Revisiting the renormalization of Einstein–Maxwell theory at one-loop
Abstract In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional c...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2021; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional covariance. A subtlety in the background field method also requires careful handling. This status of the matter motivated us to revisit an Einstein-scalar system in one of the sequels. Continuing the endeavors, we revisit the one-loop renormalization of an Einstein–Maxwell system in the present work. The systematic renormalization of the cosmological and Newton constants is carried out by applying the refined background field method. The one-loop beta function of the vector coupling constant is explicitly computed and compared with the literature. The longstanding problem of the gauge choice dependence of the effective action is addressed, and the manner in which gauge choice independence is restored in the present framework is discussed. The formalism also sheds light on background independent analysis. The renormalization involves a metric field redefinition originally introduced by ’t Hooft; with the field redefinition the theory should be predictive. |
---|---|
AbstractList | In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional covariance. A subtlety in the background field method also requires careful handling. This status of the matter motivated us to revisit an Einstein-scalar system in one of the sequels. Continuing the endeavors, we revisit the one-loop renormalization of an Einstein–Maxwell system in the present work. The systematic renormalization of the cosmological and Newton constants is carried out by applying the refined background field method. The one-loop beta function of the vector coupling constant is explicitly computed and compared with the literature. The longstanding problem of the gauge choice dependence of the effective action is addressed, and the manner in which gauge choice independence is restored in the present framework is discussed. The formalism also sheds light on background independent analysis. The renormalization involves a metric field redefinition originally introduced by ’t Hooft; with the field redefinition the theory should be predictive. Abstract In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have shown that the use of the standard graviton propagator interferes, due to the presence of the trace mode, with the four-dimensional covariance. A subtlety in the background field method also requires careful handling. This status of the matter motivated us to revisit an Einstein-scalar system in one of the sequels. Continuing the endeavors, we revisit the one-loop renormalization of an Einstein–Maxwell system in the present work. The systematic renormalization of the cosmological and Newton constants is carried out by applying the refined background field method. The one-loop beta function of the vector coupling constant is explicitly computed and compared with the literature. The longstanding problem of the gauge choice dependence of the effective action is addressed, and the manner in which gauge choice independence is restored in the present framework is discussed. The formalism also sheds light on background independent analysis. The renormalization involves a metric field redefinition originally introduced by ’t Hooft; with the field redefinition the theory should be predictive. |
Author | Park, I Y |
Author_xml | – sequence: 1 givenname: I Y surname: Park fullname: Park, I Y email: inyongpark05@gmail.com organization: Department of Applied Mathematics, Philander Smith College, Little Rock, AR 72223, USA |
BookMark | eNp9kE1OwzAQhS1UJErpjgNEYsGGgH8ST7xEVSlIRUgI1pGbOOAqtYPtAmXFHbghJ8GlXSAk2MzM4ntvZt4-6hlrFEKHBJ8SLNhZF1QXi5SEww7qU5zjlAlCej_mPTT0fo4xJhgAZ6SPJrfqWXsdtHlIwqNKnDLWLWSr32TQ1iS2Scba-KC0-Xz_uJavL6pt16R1q0SGJN6QttZ2B2i3ka1Xw20foPuL8d3oMp3eTK5G59O0ivtDKhiWnCvBJGaU55RjXgiAIqNFLSCvaT7LgXE1g6oC2UDDZJ1TqMVMRFWj2AAdbXw7Z5-WyodybpfOxJUlI0CyAjIoInWyoSpnvXeqKTunF9KtSoLLdVrlOq1ym1bE6S-80uH7_-Ckbv8SHW9Edtn9b_8Fzx6Afw |
CitedBy_id | crossref_primary_10_1103_PhysRevD_104_125001 crossref_primary_10_3390_particles4040035 crossref_primary_10_1142_S0217751X22501731 crossref_primary_10_1002_prop_202100064 crossref_primary_10_1093_ptep_ptab045 crossref_primary_10_1007_s10701_023_00719_5 |
Cites_doi | 10.1016/0550-3213(78)90161-X 10.1017/CBO9781139644167 10.1103/PhysRevD.57.971 10.1103/PhysRevLett.101.131301 10.1002/prop.201400056 10.1016/0370-2693(94)91255-6 10.1016/0550-3213(86)90193-8 10.1016/0550-3213(78)90055-X 10.1007/BF01028251 10.1016/0370-1573(85)90148-6 10.1017/CBO9780511809149 10.1017/CBO9780511622632 10.1103/PhysRevLett.98.061801 10.1063/1.4942101 10.4310/ATMP.2018.v22.n1.a6 10.1007/JHEP07(2019)128 10.1142/S0217751X1450047X 10.21468/SciPostPhys.5.4.040 10.3390/universe5030071 10.1016/j.physletb.2016.12.026 10.1103/PhysRevD.10.401 10.1063/1.1665133 10.1016/0550-3213(85)90243-3 10.1016/0550-3213(84)90075-0 10.1134/S0040577918040128 10.1017/CBO9780511616563 10.1016/0550-3213(73)90263-0 10.1103/PhysRevLett.96.231601 10.1134/S0040577918050094 10.3389/fphy.2016.00025 10.1088/1361-6382/aa9602 10.1142/S021988781750092X 10.1007/JHEP06(2013)086 10.1103/PhysRevD.50.3874 10.1140/epjc/s10052-017-4896-4 10.1016/0003-4916(65)90077-1 10.1103/PhysRevD.76.045015 10.1103/PhysRevD.92.124057 10.1140/epjc/s10052-015-3660-x 10.1140/epjc/s10052-018-6035-2 10.1016/0550-3213(95)00633-8 10.1016/0550-3213(90)90268-I 10.1016/0550-3213(88)90280-5 10.1038/nature10619 10.1007/JHEP04(2015)053 10.1017/CBO9780511622618 10.1016/0550-3213(84)90228-1 10.1002/prop.201700038 10.1002/prop.2190380504 10.1038/nature09506 10.1007/978-94-011-5139-9 10.1007/JHEP07(2014)062 10.1007/JHEP05(2018)167 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptaa167 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptaa167 10.1093/ptep/ptaa167 |
GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR ITC KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABUWG AFKRA AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c391t-930a66e93a03265260689778428d975d25b5736eb7cc7af7f3ad527d9b96e9fe3 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:25:47 EDT 2025 Tue Jul 01 02:09:14 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 Fri Jan 31 08:06:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | B06 B39 B32 B00 B05 |
Language | English |
License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-930a66e93a03265260689778428d975d25b5736eb7cc7af7f3ad527d9b96e9fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171487478?pq-origsite=%requestingapplication% |
PQID | 3171487478 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171487478 crossref_primary_10_1093_ptep_ptaa167 crossref_citationtrail_10_1093_ptep_ptaa167 oup_primary_10_1093_ptep_ptaa167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Mazur (2021050317203548400_B28) 1990; 341 Odintsov (2021050317203548400_B33) 1993; 41 Pietrykowski (2021050317203548400_B53) 2007; 98 Mukhanov (2021050317203548400_B6) 2007 Park (2021050317203548400_B47) 2019; 1907 Nurmagambetov (2021050317203548400_B19) 2018; 1805 Toms (2021050317203548400_B41) 2008; 101 Toms (2021050317203548400_B54) 2010; 468 Park (2021050317203548400_B21) 2014; 29 Ellis (2021050317203548400_B55) 2011; 479 Vilkovisky (2021050317203548400_B37) 1984; 234 Antoniadis (2021050317203548400_B44) 1996; 462 Park (2021050317203548400_B10) 2019; 5 Donkin (2021050317203548400_B50) Grillo (2021050317203548400_B29) Gibbons (2021050317203548400_B27) 1978; 138 Kallosh (2021050317203548400_B42) 1978; 137 Reuter (2021050317203548400_B49) 1998; 57 Park (2021050317203548400_B8) 2018; 22 Fradkin (2021050317203548400_B38) 1984; 234 Sterman (2021050317203548400_B48) 1993 Park (2021050317203548400_B14) 2017; 14 Witten (2021050317203548400_B20) Buchbinder (2021050317203548400_B3) 1992 Huggins (2021050317203548400_B39) 1988; 301 Toms (2021050317203548400_B40) 2007; 76 Park (2021050317203548400_B15) 2017; 77 Falls (2021050317203548400_B36) Mukhanov (2021050317203548400_B57) 1994; 332 Park (2021050317203548400_B17) 2017; 765 Morris (2021050317203548400_B45) 2018; 5 Ogievetsky (2021050317203548400_B25) 1965; 35 Park (2021050317203548400_B9) 2016; 4 Park (2021050317203548400_B7) 2015; 75 Modesto (2021050317203548400_B34) 2018; 78 Park (2021050317203548400_B12) 2018; 195 Park (2021050317203548400_B13) 2016; 57 Park (2021050317203548400_B22) 2017; 34 t Hooft (2021050317203548400_B51) 1973; 62 Frolov (2021050317203548400_B4) 1998 Park (2021050317203548400_B11) 2015; 1504 Birrell (2021050317203548400_B1) 1982 Odintsov (2021050317203548400_B31) 1990; 38 Weinberg (2021050317203548400_B46) 1995 Ortin (2021050317203548400_B30) 2004 Falls (2021050317203548400_B35) 2015; 92 Odintsov (2021050317203548400_B32) 1990; 82 Kuchař (2021050317203548400_B26) 1970; 11 Pius (2021050317203548400_B58) 2014; 1407 Lavrov (2021050317203548400_B60) 2013; 1306 Robinson (2021050317203548400_B52) 2006; 96 James (2021050317203548400_B18) 2018; 195 Goroff (2021050317203548400_B59) 1986; 266 Donoghue (2021050317203548400_B5) 1994; 50 Capper (2021050317203548400_B43) 1985; 254 Park (2021050317203548400_B16) 2014; 62 Barvinsky (2021050317203548400_B2) 1985; 119 t Hooft (2021050317203548400_B24) 1974; 20 Deser (2021050317203548400_B23) 1974; 10 Park (2021050317203548400_B56) 2017; 65 |
References_xml | – volume: 20 start-page: 69 year: 1974 ident: 2021050317203548400_B24 publication-title: Ann. H. Poincaré Phys. Theor. A – volume: 138 start-page: 141 year: 1978 ident: 2021050317203548400_B27 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(78)90161-X – volume-title: The Quantum Theory of Fields year: 1995 ident: 2021050317203548400_B46 doi: 10.1017/CBO9781139644167 – volume: 57 start-page: 971 year: 1998 ident: 2021050317203548400_B49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.57.971 – volume: 101 start-page: 131301 year: 2008 ident: 2021050317203548400_B41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.131301 – volume: 62 start-page: 950 year: 2014 ident: 2021050317203548400_B16 publication-title: Fortsch. Phys. doi: 10.1002/prop.201400056 – volume: 332 start-page: 283 year: 1994 ident: 2021050317203548400_B57 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(94)91255-6 – volume: 266 start-page: 709 year: 1986 ident: 2021050317203548400_B59 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90193-8 – volume: 137 start-page: 145 year: 1978 ident: 2021050317203548400_B42 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(78)90055-X – volume: 82 start-page: 45 year: 1990 ident: 2021050317203548400_B32 publication-title: Theor. Math. Phys. doi: 10.1007/BF01028251 – volume-title: Effective Action in Quantum Gravity year: 1992 ident: 2021050317203548400_B3 – ident: 2021050317203548400_B29 – volume: 119 start-page: 1 year: 1985 ident: 2021050317203548400_B2 publication-title: Phys. Rept. doi: 10.1016/0370-1573(85)90148-6 – volume-title: Introduction to Quantum Effects in Gravity year: 2007 ident: 2021050317203548400_B6 doi: 10.1017/CBO9780511809149 – volume-title: Quantum Fields in Curved Space year: 1982 ident: 2021050317203548400_B1 doi: 10.1017/CBO9780511622632 – volume: 98 start-page: 061801 year: 2007 ident: 2021050317203548400_B53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.061801 – volume: 57 start-page: 022305 year: 2016 ident: 2021050317203548400_B13 publication-title: J. Math. Phys. doi: 10.1063/1.4942101 – volume: 22 start-page: 247 year: 2018 ident: 2021050317203548400_B8 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2018.v22.n1.a6 – volume: 1907 start-page: 128 year: 2019 ident: 2021050317203548400_B47 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2019)128 – volume: 29 start-page: 1450047 year: 2014 ident: 2021050317203548400_B21 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X1450047X – volume: 5 start-page: 040 year: 2018 ident: 2021050317203548400_B45 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.5.4.040 – volume: 5 start-page: 71 year: 2019 ident: 2021050317203548400_B10 publication-title: Universe doi: 10.3390/universe5030071 – volume: 765 start-page: 260 year: 2017 ident: 2021050317203548400_B17 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.12.026 – volume: 41 start-page: 719 year: 1993 ident: 2021050317203548400_B33 publication-title: Fortsch. Phys. – volume: 10 start-page: 401 year: 1974 ident: 2021050317203548400_B23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.10.401 – volume: 11 start-page: 3322 year: 1970 ident: 2021050317203548400_B26 publication-title: J. Math. Phys. doi: 10.1063/1.1665133 – volume: 254 start-page: 737 year: 1985 ident: 2021050317203548400_B43 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(85)90243-3 – volume: 234 start-page: 509 year: 1984 ident: 2021050317203548400_B38 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90075-0 – volume: 195 start-page: 607 year: 2018 ident: 2021050317203548400_B18 publication-title: Theor. Math. Phys. doi: 10.1134/S0040577918040128 – volume-title: Gravity and Strings year: 2004 ident: 2021050317203548400_B30 doi: 10.1017/CBO9780511616563 – volume: 62 start-page: 444 year: 1973 ident: 2021050317203548400_B51 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(73)90263-0 – volume: 96 start-page: 231601 year: 2006 ident: 2021050317203548400_B52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.231601 – volume: 195 start-page: 745 year: 2018 ident: 2021050317203548400_B12 publication-title: Theor. Math. Phys. doi: 10.1134/S0040577918050094 – volume: 4 start-page: 25 year: 2016 ident: 2021050317203548400_B9 publication-title: Front. Phys. doi: 10.3389/fphy.2016.00025 – volume: 34 start-page: 245005 year: 2017 ident: 2021050317203548400_B22 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aa9602 – volume: 14 start-page: 1750092 year: 2017 ident: 2021050317203548400_B14 publication-title: Int. J. Geom. Meth. Mod. Phys. doi: 10.1142/S021988781750092X – volume: 1306 start-page: 086 year: 2013 ident: 2021050317203548400_B60 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2013)086 – volume: 50 start-page: 3874 year: 1994 ident: 2021050317203548400_B5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.50.3874 – volume: 77 start-page: 337 year: 2017 ident: 2021050317203548400_B15 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4896-4 – volume: 35 start-page: 167 year: 1965 ident: 2021050317203548400_B25 publication-title: Ann. Phys. doi: 10.1016/0003-4916(65)90077-1 – volume: 76 start-page: 045015 year: 2007 ident: 2021050317203548400_B40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.045015 – volume: 92 start-page: 124057 year: 2015 ident: 2021050317203548400_B35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.124057 – volume: 75 start-page: 459 year: 2015 ident: 2021050317203548400_B7 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3660-x – volume: 78 start-page: 555 year: 2018 ident: 2021050317203548400_B34 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6035-2 – volume: 462 start-page: 437 year: 1996 ident: 2021050317203548400_B44 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00633-8 – volume: 341 start-page: 187 year: 1990 ident: 2021050317203548400_B28 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(90)90268-I – volume: 301 start-page: 627 year: 1988 ident: 2021050317203548400_B39 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90280-5 – ident: 2021050317203548400_B36 – volume: 479 start-page: E5 year: 2011 ident: 2021050317203548400_B55 publication-title: Nature doi: 10.1038/nature10619 – ident: 2021050317203548400_B20 – volume: 1504 start-page: 053 year: 2015 ident: 2021050317203548400_B11 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2015)053 – volume-title: An Introduction to Quantum Field Theory year: 1993 ident: 2021050317203548400_B48 doi: 10.1017/CBO9780511622618 – volume: 234 start-page: 125 year: 1984 ident: 2021050317203548400_B37 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90228-1 – volume: 65 start-page: 1700038 year: 2017 ident: 2021050317203548400_B56 publication-title: Fortsch. Phys. doi: 10.1002/prop.201700038 – volume: 38 start-page: 371 year: 1990 ident: 2021050317203548400_B31 publication-title: Fortsch. Phys. doi: 10.1002/prop.2190380504 – volume: 468 start-page: 56 year: 2010 ident: 2021050317203548400_B54 publication-title: Nature doi: 10.1038/nature09506 – volume-title: Black Hole Physics: Basic Concepts and New Developments year: 1998 ident: 2021050317203548400_B4 doi: 10.1007/978-94-011-5139-9 – volume: 1407 start-page: 062 year: 2014 ident: 2021050317203548400_B58 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2014)062 – volume: 1805 start-page: 167 year: 2018 ident: 2021050317203548400_B19 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2018)167 – ident: 2021050317203548400_B50 |
SSID | ssj0001077041 |
Score | 2.2088723 |
Snippet | Abstract
In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory,... In a series of recent works based on foliation-based quantization in which renormalizability has been achieved for the physical sector of the theory, we have... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Black holes Boundary conditions Dimensional analysis Gravity Symmetry |
Title | Revisiting the renormalization of Einstein–Maxwell theory at one-loop |
URI | https://www.proquest.com/docview/3171487478 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF60vXjxX6zWsgc9SWiSTbLZk6i0FsEqpYXewiY7gUJJYhtBb76Db-iTOJtuLB7UyxLIhMDMzuw3s_NDyHkgUhUnqEgx8NjyUhefUpVauvuZA7oUEqpsi2EwmHj3U39qAm5Lk1ZZ28TKUKs80THyLtOTukPd7f2qeLb01Ch9u2pGaGySJprgEJ2v5k1v-DRaR1lszm3PMRnv6L13ixIKXKR0qtHy67PoR31bbZCrU6a_S7YNPKTXK3nukQ3I9smOgYrUKOLygNyNqqpwnbNMEcLRBWQafM5NVSXNU9qbIfKDWfb5_vEgX3WMjlZVi29UljTPwJrneXFIJv3e-HZgmZkIVsKEU1qC2TIIQDBpI_Dy0RsJQoRwIXoRSnBfuX7scxZAzJOEy5SnTCrf5UrEAr9KgR2RRob_OCZUeIlubw8sDJXnuYkEAMa4UAhZQglOi1zW3IkS0zBcz62YR6uLaxZpXkaGly1y8U1drBpl_EJHkdH_kLRrKURGo5bRWv4nf78-JVuuzjupwiRt0igXL3CGwKGMO2Z3dCrHG9fx4_QLxLHJxg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7BcoBLoVDEf30oJxSRxEkcHxDiZ-lSYIUQSNyCE08kpFWSskHAjXfgPXgonoRx1umqB9oTlyhSJok0nrE_j2fmA_gRyVynGTlSiiJ1gtynu1znjul-5qEphcQm26If9a6CX9fh9QS8trUwJq2ynRObiVqXmYmRb3PD1B2bbu-71W_HsEaZ09WWQmNkFif49EBbtuHO8SGN76bvH3UvD3qOZRVwMi692pHcVVGEkiuXoEtIeD6KCQTFhMO1FKH2wzQUPMJUZJlQuci50qEvtEwlvZUjp-9OwlTAaSvTgan9bv_8YhzVcYVwA89m2LuSb1c1VnRRymuo7Mdr31_1dO0C0KxqR3PwxcJRtjeyn68wgcU8zFpoyqzjDxfg50VThW5ypBlBRnaHhQG7A1vFycqcdW8JaeJt8fb8cqYeTUyQNVWST0zVrCzQGZRl9Q2uPkVbi9Ap6B9LwGSQmXb6yONYB4GfKUTkXEhNEClW6C3DVqudJLMNyg1PxiAZHZTzxOgysbpchs0_0tWoMccHcowU_R-RtXYUEuvBw2Rsbyv_fvwdpnuXZ6fJ6XH_ZBVmfJPz0oRo1qBT393jOoGWOt2wlsLg5rON8x3JGQNJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+renormalization+of+Einstein%E2%80%93Maxwell+theory+at+one-loop&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Park%2C+I+Y&rft.date=2021-01-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1093%2Fptep%2Fptaa167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |