Physics-informed neural networks for high-speed flows
In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward prob...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 360; p. 112789 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 |
DOI | 10.1016/j.cma.2019.112789 |
Cover
Loading…
Abstract | In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x∗,t) at a specified point x=x∗ as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x∗ plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x∗ from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x∗ from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques. |
---|---|
AbstractList | In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x∗,t) at a specified point x=x∗ as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x∗ plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x∗ from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x∗ from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques. In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x*,t) at a specified point x = x* as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x* plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x* from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x* from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques. |
ArticleNumber | 112789 |
Author | Mao, Zhiping Jagtap, Ameya D. Karniadakis, George Em |
Author_xml | – sequence: 1 givenname: Zhiping surname: Mao fullname: Mao, Zhiping email: zhiping_mao@brown.edu – sequence: 2 givenname: Ameya D. surname: Jagtap fullname: Jagtap, Ameya D. email: ameya_jagtap@brown.edu – sequence: 3 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em email: george_karniadakis@brown.edu |
BookMark | eNp9kE9PwzAMxXMYEtvgA3CbxLnFTtq1ESc08U-aBAc4RyF1WErXjKRj2rcn0zhxmC9Pst_Plt-EjXrfE2NXCDkCzm_a3Kx1zgFljsirWo7YGKAos6rm5TmbxNhCqhr5mJWvq310Jmautz6sqZn1tA26SzLsfPiKs9SerdznKosbSmPb-V28YGdWd5Eu_3TK3h_u3xZP2fLl8Xlxt8yMkDhkdQm2stB8AFgAUZWcG1vUBgyaoilAgi6akiw1SELKQhZaiNpUJIWWds7FlF0f926C_95SHFTrt6FPJxUXpZgjohTJhUeXCT7GQFZtglvrsFcI6pCIalVKRB0SUcdEElP9Y4wb9OB8PwTtupPk7ZGk9PiPo6CicdQbalwgM6jGuxP0L4rxfcg |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106127 crossref_primary_10_1063_5_0183463 crossref_primary_10_1117_1_AP_4_6_066001 crossref_primary_10_1016_j_cma_2024_117189 crossref_primary_10_1250_ast_e24_55 crossref_primary_10_1016_j_camwa_2024_04_017 crossref_primary_10_1007_s00366_024_01944_w crossref_primary_10_1111_exsy_13654 crossref_primary_10_1016_j_cja_2025_103482 crossref_primary_10_1063_5_0066049 crossref_primary_10_3390_en15186823 crossref_primary_10_1088_1361_6501_ac5437 crossref_primary_10_5194_gmd_16_3479_2023 crossref_primary_10_1615_JMachLearnModelComput_2023050011 crossref_primary_10_1155_2024_6641674 crossref_primary_10_1007_s11424_024_3500_x crossref_primary_10_1063_5_0060604 crossref_primary_10_1016_j_apenergy_2021_116641 crossref_primary_10_1016_j_cma_2022_115671 crossref_primary_10_1063_5_0058529 crossref_primary_10_1007_s00162_021_00593_9 crossref_primary_10_1016_j_addma_2023_103668 crossref_primary_10_1109_JLT_2022_3199782 crossref_primary_10_3390_fermentation9100922 crossref_primary_10_1115_1_4064449 crossref_primary_10_1016_j_cma_2024_117290 crossref_primary_10_1016_j_jweia_2023_105534 crossref_primary_10_1002_adem_202401299 crossref_primary_10_1109_ACCESS_2024_3504962 crossref_primary_10_31039_plic_2024_11_247 crossref_primary_10_1016_j_apenergy_2023_122439 crossref_primary_10_1016_j_paerosci_2022_100823 crossref_primary_10_1016_j_jhydrol_2021_126857 crossref_primary_10_1063_5_0033376 crossref_primary_10_1016_j_combustflame_2023_113094 crossref_primary_10_1063_5_0063904 crossref_primary_10_1089_3dp_2022_0363 crossref_primary_10_22201_iim_rma_2024_41_48 crossref_primary_10_1016_j_cma_2022_115100 crossref_primary_10_1016_j_molliq_2022_120504 crossref_primary_10_1007_s11440_024_02345_5 crossref_primary_10_1029_2020WR029479 crossref_primary_10_1016_j_biosystemseng_2025_01_017 crossref_primary_10_1063_5_0147472 crossref_primary_10_1063_5_0256953 crossref_primary_10_1080_00295639_2022_2123211 crossref_primary_10_1016_j_neucom_2024_129134 crossref_primary_10_1007_s42979_022_01413_5 crossref_primary_10_1061__ASCE_EM_1943_7889_0002156 crossref_primary_10_1016_j_jrmge_2024_10_025 crossref_primary_10_1016_j_jcp_2024_113188 crossref_primary_10_1098_rspa_2023_0058 crossref_primary_10_1016_j_advengsoft_2022_103390 crossref_primary_10_1016_j_petrol_2022_110360 crossref_primary_10_1016_j_engappai_2024_109804 crossref_primary_10_1016_j_jocs_2024_102514 crossref_primary_10_1016_j_engappai_2023_107453 crossref_primary_10_1063_5_0221924 crossref_primary_10_1088_2632_2153_ad45b2 crossref_primary_10_3390_app14135490 crossref_primary_10_1007_s40295_023_00392_w crossref_primary_10_1016_j_paerosci_2022_100849 crossref_primary_10_1016_j_jcp_2022_111271 crossref_primary_10_3390_a15120447 crossref_primary_10_1016_j_engappai_2023_107773 crossref_primary_10_1016_j_cma_2025_117782 crossref_primary_10_1038_s41598_023_29822_3 crossref_primary_10_1017_dce_2024_15 crossref_primary_10_3389_frfst_2024_1491396 crossref_primary_10_1016_j_ijft_2023_100448 crossref_primary_10_1016_j_petsci_2023_08_032 crossref_primary_10_1063_5_0251167 crossref_primary_10_1063_5_0206515 crossref_primary_10_1177_09544070241244858 crossref_primary_10_3390_ai5040097 crossref_primary_10_1016_j_jcp_2022_111024 crossref_primary_10_1016_j_cpc_2024_109462 crossref_primary_10_2208_jscejam_77_2_I_35 crossref_primary_10_1016_j_jcp_2022_111260 crossref_primary_10_1016_j_cpc_2025_109572 crossref_primary_10_1016_j_physa_2025_130434 crossref_primary_10_1016_j_jcp_2022_111022 crossref_primary_10_1016_j_jcp_2024_113285 crossref_primary_10_1088_1402_4896_acd307 crossref_primary_10_1007_s10409_022_22302_x crossref_primary_10_1016_j_cma_2024_117498 crossref_primary_10_5902_2179460X89888 crossref_primary_10_1007_s10409_021_01143_6 crossref_primary_10_1016_j_engappai_2023_107307 crossref_primary_10_1016_j_ifacol_2024_08_236 crossref_primary_10_1016_j_ces_2024_119752 crossref_primary_10_1016_j_asoc_2021_108050 crossref_primary_10_1016_j_asoc_2024_111437 crossref_primary_10_1016_j_camwa_2023_09_030 crossref_primary_10_3788_IRLA20230188 crossref_primary_10_1016_j_enganabound_2024_105919 crossref_primary_10_1088_1873_7005_adb32e crossref_primary_10_1016_j_cma_2020_113603 crossref_primary_10_1371_journal_pone_0276074 crossref_primary_10_1016_j_cma_2022_115141 crossref_primary_10_1016_j_engappai_2023_106425 crossref_primary_10_1016_j_engappai_2022_105176 crossref_primary_10_1016_j_jcp_2022_111053 crossref_primary_10_1016_j_jmapro_2025_02_052 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420 crossref_primary_10_1016_j_cma_2024_117000 crossref_primary_10_1016_j_cpc_2025_109569 crossref_primary_10_1007_s11071_024_10612_z crossref_primary_10_1016_j_advwatres_2024_104797 crossref_primary_10_3390_math12233873 crossref_primary_10_1016_j_asoc_2024_112632 crossref_primary_10_3390_lubricants12020062 crossref_primary_10_3390_min14101043 crossref_primary_10_1016_j_chaos_2023_114090 crossref_primary_10_1063_5_0153705 crossref_primary_10_1103_PhysRevFluids_9_034605 crossref_primary_10_1063_5_0238321 crossref_primary_10_1016_j_neunet_2025_107166 crossref_primary_10_1016_j_compgeo_2023_105433 crossref_primary_10_1016_j_compgeo_2025_107091 crossref_primary_10_1038_s43588_021_00158_0 crossref_primary_10_1109_ACCESS_2024_3452160 crossref_primary_10_1063_5_0217991 crossref_primary_10_1109_TPAMI_2022_3160100 crossref_primary_10_1016_j_jhydrol_2023_129465 crossref_primary_10_1016_j_jmsy_2023_09_013 crossref_primary_10_1088_1742_6596_2891_6_062023 crossref_primary_10_1016_j_ijsolstr_2023_112319 crossref_primary_10_1108_HFF_11_2024_0889 crossref_primary_10_1016_j_cma_2022_115491 crossref_primary_10_1121_10_0026459 crossref_primary_10_1007_s00466_024_02491_3 crossref_primary_10_1109_ACCESS_2022_3199652 crossref_primary_10_1155_2022_1781388 crossref_primary_10_1007_s11600_024_01507_z crossref_primary_10_1007_s11242_023_01961_1 crossref_primary_10_1063_5_0239889 crossref_primary_10_1007_s10409_023_23319_x crossref_primary_10_1016_j_physd_2024_134304 crossref_primary_10_1007_s11071_023_08654_w crossref_primary_10_1016_j_camwa_2022_07_002 crossref_primary_10_3390_a16040194 crossref_primary_10_1061__ASCE_EM_1943_7889_0002062 crossref_primary_10_56946_jce_v3i1_345 crossref_primary_10_1063_5_0142516 crossref_primary_10_1016_j_jhydrol_2023_130048 crossref_primary_10_1063_5_0200168 crossref_primary_10_1615_JMachLearnModelComput_2023050411 crossref_primary_10_3390_batteries9060301 crossref_primary_10_1016_j_cma_2021_114474 crossref_primary_10_1137_22M1522504 crossref_primary_10_1093_imanum_drab032 crossref_primary_10_1002_prep_202200265 crossref_primary_10_1007_s10915_023_02412_1 crossref_primary_10_1016_j_jocs_2024_102261 crossref_primary_10_1007_s10444_022_09985_9 crossref_primary_10_1016_j_ast_2024_109637 crossref_primary_10_1016_j_cnsns_2024_108129 crossref_primary_10_3390_math11194147 crossref_primary_10_1007_s10915_022_02082_5 crossref_primary_10_1016_j_cmpb_2023_107421 crossref_primary_10_1186_s40323_022_00226_8 crossref_primary_10_1007_s11831_023_09954_5 crossref_primary_10_1093_jge_gxae062 crossref_primary_10_1016_j_xcrp_2024_102282 crossref_primary_10_1088_1402_4896_ace290 crossref_primary_10_1016_j_apm_2023_04_020 crossref_primary_10_1016_j_cpc_2024_109422 crossref_primary_10_1016_j_jprocont_2023_103003 crossref_primary_10_1016_j_probengmech_2023_103534 crossref_primary_10_1016_j_ymssp_2024_112189 crossref_primary_10_1109_TAI_2022_3200028 crossref_primary_10_1360_TB_2024_0683 crossref_primary_10_1016_j_cma_2022_114740 crossref_primary_10_1016_j_engappai_2023_106894 crossref_primary_10_1061_JHEND8_HYENG_13572 crossref_primary_10_1016_j_compfluid_2023_106114 crossref_primary_10_1007_s40430_023_04418_0 crossref_primary_10_3390_app14167002 crossref_primary_10_1063_5_0244094 crossref_primary_10_1063_5_0226562 crossref_primary_10_1109_TGRS_2024_3371528 crossref_primary_10_3390_computation12040069 crossref_primary_10_1016_j_jqsrt_2021_107705 crossref_primary_10_1016_j_compfluid_2024_106421 crossref_primary_10_1098_rsif_2021_0670 crossref_primary_10_1016_j_jfluidstructs_2021_103367 crossref_primary_10_1016_j_engappai_2023_106660 crossref_primary_10_1007_s11071_022_08161_4 crossref_primary_10_1016_j_cma_2021_114117 crossref_primary_10_1142_S0218348X21500717 crossref_primary_10_1016_j_cma_2022_115826 crossref_primary_10_1007_s00466_023_02334_7 crossref_primary_10_1080_10618562_2022_2154758 crossref_primary_10_1017_dap_2024_86 crossref_primary_10_1016_j_compfluid_2024_106302 crossref_primary_10_1016_j_oceaneng_2024_120239 crossref_primary_10_1109_TCPMT_2024_3416523 crossref_primary_10_1063_5_0091063 crossref_primary_10_1016_j_cnsns_2024_108229 crossref_primary_10_3390_aerospace9120750 crossref_primary_10_1016_j_jobe_2024_111726 crossref_primary_10_1016_j_taml_2024_100496 crossref_primary_10_1016_j_neucom_2021_10_036 crossref_primary_10_1016_j_scitotenv_2023_168814 crossref_primary_10_1016_j_cnsns_2024_108103 crossref_primary_10_1016_j_jcp_2022_111769 crossref_primary_10_1063_5_0216609 crossref_primary_10_1016_j_jcp_2022_111768 crossref_primary_10_1016_j_cma_2024_116907 crossref_primary_10_1016_j_buildenv_2023_111063 crossref_primary_10_1016_j_cma_2024_116904 crossref_primary_10_1016_j_cma_2024_116906 crossref_primary_10_1007_s00521_022_07294_2 crossref_primary_10_1016_j_jcp_2020_110079 crossref_primary_10_1122_8_0000831 crossref_primary_10_1016_j_jcp_2022_111402 crossref_primary_10_1063_5_0160035 crossref_primary_10_1016_j_mfglet_2023_08_074 crossref_primary_10_1007_s00466_020_01859_5 crossref_primary_10_1142_S0218348X23401035 crossref_primary_10_1016_j_euromechsol_2021_104225 crossref_primary_10_1063_5_0199322 crossref_primary_10_1007_s00466_022_02257_9 crossref_primary_10_1016_j_jcp_2024_112804 crossref_primary_10_1063_5_0213233 crossref_primary_10_1016_j_compfluid_2023_106025 crossref_primary_10_1016_j_enganabound_2025_106207 crossref_primary_10_1016_j_geoen_2024_212711 crossref_primary_10_1016_j_jcp_2022_111510 crossref_primary_10_1109_ACCESS_2022_3208103 crossref_primary_10_1002_hyp_15143 crossref_primary_10_1137_23M1626414 crossref_primary_10_1109_ACCESS_2024_3481671 crossref_primary_10_1016_j_cageo_2023_105494 crossref_primary_10_1016_j_ast_2022_107931 crossref_primary_10_1016_j_neucom_2020_09_006 crossref_primary_10_3390_app14020859 crossref_primary_10_1016_j_ast_2020_106318 crossref_primary_10_1186_s40323_022_00228_6 crossref_primary_10_1017_jfm_2024_270 crossref_primary_10_1109_ACCESS_2024_3422224 crossref_primary_10_1016_j_jmsy_2022_04_004 crossref_primary_10_3934_mbe_2021002 crossref_primary_10_26599_BDMA_2022_9020006 crossref_primary_10_1002_cjce_24506 crossref_primary_10_1063_5_0238865 crossref_primary_10_3390_fluids7060197 crossref_primary_10_1016_j_knosys_2024_111831 crossref_primary_10_1088_2631_7990_ada099 crossref_primary_10_1016_j_jcp_2022_111541 crossref_primary_10_1016_j_cma_2022_115757 crossref_primary_10_1016_j_eswa_2022_116609 crossref_primary_10_1121_10_0034458 crossref_primary_10_1063_5_0188665 crossref_primary_10_1063_5_0226649 crossref_primary_10_1016_j_istruc_2025_108540 crossref_primary_10_25046_aj060427 crossref_primary_10_1016_j_jhydrol_2024_131345 crossref_primary_10_3390_math12213315 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_1063_5_0138287 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_1103_PhysRevE_104_045303 crossref_primary_10_1063_5_0211398 crossref_primary_10_1016_j_jcp_2024_112904 crossref_primary_10_1016_j_cma_2021_114399 crossref_primary_10_12677_AAM_2022_1112921 crossref_primary_10_1016_j_anucene_2023_110181 crossref_primary_10_1016_j_compfluid_2023_106164 crossref_primary_10_1061__ASCE_EM_1943_7889_0002121 crossref_primary_10_1016_j_camwa_2025_01_025 crossref_primary_10_1016_j_ijthermalsci_2024_109393 crossref_primary_10_3390_s21051654 crossref_primary_10_1063_5_0200384 crossref_primary_10_1093_imanum_drab093 crossref_primary_10_1115_1_4063326 crossref_primary_10_2118_203997_PA crossref_primary_10_1515_nanoph_2021_0713 crossref_primary_10_1007_s00158_022_03348_0 crossref_primary_10_1016_j_flowmeasinst_2023_102363 crossref_primary_10_1016_j_ijheatfluidflow_2022_109073 crossref_primary_10_1063_5_0256470 crossref_primary_10_1016_j_ijheatfluidflow_2023_109232 crossref_primary_10_1115_1_4053671 crossref_primary_10_1109_MCI_2021_3061854 crossref_primary_10_1007_s00170_021_08542_w crossref_primary_10_3390_jmse11112045 crossref_primary_10_3934_nhm_2023080 crossref_primary_10_1016_j_oceaneng_2023_114684 crossref_primary_10_2514_1_T6675 crossref_primary_10_1016_j_cma_2024_117075 crossref_primary_10_1016_j_fluid_2023_113984 crossref_primary_10_1016_j_jocs_2025_102577 crossref_primary_10_3390_app15020941 crossref_primary_10_1016_j_advwatres_2023_104523 crossref_primary_10_1061_JENMDT_EMENG_6643 crossref_primary_10_1016_j_apenergy_2024_124577 crossref_primary_10_1007_s00366_024_01981_5 crossref_primary_10_1007_s00366_024_02010_1 crossref_primary_10_1016_j_cma_2023_115944 crossref_primary_10_1016_j_cma_2021_114258 crossref_primary_10_1038_s41598_022_10737_4 crossref_primary_10_1109_TPAMI_2023_3307688 crossref_primary_10_1016_j_cma_2023_116012 crossref_primary_10_1016_j_csite_2024_104277 crossref_primary_10_1007_s11071_025_11067_6 crossref_primary_10_1063_5_0227921 crossref_primary_10_1142_S1758825122500272 crossref_primary_10_3390_math10162861 crossref_primary_10_1007_s10409_024_24140_x crossref_primary_10_1016_j_jcp_2023_112041 crossref_primary_10_1093_imanum_drac085 crossref_primary_10_1063_5_0220173 crossref_primary_10_1016_j_anucene_2023_109840 crossref_primary_10_1016_j_ymssp_2020_107552 crossref_primary_10_1016_j_camwa_2024_08_035 crossref_primary_10_3390_en16124558 crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1038_s41598_022_16463_1 crossref_primary_10_1007_s10915_022_01980_y crossref_primary_10_1190_geo2023_0622_1 crossref_primary_10_1142_S0129183123500821 crossref_primary_10_1016_j_cma_2022_114909 crossref_primary_10_1016_j_ijfatigue_2022_107270 crossref_primary_10_1002_aisy_202300385 crossref_primary_10_1016_j_cma_2021_114502 crossref_primary_10_1016_j_jcp_2023_112278 crossref_primary_10_1061_JHEND8_HYENG_13190 crossref_primary_10_1615_JMachLearnModelComput_2023048866 crossref_primary_10_1007_s10915_022_01939_z crossref_primary_10_1016_j_neunet_2023_08_014 crossref_primary_10_3390_app11209411 crossref_primary_10_1016_j_ces_2024_120385 crossref_primary_10_1016_j_tust_2024_105981 crossref_primary_10_1109_ACCESS_2024_3402240 crossref_primary_10_1063_5_0193952 crossref_primary_10_1029_2023WR036589 crossref_primary_10_1088_1402_4896_ad5592 crossref_primary_10_1063_5_0156404 crossref_primary_10_1016_j_jhydrol_2024_131263 crossref_primary_10_1016_j_cma_2023_116019 crossref_primary_10_1016_j_ijnonlinmec_2024_104988 crossref_primary_10_1016_j_physd_2023_133851 crossref_primary_10_1063_5_0235781 crossref_primary_10_1016_j_cma_2023_116139 crossref_primary_10_1016_j_knosys_2024_111641 crossref_primary_10_1016_j_jcp_2021_110666 crossref_primary_10_2118_217441_PA crossref_primary_10_1007_s00158_023_03488_x crossref_primary_10_1016_j_cma_2024_116996 crossref_primary_10_1016_j_camwa_2024_01_021 crossref_primary_10_1007_s10013_023_00674_8 crossref_primary_10_1016_j_mlwa_2023_100464 crossref_primary_10_2140_camcos_2024_19_1 crossref_primary_10_1016_j_cma_2023_116278 crossref_primary_10_1016_j_engappai_2023_106908 crossref_primary_10_1016_j_eswa_2024_123758 crossref_primary_10_1016_j_eswa_2021_115006 crossref_primary_10_1063_5_0062377 crossref_primary_10_1109_JRFID_2022_3213882 crossref_primary_10_1016_j_buildenv_2025_112634 crossref_primary_10_1016_j_gsd_2024_101172 crossref_primary_10_1016_j_eng_2023_11_024 crossref_primary_10_1109_TGRS_2023_3295414 crossref_primary_10_1029_2021JB023120 crossref_primary_10_1016_j_engappai_2024_109262 crossref_primary_10_1088_2632_2153_ad450f crossref_primary_10_1016_j_isatra_2024_11_049 crossref_primary_10_1016_j_knosys_2024_111853 crossref_primary_10_1063_5_0211680 crossref_primary_10_1016_j_tsep_2023_101937 crossref_primary_10_1115_1_4055256 crossref_primary_10_1016_j_cma_2022_114800 crossref_primary_10_1016_j_cma_2024_116746 crossref_primary_10_1016_j_addma_2024_104574 crossref_primary_10_1016_j_compfluid_2024_106270 crossref_primary_10_1016_j_jcp_2021_110754 crossref_primary_10_1115_1_4062966 crossref_primary_10_1016_j_tws_2022_110309 crossref_primary_10_1063_5_0041203 crossref_primary_10_1134_S1995080223010213 crossref_primary_10_1016_j_anucene_2022_109234 crossref_primary_10_1007_s10409_021_01148_1 crossref_primary_10_1016_j_camwa_2022_12_008 crossref_primary_10_1016_j_cma_2023_116160 crossref_primary_10_1063_5_0208040 crossref_primary_10_1063_5_0180834 crossref_primary_10_1080_10407790_2024_2392001 crossref_primary_10_1002_nme_7377 crossref_primary_10_1016_j_physd_2021_133037 crossref_primary_10_1016_j_sandf_2024_101533 crossref_primary_10_1016_j_jcp_2021_110521 crossref_primary_10_1016_j_jcp_2023_112084 crossref_primary_10_1016_j_mlwa_2024_100600 crossref_primary_10_1016_j_cam_2024_116223 crossref_primary_10_1061_JENMDT_EMENG_7463 crossref_primary_10_3390_bdcc6040140 crossref_primary_10_1016_j_compositesa_2024_108465 crossref_primary_10_1063_5_0250509 crossref_primary_10_1007_s10483_023_2995_8 crossref_primary_10_1016_j_engappai_2022_105516 crossref_primary_10_1007_s13226_024_00541_3 crossref_primary_10_1016_j_aei_2023_102035 crossref_primary_10_1063_5_0235756 crossref_primary_10_1038_s41598_023_29186_8 crossref_primary_10_1002_nme_7323 crossref_primary_10_1137_19M1274067 crossref_primary_10_1016_j_jcp_2021_110698 crossref_primary_10_1029_2024WR037490 crossref_primary_10_1137_24M1646455 crossref_primary_10_56532_mjsat_v4i3_265 crossref_primary_10_2208_jscejj_22_15011 crossref_primary_10_3389_fcvm_2024_1398290 crossref_primary_10_1063_5_0245547 crossref_primary_10_1016_j_cma_2021_114562 crossref_primary_10_1007_s11814_021_0979_x crossref_primary_10_1007_s11431_022_2118_9 crossref_primary_10_1142_S0219876222500499 crossref_primary_10_1016_j_optlaseng_2025_108913 crossref_primary_10_1109_TIA_2023_3280896 crossref_primary_10_7498_aps_73_20231453 crossref_primary_10_1016_j_apenergy_2023_120855 crossref_primary_10_1016_j_camwa_2024_07_024 crossref_primary_10_1063_5_0165035 crossref_primary_10_1016_j_jcp_2024_113710 crossref_primary_10_1063_5_0157753 crossref_primary_10_1190_geo2022_0479_1 crossref_primary_10_1007_s11071_025_11046_x crossref_primary_10_1007_s10483_023_2994_7 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392 crossref_primary_10_1038_s41598_023_41039_y crossref_primary_10_1016_j_compstruc_2023_107189 crossref_primary_10_1016_j_jcp_2024_113709 crossref_primary_10_1007_s10483_023_3050_9 crossref_primary_10_1088_2632_2153_ac3712 crossref_primary_10_1016_j_cma_2022_115810 crossref_primary_10_1016_j_petrol_2021_109694 crossref_primary_10_1016_j_cma_2021_114524 crossref_primary_10_1063_5_0259583 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024048538 crossref_primary_10_1016_j_jcp_2021_110676 crossref_primary_10_1016_j_jcp_2022_111841 crossref_primary_10_1016_j_camwa_2024_06_012 crossref_primary_10_1016_j_strusafe_2022_102256 crossref_primary_10_1002_msd2_12127 crossref_primary_10_1063_5_0223510 crossref_primary_10_1021_acs_iecr_3c02383 crossref_primary_10_1115_1_4063977 crossref_primary_10_3390_s23146649 crossref_primary_10_1016_j_engappai_2022_105724 crossref_primary_10_1007_s13160_023_00577_8 crossref_primary_10_1615_HeatTransRes_2022042173 crossref_primary_10_1088_2632_2153_acd0a1 crossref_primary_10_1016_j_cma_2020_113028 crossref_primary_10_1016_j_cma_2024_116819 crossref_primary_10_1016_j_physd_2023_133952 crossref_primary_10_1016_j_apenergy_2023_121602 crossref_primary_10_1016_j_cma_2022_114710 crossref_primary_10_1016_j_jcp_2021_110683 crossref_primary_10_1016_j_jcp_2022_111832 crossref_primary_10_1063_5_0200406 crossref_primary_10_1016_j_cma_2022_115284 crossref_primary_10_1016_j_jhydrol_2022_128003 crossref_primary_10_1016_j_rineng_2024_101931 crossref_primary_10_1016_j_jcp_2024_113494 crossref_primary_10_1016_j_nbt_2023_01_002 crossref_primary_10_7498_aps_72_20230031 crossref_primary_10_1016_j_engstruct_2024_118900 crossref_primary_10_3103_S0027134924702114 crossref_primary_10_1186_s40323_024_00273_3 crossref_primary_10_1016_j_ultras_2023_107026 crossref_primary_10_1016_j_physd_2024_134399 crossref_primary_10_1142_S0129183122501662 crossref_primary_10_1016_j_renene_2021_12_058 crossref_primary_10_1016_j_trc_2024_104500 crossref_primary_10_1029_2022WR033168 crossref_primary_10_1063_5_0078418 crossref_primary_10_1016_j_cma_2023_116647 crossref_primary_10_1093_mnras_stad1516 crossref_primary_10_1016_j_cma_2021_113816 crossref_primary_10_1115_1_4050542 crossref_primary_10_1016_j_cma_2021_113814 crossref_primary_10_1007_s00211_022_01294_z crossref_primary_10_1016_j_compositesa_2024_108019 crossref_primary_10_1155_2021_8548482 crossref_primary_10_1016_j_physd_2022_133629 crossref_primary_10_1109_TVT_2024_3399918 crossref_primary_10_1140_epjs_s11734_024_01263_7 crossref_primary_10_1016_j_cma_2024_117211 crossref_primary_10_1108_HFF_09_2023_0568 crossref_primary_10_1007_s12206_022_0813_3 crossref_primary_10_1016_j_cma_2024_117691 crossref_primary_10_1016_j_coastaleng_2024_104686 crossref_primary_10_1109_TGRS_2023_3236973 crossref_primary_10_1016_j_compfluid_2023_105949 crossref_primary_10_1063_5_0194523 crossref_primary_10_1016_j_ijfatigue_2025_108933 crossref_primary_10_1016_j_compstruc_2023_107232 crossref_primary_10_1063_5_0232675 crossref_primary_10_1007_s11071_024_10655_2 crossref_primary_10_1016_j_cma_2023_116536 crossref_primary_10_1016_j_jcp_2023_112323 crossref_primary_10_1038_s41524_023_01165_7 crossref_primary_10_1038_s41598_024_65664_3 crossref_primary_10_1016_j_array_2023_100287 crossref_primary_10_1016_j_chaos_2021_111530 crossref_primary_10_1007_s11440_023_01874_9 crossref_primary_10_1039_D1SM01298C crossref_primary_10_1088_1402_4896_ad55be crossref_primary_10_1109_TNNLS_2021_3070878 crossref_primary_10_1016_j_cma_2024_117681 crossref_primary_10_1186_s42774_021_00085_8 crossref_primary_10_1016_j_paerosci_2024_101046 crossref_primary_10_1088_2399_6528_ace416 crossref_primary_10_1016_j_cnsns_2022_107051 crossref_primary_10_1016_j_dt_2023_02_006 crossref_primary_10_1016_j_psep_2025_106845 crossref_primary_10_1088_2632_2153_ad652d crossref_primary_10_3390_app132011481 crossref_primary_10_1016_j_jer_2024_02_011 crossref_primary_10_1016_j_engappai_2023_106073 crossref_primary_10_1016_j_cma_2020_113636 crossref_primary_10_1007_s42493_024_00106_w crossref_primary_10_1016_j_ijmecsci_2024_109783 crossref_primary_10_1007_s00348_022_03554_y crossref_primary_10_1016_j_cma_2023_116561 crossref_primary_10_1016_j_jcp_2024_113341 crossref_primary_10_1088_2632_2153_ad3a32 crossref_primary_10_1002_nme_7406 crossref_primary_10_1016_j_energy_2024_134344 crossref_primary_10_1063_5_0138946 crossref_primary_10_1016_j_engappai_2024_108313 crossref_primary_10_1063_5_0136886 crossref_primary_10_1080_10618562_2023_2295286 crossref_primary_10_1111_mice_13312 crossref_primary_10_1016_j_tws_2023_111423 crossref_primary_10_5194_hess_26_4345_2022 crossref_primary_10_1016_j_neucom_2024_127240 crossref_primary_10_1016_j_oceaneng_2022_110775 crossref_primary_10_1007_s11071_025_10916_8 crossref_primary_10_1016_j_cma_2024_117428 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124336 crossref_primary_10_1063_5_0251799 crossref_primary_10_1063_5_0253732 crossref_primary_10_1017_dce_2024_4 crossref_primary_10_1360_SSI_2023_0195 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104476 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104877 crossref_primary_10_1016_j_jrmge_2020_09_005 crossref_primary_10_3390_e24081106 crossref_primary_10_1063_5_0186809 crossref_primary_10_1016_j_ast_2024_108908 crossref_primary_10_1038_s41598_024_53680_2 crossref_primary_10_1007_s00466_024_02554_5 crossref_primary_10_1016_j_mechmat_2022_104498 crossref_primary_10_1016_j_ijleo_2022_170009 crossref_primary_10_1016_j_chaos_2024_115438 crossref_primary_10_1088_1361_6501_ad3307 crossref_primary_10_3390_fluids7020056 crossref_primary_10_1016_j_neunet_2024_106732 crossref_primary_10_1016_j_apenergy_2024_123719 crossref_primary_10_1016_j_eng_2024_01_007 crossref_primary_10_1016_j_cep_2023_109540 crossref_primary_10_1007_s13272_024_00774_2 crossref_primary_10_1063_5_0099450 crossref_primary_10_1088_2632_2153_acf116 crossref_primary_10_1061_JHEND8_HYENG_14064 crossref_primary_10_1007_s13160_023_00617_3 crossref_primary_10_1016_j_rinam_2022_100347 crossref_primary_10_3788_CJL230827 crossref_primary_10_1109_ACCESS_2023_3302892 crossref_primary_10_1615_HeatTransRes_2024055270 crossref_primary_10_3390_s23146346 crossref_primary_10_1016_j_camwa_2024_10_036 crossref_primary_10_1063_5_0155087 crossref_primary_10_1115_1_4067355 crossref_primary_10_3389_fmech_2024_1410190 crossref_primary_10_1007_s40815_024_01936_4 crossref_primary_10_1016_j_mlwa_2021_100029 crossref_primary_10_1016_j_cscm_2024_e03769 crossref_primary_10_1080_01495739_2024_2321205 crossref_primary_10_1016_j_chaos_2024_115669 crossref_primary_10_1038_s42003_023_04914_y crossref_primary_10_1093_imamat_hxae011 crossref_primary_10_1007_s40314_023_02323_9 crossref_primary_10_1016_j_jcp_2023_112369 crossref_primary_10_1016_j_future_2024_07_009 crossref_primary_10_1016_j_jcp_2023_112263 crossref_primary_10_1016_j_neucom_2021_06_015 crossref_primary_10_3390_e24091254 crossref_primary_10_1016_j_engappai_2024_108764 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124671 crossref_primary_10_1061__ASCE_EM_1943_7889_0001947 crossref_primary_10_1002_fld_5217 crossref_primary_10_1063_5_0195824 crossref_primary_10_1115_1_4067125 crossref_primary_10_1016_j_est_2024_113103 crossref_primary_10_1007_s11831_021_09539_0 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_3390_sym16101376 crossref_primary_10_1016_j_jcp_2024_113669 crossref_primary_10_1103_PhysRevResearch_6_L012031 crossref_primary_10_1109_ACCESS_2024_3399094 crossref_primary_10_1038_s41524_023_01173_7 crossref_primary_10_1063_5_0079602 crossref_primary_10_1016_j_physleta_2022_128373 crossref_primary_10_1016_j_watres_2022_118828 crossref_primary_10_1016_j_ymssp_2024_111111 crossref_primary_10_1016_j_eswa_2024_123387 crossref_primary_10_1016_j_cma_2023_116120 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124546 crossref_primary_10_1039_D3SM01221B crossref_primary_10_3389_fmats_2023_1128954 crossref_primary_10_1038_s41598_022_11058_2 crossref_primary_10_1038_s41524_022_00872_x crossref_primary_10_1017_dce_2022_24 crossref_primary_10_1016_j_actaastro_2023_07_039 crossref_primary_10_1088_1402_4896_ad5053 crossref_primary_10_1016_j_cma_2020_113547 crossref_primary_10_1016_j_cma_2021_113722 crossref_primary_10_1007_s11071_023_08354_5 crossref_primary_10_1063_5_0232852 crossref_primary_10_1190_geo2023_0323_1 crossref_primary_10_1080_10618562_2023_2285330 crossref_primary_10_1093_imatrm_tnac001 crossref_primary_10_1063_5_0167155 crossref_primary_10_1016_j_enganabound_2023_10_027 crossref_primary_10_1063_5_0245918 crossref_primary_10_1016_j_heliyon_2024_e38799 |
Cites_doi | 10.1016/S0045-7825(99)00015-8 10.1016/S0045-7825(02)00334-1 10.1016/j.jcp.2019.01.045 10.1016/j.paerosci.2007.05.001 10.1016/S0045-7825(97)00320-4 10.1016/j.cma.2011.11.021 10.1016/j.cma.2018.09.043 10.1016/j.cma.2015.11.009 10.1137/18M1229845 10.1016/j.cma.2012.08.021 10.1016/0021-9991(82)90046-8 10.1016/j.jcp.2017.11.039 10.1016/j.cma.2013.12.015 10.1016/j.cma.2016.12.010 10.1002/(SICI)1097-0363(19990315)29:5<587::AID-FLD805>3.0.CO;2-K 10.1016/0045-7825(89)90017-0 10.1016/j.cma.2016.06.032 10.1006/jcph.1996.0130 10.1016/j.jcp.2019.109020 10.1016/S0045-7825(01)00193-1 10.1016/j.jcp.2018.10.045 10.1016/j.jcp.2009.10.028 10.1016/0021-9991(78)90023-2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2019.112789 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
ExternalDocumentID | 10_1016_j_cma_2019_112789 S0045782519306814 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-850f7f0db00f0037522cf48c0c1c4d4090a4d5efed1e399494a338c7e93a9f623 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri Jul 25 08:02:44 EDT 2025 Thu Apr 24 23:08:12 EDT 2025 Tue Jul 01 04:06:09 EDT 2025 Sun Apr 06 06:54:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conservation laws Riemann problem 65M70 Neural networks 74S25 Machine learning Hidden fluid mechanics Euler equations 35L65 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-850f7f0db00f0037522cf48c0c1c4d4090a4d5efed1e399494a338c7e93a9f623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2353611193 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2353611193 crossref_primary_10_1016_j_cma_2019_112789 crossref_citationtrail_10_1016_j_cma_2019_112789 elsevier_sciencedirect_doi_10_1016_j_cma_2019_112789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liepmann, Roshko (b2) 2001 Shu (b10) 2013; 43 Hesthaven, Warburton (b8) 2007 Gryngarten, Menon (b37) 2013; 253 Banks, Hittinger, Connors, Woodward (b36) 2012; 213/216 Tang, Lee, Yang (b34) 1998; 161 Harten, Engquist, Osher, Chakravarthy (b11) 2004; 193 Alves, Cruz, Mendes, Magalhaes, Pinho, Oliveira (b35) 2002; 191 Johnsen, Larsson, Bhagatwala, Cabot, Moin, Olson, Rawat, Shankar, Sjögreen, Yee, Zhong, Lele (b15) 2010; 229 Lomtev, Karniadakis (b6) 1998 Pirozzoli (b14) 2011; vol. 43 Ji, Fu, Hu, Adams (b40) 2019; 346 X. Chen, J. Duan, G.E. Karniadakis, Learning and meta-learning of stochastic advection-diffusion-reaction systems from sparse measurements, arXiv preprint Coclici, Wendland (b32) 1999 . Raissi, Perdikaris, Karniadakis (b17) 2019; 378 Baydin, Pearlmutter, Radul, Siskind (b41) 2018; 18 Bergstra, Bardenet, Bengio, Kégl (b42) 2011 Bayliss, Turkel (b31) 1982; 48 Snoek, Larochelle, Adams (b43) 2012 Jagtap, Kawaguchi, Karniadakis (b46) 2019; 109136 Lomtev, Karniadakis (b7) 1999; 29 Raissi, Karniadakis (b16) 2018; 357 Zucker, Biblarz (b3) 2002 Karniadakis, Sherwin (b50) 2013 J. Magiera, D. Ray, J.S. Hesthaven, C. Rohde, Constraint-aware neural networks for Riemann problems, arXiv preprint Monthe, Benkhaldoun, Elmahi (b26) 1999; 178 Anderson (b30) 1995 A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks, arXiv preprint Wong, Darmofal, Peraire (b24) 2001; 190 Sanders, Weiser (b33) 1989; 75 Courant, Friedrichs (b1) 1999 Pang, Lu, Karniadakis (b21) 2019; 41 Cockburn, Karniadakis, Shu (b9) 2012 Dafermos (b4) 2016; vol. 325 L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, arXiv preprint Sod (b48) 1978; 27 Toro (b49) 2013 K.O. Lye, S. Mishra, D. Ray, Deep learning observables in computational fluid dynamics, arXiv preprint M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: A Navier-Stokes informed deep learning framework for assimilating flow visualization data, arXiv preprint Pang, Yang, Karniadakis (b18) 2019; 384 Guermond, Popov, Tomov (b38) 2016; 300 C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch, Solving irregular and data-enriched differential equations using deep neural networks, arXiv preprint Nogueira, Ramírez, Clain, Loubère, Cueto-Felgueroso, Colominas (b39) 2016; 310 Snoek, Rippel, Swersky, Kiros, Satish, Sundaram, Patwary, Prabhat, Adams (b44) 2015 Meng, Karniadakis (b23) 2020; 401 Nazarov, Larcher (b25) 2017; 317 Wang (b13) 2007; 43 LeVeque (b5) 2002 Jiang, Shu (b12) 1996; 126 Guermond, Nazarov (b27) 2014; 272 Courant (10.1016/j.cma.2019.112789_b1) 1999 Alves (10.1016/j.cma.2019.112789_b35) 2002; 191 Wang (10.1016/j.cma.2019.112789_b13) 2007; 43 Raissi (10.1016/j.cma.2019.112789_b17) 2019; 378 10.1016/j.cma.2019.112789_b19 Banks (10.1016/j.cma.2019.112789_b36) 2012; 213/216 Snoek (10.1016/j.cma.2019.112789_b43) 2012 Toro (10.1016/j.cma.2019.112789_b49) 2013 Hesthaven (10.1016/j.cma.2019.112789_b8) 2007 Monthe (10.1016/j.cma.2019.112789_b26) 1999; 178 Pang (10.1016/j.cma.2019.112789_b18) 2019; 384 Sod (10.1016/j.cma.2019.112789_b48) 1978; 27 Meng (10.1016/j.cma.2019.112789_b23) 2020; 401 10.1016/j.cma.2019.112789_b22 Cockburn (10.1016/j.cma.2019.112789_b9) 2012 10.1016/j.cma.2019.112789_b20 Jiang (10.1016/j.cma.2019.112789_b12) 1996; 126 Pang (10.1016/j.cma.2019.112789_b21) 2019; 41 Zucker (10.1016/j.cma.2019.112789_b3) 2002 Harten (10.1016/j.cma.2019.112789_b11) 2004; 193 Coclici (10.1016/j.cma.2019.112789_b32) 1999 Guermond (10.1016/j.cma.2019.112789_b38) 2016; 300 Nogueira (10.1016/j.cma.2019.112789_b39) 2016; 310 Shu (10.1016/j.cma.2019.112789_b10) 2013; 43 Tang (10.1016/j.cma.2019.112789_b34) 1998; 161 Lomtev (10.1016/j.cma.2019.112789_b7) 1999; 29 Ji (10.1016/j.cma.2019.112789_b40) 2019; 346 Baydin (10.1016/j.cma.2019.112789_b41) 2018; 18 Pirozzoli (10.1016/j.cma.2019.112789_b14) 2011; vol. 43 Karniadakis (10.1016/j.cma.2019.112789_b50) 2013 Gryngarten (10.1016/j.cma.2019.112789_b37) 2013; 253 Johnsen (10.1016/j.cma.2019.112789_b15) 2010; 229 Bayliss (10.1016/j.cma.2019.112789_b31) 1982; 48 10.1016/j.cma.2019.112789_b47 Liepmann (10.1016/j.cma.2019.112789_b2) 2001 Nazarov (10.1016/j.cma.2019.112789_b25) 2017; 317 10.1016/j.cma.2019.112789_b45 Anderson (10.1016/j.cma.2019.112789_b30) 1995 Dafermos (10.1016/j.cma.2019.112789_b4) 2016; vol. 325 Wong (10.1016/j.cma.2019.112789_b24) 2001; 190 10.1016/j.cma.2019.112789_b28 10.1016/j.cma.2019.112789_b29 Raissi (10.1016/j.cma.2019.112789_b16) 2018; 357 Jagtap (10.1016/j.cma.2019.112789_b46) 2019; 109136 LeVeque (10.1016/j.cma.2019.112789_b5) 2002 Bergstra (10.1016/j.cma.2019.112789_b42) 2011 Lomtev (10.1016/j.cma.2019.112789_b6) 1998 Sanders (10.1016/j.cma.2019.112789_b33) 1989; 75 Guermond (10.1016/j.cma.2019.112789_b27) 2014; 272 Snoek (10.1016/j.cma.2019.112789_b44) 2015 |
References_xml | – volume: 384 start-page: 270 year: 2019 end-page: 288 ident: b18 article-title: Neural-net-induced Gaussian process regression for function approximation and PDE solution publication-title: J. Comput. Phys. – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b41 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – start-page: 2951 year: 2012 end-page: 2959 ident: b43 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Advances in Neural Information Processing Systems – volume: 109136 year: 2019 ident: b46 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. – volume: 253 start-page: 169 year: 2013 end-page: 185 ident: b37 article-title: A generalized approach for sub-and super-critical flows using the Local Discontinuous Galerkin method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 300 start-page: 402 year: 2016 end-page: 426 ident: b38 article-title: Entropy-viscosity method for the single material Euler equations in Lagrangian frame publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 178 start-page: 215 year: 1999 end-page: 232 ident: b26 article-title: Positivity preserving finite volume Roe schemes for transport-diffusion equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 229 start-page: 1213 year: 2010 end-page: 1237 ident: b15 article-title: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves publication-title: J. Comput. Phys. – volume: 193 start-page: 563 year: 2004 end-page: 594 ident: b11 article-title: Uniformaly high order essentially non-oscillatory schemes III publication-title: Math. Comput. – volume: 357 start-page: 125 year: 2018 end-page: 141 ident: b16 article-title: Hidden physics models: machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. – year: 1995 ident: b30 article-title: Computational Fluid Dynamics: The Basics with Applications – reference: C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch, Solving irregular and data-enriched differential equations using deep neural networks, arXiv preprint – start-page: 429 year: 1999 end-page: 437 ident: b32 article-title: Domain decomposition methods and far-field boundary conditions for 2D compressible viscous flows publication-title: Recent Advances in Numerical Methods and Applications, II (Sofia, 1998) – year: 2013 ident: b50 article-title: Spectral/hp Element Methods for Computational Fluid Dynamics – volume: 43 start-page: 541 year: 2013 end-page: 553 ident: b10 article-title: A brief survey on discontinuous Galerkin methods in computational fluid dynamics publication-title: Adv. Mech. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b17 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 48 start-page: 182 year: 1982 end-page: 199 ident: b31 article-title: Far field boundary conditions for compressible flows publication-title: J. Comput. Phys. – year: 2002 ident: b5 publication-title: Finite Volume Methods for Hyperbolic Problems – volume: 190 start-page: 5719 year: 2001 end-page: 5737 ident: b24 article-title: The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – reference: K.O. Lye, S. Mishra, D. Ray, Deep learning observables in computational fluid dynamics, arXiv preprint – reference: X. Chen, J. Duan, G.E. Karniadakis, Learning and meta-learning of stochastic advection-diffusion-reaction systems from sparse measurements, arXiv preprint – volume: 191 start-page: 3909 year: 2002 end-page: 3928 ident: b35 article-title: Adaptive multiresolution approach for solution of hyperbolic PDEs publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2007 ident: b8 article-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications – volume: 27 start-page: 1 year: 1978 end-page: 31 ident: b48 article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws publication-title: J. Comput. Phys. – volume: 346 start-page: 1156 year: 2019 end-page: 1178 ident: b40 article-title: A new multi-resolution parallel framework for SPH publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1999 ident: b1 article-title: Supersonic Flow and Shock Waves, Vol. 21 – volume: vol. 43 start-page: 163 year: 2011 end-page: 194 ident: b14 article-title: Numerical methods for high-speed flows publication-title: Annual Review of Fluid Mechanics, Volume 43 – volume: 126 start-page: 202 year: 1996 end-page: 228 ident: b12 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. – year: 1998 ident: b6 article-title: Discontinuous Galerkin methods in CFD publication-title: APS Division of Fluid Dynamics Meeting Abstracts – volume: 161 start-page: 257 year: 1998 end-page: 288 ident: b34 article-title: A high-order pathline Godunov scheme for unsteady one-dimensional equilibrium flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 start-page: 1 year: 2007 end-page: 41 ident: b13 article-title: High-order methods for the Euler and Navier–Stokes equations on unstructured grids publication-title: Prog. Aerosp. Sci. – volume: 272 start-page: 198 year: 2014 end-page: 213 ident: b27 article-title: A maximum-principle preserving publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 310 start-page: 134 year: 2016 end-page: 155 ident: b39 article-title: High-accurate SPH method with multidimensional optimal order detection limiting publication-title: Comput. Methods Appl. Mech. Engrg. – reference: J. Magiera, D. Ray, J.S. Hesthaven, C. Rohde, Constraint-aware neural networks for Riemann problems, arXiv preprint – volume: vol. 325 year: 2016 ident: b4 publication-title: Hyperbolic Conservation Laws in Continuum Physics – reference: L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, arXiv preprint – volume: 317 start-page: 128 year: 2017 end-page: 152 ident: b25 article-title: Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 213/216 start-page: 1 year: 2012 end-page: 15 ident: b36 article-title: Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport publication-title: Comput. Methods Appl. Mech. Eng. – year: 2001 ident: b2 article-title: Elements of Gasdynamics – year: 2013 ident: b49 article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction – reference: . – year: 2012 ident: b9 article-title: Discontinuous Galerkin Methods: Theory, Computation and Applications, Vol. 11 – reference: M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: A Navier-Stokes informed deep learning framework for assimilating flow visualization data, arXiv preprint – volume: 401 start-page: 109020 year: 2020 ident: b23 article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems publication-title: J. Comput. Phys. – volume: 29 start-page: 587 year: 1999 end-page: 603 ident: b7 article-title: A discontinuous Galerkin method for the Navier-Stokes equations publication-title: Int. J. Numer. Methods Fluids – volume: 75 start-page: 91 year: 1989 end-page: 107 ident: b33 article-title: A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 2546 year: 2011 end-page: 2554 ident: b42 article-title: Algorithms for hyper-parameter optimization publication-title: Advances in Neural Information Processing Systems – year: 2002 ident: b3 article-title: Fundamentals of Gas Dynamics – volume: 41 start-page: A2603 year: 2019 end-page: A2626 ident: b21 article-title: FPINNs: fractional physics-informed neural networks publication-title: SIAM J. Sci. Comput. – reference: A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks, arXiv preprint – start-page: 2171 year: 2015 end-page: 2180 ident: b44 article-title: Scalable bayesian optimization using deep neural networks publication-title: International Conference on Machine Learning – start-page: 429 year: 1999 ident: 10.1016/j.cma.2019.112789_b32 article-title: Domain decomposition methods and far-field boundary conditions for 2D compressible viscous flows – volume: 178 start-page: 215 issue: 3–4 year: 1999 ident: 10.1016/j.cma.2019.112789_b26 article-title: Positivity preserving finite volume Roe schemes for transport-diffusion equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00015-8 – volume: 191 start-page: 3909 issue: 36 year: 2002 ident: 10.1016/j.cma.2019.112789_b35 article-title: Adaptive multiresolution approach for solution of hyperbolic PDEs publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00334-1 – year: 2001 ident: 10.1016/j.cma.2019.112789_b2 – volume: 384 start-page: 270 year: 2019 ident: 10.1016/j.cma.2019.112789_b18 article-title: Neural-net-induced Gaussian process regression for function approximation and PDE solution publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.01.045 – ident: 10.1016/j.cma.2019.112789_b22 – ident: 10.1016/j.cma.2019.112789_b45 – volume: 43 start-page: 1 issue: 1–3 year: 2007 ident: 10.1016/j.cma.2019.112789_b13 article-title: High-order methods for the Euler and Navier–Stokes equations on unstructured grids publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2007.05.001 – start-page: 2546 year: 2011 ident: 10.1016/j.cma.2019.112789_b42 article-title: Algorithms for hyper-parameter optimization – volume: 161 start-page: 257 issue: 3–4 year: 1998 ident: 10.1016/j.cma.2019.112789_b34 article-title: A high-order pathline Godunov scheme for unsteady one-dimensional equilibrium flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(97)00320-4 – volume: 213/216 start-page: 1 year: 2012 ident: 10.1016/j.cma.2019.112789_b36 article-title: Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.11.021 – start-page: 2171 year: 2015 ident: 10.1016/j.cma.2019.112789_b44 article-title: Scalable bayesian optimization using deep neural networks – volume: 346 start-page: 1156 year: 2019 ident: 10.1016/j.cma.2019.112789_b40 article-title: A new multi-resolution parallel framework for SPH publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.09.043 – volume: 193 start-page: 563 year: 2004 ident: 10.1016/j.cma.2019.112789_b11 article-title: Uniformaly high order essentially non-oscillatory schemes III publication-title: Math. Comput. – year: 1998 ident: 10.1016/j.cma.2019.112789_b6 article-title: Discontinuous Galerkin methods in CFD – volume: 300 start-page: 402 year: 2016 ident: 10.1016/j.cma.2019.112789_b38 article-title: Entropy-viscosity method for the single material Euler equations in Lagrangian frame publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.11.009 – volume: 41 start-page: A2603 issue: 4 year: 2019 ident: 10.1016/j.cma.2019.112789_b21 article-title: FPINNs: fractional physics-informed neural networks publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1229845 – volume: 253 start-page: 169 year: 2013 ident: 10.1016/j.cma.2019.112789_b37 article-title: A generalized approach for sub-and super-critical flows using the Local Discontinuous Galerkin method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.08.021 – volume: 109136 year: 2019 ident: 10.1016/j.cma.2019.112789_b46 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. – volume: 48 start-page: 182 issue: 2 year: 1982 ident: 10.1016/j.cma.2019.112789_b31 article-title: Far field boundary conditions for compressible flows publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90046-8 – volume: 357 start-page: 125 year: 2018 ident: 10.1016/j.cma.2019.112789_b16 article-title: Hidden physics models: machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.039 – volume: 272 start-page: 198 year: 2014 ident: 10.1016/j.cma.2019.112789_b27 article-title: A maximum-principle preserving C0 finite element method for scalar conservation equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2013.12.015 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.cma.2019.112789_b41 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 317 start-page: 128 year: 2017 ident: 10.1016/j.cma.2019.112789_b25 article-title: Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.12.010 – year: 1999 ident: 10.1016/j.cma.2019.112789_b1 – ident: 10.1016/j.cma.2019.112789_b19 – year: 1995 ident: 10.1016/j.cma.2019.112789_b30 – ident: 10.1016/j.cma.2019.112789_b47 – year: 2012 ident: 10.1016/j.cma.2019.112789_b9 – ident: 10.1016/j.cma.2019.112789_b20 – year: 2013 ident: 10.1016/j.cma.2019.112789_b50 – ident: 10.1016/j.cma.2019.112789_b28 – year: 2007 ident: 10.1016/j.cma.2019.112789_b8 – volume: 29 start-page: 587 issue: 5 year: 1999 ident: 10.1016/j.cma.2019.112789_b7 article-title: A discontinuous Galerkin method for the Navier-Stokes equations publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/(SICI)1097-0363(19990315)29:5<587::AID-FLD805>3.0.CO;2-K – volume: 75 start-page: 91 issue: 1–3 year: 1989 ident: 10.1016/j.cma.2019.112789_b33 article-title: A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(89)90017-0 – year: 2013 ident: 10.1016/j.cma.2019.112789_b49 – volume: 310 start-page: 134 year: 2016 ident: 10.1016/j.cma.2019.112789_b39 article-title: High-accurate SPH method with multidimensional optimal order detection limiting publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.06.032 – start-page: 2951 year: 2012 ident: 10.1016/j.cma.2019.112789_b43 article-title: Practical bayesian optimization of machine learning algorithms – volume: 126 start-page: 202 issue: 1 year: 1996 ident: 10.1016/j.cma.2019.112789_b12 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – volume: 43 start-page: 541 issue: 6 year: 2013 ident: 10.1016/j.cma.2019.112789_b10 article-title: A brief survey on discontinuous Galerkin methods in computational fluid dynamics publication-title: Adv. Mech. – volume: vol. 43 start-page: 163 year: 2011 ident: 10.1016/j.cma.2019.112789_b14 article-title: Numerical methods for high-speed flows – volume: 401 start-page: 109020 year: 2020 ident: 10.1016/j.cma.2019.112789_b23 article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109020 – volume: vol. 325 year: 2016 ident: 10.1016/j.cma.2019.112789_b4 – year: 2002 ident: 10.1016/j.cma.2019.112789_b5 – volume: 190 start-page: 5719 issue: 43–44 year: 2001 ident: 10.1016/j.cma.2019.112789_b24 article-title: The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00193-1 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2019.112789_b17 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 229 start-page: 1213 issue: 4 year: 2010 ident: 10.1016/j.cma.2019.112789_b15 article-title: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.10.028 – volume: 27 start-page: 1 issue: 1 year: 1978 ident: 10.1016/j.cma.2019.112789_b48 article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(78)90023-2 – ident: 10.1016/j.cma.2019.112789_b29 – year: 2002 ident: 10.1016/j.cma.2019.112789_b3 |
SSID | ssj0000812 |
Score | 2.7226398 |
Snippet | In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112789 |
SubjectTerms | Boundary conditions Conservation laws Density Discontinuity Domains Equations of state Euler equations Euler-Lagrange equation Forward problem Hidden fluid mechanics High speed Inverse problems Machine learning Neural networks Numerical methods Oblique shock waves Parameter identification Riemann problem Schlieren photography Velocity |
Title | Physics-informed neural networks for high-speed flows |
URI | https://dx.doi.org/10.1016/j.cma.2019.112789 https://www.proquest.com/docview/2353611193 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvTgj6k4naMHT0Jc2iZNcxzDMRV3crBbaNMEJqMbduLNv92XNPUXsoPXkoTyNXnve_Tl-xC64jrRcVwwnBtrYZZxjUUBVas2ygDdMAl3_imP02Qyo_dzNm-hUXMXxrZV-thfx3QXrf2TgUdzsF4s7B1farXYLQUhSerMrCnldpffvH-1eUDKqxXDKcN2dPNn0_V4KSc9FAp7kYZbp_e_c9OvKO1Sz_gQ7XvOGAzr1zpCLV120IHnj4E_nVUH7X0TFzxGzDV3qgrX2qgw0mpXwjpl3fldBfA4sHLFuFpDDgvMcvVWnaDZ-PZpNMHeJAGrWIQbnDJiuCEFHB_jDG2jSBmaKqJCRQuo3khGC6aNLkINZIQKmkFVqrgWcSYMkJ9T1C5XpT5DAWNRTkxEeJQLmmSZSGPKAJc8FZppJrqINPBI5RXErZHFUjatYs8SEJUWUVkj2kXXn1PWtXzGtsG0wVz-2AMSwvu2ab3m-0h_ACsZxSxOII6L-Px_q16g3ciW1q7drIfam5dXfQn8Y5P33Qbro53h3cNk-gGMdtbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH4Z20E9-DEVp1N78CSUpW3SNscxHJ37OG2wW2jTBCajG3bi3zdJU7-QHbyGJISnyZP3pW-eB-AhEqEIgpy4mdQWZmkkXJqrrFVILlW4IcPI-KdMZ2GywM9LsmzAoH4Lo8sqLfdXnG7Y2rb0LJq97Wql3_hircWuQxAUxtrMuqXVqUgTWv3ROJl9EXLsVaLhmLh6QP1z05R5caM-5FH9libSZu9_X0-_iNrcPsNTOLZho9OvVnYGDVG04cSGkI49oGUbjr7pC54DMfWdvHQreVTVU8tXqnmKqvi7dFSzoxWL3XKrrjFHrjfv5QUshk_zQeJanwSXB9TbuTFBMpIoVydIGk9b3-cSxxxxj-NcJXAoxTkRUuSeUPEIpjhViSmPBA1SKlX8cwnNYlOIK3AI8TMkfRT5GcVhmtI4wEThksVUEEFoB1AND-NWRFx7WaxZXS32whSiTCPKKkQ78Pg5ZFspaOzrjGvM2Y9twBTD7xvWrb8Ps2ewZH5AglBROQ2u_zfrPRwk8-mETUaz8Q0c-jrTNtVnXWjuXt_ErQpHdtmd3W4fADDZkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+neural+networks+for+high-speed+flows&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Mao%2C+Zhiping&rft.au=Jagtap%2C+Ameya+D&rft.au=Em+Karniadakis%2C+George&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=360&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2019.112789&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |