis gen. nov., spnov., isolated from soil of a lava forestAnton Leeuw Int J G201410559159241:CAS:528:DC%2BC2cXmsV2nt7Y%3D10.1007/s10482-014-0146-z MarotiGKondorosiENitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?Front Microbiol201451610.3389/fmicb.2014.00326 LuoGWSunBLiLLiMHLiuMQZhuYYGuoSWLingNShenQRUnderstanding how long-term organic amendments increase soil phosphatase activities: insight into phod- and phoc-harboring functional microbial populationsSoil Biol Biochem20191391101:CAS:528:DC%2BC1MXitVKgt7jE10.1016/j.soilbio.2019.107632 HariharanJPredictive functional profiling of soil microbes under different tillages and crop rotations in Ohio2015Columbus, OhioThe Ohio State University RathsRPetaVBuckingHDraft genome sequence of Duganella sp. strain DN04, isolated from cultivated soilMicrobiol Resour Ann20198321210.1128/MRA.00848-19 LuRSSoil agricultural chemical analysis method2000BeijingChina’s Agricultural Science and Technology Press ZhongZKLiWJLuXQGuYQWuSJShenZYHanXHYangGHRenCJAdaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, ChinaSoil Biol Biochem20201511101:CAS:528:DC%2BB3cXitFegsrnP10.1016/j.soilbio.2020.108048 SanyalSKDe DattaSKChemistry of phosphorus transformations in soilAdv Soil Sci19911611201:CAS:528:DyaK38Xot1KltQ%3D%3D10.1007/978-1-4612-3144-8_1 LongXEHuangYChiHFLiYYAhmadNYaoHYNitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, ChinaJ Clean Prod20181702882971:CAS:528:DC%2BC2sXhs1SisLnI10.1016/j.jclepro.2017.09.173 MaXFTudorSButlerTGeYXXiYJBoutonJHarrisonMWangZYTransgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soilsMol Breed20123013773911:CAS:528:DC%2BC38XnvFOksrY%3D10.1007/s11032-011-9628-022707914 StockdaleEAReesRMRelationships between biomass nitrogen and nitrogen extracted by other nitrogen availability methodsSoil Biol Biochem19942691213122010.1016/0038-0717(94)90146-5 LiuJLYangZLDangPZhuHLGaoYHaVNZhaoZResponse of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approachPlant Soil20184233273381:CAS:528:DC%2BC2sXhvFensrzO10.1007/s11104-017-3516-2 RagotSAKerteszMABünemannEKphoD alkaline phosphatase gene diversity in soilAppl Environ Microb20158120728172891:CAS:528:DC%2BC28XhslamtLw%3D10.1128/AEM.01823-15 ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem20191341141:CAS:528:DC%2BC1MXls1egu7o%3D10.1016/j.soilbio.2019.03.017 DeyGBanerjeePSharmaRKMaityJPEtesamiHShawAKHuangYHHuangHBChenCYManagement of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria-A reviewAgronomy-Basel20211181271:CAS:528:DC%2BB3MXisFeqsbvI10.3390/agronomy11081552 RossiACruzAHSantosRSSilvaPMSilvaEMMendesNSMartinez-RossiNMAmbient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networksIUBMB Life201365119309351:CAS:528:DC%2BC3sXhs1ykt73N10.1002/iub.121724265200 TianJHKuangXZTangMTChenXDHuangFCaiYXCaiKZBiochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community compositionSci Total Environ20217791121:CAS:528:DC%2BB3MXntVOks70%3D10.1016/j.scitotenv.2021.146556 NannipieriPGiagnoniLLandiLRenellaGBünemannEKRole of phosphatase enzymes in soilPhosphorus in action, soil biology2011Berlin HeidelbergSpringer21524310.1007/978-3-642-15271-9_9 ZhuXYZhaoXRLinQMLiGTDistribution characteristics of phod-harbouring bacterial community structure and its roles in phosphorus transformation in steppe soils in northern ChinaJ Soil Sci Plant Nut2021212153115411:CAS:528:DC%2BB3MXhtVOmurfK10.1007/s42729-021-00459-3 BiQFLiKJZhengBXZhengBXLiuXPLiHZJinBJDingKYangXRLinXYZhuYGPartial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soilSci Total Environ20207031111:CAS:528:DC%2BC1MXitFyqsr3N10.1016/j.scitotenv.2019.134977 Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.C HuBYangBPangXYBaoWKTianGLResponses of soil phosphorus fractions to gap size in a reforested spruce forestGeoderma201627961691:CAS:528:DC%2BC28XhtVaiurzF10.1016/j.geoderma.2016.05.023 DaiZMLiuGFChenHHChenCRWangJKAiSYWeiDLiDMMaBTangCXBrookesPCXuJMLong-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystemsISME J2020147577701:CAS:528:DC%2BC1MXitl2lt73J10.1038/s41396-019-056731827246 LaranjoMAlexandreAOliveiraSLegume growth-promoting rhizobia: an overview on the Mesorhizobium genusMicrobiol Res2014169121710.1016/j.micres.2013.09.01224157054 Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020) Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems 5(3): 1–15. https://doi.org/10.1128/mSystems.00162-20 RagotSAKerteszMAMeszarosEFrossardEBünemannEKSoil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factorsFEMS Microbiol Ecol2017931151:CAS:528:DC%2BC1cXhsVyis7jF10.1093/femsec/fiw212 ChenXDJiangNCondronLMDunfieldKEChenZHWangJKChenLJImpact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast ChinaSci Total Environ2019669101110181:CAS:528:DC%2BC1MXlsFKisL0%3D10.1016/j.scitotenv.2019.03.17230970450 ChenCRCondronLMXuZHImpacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a reviewFor Ecol Manag20082553–439640910.1016/j.foreco.2007.10.040 SakuraiMWasakiJTomizawaYShinanoTOsakiMAnalysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matterSoil Sci Plant Nutr20085462711:CAS:528:DC%2BD1cXjt1Whsbs%3D10.1111/j.1747-0765.2007.00210.x TanHBarretMMooijMJRiceOMorrisseyJPDobsonAG FZ Zhao (5990_CR70) 2018; 427 GW Luo (5990_CR38) 2019; 139 M Lang (5990_CR27) 2021; 11 R Raths (5990_CR49) 2019; 8 YF Zhao (5990_CR69) 2014; 349 W Zhang (5990_CR68) 2019; 134 SA Ragot (5990_CR48) 2015; 81 YM Liang (5990_CR29) 2020; 11 GC Sigua (5990_CR55) 2016; 142 XY Zhu (5990_CR73) 2021; 21 EQ Hou (5990_CR21) 2014; 52 EK Holste (5990_CR19) 2017; 27 XD Chen (5990_CR8) 2019; 669 QF Bi (5990_CR2) 2020; 703 XM Wei (5990_CR64) 2019; 131 J Murphy (5990_CR42) 1962; 27 Z Wang (5990_CR62) 2021; 12 F Wang (5990_CR61) 2021; 12 JS Liu (5990_CR32) 2020; 149 YH Hou (5990_CR20) 2019; 458 P Nannipieri (5990_CR43) 2011 A Slazak (5990_CR54) 2010; 158 ZK Zhong (5990_CR72) 2020; 151 J Hariharan (5990_CR18) 2015 A Rossi (5990_CR51) 2013; 65 YL Wang (5990_CR63) 2019; 33 5990_CR24 XE Long (5990_CR36) 2018; 170 V Chaudhry (5990_CR6) 2012; 64 5990_CR66 JH Tian (5990_CR59) 2021; 779 LM Lagos (5990_CR26) 2016; 52 SK Sanyal (5990_CR53) 1991; 16 ZM Dai (5990_CR11) 2020; 14 RS Lu (5990_CR35) 2000 (5990_CR50) 2014 H Etesami (5990_CR13) 2021; 12 EA Stockdale (5990_CR57) 1994; 26 H Tan (5990_CR58) 2013; 49 XD Chen (5990_CR9) 2021; 159 G Maroti (5990_CR40) 2014; 5 CQ Wang (5990_CR60) 2021; 209 H Liao (5990_CR30) 2018; 68 I Ikoyi (5990_CR23) 2018; 630 S Gopalakrishnan (5990_CR16) 2015; 5 M Sakurai (5990_CR52) 2008; 54 5990_CR39 G Dey (5990_CR12) 2021; 11 ZM Zheng (5990_CR71) 2002; 66 SD Bao (5990_CR1) 2000 5990_CR4 J Caporaso (5990_CR5) 2010; 7 FP Liu (5990_CR34) 2018; 9 XF Ma (5990_CR41) 2012; 30 CR Chen (5990_CR10) 2008; 255 JL Liu (5990_CR33) 2018; 423 HL Wu (5990_CR65) 2019; 23 5990_CR45 J Perez-Moreno (5990_CR46) 2000; 145 CM Singleton (5990_CR56) 2018; 12 RA Bowman (5990_CR3) 1978; 125 B Hu (5990_CR22) 2016; 279 SA Ragot (5990_CR47) 2017; 93 SR Gill (5990_CR15) 2006; 312 M Laranjo (5990_CR28) 2014; 169 AT Nottingham (5990_CR44) 2015; 80 KK Kim (5990_CR25) 2014; 105 H Chen (5990_CR7) 2014; 5 SY Guan (5990_CR17) 1987 GW Luo (5990_CR37) 2017; 53 IDEA Lidbury (5990_CR31) 2017; 6 JA Fish (5990_CR14) 2013; 4 W Zhang (5990_CR67) 2019; 337 |
References_xml | – reference: NannipieriPGiagnoniLLandiLRenellaGBünemannEKRole of phosphatase enzymes in soilPhosphorus in action, soil biology2011Berlin HeidelbergSpringer21524310.1007/978-3-642-15271-9_9 – reference: LagosLMAcuñaJJMaruyamaFOgramAMoraMLJorqueraMAEffect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsiitesBiol Fert Soils201652100710191:CAS:528:DC%2BC28Xht1KrsLjO10.1007/s00374-016-1137-1 – reference: WangYLFanTWangXDZhangYLLiLMZhengMJLiuYXAnalysis of phosphorus availability and its relationship with soil properties in the Loess Plateau under long-term imbalanced phosphorus inputJ Soil Water Conserv20193323724210.13870/j.cnki.stbcxb.2019.05.035(In Chinese) – reference: SanyalSKDe DattaSKChemistry of phosphorus transformations in soilAdv Soil Sci19911611201:CAS:528:DyaK38Xot1KltQ%3D%3D10.1007/978-1-4612-3144-8_1 – reference: HariharanJPredictive functional profiling of soil microbes under different tillages and crop rotations in Ohio2015Columbus, OhioThe Ohio State University – reference: Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (Eds.), Methods of soil analysis, Part 2, Chemical and Microbial Properties. Agronomy Society of America, Agronomy Monography 9, Madidon, Wisconsin, pp. 595–624 – reference: LidburyIDEAFraserTMurphyARJScanlanDJBendingGDJonesAMEMooreJDGoodallATibbettMHammondJPWellingtonEMHThe ‘known’ genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soilsMicrobiologyOpen201764151:CAS:528:DC%2BC2sXhtlaktLjF10.1002/mbo3.474 – reference: ZhaoFZRenCJHanXHYangGHWangJDoughtyRChanges of soil microbial and enzyme activities are linked to soil C, N, and P stoichiometry in afforested ecosystemFor Ecol Manag201842728929510.1016/j.foreco.2018.06.011 – reference: ChenCRCondronLMXuZHImpacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a reviewFor Ecol Manag20082553–439640910.1016/j.foreco.2007.10.040 – reference: NottinghamATTurnerBLStottAWTannerEVJNitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soilsSoil Biol Biochem20158026331:CAS:528:DC%2BC2cXhs1WitbzE10.1016/j.soilbio.2014.09.012 – reference: ZhuXYZhaoXRLinQMLiGTDistribution characteristics of phod-harbouring bacterial community structure and its roles in phosphorus transformation in steppe soils in northern ChinaJ Soil Sci Plant Nut2021212153115411:CAS:528:DC%2BB3MXhtVOmurfK10.1007/s42729-021-00459-3 – reference: LiangYMLiMJPanFJMaJMYangZQLingTWQinJSLuSHZhongFYSongZRAlkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus transformation with stand age in chinese Pinus massoniana plantationsFront Microbiol20201111310.3389/fmicb.2020.571209 – reference: MarotiGKondorosiENitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?Front Microbiol201451610.3389/fmicb.2014.00326 – reference: Perez-MorenoJReadDJMobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plantsNew Phytol200014523013091:CAS:528:DC%2BD3cXisVarsbk%3D10.1046/j.1469-8137.2000.00569.x – reference: ZhaoYFZouXQZhangJXCaoLGXuXWHZhangKXChenYYSpatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012Quatern Int201434919620610.1016/j.quaint.2014.06.050 – reference: ChenXDCondronLMDunfieldKEWakelinSAChenLJImpact of grassland afforestation with contrasting tree species on soil phosphorus fractions and alkaline phosphatase gene communitiesSoil Biol Biochem2021159191:CAS:528:DC%2BB3MXhtVyntbvI10.1016/j.soilbio.2021.108274 – reference: GuanSYSoil enzyme and their research methods1987BeijingChina Agricultural Science and Technology Press – reference: RagotSAKerteszMAMeszarosEFrossardEBünemannEKSoil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factorsFEMS Microbiol Ecol2017931151:CAS:528:DC%2BC1cXhsVyis7jF10.1093/femsec/fiw212 – reference: LiuJLYangZLDangPZhuHLGaoYHaVNZhaoZResponse of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approachPlant Soil20184233273381:CAS:528:DC%2BC2sXhvFensrzO10.1007/s11104-017-3516-2 – reference: BowmanRAColeCVAn exploratory method for fractionation of organic phosphorus from grassland soilsSoil Sci1978125951011:CAS:528:DyaE1cXhs1yrtLg%3D10.1097/00010694-197802000-00006 – reference: TianJHKuangXZTangMTChenXDHuangFCaiYXCaiKZBiochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community compositionSci Total Environ20217791121:CAS:528:DC%2BB3MXntVOks70%3D10.1016/j.scitotenv.2021.146556 – reference: WeiXMHuYJRazaviBSZhouJShenJLNannipieriPWuJSGeTDRare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralizationSoil Biol Biochem201913162701:CAS:528:DC%2BC1MXjs1eiug%3D%3D10.1016/j.soilbio.2018.12.025 – reference: LiuJSMaQHuiXLRanJYMaQXWangXSWangZHLong-term high-P fertilizer input decreased the total bacterial diversity but not phod-harboring bacteria in wheat rhizosphere soil with available-P deficiencySoil Biol Biochem20201491101:CAS:528:DC%2BB3cXhsFGhtr%2FJ10.1016/j.soilbio.2020.107918 – reference: HouEQChenCRWenDZLiuXRelationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forests, Dinghushan, ChinaSoil Res20145255631:CAS:528:DC%2BC2cXit12gsbc%3D10.1071/SR13204 – reference: LaranjoMAlexandreAOliveiraSLegume growth-promoting rhizobia: an overview on the Mesorhizobium genusMicrobiol Res2014169121710.1016/j.micres.2013.09.01224157054 – reference: ZhongZKLiWJLuXQGuYQWuSJShenZYHanXHYangGHRenCJAdaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, ChinaSoil Biol Biochem20201511101:CAS:528:DC%2BB3cXitFegsrnP10.1016/j.soilbio.2020.108048 – reference: LiaoHLiYQLinXLLaiQLTianYZhengella mangrovi gen. nov., spnov., a novel member of family Phyllobacteriaceae isolated from mangrove sedimentInt J Syst Evol Micr2018689281928251:CAS:528:DC%2BC1MXktVGktrs%3D10.1099/ijsem.0.002900 – reference: RagotSAKerteszMABünemannEKphoD alkaline phosphatase gene diversity in soilAppl Environ Microb20158120728172891:CAS:528:DC%2BC28XhslamtLw%3D10.1128/AEM.01823-15 – reference: LuRSSoil agricultural chemical analysis method2000BeijingChina’s Agricultural Science and Technology Press – reference: LiuFPLvLXJiangHYYanRDongSRChenLPWangWChenYQAlterations in the urinary microbiota are associated with cesarean deliveryFront Microbiol2018911210.3389/fmicb.2018.02193 – reference: WangZLiXLJiBMStruikPCJinKTangSMCoupling between the responses of plants, soil, and microorganisms following grazing exclusion in an overgrazed grasslandFront Plant Sci20211211610.3389/fpls.2021.640789 – reference: RathsRPetaVBuckingHDraft genome sequence of Duganella sp. strain DN04, isolated from cultivated soilMicrobiol Resour Ann20198321210.1128/MRA.00848-19 – reference: SiguaGCNovakJMWattsDWJohnsonMGSpokasKEfficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layerChemosphere20161421761831:CAS:528:DC%2BC2MXhtVeisL3K10.1016/j.chemosphere.2015.06.01526112657 – reference: LuoGWSunBLiLLiMHLiuMQZhuYYGuoSWLingNShenQRUnderstanding how long-term organic amendments increase soil phosphatase activities: insight into phod- and phoc-harboring functional microbial populationsSoil Biol Biochem20191391101:CAS:528:DC%2BC1MXitVKgt7jE10.1016/j.soilbio.2019.107632 – reference: FishJAChaiBWangQSunYBrownCTTiedjeJMColeJRFunGene: the functional gene pipeline and repositoryFront Microbiol2013411410.3389/fmicb.2013.00291 – reference: CaporasoJKuczynskiJStombaughJBittingerKBushmanFCostelloEQIIME allows analysis of high-throughput community sequencing dataNat Methods201073353361:CAS:528:DC%2BC3cXksFalurg%3D10.1038/nmeth.f.303203831313156573 – reference: LangMZouWXChenXXZouCQZhangWDengYZhuFYuPChenXPSoil microbial composition and phoD gene abundance are sensitive to phosphorus level in a long-term wheat-maize crop systemFront Microbiol20211111510.3389/fmicb.2020.605955 – reference: HouYHHeKYChenYZhaoJXHuHFZhuBChanges of soil organic matter stability along altitudinal gradients in tibetan alpine grasslandPlant Soil20194581–221401:CAS:528:DC%2BC1MXitFemu7bN10.1007/s11104-019-04351-z – reference: WangCQXueLJiaoRZSoil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical chinese fir plantationsSoil Till Res202120911010.1016/j.still.2021.104946 – reference: ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem20191341141:CAS:528:DC%2BC1MXls1egu7o%3D10.1016/j.soilbio.2019.03.017 – reference: HolsteEKKobeRKGehringCAPlant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungiMycorrhiza2017272112231:CAS:528:DC%2BC28XhvVOhtrfM10.1007/s00572-016-0744-x27838856 – reference: Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.C – reference: Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020) Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems 5(3): 1–15. https://doi.org/10.1128/mSystems.00162-20 – reference: Jensen TL (2010) Soil pH and the availability of plant nutrients. IPNI. http://www.ipni.net/publication/pnt-na.nsf/0/013f96e7280a696985257cd6006fb98f – reference: ChaudhryVRehmanAMishraAChauhanPSNautiyalCSChanges in bacterial community structure of agricultural land due to long-term organic and chemical amendmentsMicrob Ecol201264245046010.1007/s00248-012-0025-y22419103 – reference: GopalakrishnanSSrinivasVPrakashBSathyaAVijayabharathiRPlant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodulesBiotech20155565366110.1007/s13205-014-0263-4 – reference: EtesamiHJeongBRGlickBRContribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plantFront Plant Sci20211212910.3389/fpls.2021.699618 – reference: RossiACruzAHSantosRSSilvaPMSilvaEMMendesNSMartinez-RossiNMAmbient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networksIUBMB Life201365119309351:CAS:528:DC%2BC3sXhs1ykt73N10.1002/iub.121724265200 – reference: GillSRPopMDeBoyRTEckburgPBTurnbaughPJSamuelBSGordonJIRelmanDAFraser-LiggettCMNelsonKEMetagenomic analysis of the human distal gut microbiomeScience20063125778135513591:CAS:528:DC%2BD28XltVOht7c%3D10.1126/science.1124234167411153027896 – reference: WuHLXiangWHChenLOuyangSXiaoWFLiSGSoil phosphorus bioavailability and recycling increased with stand age in chinese fir plantationsEcosystems20192397398810.1007/s10021-019-00450-1 – reference: StockdaleEAReesRMRelationships between biomass nitrogen and nitrogen extracted by other nitrogen availability methodsSoil Biol Biochem19942691213122010.1016/0038-0717(94)90146-5 – reference: BaoSDChemical analysis for agricultural soil2000BeijingChina Agriculture Press3082 – reference: ChenXDJiangNCondronLMDunfieldKEChenZHWangJKChenLJImpact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast ChinaSci Total Environ2019669101110181:CAS:528:DC%2BC1MXlsFKisL0%3D10.1016/j.scitotenv.2019.03.17230970450 – reference: ZhengZMSimardRRLafondJParentLEPathways of soil phosphorus transformations after 8 years of cultivation under contrasting cropping practicesSoil Sci Soc Am J20026699910071:CAS:528:DC%2BD38XlslOqsr4%3D10.2136/sssaj2002.9990 – reference: ZhangWLiuWCXuMPDengJHanXHYangGHFengYZRenGXResponse of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, ChinaGeoderma20193372802891:CAS:528:DC%2BC1cXhvVCqs7fN10.1016/j.geoderma.2018.09.042 – reference: LuoGWLingNNannipieriPChenHRazaWWangMGuoSWShenQRLong-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a Vertisol and its derivative soil fractionsBiol Fert Soils20175343753881:CAS:528:DC%2BC2sXjsFGitL0%3D10.1007/s00374-017-1183-3 – reference: MurphyJRileyJPA modified single solution method for the determination of phosphate in natural watersAnal Chim Acta19622731361:CAS:528:DyaF38XksVyntr8%3D10.1016/S0003-2670(00)88444-5 – reference: HuBYangBPangXYBaoWKTianGLResponses of soil phosphorus fractions to gap size in a reforested spruce forestGeoderma201627961691:CAS:528:DC%2BC28XhtVaiurzF10.1016/j.geoderma.2016.05.023 – reference: ChenHJiangWApplication of high-throughput sequencing in understanding human oral microbiome related with health and diseaseFront Microbiol201451610.3389/fmicb.2014.00508 – reference: LongXEHuangYChiHFLiYYAhmadNYaoHYNitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, ChinaJ Clean Prod20181702882971:CAS:528:DC%2BC2sXhs1SisLnI10.1016/j.jclepro.2017.09.173 – reference: SakuraiMWasakiJTomizawaYShinanoTOsakiMAnalysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matterSoil Sci Plant Nutr20085462711:CAS:528:DC%2BD1cXjt1Whsbs%3D10.1111/j.1747-0765.2007.00210.x – reference: SingletonCMMcCalleyCKWoodcroftBJBoydJAEvansPNHodgkinsSBChantonJPFrolkingSCrillPMSaleskaSRRichVITysonGWMethanotrophy across a natural permafrost thaw environmentISME J20181210254425581:CAS:528:DC%2BC1cXht1yks7zL10.1038/s41396-018-0065-5299551396155033 – reference: DeyGBanerjeePSharmaRKMaityJPEtesamiHShawAKHuangYHHuangHBChenCYManagement of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria-A reviewAgronomy-Basel20211181271:CAS:528:DC%2BB3MXisFeqsbvI10.3390/agronomy11081552 – reference: TanHBarretMMooijMJRiceOMorrisseyJPDobsonAGriffithsBGaraFOLong-term phosphorus fertilization increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soilsBiol Fert Soils2013496616721:CAS:528:DC%2BC3sXhtFGrsL3J10.1007/s00374-012-0755-5 – reference: SlazakAFreeseDda SilvaMEHüttlRFSoil organic phosphorus fraction in pine-oak forest stands in northeastern GermanyGeoderma20101581561621:CAS:528:DC%2BC3cXhtVyjsL3E10.1016/j.geoderma.2010.04.023 – reference: Xu MP, Wang JY, Zhu YF, Han XH, Ren CJ, Yang GH (2021) Plant biomass and soil nutrients mainly explain the variation of soil microbial communities during secondary succession on the Loess plateau. Microb Ecol 1–13. https://doi.org/10.1007/s00248-021-01740-9 – reference: WangFZhangYXiaYCuiZBCaoCYSoil microbial community succession based on PhoD and gcd genes along a chronosequence of sand-fixation forestForests20211211610.3390/f12121707 – reference: IkoyiIFowlerASchmalenbergerAOne-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem servicesSci Total Environ20186308498581:CAS:528:DC%2BC1cXjs1Wqu7w%3D10.1016/j.scitotenv.2018.02.26329499540 – reference: KimKKLeeKCEomMKKimJSKimDSKoSHKimBHLeeJSVariibacter gotjawalensis gen. nov., spnov., isolated from soil of a lava forestAnton Leeuw Int J G201410559159241:CAS:528:DC%2BC2cXmsV2nt7Y%3D10.1007/s10482-014-0146-z – reference: MaXFTudorSButlerTGeYXXiYJBoutonJHarrisonMWangZYTransgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soilsMol Breed20123013773911:CAS:528:DC%2BC38XnvFOksrY%3D10.1007/s11032-011-9628-022707914 – reference: RosenbergEThe Prokaryotes-Alphaproteobacteria and Betaproteobacteria2014Berlin HeidelbergSpringer961962 – reference: BiQFLiKJZhengBXZhengBXLiuXPLiHZJinBJDingKYangXRLinXYZhuYGPartial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soilSci Total Environ20207031111:CAS:528:DC%2BC1MXitFyqsr3N10.1016/j.scitotenv.2019.134977 – reference: DaiZMLiuGFChenHHChenCRWangJKAiSYWeiDLiDMMaBTangCXBrookesPCXuJMLong-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystemsISME J2020147577701:CAS:528:DC%2BC1MXitl2lt73J10.1038/s41396-019-056731827246 – volume: 65 start-page: 930 issue: 11 year: 2013 ident: 5990_CR51 publication-title: IUBMB Life doi: 10.1002/iub.1217 – volume: 159 start-page: 1 year: 2021 ident: 5990_CR9 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108274 – volume: 145 start-page: 301 issue: 2 year: 2000 ident: 5990_CR46 publication-title: New Phytol doi: 10.1046/j.1469-8137.2000.00569.x – volume: 66 start-page: 999 year: 2002 ident: 5990_CR71 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2002.9990 – volume: 105 start-page: 915 issue: 5 year: 2014 ident: 5990_CR25 publication-title: Anton Leeuw Int J G doi: 10.1007/s10482-014-0146-z – volume: 158 start-page: 156 year: 2010 ident: 5990_CR54 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.04.023 – volume: 12 start-page: 1 year: 2021 ident: 5990_CR13 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.699618 – volume-title: Soil enzyme and their research methods year: 1987 ident: 5990_CR17 – volume: 779 start-page: 1 year: 2021 ident: 5990_CR59 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.146556 – volume: 5 start-page: 653 issue: 5 year: 2015 ident: 5990_CR16 publication-title: Biotech doi: 10.1007/s13205-014-0263-4 – volume: 337 start-page: 280 year: 2019 ident: 5990_CR67 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.042 – volume: 27 start-page: 31 year: 1962 ident: 5990_CR42 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 125 start-page: 95 year: 1978 ident: 5990_CR3 publication-title: Soil Sci doi: 10.1097/00010694-197802000-00006 – volume: 11 start-page: 1 year: 2020 ident: 5990_CR29 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.571209 – ident: 5990_CR24 – volume: 703 start-page: 1 year: 2020 ident: 5990_CR2 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134977 – volume: 427 start-page: 289 year: 2018 ident: 5990_CR70 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2018.06.011 – volume: 142 start-page: 176 year: 2016 ident: 5990_CR55 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.015 – volume: 423 start-page: 327 year: 2018 ident: 5990_CR33 publication-title: Plant Soil doi: 10.1007/s11104-017-3516-2 – start-page: 215 volume-title: Phosphorus in action, soil biology year: 2011 ident: 5990_CR43 doi: 10.1007/978-3-642-15271-9_9 – volume-title: Soil agricultural chemical analysis method year: 2000 ident: 5990_CR35 – volume: 8 start-page: 1 issue: 32 year: 2019 ident: 5990_CR49 publication-title: Microbiol Resour Ann doi: 10.1128/MRA.00848-19 – volume: 4 start-page: 1 year: 2013 ident: 5990_CR14 publication-title: Front Microbiol doi: 10.3389/fmicb.2013.00291 – volume: 312 start-page: 1355 issue: 5778 year: 2006 ident: 5990_CR15 publication-title: Science doi: 10.1126/science.1124234 – volume: 170 start-page: 288 year: 2018 ident: 5990_CR36 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.09.173 – volume: 5 start-page: 1 year: 2014 ident: 5990_CR7 publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00508 – volume: 5 start-page: 1 year: 2014 ident: 5990_CR40 publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00326 – volume: 53 start-page: 375 issue: 4 year: 2017 ident: 5990_CR37 publication-title: Biol Fert Soils doi: 10.1007/s00374-017-1183-3 – volume: 7 start-page: 335 year: 2010 ident: 5990_CR5 publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 33 start-page: 237 year: 2019 ident: 5990_CR63 publication-title: J Soil Water Conserv doi: 10.13870/j.cnki.stbcxb.2019.05.035 – volume: 6 start-page: 1 issue: 4 year: 2017 ident: 5990_CR31 publication-title: MicrobiologyOpen doi: 10.1002/mbo3.474 – volume: 12 start-page: 1 year: 2021 ident: 5990_CR61 publication-title: Forests doi: 10.3390/f12121707 – volume: 52 start-page: 1007 year: 2016 ident: 5990_CR26 publication-title: Biol Fert Soils doi: 10.1007/s00374-016-1137-1 – ident: 5990_CR39 doi: 10.1128/mSystems.00162-20 – volume: 27 start-page: 211 year: 2017 ident: 5990_CR19 publication-title: Mycorrhiza doi: 10.1007/s00572-016-0744-x – volume: 30 start-page: 377 issue: 1 year: 2012 ident: 5990_CR41 publication-title: Mol Breed doi: 10.1007/s11032-011-9628-0 – volume: 630 start-page: 849 year: 2018 ident: 5990_CR23 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.263 – volume: 23 start-page: 973 year: 2019 ident: 5990_CR65 publication-title: Ecosystems doi: 10.1007/s10021-019-00450-1 – volume: 93 start-page: 1 year: 2017 ident: 5990_CR47 publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiw212 – start-page: 30 volume-title: Chemical analysis for agricultural soil year: 2000 ident: 5990_CR1 – volume: 669 start-page: 1011 year: 2019 ident: 5990_CR8 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.03.172 – volume: 149 start-page: 1 year: 2020 ident: 5990_CR32 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107918 – volume: 9 start-page: 1 year: 2018 ident: 5990_CR34 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02193 – volume: 54 start-page: 62 year: 2008 ident: 5990_CR52 publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2007.00210.x – volume: 11 start-page: 1 year: 2021 ident: 5990_CR27 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.605955 – start-page: 961 volume-title: The Prokaryotes-Alphaproteobacteria and Betaproteobacteria year: 2014 ident: 5990_CR50 – volume: 16 start-page: 1 year: 1991 ident: 5990_CR53 publication-title: Adv Soil Sci doi: 10.1007/978-1-4612-3144-8_1 – volume: 209 start-page: 1 year: 2021 ident: 5990_CR60 publication-title: Soil Till Res doi: 10.1016/j.still.2021.104946 – ident: 5990_CR66 doi: 10.1007/s00248-021-01740-9 – ident: 5990_CR45 – volume: 139 start-page: 1 year: 2019 ident: 5990_CR38 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107632 – volume: 14 start-page: 757 year: 2020 ident: 5990_CR11 publication-title: ISME J doi: 10.1038/s41396-019-0567 – volume: 26 start-page: 1213 issue: 9 year: 1994 ident: 5990_CR57 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(94)90146-5 – volume: 169 start-page: 2 issue: 1 year: 2014 ident: 5990_CR28 publication-title: Microbiol Res doi: 10.1016/j.micres.2013.09.012 – volume: 49 start-page: 661 year: 2013 ident: 5990_CR58 publication-title: Biol Fert Soils doi: 10.1007/s00374-012-0755-5 – volume: 12 start-page: 2544 issue: 10 year: 2018 ident: 5990_CR56 publication-title: ISME J doi: 10.1038/s41396-018-0065-5 – volume: 255 start-page: 396 issue: 3–4 year: 2008 ident: 5990_CR10 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2007.10.040 – volume: 279 start-page: 61 year: 2016 ident: 5990_CR22 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.023 – volume: 151 start-page: 1 year: 2020 ident: 5990_CR72 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108048 – volume: 12 start-page: 1 year: 2021 ident: 5990_CR62 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.640789 – ident: 5990_CR4 doi: 10.2134/agronmonogr9.2.2ed.c31 – volume: 134 start-page: 1 year: 2019 ident: 5990_CR68 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.03.017 – volume: 349 start-page: 196 year: 2014 ident: 5990_CR69 publication-title: Quatern Int doi: 10.1016/j.quaint.2014.06.050 – volume: 64 start-page: 450 issue: 2 year: 2012 ident: 5990_CR6 publication-title: Microb Ecol doi: 10.1007/s00248-012-0025-y – volume: 80 start-page: 26 year: 2015 ident: 5990_CR44 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.09.012 – volume: 458 start-page: 21 issue: 1–2 year: 2019 ident: 5990_CR20 publication-title: Plant Soil doi: 10.1007/s11104-019-04351-z – volume: 11 start-page: 1 issue: 8 year: 2021 ident: 5990_CR12 publication-title: Agronomy-Basel doi: 10.3390/agronomy11081552 – volume: 131 start-page: 62 year: 2019 ident: 5990_CR64 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.12.025 – volume-title: Predictive functional profiling of soil microbes under different tillages and crop rotations in Ohio year: 2015 ident: 5990_CR18 – volume: 68 start-page: 2819 issue: 9 year: 2018 ident: 5990_CR30 publication-title: Int J Syst Evol Micr doi: 10.1099/ijsem.0.002900 – volume: 81 start-page: 7281 issue: 20 year: 2015 ident: 5990_CR48 publication-title: Appl Environ Microb doi: 10.1128/AEM.01823-15 – volume: 21 start-page: 1531 issue: 2 year: 2021 ident: 5990_CR73 publication-title: J Soil Sci Plant Nut doi: 10.1007/s42729-021-00459-3 – volume: 52 start-page: 55 year: 2014 ident: 5990_CR21 publication-title: Soil Res doi: 10.1071/SR13204 |
SSID | ssj0003216 |
Score | 2.467397 |
Snippet | Background and aims
Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under... Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under... Background and aimsSoil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P... BACKGROUND AND AIMS: Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 517 |
SubjectTerms | Abundance Afforestation Aging Agricultural land Agriculture Alkaline phosphatase Alkaline soils Analysis bacterial communities Bioavailability Biomedical and Life Sciences Black locust Carbon content chronosequences Community composition Community structure Ecology equations Forest ecosystems forests Fractions genes Genetic aspects Growth Life Sciences Microorganisms Multivariate statistical analysis Organic carbon Organic phosphorus Phosphatase Phosphates Phosphorus Phosphorus content Plant Physiology Plant Sciences primary productivity Research Article Robinia pseudoacacia Seedlings Semi arid areas Semiarid zones Sodium hydroxide soil organic carbon Soil Science & Conservation Soils stand age Stoichiometry Terrestrial ecosystems trees |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA56KuiD6Kq4ekoEwQcNtE2yTR5XueMQFB_uYN_KJE3dxaVZNl3k7n_xf3WStrv-Bh8KhSZD0pnJfGEyXwh5aYWwuaqBZRZqJoyTTPNmxlTTuFI6DiJVeH_4ODu7EO8XcjEUhYXxtPuYkkwr9aHYDSOVYBhjWOQUydjVdXJD4t492vVFMd-vv7xIF57GF5aVejGUyvxZxk_h6NdF-bfsaAo6p_fI3QEt0nmv3vvkmmsn5M7883ZgzHATcvOtR3x3OSG3ThIB9eUD8u3T0tdsCVuTTtdR0zMyoyDbl4NEElWaakYQb9Kw9l8ptDVtIHR0s_QBn-0u0O4HUOtbumoprL9AxKU0-NWa-oYCTQVkK6Cb4Ha1BwuobAoNdnOhT_NTGwl4_Xho-yE5Pz05f3fGhmsYmOU671B3IEBqw7NaWsRTrkaQNZO4z3J1U_KmsNwYnSsFTpeydrhjsyBKJ42baVXyR-So9a17THAamXJ2pmxprMiNVNDkGhRKFSY3Ip-SfFRGZQeK8nhTxro6kCtHBVaowCopsLqaktf7PpueoOOfrV9FHVfRe1Ey_pO-CAHHF3mwqnmJ8EYiCpRTcjyaQTW4dagKhWhHC871lLzYf0aHjFkWaJ3fhYpjDMnjjc44nTej-RxE_H1sT_6v-VNyu0iGHI8OH5OjbrtzzxAgdeZ58ofv8AwLHQ priority: 102 providerName: Springer Nature |
Title | Phod-harboring bacterial communities mediated slow and fast phosphorus transformation in alkaline soil of a Robinia pseudoacacia afforestation chronosequence |
URI | https://link.springer.com/article/10.1007/s11104-023-05990-z https://www.proquest.com/docview/2852194339 https://www.proquest.com/docview/3153154731 |
Volume | 488 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLXYygM8IBggOkZlJCQewCKJ7cR5QhnqmEBME9qk8mTZjkMrqrhrUiH2X_ivXCdOy4fYQ6RIiZ2Pc33vSex7LkIvDGMmFqUikVElYdpyktMqJaKqbMYtVazL8P50lp5esg8zPgs_3JqwrHLwiZ2jLp3x_8jfJAICTc4ozd-uroivGuVnV0MJjT00AhcswMJHx9Oz889bX0yTrvip3yFRls9C2kyfPAeRjxGIWcRrlETk-o_Q9LeD_memtAtAJ_fRvcAccdFD_QDdsvUBult8XQf1DHuAbh874Ho_HqKf53NXkrla6259Hda9JjM0N31CiJdRxV3WCDBO3Czdd6zqEleqafFq7hrY1psGt7_RWlfjRY3V8pvyzBQ3brHErsIKdylkC4VXjd2UThkFcGNVQTPb9BP92HgJXjcs236ELk6mF-9OSSjEQAzN4xbQU0zxXNOo5AYYlS2BZqUcvrRsWWW0SgzVOo-FUDbPeGnhm80ollmubZqLjD5G-7Wr7RMEjxEJa1JhMm1YrLlQVZwrAb0yHWsWj1E8QCBNECn3tTKWciev7GGTAJvsYJPXY_Rq22bVS3TcePZLj6z04xd6hnfSpyHA_XklLFlkQHA48EA-RkcD-DIM7EbuzHCMnm8Pw5D08yyqtm7TSApRJPY1neFxXg9Gs-vi__d2ePMVn6I7SWeufrHwEdpv1xv7DChRqydoVLz_8nE6CfY_QXuXSfELi5YOsQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NDgl4QDBAFAYYCcQDWCSx3SQPCHWwqWNbNaEi9c2yHYdWVHFpWk3bd-Ej8B0550_LH7G3PUSKlNixc5e7n-O73wG8MJybMMkUDYzKKNdW0JTlPZrkuY2FZYpXGd4nw97gC_80FuMt-NnmwviwytYmVoY6c8b_I38bJehoUs5Y-n7-nfqqUX53tS2hUavFkT0_wyVb-e7wI8r3ZRQd7I8-DGhTVYAaloZLHIriSqSaBZkwCA9shpihJ3DZYLM8ZnlkmNZpmCTKprHILC5AjOKxFdr2cIHOsNtrsM0ZIoUObO_tD08_r00_i6paq_6EBnE6brJ06lw9dLScoouknhIloBd_eMK__cE_G7OVvzu4A7cboEr6tWbdhS1b7MCt_tdFQ9Zhd-D6nkNoeX4PfpxOXEYnaqGrcD6iawpobG7q_BPP2kqqJBUEuKScuTOiiozkqlyS-cSVeCxWJVn-hqJdQaYFUbNvygNhUrrpjLicKFJlrE0VmZd2lTllFGoXUTk2s2UdV0CMZ_x1bZT4fRhdhYQeQKdwhX0IOI0gsaaXmFgbHmqRqDxMVYK9ch1qHnYhbEUgTcOJ7ktzzOSGzdmLTaLYZCU2edGF1-s285oR5NK7X3nJSm8usGd8J3XWA47PE2_Jfox4SiDsFF3YbYUvGztSyo3Wd-H5-jJaAL-towrrVqVk6LRCX0Iap_OmVZpNF_8f26PLn_gMbgxGJ8fy-HB49BhuRpXq-jjlXegsFyv7BNHYUj9tvgEC8oq_ul9vfUhB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NDiF4QDBAFAYYCcQDWEtiu0keEOrYqo1BVaEh9c2yHYdWVHFpWk3bd-GD8O0450_LH7G3PUSKlNhxcue7n-P73QG8MJybMMkUDYzKKNdW0JTlPZrkuY2FZYpXDO9Pw97RF_5hLMZb8LPlwviwytYmVoY6c8b_I9-LEnQ0KWcs3cubsIjRweDd_Dv1FaT8TmtbTqNWkRN7fobLt_Lt8QHK-mUUDQ5P3x_RpsIANSwNlzgsxZVINQsyYRAq2AzxQ0_gEsJmeczyyDCt0zBJlE1jkVlcjBjFYyu07eFinWG312A79uzRDmzvHw5Hn9dugEVV3VV_QoM4HTeMnZq3h06XU3SX1KdHCejFH17xb9_wzyZt5fsGd-B2A1pJv9ayu7Blix241f-6aBJ32B24vu8QZp7fgx-jicvoRC10FdpHdJ0OGpubmoviM7iSirCCYJeUM3dGVJGRXJVLMp-4Eo_FqiTL3xC1K8i0IGr2TXlQTEo3nRGXE0Uq9tpUkXlpV5lTRqGmEZVjM1vWMQbE-Oy_ro0Yvw-nVyGhB9ApXGEfAr5GkFjTS0ysDQ-1SFQepirBXrkONQ-7ELYikKbJj-7LdMzkJrOzF5tEsclKbPKiC6_XbeZ1dpBL737lJSu96cCe8ZvUDAgcn0_CJfsxYiuBEFR0YbcVvmxsSik3M6ALz9eX0Rr4LR5VWLcqJUMHFvpy0vg6b1ql2XTx_7E9uvyJz-AGzjb58Xh48hhuRpXm-pDlXegsFyv7BIHZUj9tpgABecWT7hfF8Ex_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phod-harboring+bacterial+communities+mediated+slow+and+fast+phosphorus+transformation+in+alkaline+soil+of+a+Robinia+pseudoacacia+afforestation+chronosequence&rft.jtitle=Plant+and+soil&rft.au=Wang%2C+Ying&rft.au=Yang%2C+Lin&rft.au=Zhang%2C+Jiawen&rft.au=Li%2C+Yan&rft.date=2023-07-01&rft.issn=0032-079X&rft.volume=488&rft.issue=1-2+p.517-532&rft.spage=517&rft.epage=532&rft_id=info:doi/10.1007%2Fs11104-023-05990-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |