Revisiting the renormalization of Einstein–Maxwell theory at one-loop

Abstract In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional c...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2021; no. 1
Main Author Park, I Y
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional covariance. A subtlety in the background field method also requires careful handling. This status of the matter motivated us to revisit an Einstein-scalar system in one of the sequels. Continuing the endeavors, we revisit the one-loop renormalization of an Einstein–Maxwell system in the present work. The systematic renormalization of the cosmological and Newton constants is carried out by applying the refined background field method. The one-loop beta function of the vector coupling constant is explicitly computed and compared with the literature. The longstanding problem of the gauge choice dependence of the effective action is addressed, and the manner in which gauge choice independence is restored in the present framework is discussed. The formalism also sheds light on background independent analysis. The renormalization involves a metric field redefinition originally introduced by ’t Hooft; with the field redefinition the theory should be predictive.
AbstractList In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional covariance. A subtlety in the background field method also requires careful handling. This status of the matter motivated us to revisit an Einstein-scalar system in one of the sequels. Continuing the endeavors, we revisit the one-loop renormalization of an Einstein–Maxwell system in the present work. The systematic renormalization of the cosmological and Newton constants is carried out by applying the refined background field method. The one-loop beta function of the vector coupling constant is explicitly computed and compared with the literature. The longstanding problem of the gauge choice dependence of the effective action is addressed, and the manner in which gauge choice independence is restored in the present framework is discussed. The formalism also sheds light on background independent analysis. The renormalization involves a metric field redefinition originally introduced by ’t Hooft; with the field redefinition the theory should be predictive.
Abstract In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional covariance. A subtlety in the background field method also requires careful handling. This status of the matter motivated us to revisit an Einstein-scalar system in one of the sequels. Continuing the endeavors, we revisit the one-loop renormalization of an Einstein–Maxwell system in the present work. The systematic renormalization of the cosmological and Newton constants is carried out by applying the refined background field method. The one-loop beta function of the vector coupling constant is explicitly computed and compared with the literature. The longstanding problem of the gauge choice dependence of the effective action is addressed, and the manner in which gauge choice independence is restored in the present framework is discussed. The formalism also sheds light on background independent analysis. The renormalization involves a metric field redefinition originally introduced by ’t Hooft; with the field redefinition the theory should be predictive.
Author Park, I Y
Author_xml – sequence: 1
  givenname: I Y
  surname: Park
  fullname: Park, I Y
  email: inyongpark05@gmail.com
  organization: Department of Applied Mathematics, Philander Smith College, Little Rock, AR 72223, USA
BookMark eNp9kE1OwzAQhS1UJErpjgNEYsGGgH8ST7xEVSlIRUgI1pGbOOAqtYPtAmXFHbghJ8GlXSAk2MzM4ntvZt4-6hlrFEKHBJ8SLNhZF1QXi5SEww7qU5zjlAlCej_mPTT0fo4xJhgAZ6SPJrfqWXsdtHlIwqNKnDLWLWSr32TQ1iS2Scba-KC0-Xz_uJavL6pt16R1q0SGJN6QttZ2B2i3ka1Xw20foPuL8d3oMp3eTK5G59O0ivtDKhiWnCvBJGaU55RjXgiAIqNFLSCvaT7LgXE1g6oC2UDDZJ1TqMVMRFWj2AAdbXw7Z5-WyodybpfOxJUlI0CyAjIoInWyoSpnvXeqKTunF9KtSoLLdVrlOq1ym1bE6S-80uH7_-Ckbv8SHW9Edtn9b_8Fzx6Afw
CitedBy_id crossref_primary_10_1103_PhysRevD_104_125001
crossref_primary_10_3390_particles4040035
crossref_primary_10_1142_S0217751X22501731
crossref_primary_10_1002_prop_202100064
crossref_primary_10_1093_ptep_ptab045
crossref_primary_10_1007_s10701_023_00719_5
Cites_doi 10.1016/0550-3213(78)90161-X
10.1017/CBO9781139644167
10.1103/PhysRevD.57.971
10.1103/PhysRevLett.101.131301
10.1002/prop.201400056
10.1016/0370-2693(94)91255-6
10.1016/0550-3213(86)90193-8
10.1016/0550-3213(78)90055-X
10.1007/BF01028251
10.1016/0370-1573(85)90148-6
10.1017/CBO9780511809149
10.1017/CBO9780511622632
10.1103/PhysRevLett.98.061801
10.1063/1.4942101
10.4310/ATMP.2018.v22.n1.a6
10.1007/JHEP07(2019)128
10.1142/S0217751X1450047X
10.21468/SciPostPhys.5.4.040
10.3390/universe5030071
10.1016/j.physletb.2016.12.026
10.1103/PhysRevD.10.401
10.1063/1.1665133
10.1016/0550-3213(85)90243-3
10.1016/0550-3213(84)90075-0
10.1134/S0040577918040128
10.1017/CBO9780511616563
10.1016/0550-3213(73)90263-0
10.1103/PhysRevLett.96.231601
10.1134/S0040577918050094
10.3389/fphy.2016.00025
10.1088/1361-6382/aa9602
10.1142/S021988781750092X
10.1007/JHEP06(2013)086
10.1103/PhysRevD.50.3874
10.1140/epjc/s10052-017-4896-4
10.1016/0003-4916(65)90077-1
10.1103/PhysRevD.76.045015
10.1103/PhysRevD.92.124057
10.1140/epjc/s10052-015-3660-x
10.1140/epjc/s10052-018-6035-2
10.1016/0550-3213(95)00633-8
10.1016/0550-3213(90)90268-I
10.1016/0550-3213(88)90280-5
10.1038/nature10619
10.1007/JHEP04(2015)053
10.1017/CBO9780511622618
10.1016/0550-3213(84)90228-1
10.1002/prop.201700038
10.1002/prop.2190380504
10.1038/nature09506
10.1007/978-94-011-5139-9
10.1007/JHEP07(2014)062
10.1007/JHEP05(2018)167
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptaa167
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptaa167
10.1093/ptep/ptaa167
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
ITC
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c391t-930a66e93a03265260689778428d975d25b5736eb7cc7af7f3ad527d9b96e9fe3
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:25:47 EDT 2025
Tue Jul 01 02:09:14 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Fri Jan 31 08:06:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords B06
B39
B32
B00
B05
Language English
License Funded by SCOAP3
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-930a66e93a03265260689778428d975d25b5736eb7cc7af7f3ad527d9b96e9fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171487478?pq-origsite=%requestingapplication%
PQID 3171487478
PQPubID 7121340
ParticipantIDs proquest_journals_3171487478
crossref_primary_10_1093_ptep_ptaa167
crossref_citationtrail_10_1093_ptep_ptaa167
oup_primary_10_1093_ptep_ptaa167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Mazur (2021050317203548400_B28) 1990; 341
Odintsov (2021050317203548400_B33) 1993; 41
Pietrykowski (2021050317203548400_B53) 2007; 98
Mukhanov (2021050317203548400_B6) 2007
Park (2021050317203548400_B47) 2019; 1907
Nurmagambetov (2021050317203548400_B19) 2018; 1805
Toms (2021050317203548400_B41) 2008; 101
Toms (2021050317203548400_B54) 2010; 468
Park (2021050317203548400_B21) 2014; 29
Ellis (2021050317203548400_B55) 2011; 479
Vilkovisky (2021050317203548400_B37) 1984; 234
Antoniadis (2021050317203548400_B44) 1996; 462
Park (2021050317203548400_B10) 2019; 5
Donkin (2021050317203548400_B50)
Grillo (2021050317203548400_B29)
Gibbons (2021050317203548400_B27) 1978; 138
Kallosh (2021050317203548400_B42) 1978; 137
Reuter (2021050317203548400_B49) 1998; 57
Park (2021050317203548400_B8) 2018; 22
Fradkin (2021050317203548400_B38) 1984; 234
Sterman (2021050317203548400_B48) 1993
Park (2021050317203548400_B14) 2017; 14
Witten (2021050317203548400_B20)
Buchbinder (2021050317203548400_B3) 1992
Huggins (2021050317203548400_B39) 1988; 301
Toms (2021050317203548400_B40) 2007; 76
Park (2021050317203548400_B15) 2017; 77
Falls (2021050317203548400_B36)
Mukhanov (2021050317203548400_B57) 1994; 332
Park (2021050317203548400_B17) 2017; 765
Morris (2021050317203548400_B45) 2018; 5
Ogievetsky (2021050317203548400_B25) 1965; 35
Park (2021050317203548400_B9) 2016; 4
Park (2021050317203548400_B7) 2015; 75
Modesto (2021050317203548400_B34) 2018; 78
Park (2021050317203548400_B12) 2018; 195
Park (2021050317203548400_B13) 2016; 57
Park (2021050317203548400_B22) 2017; 34
t Hooft (2021050317203548400_B51) 1973; 62
Frolov (2021050317203548400_B4) 1998
Park (2021050317203548400_B11) 2015; 1504
Birrell (2021050317203548400_B1) 1982
Odintsov (2021050317203548400_B31) 1990; 38
Weinberg (2021050317203548400_B46) 1995
Ortin (2021050317203548400_B30) 2004
Falls (2021050317203548400_B35) 2015; 92
Odintsov (2021050317203548400_B32) 1990; 82
Kuchař (2021050317203548400_B26) 1970; 11
Pius (2021050317203548400_B58) 2014; 1407
Lavrov (2021050317203548400_B60) 2013; 1306
Robinson (2021050317203548400_B52) 2006; 96
James (2021050317203548400_B18) 2018; 195
Goroff (2021050317203548400_B59) 1986; 266
Donoghue (2021050317203548400_B5) 1994; 50
Capper (2021050317203548400_B43) 1985; 254
Park (2021050317203548400_B16) 2014; 62
Barvinsky (2021050317203548400_B2) 1985; 119
t Hooft (2021050317203548400_B24) 1974; 20
Deser (2021050317203548400_B23) 1974; 10
Park (2021050317203548400_B56) 2017; 65
References_xml – volume: 20
  start-page: 69
  year: 1974
  ident: 2021050317203548400_B24
  publication-title: Ann. H. Poincaré Phys. Theor. A
– volume: 138
  start-page: 141
  year: 1978
  ident: 2021050317203548400_B27
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(78)90161-X
– volume-title: The Quantum Theory of Fields
  year: 1995
  ident: 2021050317203548400_B46
  doi: 10.1017/CBO9781139644167
– volume: 57
  start-page: 971
  year: 1998
  ident: 2021050317203548400_B49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.971
– volume: 101
  start-page: 131301
  year: 2008
  ident: 2021050317203548400_B41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.131301
– volume: 62
  start-page: 950
  year: 2014
  ident: 2021050317203548400_B16
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201400056
– volume: 332
  start-page: 283
  year: 1994
  ident: 2021050317203548400_B57
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(94)91255-6
– volume: 266
  start-page: 709
  year: 1986
  ident: 2021050317203548400_B59
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90193-8
– volume: 137
  start-page: 145
  year: 1978
  ident: 2021050317203548400_B42
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(78)90055-X
– volume: 82
  start-page: 45
  year: 1990
  ident: 2021050317203548400_B32
  publication-title: Theor. Math. Phys.
  doi: 10.1007/BF01028251
– volume-title: Effective Action in Quantum Gravity
  year: 1992
  ident: 2021050317203548400_B3
– ident: 2021050317203548400_B29
– volume: 119
  start-page: 1
  year: 1985
  ident: 2021050317203548400_B2
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(85)90148-6
– volume-title: Introduction to Quantum Effects in Gravity
  year: 2007
  ident: 2021050317203548400_B6
  doi: 10.1017/CBO9780511809149
– volume-title: Quantum Fields in Curved Space
  year: 1982
  ident: 2021050317203548400_B1
  doi: 10.1017/CBO9780511622632
– volume: 98
  start-page: 061801
  year: 2007
  ident: 2021050317203548400_B53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.061801
– volume: 57
  start-page: 022305
  year: 2016
  ident: 2021050317203548400_B13
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4942101
– volume: 22
  start-page: 247
  year: 2018
  ident: 2021050317203548400_B8
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2018.v22.n1.a6
– volume: 1907
  start-page: 128
  year: 2019
  ident: 2021050317203548400_B47
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2019)128
– volume: 29
  start-page: 1450047
  year: 2014
  ident: 2021050317203548400_B21
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X1450047X
– volume: 5
  start-page: 040
  year: 2018
  ident: 2021050317203548400_B45
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.5.4.040
– volume: 5
  start-page: 71
  year: 2019
  ident: 2021050317203548400_B10
  publication-title: Universe
  doi: 10.3390/universe5030071
– volume: 765
  start-page: 260
  year: 2017
  ident: 2021050317203548400_B17
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.12.026
– volume: 41
  start-page: 719
  year: 1993
  ident: 2021050317203548400_B33
  publication-title: Fortsch. Phys.
– volume: 10
  start-page: 401
  year: 1974
  ident: 2021050317203548400_B23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.10.401
– volume: 11
  start-page: 3322
  year: 1970
  ident: 2021050317203548400_B26
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665133
– volume: 254
  start-page: 737
  year: 1985
  ident: 2021050317203548400_B43
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(85)90243-3
– volume: 234
  start-page: 509
  year: 1984
  ident: 2021050317203548400_B38
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(84)90075-0
– volume: 195
  start-page: 607
  year: 2018
  ident: 2021050317203548400_B18
  publication-title: Theor. Math. Phys.
  doi: 10.1134/S0040577918040128
– volume-title: Gravity and Strings
  year: 2004
  ident: 2021050317203548400_B30
  doi: 10.1017/CBO9780511616563
– volume: 62
  start-page: 444
  year: 1973
  ident: 2021050317203548400_B51
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(73)90263-0
– volume: 96
  start-page: 231601
  year: 2006
  ident: 2021050317203548400_B52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.231601
– volume: 195
  start-page: 745
  year: 2018
  ident: 2021050317203548400_B12
  publication-title: Theor. Math. Phys.
  doi: 10.1134/S0040577918050094
– volume: 4
  start-page: 25
  year: 2016
  ident: 2021050317203548400_B9
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2016.00025
– volume: 34
  start-page: 245005
  year: 2017
  ident: 2021050317203548400_B22
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/aa9602
– volume: 14
  start-page: 1750092
  year: 2017
  ident: 2021050317203548400_B14
  publication-title: Int. J. Geom. Meth. Mod. Phys.
  doi: 10.1142/S021988781750092X
– volume: 1306
  start-page: 086
  year: 2013
  ident: 2021050317203548400_B60
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2013)086
– volume: 50
  start-page: 3874
  year: 1994
  ident: 2021050317203548400_B5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.50.3874
– volume: 77
  start-page: 337
  year: 2017
  ident: 2021050317203548400_B15
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4896-4
– volume: 35
  start-page: 167
  year: 1965
  ident: 2021050317203548400_B25
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(65)90077-1
– volume: 76
  start-page: 045015
  year: 2007
  ident: 2021050317203548400_B40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.045015
– volume: 92
  start-page: 124057
  year: 2015
  ident: 2021050317203548400_B35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.124057
– volume: 75
  start-page: 459
  year: 2015
  ident: 2021050317203548400_B7
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3660-x
– volume: 78
  start-page: 555
  year: 2018
  ident: 2021050317203548400_B34
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6035-2
– volume: 462
  start-page: 437
  year: 1996
  ident: 2021050317203548400_B44
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00633-8
– volume: 341
  start-page: 187
  year: 1990
  ident: 2021050317203548400_B28
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(90)90268-I
– volume: 301
  start-page: 627
  year: 1988
  ident: 2021050317203548400_B39
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90280-5
– ident: 2021050317203548400_B36
– volume: 479
  start-page: E5
  year: 2011
  ident: 2021050317203548400_B55
  publication-title: Nature
  doi: 10.1038/nature10619
– ident: 2021050317203548400_B20
– volume: 1504
  start-page: 053
  year: 2015
  ident: 2021050317203548400_B11
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2015)053
– volume-title: An Introduction to Quantum Field Theory
  year: 1993
  ident: 2021050317203548400_B48
  doi: 10.1017/CBO9780511622618
– volume: 234
  start-page: 125
  year: 1984
  ident: 2021050317203548400_B37
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(84)90228-1
– volume: 65
  start-page: 1700038
  year: 2017
  ident: 2021050317203548400_B56
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201700038
– volume: 38
  start-page: 371
  year: 1990
  ident: 2021050317203548400_B31
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.2190380504
– volume: 468
  start-page: 56
  year: 2010
  ident: 2021050317203548400_B54
  publication-title: Nature
  doi: 10.1038/nature09506
– volume-title: Black Hole Physics: Basic Concepts and New Developments
  year: 1998
  ident: 2021050317203548400_B4
  doi: 10.1007/978-94-011-5139-9
– volume: 1407
  start-page: 062
  year: 2014
  ident: 2021050317203548400_B58
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2014)062
– volume: 1805
  start-page: 167
  year: 2018
  ident: 2021050317203548400_B19
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2018)167
– ident: 2021050317203548400_B50
SSID ssj0001077041
Score 2.2088723
Snippet Abstract In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory,...
In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Black holes
Boundary conditions
Dimensional analysis
Gravity
Symmetry
Title Revisiting the renormalization of Einstein–Maxwell theory at one-loop
URI https://www.proquest.com/docview/3171487478
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF60vXjxX6zWsgc9SWiSTbLZk6i0FsEqpYXewiY7gUJJYhtBb76Db-iTOJtuLB7UyxLIhMDMzuw3s_NDyHkgUhUnqEgx8NjyUhefUpVauvuZA7oUEqpsi2EwmHj3U39qAm5Lk1ZZ28TKUKs80THyLtOTukPd7f2qeLb01Ch9u2pGaGySJprgEJ2v5k1v-DRaR1lszm3PMRnv6L13ixIKXKR0qtHy67PoR31bbZCrU6a_S7YNPKTXK3nukQ3I9smOgYrUKOLygNyNqqpwnbNMEcLRBWQafM5NVSXNU9qbIfKDWfb5_vEgX3WMjlZVi29UljTPwJrneXFIJv3e-HZgmZkIVsKEU1qC2TIIQDBpI_Dy0RsJQoRwIXoRSnBfuX7scxZAzJOEy5SnTCrf5UrEAr9KgR2RRob_OCZUeIlubw8sDJXnuYkEAMa4UAhZQglOi1zW3IkS0zBcz62YR6uLaxZpXkaGly1y8U1drBpl_EJHkdH_kLRrKURGo5bRWv4nf78-JVuuzjupwiRt0igXL3CGwKGMO2Z3dCrHG9fx4_QLxLHJxg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7BcoBLoVDEf30oJxSRxEkcHxDiZ-lSYIUQSNyCE08kpFWSskHAjXfgPXgonoRx1umqB9oTlyhSJok0nrE_j2fmA_gRyVynGTlSiiJ1gtynu1znjul-5qEphcQm26If9a6CX9fh9QS8trUwJq2ynRObiVqXmYmRb3PD1B2bbu-71W_HsEaZ09WWQmNkFif49EBbtuHO8SGN76bvH3UvD3qOZRVwMi692pHcVVGEkiuXoEtIeD6KCQTFhMO1FKH2wzQUPMJUZJlQuci50qEvtEwlvZUjp-9OwlTAaSvTgan9bv_8YhzVcYVwA89m2LuSb1c1VnRRymuo7Mdr31_1dO0C0KxqR3PwxcJRtjeyn68wgcU8zFpoyqzjDxfg50VThW5ypBlBRnaHhQG7A1vFycqcdW8JaeJt8fb8cqYeTUyQNVWST0zVrCzQGZRl9Q2uPkVbi9Ap6B9LwGSQmXb6yONYB4GfKUTkXEhNEClW6C3DVqudJLMNyg1PxiAZHZTzxOgysbpchs0_0tWoMccHcowU_R-RtXYUEuvBw2Rsbyv_fvwdpnuXZ6fJ6XH_ZBVmfJPz0oRo1qBT393jOoGWOt2wlsLg5rON8x3JGQNJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+renormalization+of+Einstein%E2%80%93Maxwell+theory+at+one-loop&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Park%2C+I+Y&rft.date=2021-01-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1093%2Fptep%2Fptaa167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon