Phod-harboring bacterial communities mediated slow and fast phosphorus transformation in alkaline soil of a Robinia pseudoacacia afforestation chronosequence

Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD -harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in agi...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 488; no. 1-2; pp. 517 - 532
Main Authors Wang, Ying, Yang, Lin, Zhang, Jiawen, Li, Yan, Kang, Haibin, Bai, Xiaoxiong, Cui, Yongxing, Zhang, Min, Dong, Liguo, Yu, Xuan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0032-079X
1573-5036
DOI10.1007/s11104-023-05990-z

Cover

Loading…
Abstract Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD -harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. Methods Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. Results Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. Conclusion SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes.
AbstractList BACKGROUND AND AIMS: Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. METHODS: Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. RESULTS: Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. CONCLUSION: SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes.
Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD -harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. Methods Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. Results Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. Conclusion SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes.
Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear. Methods Soil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes. Results Soil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, [alpha] diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry. Conclusion SOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes.
Background and aimsSoil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P deficient conditions, phoD-harboring microorganisms secrete alkaline phosphatase, improving P bioavailability. However, their roles in aging plantations of leguminous trees is still unclear.MethodsSoil samples were collected from 8-, 18-, and 30-year-old stands of a Robinia pseudoacacia afforestation of degraded agricultural land. Soil P fractions, alkaline phosphatase activity, phoD gene abundance, and bacterial community structure were determined. An experiment with P addition in pots with tree seedlings was set up to check for short-term P transformation processes.ResultsSoil inorganic P (Pi) and organic P (Po) in R. pseudoacacia afforestation stands mainly existed as stable Pi (NaOH-Pi) and moderately easily available Po (HCl-Po). The contents of all these soil P fractions except for HCl-Pi decreased with stand age, while alkaline phosphatase activity increased. Structural equation modelling (SEM) revealed that soil organic carbon (SOC), available phosphorus (AP) and labile-Po contents mediated the community composition, α diversity or abundance of phoD genes, thereby affecting alkaline phosphatase activity. SOC showed the strongest positive effect on alkaline phosphatase activity. The P addition experiment suggests that alkaline phosphatase activity was mainly regulated via soil C:P stoichiometry.ConclusionSOC appears to be an important regulator of Po turnover in P deficient soils via phoD gene-harboring microbes.
Audience Academic
Author Kang, Haibin
Yang, Lin
Li, Yan
Wang, Ying
Dong, Liguo
Yu, Xuan
Bai, Xiaoxiong
Cui, Yongxing
Zhang, Jiawen
Zhang, Min
Author_xml – sequence: 1
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 2
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 3
  givenname: Jiawen
  surname: Zhang
  fullname: Zhang, Jiawen
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 4
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 5
  givenname: Haibin
  surname: Kang
  fullname: Kang, Haibin
  organization: Department of Forestry, College of Forestry, Northwest A&F University, School of Plant Biology, University Western Australia
– sequence: 6
  givenname: Xiaoxiong
  surname: Bai
  fullname: Bai, Xiaoxiong
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 7
  givenname: Yongxing
  surname: Cui
  fullname: Cui, Yongxing
  organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University
– sequence: 8
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 9
  givenname: Liguo
  surname: Dong
  fullname: Dong, Liguo
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
– sequence: 10
  givenname: Xuan
  surname: Yu
  fullname: Yu, Xuan
  email: yux@nwsuaf.edu.cn
  organization: Department of Forestry, College of Forestry, Northwest A&F University, Key Comprehensive Laboratory of Forestry, Key Lab Silviculture Loess Plateau State Forestry
BookMark eNp9kc9qHSEUh6Wk0Ju0L9CV0E03k-g4zozLEPoPAi0li-7kjB5zTR291RlK8i5913ozhUIWAUWO_D71-J2Sk5giEvKWs3PO2HBROOesa1grGiaVYs3DC7LjchCNZKI_ITvGRNuwQf14RU5LuWPHmvc78ufbPtlmD3lK2cdbOoFZMHsI1KR5XqNfPBY6o_WwoKUlpN8UoqUOykIP-1TqzGuhS4ZYXMozLD5F6iOF8BOCj0hL8oEmR4F-T5OPHuih4GoTGDC1AFcxLMsGmn1OMRX8tWI0-Jq8dBAKvvm3npGbjx9urj43118_fbm6vG6MUHxplIAOpJoEs9KMQqGVvOsl7zu0bhCuNWKaFB9HQDVIix3jBroB5YS9GgdxRt5vxx5yqheXRc--GAwBIqa1aMFlHd0geI2-exK9S2uO9XG6HWXLVSeEqqnzLXULAbWPLtX_qe2Cxdmbqs75un859FxI2TNZgXEDTE6lZHTa-O1HKuiD5kwfPevNs66e9aNn_VDR9gl6yH6GfP88JDaoHI7aMf9v4xnqLxX-wVY
CitedBy_id crossref_primary_10_1007_s11104_024_06800_w
crossref_primary_10_1016_j_agee_2025_109568
crossref_primary_10_1016_j_micres_2024_127657
crossref_primary_10_1016_j_jhazmat_2024_134975
crossref_primary_10_1016_j_foreco_2024_122434
crossref_primary_10_1016_j_jhazmat_2025_137997
crossref_primary_10_3389_fmicb_2024_1455891
crossref_primary_10_3390_land13111923
crossref_primary_10_1016_j_indcrop_2024_118624
Cites_doi 10.1002/iub.1217
10.1016/j.soilbio.2021.108274
10.1046/j.1469-8137.2000.00569.x
10.2136/sssaj2002.9990
10.1007/s10482-014-0146-z
10.1016/j.geoderma.2010.04.023
10.3389/fpls.2021.699618
10.1016/j.scitotenv.2021.146556
10.1007/s13205-014-0263-4
10.1016/j.geoderma.2018.09.042
10.1016/S0003-2670(00)88444-5
10.1097/00010694-197802000-00006
10.3389/fmicb.2020.571209
10.1016/j.scitotenv.2019.134977
10.1016/j.foreco.2018.06.011
10.1016/j.chemosphere.2015.06.015
10.1007/s11104-017-3516-2
10.1007/978-3-642-15271-9_9
10.1128/MRA.00848-19
10.3389/fmicb.2013.00291
10.1126/science.1124234
10.1016/j.jclepro.2017.09.173
10.3389/fmicb.2014.00508
10.3389/fmicb.2014.00326
10.1007/s00374-017-1183-3
10.1038/nmeth.f.303
10.13870/j.cnki.stbcxb.2019.05.035
10.1002/mbo3.474
10.3390/f12121707
10.1007/s00374-016-1137-1
10.1128/mSystems.00162-20
10.1007/s00572-016-0744-x
10.1007/s11032-011-9628-0
10.1016/j.scitotenv.2018.02.263
10.1007/s10021-019-00450-1
10.1093/femsec/fiw212
10.1016/j.scitotenv.2019.03.172
10.1016/j.soilbio.2020.107918
10.3389/fmicb.2018.02193
10.1111/j.1747-0765.2007.00210.x
10.3389/fmicb.2020.605955
10.1007/978-1-4612-3144-8_1
10.1016/j.still.2021.104946
10.1007/s00248-021-01740-9
10.1016/j.soilbio.2019.107632
10.1038/s41396-019-0567
10.1016/0038-0717(94)90146-5
10.1016/j.micres.2013.09.012
10.1007/s00374-012-0755-5
10.1038/s41396-018-0065-5
10.1016/j.foreco.2007.10.040
10.1016/j.geoderma.2016.05.023
10.1016/j.soilbio.2020.108048
10.3389/fpls.2021.640789
10.2134/agronmonogr9.2.2ed.c31
10.1016/j.soilbio.2019.03.017
10.1016/j.quaint.2014.06.050
10.1007/s00248-012-0025-y
10.1016/j.soilbio.2014.09.012
10.1007/s11104-019-04351-z
10.3390/agronomy11081552
10.1016/j.soilbio.2018.12.025
10.1099/ijsem.0.002900
10.1128/AEM.01823-15
10.1007/s42729-021-00459-3
10.1071/SR13204
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-023-05990-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 532
ExternalDocumentID A761355605
10_1007_s11104_023_05990_z
GeographicLocations Australia
China
GeographicLocations_xml – name: China
– name: Australia
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2452018345
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 31670629
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2016M60082
– fundername: National Key Research and Development Program of China
  grantid: 2016YFC0501706-1
– fundername: Tang Scholar Program of Northwest A&F University
  grantid: Tang Scholar Program of Northwest A&F University
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c391t-93a4a59b30d5c839ed51465164edf73f2c3bb9188ae975de401ca47e5be69873
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Tue Aug 05 10:22:27 EDT 2025
Fri Jul 25 19:02:02 EDT 2025
Tue Jun 10 21:07:04 EDT 2025
Tue Jul 01 01:47:21 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Fri Feb 21 02:43:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Alkaline phosphatase
Phosphorus fractions
gene
SOC
Phosphorus mobilization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-93a4a59b30d5c839ed51465164edf73f2c3bb9188ae975de401ca47e5be69873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2852194339
PQPubID 54098
PageCount 16
ParticipantIDs proquest_miscellaneous_3153154731
proquest_journals_2852194339
gale_infotracacademiconefile_A761355605
crossref_citationtrail_10_1007_s11104_023_05990_z
crossref_primary_10_1007_s11104_023_05990_z
springer_journals_10_1007_s11104_023_05990_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References ZhaoYFZouXQZhangJXCaoLGXuXWHZhangKXChenYYSpatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012Quatern Int201434919620610.1016/j.quaint.2014.06.050
GillSRPopMDeBoyRTEckburgPBTurnbaughPJSamuelBSGordonJIRelmanDAFraser-LiggettCMNelsonKEMetagenomic analysis of the human distal gut microbiomeScience20063125778135513591:CAS:528:DC%2BD28XltVOht7c%3D10.1126/science.1124234167411153027896
WangYLFanTWangXDZhangYLLiLMZhengMJLiuYXAnalysis of phosphorus availability and its relationship with soil properties in the Loess Plateau under long-term imbalanced phosphorus inputJ Soil Water Conserv20193323724210.13870/j.cnki.stbcxb.2019.05.035(In Chinese)
WuHLXiangWHChenLOuyangSXiaoWFLiSGSoil phosphorus bioavailability and recycling increased with stand age in chinese fir plantationsEcosystems20192397398810.1007/s10021-019-00450-1
ZhangWLiuWCXuMPDengJHanXHYangGHFengYZRenGXResponse of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, ChinaGeoderma20193372802891:CAS:528:DC%2BC1cXhvVCqs7fN10.1016/j.geoderma.2018.09.042
RosenbergEThe Prokaryotes-Alphaproteobacteria and Betaproteobacteria2014Berlin HeidelbergSpringer961962
WeiXMHuYJRazaviBSZhouJShenJLNannipieriPWuJSGeTDRare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralizationSoil Biol Biochem201913162701:CAS:528:DC%2BC1MXjs1eiug%3D%3D10.1016/j.soilbio.2018.12.025
ZhaoFZRenCJHanXHYangGHWangJDoughtyRChanges of soil microbial and enzyme activities are linked to soil C, N, and P stoichiometry in afforested ecosystemFor Ecol Manag201842728929510.1016/j.foreco.2018.06.011
EtesamiHJeongBRGlickBRContribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plantFront Plant Sci20211212910.3389/fpls.2021.699618
MurphyJRileyJPA modified single solution method for the determination of phosphate in natural watersAnal Chim Acta19622731361:CAS:528:DyaF38XksVyntr8%3D10.1016/S0003-2670(00)88444-5
WangCQXueLJiaoRZSoil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical chinese fir plantationsSoil Till Res202120911010.1016/j.still.2021.104946
FishJAChaiBWangQSunYBrownCTTiedjeJMColeJRFunGene: the functional gene pipeline and repositoryFront Microbiol2013411410.3389/fmicb.2013.00291
WangFZhangYXiaYCuiZBCaoCYSoil microbial community succession based on PhoD and gcd genes along a chronosequence of sand-fixation forestForests20211211610.3390/f12121707
LagosLMAcuñaJJMaruyamaFOgramAMoraMLJorqueraMAEffect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsiitesBiol Fert Soils201652100710191:CAS:528:DC%2BC28Xht1KrsLjO10.1007/s00374-016-1137-1
ChenHJiangWApplication of high-throughput sequencing in understanding human oral microbiome related with health and diseaseFront Microbiol201451610.3389/fmicb.2014.00508
HolsteEKKobeRKGehringCAPlant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungiMycorrhiza2017272112231:CAS:528:DC%2BC28XhvVOhtrfM10.1007/s00572-016-0744-x27838856
Perez-MorenoJReadDJMobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plantsNew Phytol200014523013091:CAS:528:DC%2BD3cXisVarsbk%3D10.1046/j.1469-8137.2000.00569.x
KimKKLeeKCEomMKKimJSKimDSKoSHKimBHLeeJSVariibacter gotjawalensis gen. nov., spnov., isolated from soil of a lava forestAnton Leeuw Int J G201410559159241:CAS:528:DC%2BC2cXmsV2nt7Y%3D10.1007/s10482-014-0146-z
MarotiGKondorosiENitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?Front Microbiol201451610.3389/fmicb.2014.00326
LuoGWSunBLiLLiMHLiuMQZhuYYGuoSWLingNShenQRUnderstanding how long-term organic amendments increase soil phosphatase activities: insight into phod- and phoc-harboring functional microbial populationsSoil Biol Biochem20191391101:CAS:528:DC%2BC1MXitVKgt7jE10.1016/j.soilbio.2019.107632
HariharanJPredictive functional profiling of soil microbes under different tillages and crop rotations in Ohio2015Columbus, OhioThe Ohio State University
RathsRPetaVBuckingHDraft genome sequence of Duganella sp. strain DN04, isolated from cultivated soilMicrobiol Resour Ann20198321210.1128/MRA.00848-19
LuRSSoil agricultural chemical analysis method2000BeijingChina’s Agricultural Science and Technology Press
ZhongZKLiWJLuXQGuYQWuSJShenZYHanXHYangGHRenCJAdaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, ChinaSoil Biol Biochem20201511101:CAS:528:DC%2BB3cXitFegsrnP10.1016/j.soilbio.2020.108048
SanyalSKDe DattaSKChemistry of phosphorus transformations in soilAdv Soil Sci19911611201:CAS:528:DyaK38Xot1KltQ%3D%3D10.1007/978-1-4612-3144-8_1
LongXEHuangYChiHFLiYYAhmadNYaoHYNitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, ChinaJ Clean Prod20181702882971:CAS:528:DC%2BC2sXhs1SisLnI10.1016/j.jclepro.2017.09.173
MaXFTudorSButlerTGeYXXiYJBoutonJHarrisonMWangZYTransgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soilsMol Breed20123013773911:CAS:528:DC%2BC38XnvFOksrY%3D10.1007/s11032-011-9628-022707914
StockdaleEAReesRMRelationships between biomass nitrogen and nitrogen extracted by other nitrogen availability methodsSoil Biol Biochem19942691213122010.1016/0038-0717(94)90146-5
LiuJLYangZLDangPZhuHLGaoYHaVNZhaoZResponse of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approachPlant Soil20184233273381:CAS:528:DC%2BC2sXhvFensrzO10.1007/s11104-017-3516-2
RagotSAKerteszMABünemannEKphoD alkaline phosphatase gene diversity in soilAppl Environ Microb20158120728172891:CAS:528:DC%2BC28XhslamtLw%3D10.1128/AEM.01823-15
ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem20191341141:CAS:528:DC%2BC1MXls1egu7o%3D10.1016/j.soilbio.2019.03.017
DeyGBanerjeePSharmaRKMaityJPEtesamiHShawAKHuangYHHuangHBChenCYManagement of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria-A reviewAgronomy-Basel20211181271:CAS:528:DC%2BB3MXisFeqsbvI10.3390/agronomy11081552
RossiACruzAHSantosRSSilvaPMSilvaEMMendesNSMartinez-RossiNMAmbient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networksIUBMB Life201365119309351:CAS:528:DC%2BC3sXhs1ykt73N10.1002/iub.121724265200
TianJHKuangXZTangMTChenXDHuangFCaiYXCaiKZBiochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community compositionSci Total Environ20217791121:CAS:528:DC%2BB3MXntVOks70%3D10.1016/j.scitotenv.2021.146556
NannipieriPGiagnoniLLandiLRenellaGBünemannEKRole of phosphatase enzymes in soilPhosphorus in action, soil biology2011Berlin HeidelbergSpringer21524310.1007/978-3-642-15271-9_9
ZhuXYZhaoXRLinQMLiGTDistribution characteristics of phod-harbouring bacterial community structure and its roles in phosphorus transformation in steppe soils in northern ChinaJ Soil Sci Plant Nut2021212153115411:CAS:528:DC%2BB3MXhtVOmurfK10.1007/s42729-021-00459-3
BiQFLiKJZhengBXZhengBXLiuXPLiHZJinBJDingKYangXRLinXYZhuYGPartial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soilSci Total Environ20207031111:CAS:528:DC%2BC1MXitFyqsr3N10.1016/j.scitotenv.2019.134977
Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.C
HuBYangBPangXYBaoWKTianGLResponses of soil phosphorus fractions to gap size in a reforested spruce forestGeoderma201627961691:CAS:528:DC%2BC28XhtVaiurzF10.1016/j.geoderma.2016.05.023
DaiZMLiuGFChenHHChenCRWangJKAiSYWeiDLiDMMaBTangCXBrookesPCXuJMLong-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystemsISME J2020147577701:CAS:528:DC%2BC1MXitl2lt73J10.1038/s41396-019-056731827246
LaranjoMAlexandreAOliveiraSLegume growth-promoting rhizobia: an overview on the Mesorhizobium genusMicrobiol Res2014169121710.1016/j.micres.2013.09.01224157054
Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020) Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems 5(3): 1–15. https://doi.org/10.1128/mSystems.00162-20
RagotSAKerteszMAMeszarosEFrossardEBünemannEKSoil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factorsFEMS Microbiol Ecol2017931151:CAS:528:DC%2BC1cXhsVyis7jF10.1093/femsec/fiw212
ChenXDJiangNCondronLMDunfieldKEChenZHWangJKChenLJImpact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast ChinaSci Total Environ2019669101110181:CAS:528:DC%2BC1MXlsFKisL0%3D10.1016/j.scitotenv.2019.03.17230970450
ChenCRCondronLMXuZHImpacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a reviewFor Ecol Manag20082553–439640910.1016/j.foreco.2007.10.040
SakuraiMWasakiJTomizawaYShinanoTOsakiMAnalysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matterSoil Sci Plant Nutr20085462711:CAS:528:DC%2BD1cXjt1Whsbs%3D10.1111/j.1747-0765.2007.00210.x
TanHBarretMMooijMJRiceOMorrisseyJPDobsonAG
FZ Zhao (5990_CR70) 2018; 427
GW Luo (5990_CR38) 2019; 139
M Lang (5990_CR27) 2021; 11
R Raths (5990_CR49) 2019; 8
YF Zhao (5990_CR69) 2014; 349
W Zhang (5990_CR68) 2019; 134
SA Ragot (5990_CR48) 2015; 81
YM Liang (5990_CR29) 2020; 11
GC Sigua (5990_CR55) 2016; 142
XY Zhu (5990_CR73) 2021; 21
EQ Hou (5990_CR21) 2014; 52
EK Holste (5990_CR19) 2017; 27
XD Chen (5990_CR8) 2019; 669
QF Bi (5990_CR2) 2020; 703
XM Wei (5990_CR64) 2019; 131
J Murphy (5990_CR42) 1962; 27
Z Wang (5990_CR62) 2021; 12
F Wang (5990_CR61) 2021; 12
JS Liu (5990_CR32) 2020; 149
YH Hou (5990_CR20) 2019; 458
P Nannipieri (5990_CR43) 2011
A Slazak (5990_CR54) 2010; 158
ZK Zhong (5990_CR72) 2020; 151
J Hariharan (5990_CR18) 2015
A Rossi (5990_CR51) 2013; 65
YL Wang (5990_CR63) 2019; 33
5990_CR24
XE Long (5990_CR36) 2018; 170
V Chaudhry (5990_CR6) 2012; 64
5990_CR66
JH Tian (5990_CR59) 2021; 779
LM Lagos (5990_CR26) 2016; 52
SK Sanyal (5990_CR53) 1991; 16
ZM Dai (5990_CR11) 2020; 14
RS Lu (5990_CR35) 2000
(5990_CR50) 2014
H Etesami (5990_CR13) 2021; 12
EA Stockdale (5990_CR57) 1994; 26
H Tan (5990_CR58) 2013; 49
XD Chen (5990_CR9) 2021; 159
G Maroti (5990_CR40) 2014; 5
CQ Wang (5990_CR60) 2021; 209
H Liao (5990_CR30) 2018; 68
I Ikoyi (5990_CR23) 2018; 630
S Gopalakrishnan (5990_CR16) 2015; 5
M Sakurai (5990_CR52) 2008; 54
5990_CR39
G Dey (5990_CR12) 2021; 11
ZM Zheng (5990_CR71) 2002; 66
SD Bao (5990_CR1) 2000
5990_CR4
J Caporaso (5990_CR5) 2010; 7
FP Liu (5990_CR34) 2018; 9
XF Ma (5990_CR41) 2012; 30
CR Chen (5990_CR10) 2008; 255
JL Liu (5990_CR33) 2018; 423
HL Wu (5990_CR65) 2019; 23
5990_CR45
J Perez-Moreno (5990_CR46) 2000; 145
CM Singleton (5990_CR56) 2018; 12
RA Bowman (5990_CR3) 1978; 125
B Hu (5990_CR22) 2016; 279
SA Ragot (5990_CR47) 2017; 93
SR Gill (5990_CR15) 2006; 312
M Laranjo (5990_CR28) 2014; 169
AT Nottingham (5990_CR44) 2015; 80
KK Kim (5990_CR25) 2014; 105
H Chen (5990_CR7) 2014; 5
SY Guan (5990_CR17) 1987
GW Luo (5990_CR37) 2017; 53
IDEA Lidbury (5990_CR31) 2017; 6
JA Fish (5990_CR14) 2013; 4
W Zhang (5990_CR67) 2019; 337
References_xml – reference: NannipieriPGiagnoniLLandiLRenellaGBünemannEKRole of phosphatase enzymes in soilPhosphorus in action, soil biology2011Berlin HeidelbergSpringer21524310.1007/978-3-642-15271-9_9
– reference: LagosLMAcuñaJJMaruyamaFOgramAMoraMLJorqueraMAEffect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsiitesBiol Fert Soils201652100710191:CAS:528:DC%2BC28Xht1KrsLjO10.1007/s00374-016-1137-1
– reference: WangYLFanTWangXDZhangYLLiLMZhengMJLiuYXAnalysis of phosphorus availability and its relationship with soil properties in the Loess Plateau under long-term imbalanced phosphorus inputJ Soil Water Conserv20193323724210.13870/j.cnki.stbcxb.2019.05.035(In Chinese)
– reference: SanyalSKDe DattaSKChemistry of phosphorus transformations in soilAdv Soil Sci19911611201:CAS:528:DyaK38Xot1KltQ%3D%3D10.1007/978-1-4612-3144-8_1
– reference: HariharanJPredictive functional profiling of soil microbes under different tillages and crop rotations in Ohio2015Columbus, OhioThe Ohio State University
– reference: Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (Eds.), Methods of soil analysis, Part 2, Chemical and Microbial Properties. Agronomy Society of America, Agronomy Monography 9, Madidon, Wisconsin, pp. 595–624
– reference: LidburyIDEAFraserTMurphyARJScanlanDJBendingGDJonesAMEMooreJDGoodallATibbettMHammondJPWellingtonEMHThe ‘known’ genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soilsMicrobiologyOpen201764151:CAS:528:DC%2BC2sXhtlaktLjF10.1002/mbo3.474
– reference: ZhaoFZRenCJHanXHYangGHWangJDoughtyRChanges of soil microbial and enzyme activities are linked to soil C, N, and P stoichiometry in afforested ecosystemFor Ecol Manag201842728929510.1016/j.foreco.2018.06.011
– reference: ChenCRCondronLMXuZHImpacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a reviewFor Ecol Manag20082553–439640910.1016/j.foreco.2007.10.040
– reference: NottinghamATTurnerBLStottAWTannerEVJNitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soilsSoil Biol Biochem20158026331:CAS:528:DC%2BC2cXhs1WitbzE10.1016/j.soilbio.2014.09.012
– reference: ZhuXYZhaoXRLinQMLiGTDistribution characteristics of phod-harbouring bacterial community structure and its roles in phosphorus transformation in steppe soils in northern ChinaJ Soil Sci Plant Nut2021212153115411:CAS:528:DC%2BB3MXhtVOmurfK10.1007/s42729-021-00459-3
– reference: LiangYMLiMJPanFJMaJMYangZQLingTWQinJSLuSHZhongFYSongZRAlkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus transformation with stand age in chinese Pinus massoniana plantationsFront Microbiol20201111310.3389/fmicb.2020.571209
– reference: MarotiGKondorosiENitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?Front Microbiol201451610.3389/fmicb.2014.00326
– reference: Perez-MorenoJReadDJMobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plantsNew Phytol200014523013091:CAS:528:DC%2BD3cXisVarsbk%3D10.1046/j.1469-8137.2000.00569.x
– reference: ZhaoYFZouXQZhangJXCaoLGXuXWHZhangKXChenYYSpatio-temporal variation of reference evapotranspiration and aridity index in the Loess Plateau Region of China, during 1961–2012Quatern Int201434919620610.1016/j.quaint.2014.06.050
– reference: ChenXDCondronLMDunfieldKEWakelinSAChenLJImpact of grassland afforestation with contrasting tree species on soil phosphorus fractions and alkaline phosphatase gene communitiesSoil Biol Biochem2021159191:CAS:528:DC%2BB3MXhtVyntbvI10.1016/j.soilbio.2021.108274
– reference: GuanSYSoil enzyme and their research methods1987BeijingChina Agricultural Science and Technology Press
– reference: RagotSAKerteszMAMeszarosEFrossardEBünemannEKSoil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factorsFEMS Microbiol Ecol2017931151:CAS:528:DC%2BC1cXhsVyis7jF10.1093/femsec/fiw212
– reference: LiuJLYangZLDangPZhuHLGaoYHaVNZhaoZResponse of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: a chronosequence approachPlant Soil20184233273381:CAS:528:DC%2BC2sXhvFensrzO10.1007/s11104-017-3516-2
– reference: BowmanRAColeCVAn exploratory method for fractionation of organic phosphorus from grassland soilsSoil Sci1978125951011:CAS:528:DyaE1cXhs1yrtLg%3D10.1097/00010694-197802000-00006
– reference: TianJHKuangXZTangMTChenXDHuangFCaiYXCaiKZBiochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community compositionSci Total Environ20217791121:CAS:528:DC%2BB3MXntVOks70%3D10.1016/j.scitotenv.2021.146556
– reference: WeiXMHuYJRazaviBSZhouJShenJLNannipieriPWuJSGeTDRare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralizationSoil Biol Biochem201913162701:CAS:528:DC%2BC1MXjs1eiug%3D%3D10.1016/j.soilbio.2018.12.025
– reference: LiuJSMaQHuiXLRanJYMaQXWangXSWangZHLong-term high-P fertilizer input decreased the total bacterial diversity but not phod-harboring bacteria in wheat rhizosphere soil with available-P deficiencySoil Biol Biochem20201491101:CAS:528:DC%2BB3cXhsFGhtr%2FJ10.1016/j.soilbio.2020.107918
– reference: HouEQChenCRWenDZLiuXRelationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forests, Dinghushan, ChinaSoil Res20145255631:CAS:528:DC%2BC2cXit12gsbc%3D10.1071/SR13204
– reference: LaranjoMAlexandreAOliveiraSLegume growth-promoting rhizobia: an overview on the Mesorhizobium genusMicrobiol Res2014169121710.1016/j.micres.2013.09.01224157054
– reference: ZhongZKLiWJLuXQGuYQWuSJShenZYHanXHYangGHRenCJAdaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, ChinaSoil Biol Biochem20201511101:CAS:528:DC%2BB3cXitFegsrnP10.1016/j.soilbio.2020.108048
– reference: LiaoHLiYQLinXLLaiQLTianYZhengella mangrovi gen. nov., spnov., a novel member of family Phyllobacteriaceae isolated from mangrove sedimentInt J Syst Evol Micr2018689281928251:CAS:528:DC%2BC1MXktVGktrs%3D10.1099/ijsem.0.002900
– reference: RagotSAKerteszMABünemannEKphoD alkaline phosphatase gene diversity in soilAppl Environ Microb20158120728172891:CAS:528:DC%2BC28XhslamtLw%3D10.1128/AEM.01823-15
– reference: LuRSSoil agricultural chemical analysis method2000BeijingChina’s Agricultural Science and Technology Press
– reference: LiuFPLvLXJiangHYYanRDongSRChenLPWangWChenYQAlterations in the urinary microbiota are associated with cesarean deliveryFront Microbiol2018911210.3389/fmicb.2018.02193
– reference: WangZLiXLJiBMStruikPCJinKTangSMCoupling between the responses of plants, soil, and microorganisms following grazing exclusion in an overgrazed grasslandFront Plant Sci20211211610.3389/fpls.2021.640789
– reference: RathsRPetaVBuckingHDraft genome sequence of Duganella sp. strain DN04, isolated from cultivated soilMicrobiol Resour Ann20198321210.1128/MRA.00848-19
– reference: SiguaGCNovakJMWattsDWJohnsonMGSpokasKEfficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layerChemosphere20161421761831:CAS:528:DC%2BC2MXhtVeisL3K10.1016/j.chemosphere.2015.06.01526112657
– reference: LuoGWSunBLiLLiMHLiuMQZhuYYGuoSWLingNShenQRUnderstanding how long-term organic amendments increase soil phosphatase activities: insight into phod- and phoc-harboring functional microbial populationsSoil Biol Biochem20191391101:CAS:528:DC%2BC1MXitVKgt7jE10.1016/j.soilbio.2019.107632
– reference: FishJAChaiBWangQSunYBrownCTTiedjeJMColeJRFunGene: the functional gene pipeline and repositoryFront Microbiol2013411410.3389/fmicb.2013.00291
– reference: CaporasoJKuczynskiJStombaughJBittingerKBushmanFCostelloEQIIME allows analysis of high-throughput community sequencing dataNat Methods201073353361:CAS:528:DC%2BC3cXksFalurg%3D10.1038/nmeth.f.303203831313156573
– reference: LangMZouWXChenXXZouCQZhangWDengYZhuFYuPChenXPSoil microbial composition and phoD gene abundance are sensitive to phosphorus level in a long-term wheat-maize crop systemFront Microbiol20211111510.3389/fmicb.2020.605955
– reference: HouYHHeKYChenYZhaoJXHuHFZhuBChanges of soil organic matter stability along altitudinal gradients in tibetan alpine grasslandPlant Soil20194581–221401:CAS:528:DC%2BC1MXitFemu7bN10.1007/s11104-019-04351-z
– reference: WangCQXueLJiaoRZSoil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical chinese fir plantationsSoil Till Res202120911010.1016/j.still.2021.104946
– reference: ZhangWXuYDGaoDXWangXLiuWCDengJHanXHYangGHFengYZRenGXEcoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, ChinaSoil Biol Biochem20191341141:CAS:528:DC%2BC1MXls1egu7o%3D10.1016/j.soilbio.2019.03.017
– reference: HolsteEKKobeRKGehringCAPlant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungiMycorrhiza2017272112231:CAS:528:DC%2BC28XhvVOhtrfM10.1007/s00572-016-0744-x27838856
– reference: Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.C
– reference: Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020) Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems 5(3): 1–15. https://doi.org/10.1128/mSystems.00162-20
– reference: Jensen TL (2010) Soil pH and the availability of plant nutrients. IPNI. http://www.ipni.net/publication/pnt-na.nsf/0/013f96e7280a696985257cd6006fb98f
– reference: ChaudhryVRehmanAMishraAChauhanPSNautiyalCSChanges in bacterial community structure of agricultural land due to long-term organic and chemical amendmentsMicrob Ecol201264245046010.1007/s00248-012-0025-y22419103
– reference: GopalakrishnanSSrinivasVPrakashBSathyaAVijayabharathiRPlant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodulesBiotech20155565366110.1007/s13205-014-0263-4
– reference: EtesamiHJeongBRGlickBRContribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plantFront Plant Sci20211212910.3389/fpls.2021.699618
– reference: RossiACruzAHSantosRSSilvaPMSilvaEMMendesNSMartinez-RossiNMAmbient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networksIUBMB Life201365119309351:CAS:528:DC%2BC3sXhs1ykt73N10.1002/iub.121724265200
– reference: GillSRPopMDeBoyRTEckburgPBTurnbaughPJSamuelBSGordonJIRelmanDAFraser-LiggettCMNelsonKEMetagenomic analysis of the human distal gut microbiomeScience20063125778135513591:CAS:528:DC%2BD28XltVOht7c%3D10.1126/science.1124234167411153027896
– reference: WuHLXiangWHChenLOuyangSXiaoWFLiSGSoil phosphorus bioavailability and recycling increased with stand age in chinese fir plantationsEcosystems20192397398810.1007/s10021-019-00450-1
– reference: StockdaleEAReesRMRelationships between biomass nitrogen and nitrogen extracted by other nitrogen availability methodsSoil Biol Biochem19942691213122010.1016/0038-0717(94)90146-5
– reference: BaoSDChemical analysis for agricultural soil2000BeijingChina Agriculture Press3082
– reference: ChenXDJiangNCondronLMDunfieldKEChenZHWangJKChenLJImpact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast ChinaSci Total Environ2019669101110181:CAS:528:DC%2BC1MXlsFKisL0%3D10.1016/j.scitotenv.2019.03.17230970450
– reference: ZhengZMSimardRRLafondJParentLEPathways of soil phosphorus transformations after 8 years of cultivation under contrasting cropping practicesSoil Sci Soc Am J20026699910071:CAS:528:DC%2BD38XlslOqsr4%3D10.2136/sssaj2002.9990
– reference: ZhangWLiuWCXuMPDengJHanXHYangGHFengYZRenGXResponse of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, ChinaGeoderma20193372802891:CAS:528:DC%2BC1cXhvVCqs7fN10.1016/j.geoderma.2018.09.042
– reference: LuoGWLingNNannipieriPChenHRazaWWangMGuoSWShenQRLong-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a Vertisol and its derivative soil fractionsBiol Fert Soils20175343753881:CAS:528:DC%2BC2sXjsFGitL0%3D10.1007/s00374-017-1183-3
– reference: MurphyJRileyJPA modified single solution method for the determination of phosphate in natural watersAnal Chim Acta19622731361:CAS:528:DyaF38XksVyntr8%3D10.1016/S0003-2670(00)88444-5
– reference: HuBYangBPangXYBaoWKTianGLResponses of soil phosphorus fractions to gap size in a reforested spruce forestGeoderma201627961691:CAS:528:DC%2BC28XhtVaiurzF10.1016/j.geoderma.2016.05.023
– reference: ChenHJiangWApplication of high-throughput sequencing in understanding human oral microbiome related with health and diseaseFront Microbiol201451610.3389/fmicb.2014.00508
– reference: LongXEHuangYChiHFLiYYAhmadNYaoHYNitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, ChinaJ Clean Prod20181702882971:CAS:528:DC%2BC2sXhs1SisLnI10.1016/j.jclepro.2017.09.173
– reference: SakuraiMWasakiJTomizawaYShinanoTOsakiMAnalysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matterSoil Sci Plant Nutr20085462711:CAS:528:DC%2BD1cXjt1Whsbs%3D10.1111/j.1747-0765.2007.00210.x
– reference: SingletonCMMcCalleyCKWoodcroftBJBoydJAEvansPNHodgkinsSBChantonJPFrolkingSCrillPMSaleskaSRRichVITysonGWMethanotrophy across a natural permafrost thaw environmentISME J20181210254425581:CAS:528:DC%2BC1cXht1yks7zL10.1038/s41396-018-0065-5299551396155033
– reference: DeyGBanerjeePSharmaRKMaityJPEtesamiHShawAKHuangYHHuangHBChenCYManagement of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria-A reviewAgronomy-Basel20211181271:CAS:528:DC%2BB3MXisFeqsbvI10.3390/agronomy11081552
– reference: TanHBarretMMooijMJRiceOMorrisseyJPDobsonAGriffithsBGaraFOLong-term phosphorus fertilization increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soilsBiol Fert Soils2013496616721:CAS:528:DC%2BC3sXhtFGrsL3J10.1007/s00374-012-0755-5
– reference: SlazakAFreeseDda SilvaMEHüttlRFSoil organic phosphorus fraction in pine-oak forest stands in northeastern GermanyGeoderma20101581561621:CAS:528:DC%2BC3cXhtVyjsL3E10.1016/j.geoderma.2010.04.023
– reference: Xu MP, Wang JY, Zhu YF, Han XH, Ren CJ, Yang GH (2021) Plant biomass and soil nutrients mainly explain the variation of soil microbial communities during secondary succession on the Loess plateau. Microb Ecol 1–13. https://doi.org/10.1007/s00248-021-01740-9
– reference: WangFZhangYXiaYCuiZBCaoCYSoil microbial community succession based on PhoD and gcd genes along a chronosequence of sand-fixation forestForests20211211610.3390/f12121707
– reference: IkoyiIFowlerASchmalenbergerAOne-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem servicesSci Total Environ20186308498581:CAS:528:DC%2BC1cXjs1Wqu7w%3D10.1016/j.scitotenv.2018.02.26329499540
– reference: KimKKLeeKCEomMKKimJSKimDSKoSHKimBHLeeJSVariibacter gotjawalensis gen. nov., spnov., isolated from soil of a lava forestAnton Leeuw Int J G201410559159241:CAS:528:DC%2BC2cXmsV2nt7Y%3D10.1007/s10482-014-0146-z
– reference: MaXFTudorSButlerTGeYXXiYJBoutonJHarrisonMWangZYTransgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soilsMol Breed20123013773911:CAS:528:DC%2BC38XnvFOksrY%3D10.1007/s11032-011-9628-022707914
– reference: RosenbergEThe Prokaryotes-Alphaproteobacteria and Betaproteobacteria2014Berlin HeidelbergSpringer961962
– reference: BiQFLiKJZhengBXZhengBXLiuXPLiHZJinBJDingKYangXRLinXYZhuYGPartial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soilSci Total Environ20207031111:CAS:528:DC%2BC1MXitFyqsr3N10.1016/j.scitotenv.2019.134977
– reference: DaiZMLiuGFChenHHChenCRWangJKAiSYWeiDLiDMMaBTangCXBrookesPCXuJMLong-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystemsISME J2020147577701:CAS:528:DC%2BC1MXitl2lt73J10.1038/s41396-019-056731827246
– volume: 65
  start-page: 930
  issue: 11
  year: 2013
  ident: 5990_CR51
  publication-title: IUBMB Life
  doi: 10.1002/iub.1217
– volume: 159
  start-page: 1
  year: 2021
  ident: 5990_CR9
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108274
– volume: 145
  start-page: 301
  issue: 2
  year: 2000
  ident: 5990_CR46
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2000.00569.x
– volume: 66
  start-page: 999
  year: 2002
  ident: 5990_CR71
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2002.9990
– volume: 105
  start-page: 915
  issue: 5
  year: 2014
  ident: 5990_CR25
  publication-title: Anton Leeuw Int J G
  doi: 10.1007/s10482-014-0146-z
– volume: 158
  start-page: 156
  year: 2010
  ident: 5990_CR54
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.04.023
– volume: 12
  start-page: 1
  year: 2021
  ident: 5990_CR13
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.699618
– volume-title: Soil enzyme and their research methods
  year: 1987
  ident: 5990_CR17
– volume: 779
  start-page: 1
  year: 2021
  ident: 5990_CR59
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.146556
– volume: 5
  start-page: 653
  issue: 5
  year: 2015
  ident: 5990_CR16
  publication-title: Biotech
  doi: 10.1007/s13205-014-0263-4
– volume: 337
  start-page: 280
  year: 2019
  ident: 5990_CR67
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.042
– volume: 27
  start-page: 31
  year: 1962
  ident: 5990_CR42
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 125
  start-page: 95
  year: 1978
  ident: 5990_CR3
  publication-title: Soil Sci
  doi: 10.1097/00010694-197802000-00006
– volume: 11
  start-page: 1
  year: 2020
  ident: 5990_CR29
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.571209
– ident: 5990_CR24
– volume: 703
  start-page: 1
  year: 2020
  ident: 5990_CR2
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134977
– volume: 427
  start-page: 289
  year: 2018
  ident: 5990_CR70
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2018.06.011
– volume: 142
  start-page: 176
  year: 2016
  ident: 5990_CR55
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.015
– volume: 423
  start-page: 327
  year: 2018
  ident: 5990_CR33
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3516-2
– start-page: 215
  volume-title: Phosphorus in action, soil biology
  year: 2011
  ident: 5990_CR43
  doi: 10.1007/978-3-642-15271-9_9
– volume-title: Soil agricultural chemical analysis method
  year: 2000
  ident: 5990_CR35
– volume: 8
  start-page: 1
  issue: 32
  year: 2019
  ident: 5990_CR49
  publication-title: Microbiol Resour Ann
  doi: 10.1128/MRA.00848-19
– volume: 4
  start-page: 1
  year: 2013
  ident: 5990_CR14
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2013.00291
– volume: 312
  start-page: 1355
  issue: 5778
  year: 2006
  ident: 5990_CR15
  publication-title: Science
  doi: 10.1126/science.1124234
– volume: 170
  start-page: 288
  year: 2018
  ident: 5990_CR36
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.09.173
– volume: 5
  start-page: 1
  year: 2014
  ident: 5990_CR7
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00508
– volume: 5
  start-page: 1
  year: 2014
  ident: 5990_CR40
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00326
– volume: 53
  start-page: 375
  issue: 4
  year: 2017
  ident: 5990_CR37
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-017-1183-3
– volume: 7
  start-page: 335
  year: 2010
  ident: 5990_CR5
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 33
  start-page: 237
  year: 2019
  ident: 5990_CR63
  publication-title: J Soil Water Conserv
  doi: 10.13870/j.cnki.stbcxb.2019.05.035
– volume: 6
  start-page: 1
  issue: 4
  year: 2017
  ident: 5990_CR31
  publication-title: MicrobiologyOpen
  doi: 10.1002/mbo3.474
– volume: 12
  start-page: 1
  year: 2021
  ident: 5990_CR61
  publication-title: Forests
  doi: 10.3390/f12121707
– volume: 52
  start-page: 1007
  year: 2016
  ident: 5990_CR26
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-016-1137-1
– ident: 5990_CR39
  doi: 10.1128/mSystems.00162-20
– volume: 27
  start-page: 211
  year: 2017
  ident: 5990_CR19
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-016-0744-x
– volume: 30
  start-page: 377
  issue: 1
  year: 2012
  ident: 5990_CR41
  publication-title: Mol Breed
  doi: 10.1007/s11032-011-9628-0
– volume: 630
  start-page: 849
  year: 2018
  ident: 5990_CR23
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.263
– volume: 23
  start-page: 973
  year: 2019
  ident: 5990_CR65
  publication-title: Ecosystems
  doi: 10.1007/s10021-019-00450-1
– volume: 93
  start-page: 1
  year: 2017
  ident: 5990_CR47
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiw212
– start-page: 30
  volume-title: Chemical analysis for agricultural soil
  year: 2000
  ident: 5990_CR1
– volume: 669
  start-page: 1011
  year: 2019
  ident: 5990_CR8
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.03.172
– volume: 149
  start-page: 1
  year: 2020
  ident: 5990_CR32
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.107918
– volume: 9
  start-page: 1
  year: 2018
  ident: 5990_CR34
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.02193
– volume: 54
  start-page: 62
  year: 2008
  ident: 5990_CR52
  publication-title: Soil Sci Plant Nutr
  doi: 10.1111/j.1747-0765.2007.00210.x
– volume: 11
  start-page: 1
  year: 2021
  ident: 5990_CR27
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.605955
– start-page: 961
  volume-title: The Prokaryotes-Alphaproteobacteria and Betaproteobacteria
  year: 2014
  ident: 5990_CR50
– volume: 16
  start-page: 1
  year: 1991
  ident: 5990_CR53
  publication-title: Adv Soil Sci
  doi: 10.1007/978-1-4612-3144-8_1
– volume: 209
  start-page: 1
  year: 2021
  ident: 5990_CR60
  publication-title: Soil Till Res
  doi: 10.1016/j.still.2021.104946
– ident: 5990_CR66
  doi: 10.1007/s00248-021-01740-9
– ident: 5990_CR45
– volume: 139
  start-page: 1
  year: 2019
  ident: 5990_CR38
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107632
– volume: 14
  start-page: 757
  year: 2020
  ident: 5990_CR11
  publication-title: ISME J
  doi: 10.1038/s41396-019-0567
– volume: 26
  start-page: 1213
  issue: 9
  year: 1994
  ident: 5990_CR57
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(94)90146-5
– volume: 169
  start-page: 2
  issue: 1
  year: 2014
  ident: 5990_CR28
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2013.09.012
– volume: 49
  start-page: 661
  year: 2013
  ident: 5990_CR58
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-012-0755-5
– volume: 12
  start-page: 2544
  issue: 10
  year: 2018
  ident: 5990_CR56
  publication-title: ISME J
  doi: 10.1038/s41396-018-0065-5
– volume: 255
  start-page: 396
  issue: 3–4
  year: 2008
  ident: 5990_CR10
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2007.10.040
– volume: 279
  start-page: 61
  year: 2016
  ident: 5990_CR22
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.023
– volume: 151
  start-page: 1
  year: 2020
  ident: 5990_CR72
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.108048
– volume: 12
  start-page: 1
  year: 2021
  ident: 5990_CR62
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.640789
– ident: 5990_CR4
  doi: 10.2134/agronmonogr9.2.2ed.c31
– volume: 134
  start-page: 1
  year: 2019
  ident: 5990_CR68
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.03.017
– volume: 349
  start-page: 196
  year: 2014
  ident: 5990_CR69
  publication-title: Quatern Int
  doi: 10.1016/j.quaint.2014.06.050
– volume: 64
  start-page: 450
  issue: 2
  year: 2012
  ident: 5990_CR6
  publication-title: Microb Ecol
  doi: 10.1007/s00248-012-0025-y
– volume: 80
  start-page: 26
  year: 2015
  ident: 5990_CR44
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.09.012
– volume: 458
  start-page: 21
  issue: 1–2
  year: 2019
  ident: 5990_CR20
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04351-z
– volume: 11
  start-page: 1
  issue: 8
  year: 2021
  ident: 5990_CR12
  publication-title: Agronomy-Basel
  doi: 10.3390/agronomy11081552
– volume: 131
  start-page: 62
  year: 2019
  ident: 5990_CR64
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.12.025
– volume-title: Predictive functional profiling of soil microbes under different tillages and crop rotations in Ohio
  year: 2015
  ident: 5990_CR18
– volume: 68
  start-page: 2819
  issue: 9
  year: 2018
  ident: 5990_CR30
  publication-title: Int J Syst Evol Micr
  doi: 10.1099/ijsem.0.002900
– volume: 81
  start-page: 7281
  issue: 20
  year: 2015
  ident: 5990_CR48
  publication-title: Appl Environ Microb
  doi: 10.1128/AEM.01823-15
– volume: 21
  start-page: 1531
  issue: 2
  year: 2021
  ident: 5990_CR73
  publication-title: J Soil Sci Plant Nut
  doi: 10.1007/s42729-021-00459-3
– volume: 52
  start-page: 55
  year: 2014
  ident: 5990_CR21
  publication-title: Soil Res
  doi: 10.1071/SR13204
SSID ssj0003216
Score 2.467397
Snippet Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under...
Background and aims Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under...
Background and aimsSoil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under P...
BACKGROUND AND AIMS: Soil phosphorus (P) availability is a key factor determining primary productivity in forest ecosystems in arid and semiarid regions. Under...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 517
SubjectTerms Abundance
Afforestation
Aging
Agricultural land
Agriculture
Alkaline phosphatase
Alkaline soils
Analysis
bacterial communities
Bioavailability
Biomedical and Life Sciences
Black locust
Carbon content
chronosequences
Community composition
Community structure
Ecology
equations
Forest ecosystems
forests
Fractions
genes
Genetic aspects
Growth
Life Sciences
Microorganisms
Multivariate statistical analysis
Organic carbon
Organic phosphorus
Phosphatase
Phosphates
Phosphorus
Phosphorus content
Plant Physiology
Plant Sciences
primary productivity
Research Article
Robinia pseudoacacia
Seedlings
Semi arid areas
Semiarid zones
Sodium hydroxide
soil organic carbon
Soil Science & Conservation
Soils
stand age
Stoichiometry
Terrestrial ecosystems
trees
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA56KuiD6Kq4ekoEwQcNtE2yTR5XueMQFB_uYN_KJE3dxaVZNl3k7n_xf3WStrv-Bh8KhSZD0pnJfGEyXwh5aYWwuaqBZRZqJoyTTPNmxlTTuFI6DiJVeH_4ODu7EO8XcjEUhYXxtPuYkkwr9aHYDSOVYBhjWOQUydjVdXJD4t492vVFMd-vv7xIF57GF5aVejGUyvxZxk_h6NdF-bfsaAo6p_fI3QEt0nmv3vvkmmsn5M7883ZgzHATcvOtR3x3OSG3ThIB9eUD8u3T0tdsCVuTTtdR0zMyoyDbl4NEElWaakYQb9Kw9l8ptDVtIHR0s_QBn-0u0O4HUOtbumoprL9AxKU0-NWa-oYCTQVkK6Cb4Ha1BwuobAoNdnOhT_NTGwl4_Xho-yE5Pz05f3fGhmsYmOU671B3IEBqw7NaWsRTrkaQNZO4z3J1U_KmsNwYnSsFTpeydrhjsyBKJ42baVXyR-So9a17THAamXJ2pmxprMiNVNDkGhRKFSY3Ip-SfFRGZQeK8nhTxro6kCtHBVaowCopsLqaktf7PpueoOOfrV9FHVfRe1Ey_pO-CAHHF3mwqnmJ8EYiCpRTcjyaQTW4dagKhWhHC871lLzYf0aHjFkWaJ3fhYpjDMnjjc44nTej-RxE_H1sT_6v-VNyu0iGHI8OH5OjbrtzzxAgdeZ58ofv8AwLHQ
  priority: 102
  providerName: Springer Nature
Title Phod-harboring bacterial communities mediated slow and fast phosphorus transformation in alkaline soil of a Robinia pseudoacacia afforestation chronosequence
URI https://link.springer.com/article/10.1007/s11104-023-05990-z
https://www.proquest.com/docview/2852194339
https://www.proquest.com/docview/3153154731
Volume 488
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLXYygM8IBggOkZlJCQewCKJ7cR5QhnqmEBME9qk8mTZjkMrqrhrUiH2X_ivXCdOy4fYQ6RIiZ2Pc33vSex7LkIvDGMmFqUikVElYdpyktMqJaKqbMYtVazL8P50lp5esg8zPgs_3JqwrHLwiZ2jLp3x_8jfJAICTc4ozd-uroivGuVnV0MJjT00AhcswMJHx9Oz889bX0yTrvip3yFRls9C2kyfPAeRjxGIWcRrlETk-o_Q9LeD_memtAtAJ_fRvcAccdFD_QDdsvUBult8XQf1DHuAbh874Ho_HqKf53NXkrla6259Hda9JjM0N31CiJdRxV3WCDBO3Czdd6zqEleqafFq7hrY1psGt7_RWlfjRY3V8pvyzBQ3brHErsIKdylkC4VXjd2UThkFcGNVQTPb9BP92HgJXjcs236ELk6mF-9OSSjEQAzN4xbQU0zxXNOo5AYYlS2BZqUcvrRsWWW0SgzVOo-FUDbPeGnhm80ollmubZqLjD5G-7Wr7RMEjxEJa1JhMm1YrLlQVZwrAb0yHWsWj1E8QCBNECn3tTKWciev7GGTAJvsYJPXY_Rq22bVS3TcePZLj6z04xd6hnfSpyHA_XklLFlkQHA48EA-RkcD-DIM7EbuzHCMnm8Pw5D08yyqtm7TSApRJPY1neFxXg9Gs-vi__d2ePMVn6I7SWeufrHwEdpv1xv7DChRqydoVLz_8nE6CfY_QXuXSfELi5YOsQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NDgl4QDBAFAYYCcQDWCSx3SQPCHWwqWNbNaEi9c2yHYdWVHFpWk3bd-Ej8B0550_LH7G3PUSKlNixc5e7n-O73wG8MJybMMkUDYzKKNdW0JTlPZrkuY2FZYpXGd4nw97gC_80FuMt-NnmwviwytYmVoY6c8b_I38bJehoUs5Y-n7-nfqqUX53tS2hUavFkT0_wyVb-e7wI8r3ZRQd7I8-DGhTVYAaloZLHIriSqSaBZkwCA9shpihJ3DZYLM8ZnlkmNZpmCTKprHILC5AjOKxFdr2cIHOsNtrsM0ZIoUObO_tD08_r00_i6paq_6EBnE6brJ06lw9dLScoouknhIloBd_eMK__cE_G7OVvzu4A7cboEr6tWbdhS1b7MCt_tdFQ9Zhd-D6nkNoeX4PfpxOXEYnaqGrcD6iawpobG7q_BPP2kqqJBUEuKScuTOiiozkqlyS-cSVeCxWJVn-hqJdQaYFUbNvygNhUrrpjLicKFJlrE0VmZd2lTllFGoXUTk2s2UdV0CMZ_x1bZT4fRhdhYQeQKdwhX0IOI0gsaaXmFgbHmqRqDxMVYK9ch1qHnYhbEUgTcOJ7ktzzOSGzdmLTaLYZCU2edGF1-s285oR5NK7X3nJSm8usGd8J3XWA47PE2_Jfox4SiDsFF3YbYUvGztSyo3Wd-H5-jJaAL-towrrVqVk6LRCX0Iap_OmVZpNF_8f26PLn_gMbgxGJ8fy-HB49BhuRpXq-jjlXegsFyv7BNHYUj9tvgEC8oq_ul9vfUhB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NDiF4QDBAFAYYCcQDWEtiu0keEOrYqo1BVaEh9c2yHYdWVHFpWk3bd-GD8O0450_LH7G3PUSKlNhxcue7n-P73QG8MJybMMkUDYzKKNdW0JTlPZrkuY2FZYpXDO9Pw97RF_5hLMZb8LPlwviwytYmVoY6c8b_I9-LEnQ0KWcs3cubsIjRweDd_Dv1FaT8TmtbTqNWkRN7fobLt_Lt8QHK-mUUDQ5P3x_RpsIANSwNlzgsxZVINQsyYRAq2AzxQ0_gEsJmeczyyDCt0zBJlE1jkVlcjBjFYyu07eFinWG312A79uzRDmzvHw5Hn9dugEVV3VV_QoM4HTeMnZq3h06XU3SX1KdHCejFH17xb9_wzyZt5fsGd-B2A1pJv9ayu7Blix241f-6aBJ32B24vu8QZp7fgx-jicvoRC10FdpHdJ0OGpubmoviM7iSirCCYJeUM3dGVJGRXJVLMp-4Eo_FqiTL3xC1K8i0IGr2TXlQTEo3nRGXE0Uq9tpUkXlpV5lTRqGmEZVjM1vWMQbE-Oy_ro0Yvw-nVyGhB9ApXGEfAr5GkFjTS0ysDQ-1SFQepirBXrkONQ-7ELYikKbJj-7LdMzkJrOzF5tEsclKbPKiC6_XbeZ1dpBL737lJSu96cCe8ZvUDAgcn0_CJfsxYiuBEFR0YbcVvmxsSik3M6ALz9eX0Rr4LR5VWLcqJUMHFvpy0vg6b1ql2XTx_7E9uvyJz-AGzjb58Xh48hhuRpXm-pDlXegsFyv7BIHZUj9tpgABecWT7hfF8Ex_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phod-harboring+bacterial+communities+mediated+slow+and+fast+phosphorus+transformation+in+alkaline+soil+of+a+Robinia+pseudoacacia+afforestation+chronosequence&rft.jtitle=Plant+and+soil&rft.au=Wang%2C+Ying&rft.au=Yang%2C+Lin&rft.au=Zhang%2C+Jiawen&rft.au=Li%2C+Yan&rft.date=2023-07-01&rft.issn=0032-079X&rft.volume=488&rft.issue=1-2+p.517-532&rft.spage=517&rft.epage=532&rft_id=info:doi/10.1007%2Fs11104-023-05990-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon