Physics-informed neural networks for high-speed flows

In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward prob...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 360; p. 112789
Main Authors Mao, Zhiping, Jagtap, Ameya D., Karniadakis, George Em
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7825
DOI10.1016/j.cma.2019.112789

Cover

Loading…
Abstract In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x∗,t) at a specified point x=x∗ as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x∗ plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x∗ from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x∗ from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques.
AbstractList In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x∗,t) at a specified point x=x∗ as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x∗ plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x∗ from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x∗ from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques.
In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x*,t) at a specified point x = x* as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x* plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x* from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x* from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques.
ArticleNumber 112789
Author Mao, Zhiping
Jagtap, Ameya D.
Karniadakis, George Em
Author_xml – sequence: 1
  givenname: Zhiping
  surname: Mao
  fullname: Mao, Zhiping
  email: zhiping_mao@brown.edu
– sequence: 2
  givenname: Ameya D.
  surname: Jagtap
  fullname: Jagtap, Ameya D.
  email: ameya_jagtap@brown.edu
– sequence: 3
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
BookMark eNp9kE9PwzAMxXMYEtvgA3CbxLnFTtq1ESc08U-aBAc4RyF1WErXjKRj2rcn0zhxmC9Pst_Plt-EjXrfE2NXCDkCzm_a3Kx1zgFljsirWo7YGKAos6rm5TmbxNhCqhr5mJWvq310Jmautz6sqZn1tA26SzLsfPiKs9SerdznKosbSmPb-V28YGdWd5Eu_3TK3h_u3xZP2fLl8Xlxt8yMkDhkdQm2stB8AFgAUZWcG1vUBgyaoilAgi6akiw1SELKQhZaiNpUJIWWds7FlF0f926C_95SHFTrt6FPJxUXpZgjohTJhUeXCT7GQFZtglvrsFcI6pCIalVKRB0SUcdEElP9Y4wb9OB8PwTtupPk7ZGk9PiPo6CicdQbalwgM6jGuxP0L4rxfcg
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106127
crossref_primary_10_1063_5_0183463
crossref_primary_10_1117_1_AP_4_6_066001
crossref_primary_10_1016_j_cma_2024_117189
crossref_primary_10_1250_ast_e24_55
crossref_primary_10_1016_j_camwa_2024_04_017
crossref_primary_10_1007_s00366_024_01944_w
crossref_primary_10_1111_exsy_13654
crossref_primary_10_1016_j_cja_2025_103482
crossref_primary_10_1063_5_0066049
crossref_primary_10_3390_en15186823
crossref_primary_10_1088_1361_6501_ac5437
crossref_primary_10_5194_gmd_16_3479_2023
crossref_primary_10_1615_JMachLearnModelComput_2023050011
crossref_primary_10_1155_2024_6641674
crossref_primary_10_1007_s11424_024_3500_x
crossref_primary_10_1063_5_0060604
crossref_primary_10_1016_j_apenergy_2021_116641
crossref_primary_10_1016_j_cma_2022_115671
crossref_primary_10_1063_5_0058529
crossref_primary_10_1007_s00162_021_00593_9
crossref_primary_10_1016_j_addma_2023_103668
crossref_primary_10_1109_JLT_2022_3199782
crossref_primary_10_3390_fermentation9100922
crossref_primary_10_1115_1_4064449
crossref_primary_10_1016_j_cma_2024_117290
crossref_primary_10_1016_j_jweia_2023_105534
crossref_primary_10_1002_adem_202401299
crossref_primary_10_1109_ACCESS_2024_3504962
crossref_primary_10_31039_plic_2024_11_247
crossref_primary_10_1016_j_apenergy_2023_122439
crossref_primary_10_1016_j_paerosci_2022_100823
crossref_primary_10_1016_j_jhydrol_2021_126857
crossref_primary_10_1063_5_0033376
crossref_primary_10_1016_j_combustflame_2023_113094
crossref_primary_10_1063_5_0063904
crossref_primary_10_1089_3dp_2022_0363
crossref_primary_10_22201_iim_rma_2024_41_48
crossref_primary_10_1016_j_cma_2022_115100
crossref_primary_10_1016_j_molliq_2022_120504
crossref_primary_10_1007_s11440_024_02345_5
crossref_primary_10_1029_2020WR029479
crossref_primary_10_1016_j_biosystemseng_2025_01_017
crossref_primary_10_1063_5_0147472
crossref_primary_10_1063_5_0256953
crossref_primary_10_1080_00295639_2022_2123211
crossref_primary_10_1016_j_neucom_2024_129134
crossref_primary_10_1007_s42979_022_01413_5
crossref_primary_10_1061__ASCE_EM_1943_7889_0002156
crossref_primary_10_1016_j_jrmge_2024_10_025
crossref_primary_10_1016_j_jcp_2024_113188
crossref_primary_10_1098_rspa_2023_0058
crossref_primary_10_1016_j_advengsoft_2022_103390
crossref_primary_10_1016_j_petrol_2022_110360
crossref_primary_10_1016_j_engappai_2024_109804
crossref_primary_10_1016_j_jocs_2024_102514
crossref_primary_10_1016_j_engappai_2023_107453
crossref_primary_10_1063_5_0221924
crossref_primary_10_1088_2632_2153_ad45b2
crossref_primary_10_3390_app14135490
crossref_primary_10_1007_s40295_023_00392_w
crossref_primary_10_1016_j_paerosci_2022_100849
crossref_primary_10_1016_j_jcp_2022_111271
crossref_primary_10_3390_a15120447
crossref_primary_10_1016_j_engappai_2023_107773
crossref_primary_10_1016_j_cma_2025_117782
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_1017_dce_2024_15
crossref_primary_10_3389_frfst_2024_1491396
crossref_primary_10_1016_j_ijft_2023_100448
crossref_primary_10_1016_j_petsci_2023_08_032
crossref_primary_10_1063_5_0251167
crossref_primary_10_1063_5_0206515
crossref_primary_10_1177_09544070241244858
crossref_primary_10_3390_ai5040097
crossref_primary_10_1016_j_jcp_2022_111024
crossref_primary_10_1016_j_cpc_2024_109462
crossref_primary_10_2208_jscejam_77_2_I_35
crossref_primary_10_1016_j_jcp_2022_111260
crossref_primary_10_1016_j_cpc_2025_109572
crossref_primary_10_1016_j_physa_2025_130434
crossref_primary_10_1016_j_jcp_2022_111022
crossref_primary_10_1016_j_jcp_2024_113285
crossref_primary_10_1088_1402_4896_acd307
crossref_primary_10_1007_s10409_022_22302_x
crossref_primary_10_1016_j_cma_2024_117498
crossref_primary_10_5902_2179460X89888
crossref_primary_10_1007_s10409_021_01143_6
crossref_primary_10_1016_j_engappai_2023_107307
crossref_primary_10_1016_j_ifacol_2024_08_236
crossref_primary_10_1016_j_ces_2024_119752
crossref_primary_10_1016_j_asoc_2021_108050
crossref_primary_10_1016_j_asoc_2024_111437
crossref_primary_10_1016_j_camwa_2023_09_030
crossref_primary_10_3788_IRLA20230188
crossref_primary_10_1016_j_enganabound_2024_105919
crossref_primary_10_1088_1873_7005_adb32e
crossref_primary_10_1016_j_cma_2020_113603
crossref_primary_10_1371_journal_pone_0276074
crossref_primary_10_1016_j_cma_2022_115141
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_1016_j_engappai_2022_105176
crossref_primary_10_1016_j_jcp_2022_111053
crossref_primary_10_1016_j_jmapro_2025_02_052
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1016_j_cma_2024_117000
crossref_primary_10_1016_j_cpc_2025_109569
crossref_primary_10_1007_s11071_024_10612_z
crossref_primary_10_1016_j_advwatres_2024_104797
crossref_primary_10_3390_math12233873
crossref_primary_10_1016_j_asoc_2024_112632
crossref_primary_10_3390_lubricants12020062
crossref_primary_10_3390_min14101043
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1063_5_0153705
crossref_primary_10_1103_PhysRevFluids_9_034605
crossref_primary_10_1063_5_0238321
crossref_primary_10_1016_j_neunet_2025_107166
crossref_primary_10_1016_j_compgeo_2023_105433
crossref_primary_10_1016_j_compgeo_2025_107091
crossref_primary_10_1038_s43588_021_00158_0
crossref_primary_10_1109_ACCESS_2024_3452160
crossref_primary_10_1063_5_0217991
crossref_primary_10_1109_TPAMI_2022_3160100
crossref_primary_10_1016_j_jhydrol_2023_129465
crossref_primary_10_1016_j_jmsy_2023_09_013
crossref_primary_10_1088_1742_6596_2891_6_062023
crossref_primary_10_1016_j_ijsolstr_2023_112319
crossref_primary_10_1108_HFF_11_2024_0889
crossref_primary_10_1016_j_cma_2022_115491
crossref_primary_10_1121_10_0026459
crossref_primary_10_1007_s00466_024_02491_3
crossref_primary_10_1109_ACCESS_2022_3199652
crossref_primary_10_1155_2022_1781388
crossref_primary_10_1007_s11600_024_01507_z
crossref_primary_10_1007_s11242_023_01961_1
crossref_primary_10_1063_5_0239889
crossref_primary_10_1007_s10409_023_23319_x
crossref_primary_10_1016_j_physd_2024_134304
crossref_primary_10_1007_s11071_023_08654_w
crossref_primary_10_1016_j_camwa_2022_07_002
crossref_primary_10_3390_a16040194
crossref_primary_10_1061__ASCE_EM_1943_7889_0002062
crossref_primary_10_56946_jce_v3i1_345
crossref_primary_10_1063_5_0142516
crossref_primary_10_1016_j_jhydrol_2023_130048
crossref_primary_10_1063_5_0200168
crossref_primary_10_1615_JMachLearnModelComput_2023050411
crossref_primary_10_3390_batteries9060301
crossref_primary_10_1016_j_cma_2021_114474
crossref_primary_10_1137_22M1522504
crossref_primary_10_1093_imanum_drab032
crossref_primary_10_1002_prep_202200265
crossref_primary_10_1007_s10915_023_02412_1
crossref_primary_10_1016_j_jocs_2024_102261
crossref_primary_10_1007_s10444_022_09985_9
crossref_primary_10_1016_j_ast_2024_109637
crossref_primary_10_1016_j_cnsns_2024_108129
crossref_primary_10_3390_math11194147
crossref_primary_10_1007_s10915_022_02082_5
crossref_primary_10_1016_j_cmpb_2023_107421
crossref_primary_10_1186_s40323_022_00226_8
crossref_primary_10_1007_s11831_023_09954_5
crossref_primary_10_1093_jge_gxae062
crossref_primary_10_1016_j_xcrp_2024_102282
crossref_primary_10_1088_1402_4896_ace290
crossref_primary_10_1016_j_apm_2023_04_020
crossref_primary_10_1016_j_cpc_2024_109422
crossref_primary_10_1016_j_jprocont_2023_103003
crossref_primary_10_1016_j_probengmech_2023_103534
crossref_primary_10_1016_j_ymssp_2024_112189
crossref_primary_10_1109_TAI_2022_3200028
crossref_primary_10_1360_TB_2024_0683
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1016_j_engappai_2023_106894
crossref_primary_10_1061_JHEND8_HYENG_13572
crossref_primary_10_1016_j_compfluid_2023_106114
crossref_primary_10_1007_s40430_023_04418_0
crossref_primary_10_3390_app14167002
crossref_primary_10_1063_5_0244094
crossref_primary_10_1063_5_0226562
crossref_primary_10_1109_TGRS_2024_3371528
crossref_primary_10_3390_computation12040069
crossref_primary_10_1016_j_jqsrt_2021_107705
crossref_primary_10_1016_j_compfluid_2024_106421
crossref_primary_10_1098_rsif_2021_0670
crossref_primary_10_1016_j_jfluidstructs_2021_103367
crossref_primary_10_1016_j_engappai_2023_106660
crossref_primary_10_1007_s11071_022_08161_4
crossref_primary_10_1016_j_cma_2021_114117
crossref_primary_10_1142_S0218348X21500717
crossref_primary_10_1016_j_cma_2022_115826
crossref_primary_10_1007_s00466_023_02334_7
crossref_primary_10_1080_10618562_2022_2154758
crossref_primary_10_1017_dap_2024_86
crossref_primary_10_1016_j_compfluid_2024_106302
crossref_primary_10_1016_j_oceaneng_2024_120239
crossref_primary_10_1109_TCPMT_2024_3416523
crossref_primary_10_1063_5_0091063
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_3390_aerospace9120750
crossref_primary_10_1016_j_jobe_2024_111726
crossref_primary_10_1016_j_taml_2024_100496
crossref_primary_10_1016_j_neucom_2021_10_036
crossref_primary_10_1016_j_scitotenv_2023_168814
crossref_primary_10_1016_j_cnsns_2024_108103
crossref_primary_10_1016_j_jcp_2022_111769
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_jcp_2022_111768
crossref_primary_10_1016_j_cma_2024_116907
crossref_primary_10_1016_j_buildenv_2023_111063
crossref_primary_10_1016_j_cma_2024_116904
crossref_primary_10_1016_j_cma_2024_116906
crossref_primary_10_1007_s00521_022_07294_2
crossref_primary_10_1016_j_jcp_2020_110079
crossref_primary_10_1122_8_0000831
crossref_primary_10_1016_j_jcp_2022_111402
crossref_primary_10_1063_5_0160035
crossref_primary_10_1016_j_mfglet_2023_08_074
crossref_primary_10_1007_s00466_020_01859_5
crossref_primary_10_1142_S0218348X23401035
crossref_primary_10_1016_j_euromechsol_2021_104225
crossref_primary_10_1063_5_0199322
crossref_primary_10_1007_s00466_022_02257_9
crossref_primary_10_1016_j_jcp_2024_112804
crossref_primary_10_1063_5_0213233
crossref_primary_10_1016_j_compfluid_2023_106025
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_geoen_2024_212711
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1109_ACCESS_2022_3208103
crossref_primary_10_1002_hyp_15143
crossref_primary_10_1137_23M1626414
crossref_primary_10_1109_ACCESS_2024_3481671
crossref_primary_10_1016_j_cageo_2023_105494
crossref_primary_10_1016_j_ast_2022_107931
crossref_primary_10_1016_j_neucom_2020_09_006
crossref_primary_10_3390_app14020859
crossref_primary_10_1016_j_ast_2020_106318
crossref_primary_10_1186_s40323_022_00228_6
crossref_primary_10_1017_jfm_2024_270
crossref_primary_10_1109_ACCESS_2024_3422224
crossref_primary_10_1016_j_jmsy_2022_04_004
crossref_primary_10_3934_mbe_2021002
crossref_primary_10_26599_BDMA_2022_9020006
crossref_primary_10_1002_cjce_24506
crossref_primary_10_1063_5_0238865
crossref_primary_10_3390_fluids7060197
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1088_2631_7990_ada099
crossref_primary_10_1016_j_jcp_2022_111541
crossref_primary_10_1016_j_cma_2022_115757
crossref_primary_10_1016_j_eswa_2022_116609
crossref_primary_10_1121_10_0034458
crossref_primary_10_1063_5_0188665
crossref_primary_10_1063_5_0226649
crossref_primary_10_1016_j_istruc_2025_108540
crossref_primary_10_25046_aj060427
crossref_primary_10_1016_j_jhydrol_2024_131345
crossref_primary_10_3390_math12213315
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1063_5_0138287
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_1103_PhysRevE_104_045303
crossref_primary_10_1063_5_0211398
crossref_primary_10_1016_j_jcp_2024_112904
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_12677_AAM_2022_1112921
crossref_primary_10_1016_j_anucene_2023_110181
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1061__ASCE_EM_1943_7889_0002121
crossref_primary_10_1016_j_camwa_2025_01_025
crossref_primary_10_1016_j_ijthermalsci_2024_109393
crossref_primary_10_3390_s21051654
crossref_primary_10_1063_5_0200384
crossref_primary_10_1093_imanum_drab093
crossref_primary_10_1115_1_4063326
crossref_primary_10_2118_203997_PA
crossref_primary_10_1515_nanoph_2021_0713
crossref_primary_10_1007_s00158_022_03348_0
crossref_primary_10_1016_j_flowmeasinst_2023_102363
crossref_primary_10_1016_j_ijheatfluidflow_2022_109073
crossref_primary_10_1063_5_0256470
crossref_primary_10_1016_j_ijheatfluidflow_2023_109232
crossref_primary_10_1115_1_4053671
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1007_s00170_021_08542_w
crossref_primary_10_3390_jmse11112045
crossref_primary_10_3934_nhm_2023080
crossref_primary_10_1016_j_oceaneng_2023_114684
crossref_primary_10_2514_1_T6675
crossref_primary_10_1016_j_cma_2024_117075
crossref_primary_10_1016_j_fluid_2023_113984
crossref_primary_10_1016_j_jocs_2025_102577
crossref_primary_10_3390_app15020941
crossref_primary_10_1016_j_advwatres_2023_104523
crossref_primary_10_1061_JENMDT_EMENG_6643
crossref_primary_10_1016_j_apenergy_2024_124577
crossref_primary_10_1007_s00366_024_01981_5
crossref_primary_10_1007_s00366_024_02010_1
crossref_primary_10_1016_j_cma_2023_115944
crossref_primary_10_1016_j_cma_2021_114258
crossref_primary_10_1038_s41598_022_10737_4
crossref_primary_10_1109_TPAMI_2023_3307688
crossref_primary_10_1016_j_cma_2023_116012
crossref_primary_10_1016_j_csite_2024_104277
crossref_primary_10_1007_s11071_025_11067_6
crossref_primary_10_1063_5_0227921
crossref_primary_10_1142_S1758825122500272
crossref_primary_10_3390_math10162861
crossref_primary_10_1007_s10409_024_24140_x
crossref_primary_10_1016_j_jcp_2023_112041
crossref_primary_10_1093_imanum_drac085
crossref_primary_10_1063_5_0220173
crossref_primary_10_1016_j_anucene_2023_109840
crossref_primary_10_1016_j_ymssp_2020_107552
crossref_primary_10_1016_j_camwa_2024_08_035
crossref_primary_10_3390_en16124558
crossref_primary_10_1002_gamm_202100006
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1007_s10915_022_01980_y
crossref_primary_10_1190_geo2023_0622_1
crossref_primary_10_1142_S0129183123500821
crossref_primary_10_1016_j_cma_2022_114909
crossref_primary_10_1016_j_ijfatigue_2022_107270
crossref_primary_10_1002_aisy_202300385
crossref_primary_10_1016_j_cma_2021_114502
crossref_primary_10_1016_j_jcp_2023_112278
crossref_primary_10_1061_JHEND8_HYENG_13190
crossref_primary_10_1615_JMachLearnModelComput_2023048866
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_neunet_2023_08_014
crossref_primary_10_3390_app11209411
crossref_primary_10_1016_j_ces_2024_120385
crossref_primary_10_1016_j_tust_2024_105981
crossref_primary_10_1109_ACCESS_2024_3402240
crossref_primary_10_1063_5_0193952
crossref_primary_10_1029_2023WR036589
crossref_primary_10_1088_1402_4896_ad5592
crossref_primary_10_1063_5_0156404
crossref_primary_10_1016_j_jhydrol_2024_131263
crossref_primary_10_1016_j_cma_2023_116019
crossref_primary_10_1016_j_ijnonlinmec_2024_104988
crossref_primary_10_1016_j_physd_2023_133851
crossref_primary_10_1063_5_0235781
crossref_primary_10_1016_j_cma_2023_116139
crossref_primary_10_1016_j_knosys_2024_111641
crossref_primary_10_1016_j_jcp_2021_110666
crossref_primary_10_2118_217441_PA
crossref_primary_10_1007_s00158_023_03488_x
crossref_primary_10_1016_j_cma_2024_116996
crossref_primary_10_1016_j_camwa_2024_01_021
crossref_primary_10_1007_s10013_023_00674_8
crossref_primary_10_1016_j_mlwa_2023_100464
crossref_primary_10_2140_camcos_2024_19_1
crossref_primary_10_1016_j_cma_2023_116278
crossref_primary_10_1016_j_engappai_2023_106908
crossref_primary_10_1016_j_eswa_2024_123758
crossref_primary_10_1016_j_eswa_2021_115006
crossref_primary_10_1063_5_0062377
crossref_primary_10_1109_JRFID_2022_3213882
crossref_primary_10_1016_j_buildenv_2025_112634
crossref_primary_10_1016_j_gsd_2024_101172
crossref_primary_10_1016_j_eng_2023_11_024
crossref_primary_10_1109_TGRS_2023_3295414
crossref_primary_10_1029_2021JB023120
crossref_primary_10_1016_j_engappai_2024_109262
crossref_primary_10_1088_2632_2153_ad450f
crossref_primary_10_1016_j_isatra_2024_11_049
crossref_primary_10_1016_j_knosys_2024_111853
crossref_primary_10_1063_5_0211680
crossref_primary_10_1016_j_tsep_2023_101937
crossref_primary_10_1115_1_4055256
crossref_primary_10_1016_j_cma_2022_114800
crossref_primary_10_1016_j_cma_2024_116746
crossref_primary_10_1016_j_addma_2024_104574
crossref_primary_10_1016_j_compfluid_2024_106270
crossref_primary_10_1016_j_jcp_2021_110754
crossref_primary_10_1115_1_4062966
crossref_primary_10_1016_j_tws_2022_110309
crossref_primary_10_1063_5_0041203
crossref_primary_10_1134_S1995080223010213
crossref_primary_10_1016_j_anucene_2022_109234
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1016_j_camwa_2022_12_008
crossref_primary_10_1016_j_cma_2023_116160
crossref_primary_10_1063_5_0208040
crossref_primary_10_1063_5_0180834
crossref_primary_10_1080_10407790_2024_2392001
crossref_primary_10_1002_nme_7377
crossref_primary_10_1016_j_physd_2021_133037
crossref_primary_10_1016_j_sandf_2024_101533
crossref_primary_10_1016_j_jcp_2021_110521
crossref_primary_10_1016_j_jcp_2023_112084
crossref_primary_10_1016_j_mlwa_2024_100600
crossref_primary_10_1016_j_cam_2024_116223
crossref_primary_10_1061_JENMDT_EMENG_7463
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1016_j_compositesa_2024_108465
crossref_primary_10_1063_5_0250509
crossref_primary_10_1007_s10483_023_2995_8
crossref_primary_10_1016_j_engappai_2022_105516
crossref_primary_10_1007_s13226_024_00541_3
crossref_primary_10_1016_j_aei_2023_102035
crossref_primary_10_1063_5_0235756
crossref_primary_10_1038_s41598_023_29186_8
crossref_primary_10_1002_nme_7323
crossref_primary_10_1137_19M1274067
crossref_primary_10_1016_j_jcp_2021_110698
crossref_primary_10_1029_2024WR037490
crossref_primary_10_1137_24M1646455
crossref_primary_10_56532_mjsat_v4i3_265
crossref_primary_10_2208_jscejj_22_15011
crossref_primary_10_3389_fcvm_2024_1398290
crossref_primary_10_1063_5_0245547
crossref_primary_10_1016_j_cma_2021_114562
crossref_primary_10_1007_s11814_021_0979_x
crossref_primary_10_1007_s11431_022_2118_9
crossref_primary_10_1142_S0219876222500499
crossref_primary_10_1016_j_optlaseng_2025_108913
crossref_primary_10_1109_TIA_2023_3280896
crossref_primary_10_7498_aps_73_20231453
crossref_primary_10_1016_j_apenergy_2023_120855
crossref_primary_10_1016_j_camwa_2024_07_024
crossref_primary_10_1063_5_0165035
crossref_primary_10_1016_j_jcp_2024_113710
crossref_primary_10_1063_5_0157753
crossref_primary_10_1190_geo2022_0479_1
crossref_primary_10_1007_s11071_025_11046_x
crossref_primary_10_1007_s10483_023_2994_7
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_1016_j_compstruc_2023_107189
crossref_primary_10_1016_j_jcp_2024_113709
crossref_primary_10_1007_s10483_023_3050_9
crossref_primary_10_1088_2632_2153_ac3712
crossref_primary_10_1016_j_cma_2022_115810
crossref_primary_10_1016_j_petrol_2021_109694
crossref_primary_10_1016_j_cma_2021_114524
crossref_primary_10_1063_5_0259583
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024048538
crossref_primary_10_1016_j_jcp_2021_110676
crossref_primary_10_1016_j_jcp_2022_111841
crossref_primary_10_1016_j_camwa_2024_06_012
crossref_primary_10_1016_j_strusafe_2022_102256
crossref_primary_10_1002_msd2_12127
crossref_primary_10_1063_5_0223510
crossref_primary_10_1021_acs_iecr_3c02383
crossref_primary_10_1115_1_4063977
crossref_primary_10_3390_s23146649
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1007_s13160_023_00577_8
crossref_primary_10_1615_HeatTransRes_2022042173
crossref_primary_10_1088_2632_2153_acd0a1
crossref_primary_10_1016_j_cma_2020_113028
crossref_primary_10_1016_j_cma_2024_116819
crossref_primary_10_1016_j_physd_2023_133952
crossref_primary_10_1016_j_apenergy_2023_121602
crossref_primary_10_1016_j_cma_2022_114710
crossref_primary_10_1016_j_jcp_2021_110683
crossref_primary_10_1016_j_jcp_2022_111832
crossref_primary_10_1063_5_0200406
crossref_primary_10_1016_j_cma_2022_115284
crossref_primary_10_1016_j_jhydrol_2022_128003
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_jcp_2024_113494
crossref_primary_10_1016_j_nbt_2023_01_002
crossref_primary_10_7498_aps_72_20230031
crossref_primary_10_1016_j_engstruct_2024_118900
crossref_primary_10_3103_S0027134924702114
crossref_primary_10_1186_s40323_024_00273_3
crossref_primary_10_1016_j_ultras_2023_107026
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1142_S0129183122501662
crossref_primary_10_1016_j_renene_2021_12_058
crossref_primary_10_1016_j_trc_2024_104500
crossref_primary_10_1029_2022WR033168
crossref_primary_10_1063_5_0078418
crossref_primary_10_1016_j_cma_2023_116647
crossref_primary_10_1093_mnras_stad1516
crossref_primary_10_1016_j_cma_2021_113816
crossref_primary_10_1115_1_4050542
crossref_primary_10_1016_j_cma_2021_113814
crossref_primary_10_1007_s00211_022_01294_z
crossref_primary_10_1016_j_compositesa_2024_108019
crossref_primary_10_1155_2021_8548482
crossref_primary_10_1016_j_physd_2022_133629
crossref_primary_10_1109_TVT_2024_3399918
crossref_primary_10_1140_epjs_s11734_024_01263_7
crossref_primary_10_1016_j_cma_2024_117211
crossref_primary_10_1108_HFF_09_2023_0568
crossref_primary_10_1007_s12206_022_0813_3
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_1016_j_coastaleng_2024_104686
crossref_primary_10_1109_TGRS_2023_3236973
crossref_primary_10_1016_j_compfluid_2023_105949
crossref_primary_10_1063_5_0194523
crossref_primary_10_1016_j_ijfatigue_2025_108933
crossref_primary_10_1016_j_compstruc_2023_107232
crossref_primary_10_1063_5_0232675
crossref_primary_10_1007_s11071_024_10655_2
crossref_primary_10_1016_j_cma_2023_116536
crossref_primary_10_1016_j_jcp_2023_112323
crossref_primary_10_1038_s41524_023_01165_7
crossref_primary_10_1038_s41598_024_65664_3
crossref_primary_10_1016_j_array_2023_100287
crossref_primary_10_1016_j_chaos_2021_111530
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1039_D1SM01298C
crossref_primary_10_1088_1402_4896_ad55be
crossref_primary_10_1109_TNNLS_2021_3070878
crossref_primary_10_1016_j_cma_2024_117681
crossref_primary_10_1186_s42774_021_00085_8
crossref_primary_10_1016_j_paerosci_2024_101046
crossref_primary_10_1088_2399_6528_ace416
crossref_primary_10_1016_j_cnsns_2022_107051
crossref_primary_10_1016_j_dt_2023_02_006
crossref_primary_10_1016_j_psep_2025_106845
crossref_primary_10_1088_2632_2153_ad652d
crossref_primary_10_3390_app132011481
crossref_primary_10_1016_j_jer_2024_02_011
crossref_primary_10_1016_j_engappai_2023_106073
crossref_primary_10_1016_j_cma_2020_113636
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1007_s00348_022_03554_y
crossref_primary_10_1016_j_cma_2023_116561
crossref_primary_10_1016_j_jcp_2024_113341
crossref_primary_10_1088_2632_2153_ad3a32
crossref_primary_10_1002_nme_7406
crossref_primary_10_1016_j_energy_2024_134344
crossref_primary_10_1063_5_0138946
crossref_primary_10_1016_j_engappai_2024_108313
crossref_primary_10_1063_5_0136886
crossref_primary_10_1080_10618562_2023_2295286
crossref_primary_10_1111_mice_13312
crossref_primary_10_1016_j_tws_2023_111423
crossref_primary_10_5194_hess_26_4345_2022
crossref_primary_10_1016_j_neucom_2024_127240
crossref_primary_10_1016_j_oceaneng_2022_110775
crossref_primary_10_1007_s11071_025_10916_8
crossref_primary_10_1016_j_cma_2024_117428
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124336
crossref_primary_10_1063_5_0251799
crossref_primary_10_1063_5_0253732
crossref_primary_10_1017_dce_2024_4
crossref_primary_10_1360_SSI_2023_0195
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104476
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104877
crossref_primary_10_1016_j_jrmge_2020_09_005
crossref_primary_10_3390_e24081106
crossref_primary_10_1063_5_0186809
crossref_primary_10_1016_j_ast_2024_108908
crossref_primary_10_1038_s41598_024_53680_2
crossref_primary_10_1007_s00466_024_02554_5
crossref_primary_10_1016_j_mechmat_2022_104498
crossref_primary_10_1016_j_ijleo_2022_170009
crossref_primary_10_1016_j_chaos_2024_115438
crossref_primary_10_1088_1361_6501_ad3307
crossref_primary_10_3390_fluids7020056
crossref_primary_10_1016_j_neunet_2024_106732
crossref_primary_10_1016_j_apenergy_2024_123719
crossref_primary_10_1016_j_eng_2024_01_007
crossref_primary_10_1016_j_cep_2023_109540
crossref_primary_10_1007_s13272_024_00774_2
crossref_primary_10_1063_5_0099450
crossref_primary_10_1088_2632_2153_acf116
crossref_primary_10_1061_JHEND8_HYENG_14064
crossref_primary_10_1007_s13160_023_00617_3
crossref_primary_10_1016_j_rinam_2022_100347
crossref_primary_10_3788_CJL230827
crossref_primary_10_1109_ACCESS_2023_3302892
crossref_primary_10_1615_HeatTransRes_2024055270
crossref_primary_10_3390_s23146346
crossref_primary_10_1016_j_camwa_2024_10_036
crossref_primary_10_1063_5_0155087
crossref_primary_10_1115_1_4067355
crossref_primary_10_3389_fmech_2024_1410190
crossref_primary_10_1007_s40815_024_01936_4
crossref_primary_10_1016_j_mlwa_2021_100029
crossref_primary_10_1016_j_cscm_2024_e03769
crossref_primary_10_1080_01495739_2024_2321205
crossref_primary_10_1016_j_chaos_2024_115669
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_1093_imamat_hxae011
crossref_primary_10_1007_s40314_023_02323_9
crossref_primary_10_1016_j_jcp_2023_112369
crossref_primary_10_1016_j_future_2024_07_009
crossref_primary_10_1016_j_jcp_2023_112263
crossref_primary_10_1016_j_neucom_2021_06_015
crossref_primary_10_3390_e24091254
crossref_primary_10_1016_j_engappai_2024_108764
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124671
crossref_primary_10_1061__ASCE_EM_1943_7889_0001947
crossref_primary_10_1002_fld_5217
crossref_primary_10_1063_5_0195824
crossref_primary_10_1115_1_4067125
crossref_primary_10_1016_j_est_2024_113103
crossref_primary_10_1007_s11831_021_09539_0
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_3390_sym16101376
crossref_primary_10_1016_j_jcp_2024_113669
crossref_primary_10_1103_PhysRevResearch_6_L012031
crossref_primary_10_1109_ACCESS_2024_3399094
crossref_primary_10_1038_s41524_023_01173_7
crossref_primary_10_1063_5_0079602
crossref_primary_10_1016_j_physleta_2022_128373
crossref_primary_10_1016_j_watres_2022_118828
crossref_primary_10_1016_j_ymssp_2024_111111
crossref_primary_10_1016_j_eswa_2024_123387
crossref_primary_10_1016_j_cma_2023_116120
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124546
crossref_primary_10_1039_D3SM01221B
crossref_primary_10_3389_fmats_2023_1128954
crossref_primary_10_1038_s41598_022_11058_2
crossref_primary_10_1038_s41524_022_00872_x
crossref_primary_10_1017_dce_2022_24
crossref_primary_10_1016_j_actaastro_2023_07_039
crossref_primary_10_1088_1402_4896_ad5053
crossref_primary_10_1016_j_cma_2020_113547
crossref_primary_10_1016_j_cma_2021_113722
crossref_primary_10_1007_s11071_023_08354_5
crossref_primary_10_1063_5_0232852
crossref_primary_10_1190_geo2023_0323_1
crossref_primary_10_1080_10618562_2023_2285330
crossref_primary_10_1093_imatrm_tnac001
crossref_primary_10_1063_5_0167155
crossref_primary_10_1016_j_enganabound_2023_10_027
crossref_primary_10_1063_5_0245918
crossref_primary_10_1016_j_heliyon_2024_e38799
Cites_doi 10.1016/S0045-7825(99)00015-8
10.1016/S0045-7825(02)00334-1
10.1016/j.jcp.2019.01.045
10.1016/j.paerosci.2007.05.001
10.1016/S0045-7825(97)00320-4
10.1016/j.cma.2011.11.021
10.1016/j.cma.2018.09.043
10.1016/j.cma.2015.11.009
10.1137/18M1229845
10.1016/j.cma.2012.08.021
10.1016/0021-9991(82)90046-8
10.1016/j.jcp.2017.11.039
10.1016/j.cma.2013.12.015
10.1016/j.cma.2016.12.010
10.1002/(SICI)1097-0363(19990315)29:5<587::AID-FLD805>3.0.CO;2-K
10.1016/0045-7825(89)90017-0
10.1016/j.cma.2016.06.032
10.1006/jcph.1996.0130
10.1016/j.jcp.2019.109020
10.1016/S0045-7825(01)00193-1
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2009.10.028
10.1016/0021-9991(78)90023-2
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2019.112789
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cma_2019_112789
S0045782519306814
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-850f7f0db00f0037522cf48c0c1c4d4090a4d5efed1e399494a338c7e93a9f623
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 08:02:44 EDT 2025
Thu Apr 24 23:08:12 EDT 2025
Tue Jul 01 04:06:09 EDT 2025
Sun Apr 06 06:54:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Conservation laws
Riemann problem
65M70
Neural networks
74S25
Machine learning
Hidden fluid mechanics
Euler equations
35L65
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-850f7f0db00f0037522cf48c0c1c4d4090a4d5efed1e399494a338c7e93a9f623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2353611193
PQPubID 2045269
ParticipantIDs proquest_journals_2353611193
crossref_primary_10_1016_j_cma_2019_112789
crossref_citationtrail_10_1016_j_cma_2019_112789
elsevier_sciencedirect_doi_10_1016_j_cma_2019_112789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liepmann, Roshko (b2) 2001
Shu (b10) 2013; 43
Hesthaven, Warburton (b8) 2007
Gryngarten, Menon (b37) 2013; 253
Banks, Hittinger, Connors, Woodward (b36) 2012; 213/216
Tang, Lee, Yang (b34) 1998; 161
Harten, Engquist, Osher, Chakravarthy (b11) 2004; 193
Alves, Cruz, Mendes, Magalhaes, Pinho, Oliveira (b35) 2002; 191
Johnsen, Larsson, Bhagatwala, Cabot, Moin, Olson, Rawat, Shankar, Sjögreen, Yee, Zhong, Lele (b15) 2010; 229
Lomtev, Karniadakis (b6) 1998
Pirozzoli (b14) 2011; vol. 43
Ji, Fu, Hu, Adams (b40) 2019; 346
X. Chen, J. Duan, G.E. Karniadakis, Learning and meta-learning of stochastic advection-diffusion-reaction systems from sparse measurements, arXiv preprint
Coclici, Wendland (b32) 1999
.
Raissi, Perdikaris, Karniadakis (b17) 2019; 378
Baydin, Pearlmutter, Radul, Siskind (b41) 2018; 18
Bergstra, Bardenet, Bengio, Kégl (b42) 2011
Bayliss, Turkel (b31) 1982; 48
Snoek, Larochelle, Adams (b43) 2012
Jagtap, Kawaguchi, Karniadakis (b46) 2019; 109136
Lomtev, Karniadakis (b7) 1999; 29
Raissi, Karniadakis (b16) 2018; 357
Zucker, Biblarz (b3) 2002
Karniadakis, Sherwin (b50) 2013
J. Magiera, D. Ray, J.S. Hesthaven, C. Rohde, Constraint-aware neural networks for Riemann problems, arXiv preprint
Monthe, Benkhaldoun, Elmahi (b26) 1999; 178
Anderson (b30) 1995
A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks, arXiv preprint
Wong, Darmofal, Peraire (b24) 2001; 190
Sanders, Weiser (b33) 1989; 75
Courant, Friedrichs (b1) 1999
Pang, Lu, Karniadakis (b21) 2019; 41
Cockburn, Karniadakis, Shu (b9) 2012
Dafermos (b4) 2016; vol. 325
L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, arXiv preprint
Sod (b48) 1978; 27
Toro (b49) 2013
K.O. Lye, S. Mishra, D. Ray, Deep learning observables in computational fluid dynamics, arXiv preprint
M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: A Navier-Stokes informed deep learning framework for assimilating flow visualization data, arXiv preprint
Pang, Yang, Karniadakis (b18) 2019; 384
Guermond, Popov, Tomov (b38) 2016; 300
C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch, Solving irregular and data-enriched differential equations using deep neural networks, arXiv preprint
Nogueira, Ramírez, Clain, Loubère, Cueto-Felgueroso, Colominas (b39) 2016; 310
Snoek, Rippel, Swersky, Kiros, Satish, Sundaram, Patwary, Prabhat, Adams (b44) 2015
Meng, Karniadakis (b23) 2020; 401
Nazarov, Larcher (b25) 2017; 317
Wang (b13) 2007; 43
LeVeque (b5) 2002
Jiang, Shu (b12) 1996; 126
Guermond, Nazarov (b27) 2014; 272
Courant (10.1016/j.cma.2019.112789_b1) 1999
Alves (10.1016/j.cma.2019.112789_b35) 2002; 191
Wang (10.1016/j.cma.2019.112789_b13) 2007; 43
Raissi (10.1016/j.cma.2019.112789_b17) 2019; 378
10.1016/j.cma.2019.112789_b19
Banks (10.1016/j.cma.2019.112789_b36) 2012; 213/216
Snoek (10.1016/j.cma.2019.112789_b43) 2012
Toro (10.1016/j.cma.2019.112789_b49) 2013
Hesthaven (10.1016/j.cma.2019.112789_b8) 2007
Monthe (10.1016/j.cma.2019.112789_b26) 1999; 178
Pang (10.1016/j.cma.2019.112789_b18) 2019; 384
Sod (10.1016/j.cma.2019.112789_b48) 1978; 27
Meng (10.1016/j.cma.2019.112789_b23) 2020; 401
10.1016/j.cma.2019.112789_b22
Cockburn (10.1016/j.cma.2019.112789_b9) 2012
10.1016/j.cma.2019.112789_b20
Jiang (10.1016/j.cma.2019.112789_b12) 1996; 126
Pang (10.1016/j.cma.2019.112789_b21) 2019; 41
Zucker (10.1016/j.cma.2019.112789_b3) 2002
Harten (10.1016/j.cma.2019.112789_b11) 2004; 193
Coclici (10.1016/j.cma.2019.112789_b32) 1999
Guermond (10.1016/j.cma.2019.112789_b38) 2016; 300
Nogueira (10.1016/j.cma.2019.112789_b39) 2016; 310
Shu (10.1016/j.cma.2019.112789_b10) 2013; 43
Tang (10.1016/j.cma.2019.112789_b34) 1998; 161
Lomtev (10.1016/j.cma.2019.112789_b7) 1999; 29
Ji (10.1016/j.cma.2019.112789_b40) 2019; 346
Baydin (10.1016/j.cma.2019.112789_b41) 2018; 18
Pirozzoli (10.1016/j.cma.2019.112789_b14) 2011; vol. 43
Karniadakis (10.1016/j.cma.2019.112789_b50) 2013
Gryngarten (10.1016/j.cma.2019.112789_b37) 2013; 253
Johnsen (10.1016/j.cma.2019.112789_b15) 2010; 229
Bayliss (10.1016/j.cma.2019.112789_b31) 1982; 48
10.1016/j.cma.2019.112789_b47
Liepmann (10.1016/j.cma.2019.112789_b2) 2001
Nazarov (10.1016/j.cma.2019.112789_b25) 2017; 317
10.1016/j.cma.2019.112789_b45
Anderson (10.1016/j.cma.2019.112789_b30) 1995
Dafermos (10.1016/j.cma.2019.112789_b4) 2016; vol. 325
Wong (10.1016/j.cma.2019.112789_b24) 2001; 190
10.1016/j.cma.2019.112789_b28
10.1016/j.cma.2019.112789_b29
Raissi (10.1016/j.cma.2019.112789_b16) 2018; 357
Jagtap (10.1016/j.cma.2019.112789_b46) 2019; 109136
LeVeque (10.1016/j.cma.2019.112789_b5) 2002
Bergstra (10.1016/j.cma.2019.112789_b42) 2011
Lomtev (10.1016/j.cma.2019.112789_b6) 1998
Sanders (10.1016/j.cma.2019.112789_b33) 1989; 75
Guermond (10.1016/j.cma.2019.112789_b27) 2014; 272
Snoek (10.1016/j.cma.2019.112789_b44) 2015
References_xml – volume: 384
  start-page: 270
  year: 2019
  end-page: 288
  ident: b18
  article-title: Neural-net-induced Gaussian process regression for function approximation and PDE solution
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b41
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: b43
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 109136
  year: 2019
  ident: b46
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 253
  start-page: 169
  year: 2013
  end-page: 185
  ident: b37
  article-title: A generalized approach for sub-and super-critical flows using the Local Discontinuous Galerkin method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 300
  start-page: 402
  year: 2016
  end-page: 426
  ident: b38
  article-title: Entropy-viscosity method for the single material Euler equations in Lagrangian frame
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 178
  start-page: 215
  year: 1999
  end-page: 232
  ident: b26
  article-title: Positivity preserving finite volume Roe schemes for transport-diffusion equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 229
  start-page: 1213
  year: 2010
  end-page: 1237
  ident: b15
  article-title: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
  publication-title: J. Comput. Phys.
– volume: 193
  start-page: 563
  year: 2004
  end-page: 594
  ident: b11
  article-title: Uniformaly high order essentially non-oscillatory schemes III
  publication-title: Math. Comput.
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b16
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 1995
  ident: b30
  article-title: Computational Fluid Dynamics: The Basics with Applications
– reference: C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch, Solving irregular and data-enriched differential equations using deep neural networks, arXiv preprint
– start-page: 429
  year: 1999
  end-page: 437
  ident: b32
  article-title: Domain decomposition methods and far-field boundary conditions for 2D compressible viscous flows
  publication-title: Recent Advances in Numerical Methods and Applications, II (Sofia, 1998)
– year: 2013
  ident: b50
  article-title: Spectral/hp Element Methods for Computational Fluid Dynamics
– volume: 43
  start-page: 541
  year: 2013
  end-page: 553
  ident: b10
  article-title: A brief survey on discontinuous Galerkin methods in computational fluid dynamics
  publication-title: Adv. Mech.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b17
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 182
  year: 1982
  end-page: 199
  ident: b31
  article-title: Far field boundary conditions for compressible flows
  publication-title: J. Comput. Phys.
– year: 2002
  ident: b5
  publication-title: Finite Volume Methods for Hyperbolic Problems
– volume: 190
  start-page: 5719
  year: 2001
  end-page: 5737
  ident: b24
  article-title: The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: K.O. Lye, S. Mishra, D. Ray, Deep learning observables in computational fluid dynamics, arXiv preprint
– reference: X. Chen, J. Duan, G.E. Karniadakis, Learning and meta-learning of stochastic advection-diffusion-reaction systems from sparse measurements, arXiv preprint
– volume: 191
  start-page: 3909
  year: 2002
  end-page: 3928
  ident: b35
  article-title: Adaptive multiresolution approach for solution of hyperbolic PDEs
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2007
  ident: b8
  article-title: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
– volume: 27
  start-page: 1
  year: 1978
  end-page: 31
  ident: b48
  article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– volume: 346
  start-page: 1156
  year: 2019
  end-page: 1178
  ident: b40
  article-title: A new multi-resolution parallel framework for SPH
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1999
  ident: b1
  article-title: Supersonic Flow and Shock Waves, Vol. 21
– volume: vol. 43
  start-page: 163
  year: 2011
  end-page: 194
  ident: b14
  article-title: Numerical methods for high-speed flows
  publication-title: Annual Review of Fluid Mechanics, Volume 43
– volume: 126
  start-page: 202
  year: 1996
  end-page: 228
  ident: b12
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
– year: 1998
  ident: b6
  article-title: Discontinuous Galerkin methods in CFD
  publication-title: APS Division of Fluid Dynamics Meeting Abstracts
– volume: 161
  start-page: 257
  year: 1998
  end-page: 288
  ident: b34
  article-title: A high-order pathline Godunov scheme for unsteady one-dimensional equilibrium flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 41
  ident: b13
  article-title: High-order methods for the Euler and Navier–Stokes equations on unstructured grids
  publication-title: Prog. Aerosp. Sci.
– volume: 272
  start-page: 198
  year: 2014
  end-page: 213
  ident: b27
  article-title: A maximum-principle preserving
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 310
  start-page: 134
  year: 2016
  end-page: 155
  ident: b39
  article-title: High-accurate SPH method with multidimensional optimal order detection limiting
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: J. Magiera, D. Ray, J.S. Hesthaven, C. Rohde, Constraint-aware neural networks for Riemann problems, arXiv preprint
– volume: vol. 325
  year: 2016
  ident: b4
  publication-title: Hyperbolic Conservation Laws in Continuum Physics
– reference: L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, arXiv preprint
– volume: 317
  start-page: 128
  year: 2017
  end-page: 152
  ident: b25
  article-title: Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 213/216
  start-page: 1
  year: 2012
  end-page: 15
  ident: b36
  article-title: Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2001
  ident: b2
  article-title: Elements of Gasdynamics
– year: 2013
  ident: b49
  article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
– reference: .
– year: 2012
  ident: b9
  article-title: Discontinuous Galerkin Methods: Theory, Computation and Applications, Vol. 11
– reference: M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: A Navier-Stokes informed deep learning framework for assimilating flow visualization data, arXiv preprint
– volume: 401
  start-page: 109020
  year: 2020
  ident: b23
  article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
– volume: 29
  start-page: 587
  year: 1999
  end-page: 603
  ident: b7
  article-title: A discontinuous Galerkin method for the Navier-Stokes equations
  publication-title: Int. J. Numer. Methods Fluids
– volume: 75
  start-page: 91
  year: 1989
  end-page: 107
  ident: b33
  article-title: A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: b42
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in Neural Information Processing Systems
– year: 2002
  ident: b3
  article-title: Fundamentals of Gas Dynamics
– volume: 41
  start-page: A2603
  year: 2019
  end-page: A2626
  ident: b21
  article-title: FPINNs: fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– reference: A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks, arXiv preprint
– start-page: 2171
  year: 2015
  end-page: 2180
  ident: b44
  article-title: Scalable bayesian optimization using deep neural networks
  publication-title: International Conference on Machine Learning
– start-page: 429
  year: 1999
  ident: 10.1016/j.cma.2019.112789_b32
  article-title: Domain decomposition methods and far-field boundary conditions for 2D compressible viscous flows
– volume: 178
  start-page: 215
  issue: 3–4
  year: 1999
  ident: 10.1016/j.cma.2019.112789_b26
  article-title: Positivity preserving finite volume Roe schemes for transport-diffusion equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00015-8
– volume: 191
  start-page: 3909
  issue: 36
  year: 2002
  ident: 10.1016/j.cma.2019.112789_b35
  article-title: Adaptive multiresolution approach for solution of hyperbolic PDEs
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(02)00334-1
– year: 2001
  ident: 10.1016/j.cma.2019.112789_b2
– volume: 384
  start-page: 270
  year: 2019
  ident: 10.1016/j.cma.2019.112789_b18
  article-title: Neural-net-induced Gaussian process regression for function approximation and PDE solution
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.045
– ident: 10.1016/j.cma.2019.112789_b22
– ident: 10.1016/j.cma.2019.112789_b45
– volume: 43
  start-page: 1
  issue: 1–3
  year: 2007
  ident: 10.1016/j.cma.2019.112789_b13
  article-title: High-order methods for the Euler and Navier–Stokes equations on unstructured grids
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2007.05.001
– start-page: 2546
  year: 2011
  ident: 10.1016/j.cma.2019.112789_b42
  article-title: Algorithms for hyper-parameter optimization
– volume: 161
  start-page: 257
  issue: 3–4
  year: 1998
  ident: 10.1016/j.cma.2019.112789_b34
  article-title: A high-order pathline Godunov scheme for unsteady one-dimensional equilibrium flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(97)00320-4
– volume: 213/216
  start-page: 1
  year: 2012
  ident: 10.1016/j.cma.2019.112789_b36
  article-title: Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.11.021
– start-page: 2171
  year: 2015
  ident: 10.1016/j.cma.2019.112789_b44
  article-title: Scalable bayesian optimization using deep neural networks
– volume: 346
  start-page: 1156
  year: 2019
  ident: 10.1016/j.cma.2019.112789_b40
  article-title: A new multi-resolution parallel framework for SPH
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.09.043
– volume: 193
  start-page: 563
  year: 2004
  ident: 10.1016/j.cma.2019.112789_b11
  article-title: Uniformaly high order essentially non-oscillatory schemes III
  publication-title: Math. Comput.
– year: 1998
  ident: 10.1016/j.cma.2019.112789_b6
  article-title: Discontinuous Galerkin methods in CFD
– volume: 300
  start-page: 402
  year: 2016
  ident: 10.1016/j.cma.2019.112789_b38
  article-title: Entropy-viscosity method for the single material Euler equations in Lagrangian frame
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.11.009
– volume: 41
  start-page: A2603
  issue: 4
  year: 2019
  ident: 10.1016/j.cma.2019.112789_b21
  article-title: FPINNs: fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1229845
– volume: 253
  start-page: 169
  year: 2013
  ident: 10.1016/j.cma.2019.112789_b37
  article-title: A generalized approach for sub-and super-critical flows using the Local Discontinuous Galerkin method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.08.021
– volume: 109136
  year: 2019
  ident: 10.1016/j.cma.2019.112789_b46
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 182
  issue: 2
  year: 1982
  ident: 10.1016/j.cma.2019.112789_b31
  article-title: Far field boundary conditions for compressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90046-8
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.cma.2019.112789_b16
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– volume: 272
  start-page: 198
  year: 2014
  ident: 10.1016/j.cma.2019.112789_b27
  article-title: A maximum-principle preserving C0 finite element method for scalar conservation equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.12.015
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2019.112789_b41
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 317
  start-page: 128
  year: 2017
  ident: 10.1016/j.cma.2019.112789_b25
  article-title: Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.12.010
– year: 1999
  ident: 10.1016/j.cma.2019.112789_b1
– ident: 10.1016/j.cma.2019.112789_b19
– year: 1995
  ident: 10.1016/j.cma.2019.112789_b30
– ident: 10.1016/j.cma.2019.112789_b47
– year: 2012
  ident: 10.1016/j.cma.2019.112789_b9
– ident: 10.1016/j.cma.2019.112789_b20
– year: 2013
  ident: 10.1016/j.cma.2019.112789_b50
– ident: 10.1016/j.cma.2019.112789_b28
– year: 2007
  ident: 10.1016/j.cma.2019.112789_b8
– volume: 29
  start-page: 587
  issue: 5
  year: 1999
  ident: 10.1016/j.cma.2019.112789_b7
  article-title: A discontinuous Galerkin method for the Navier-Stokes equations
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19990315)29:5<587::AID-FLD805>3.0.CO;2-K
– volume: 75
  start-page: 91
  issue: 1–3
  year: 1989
  ident: 10.1016/j.cma.2019.112789_b33
  article-title: A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(89)90017-0
– year: 2013
  ident: 10.1016/j.cma.2019.112789_b49
– volume: 310
  start-page: 134
  year: 2016
  ident: 10.1016/j.cma.2019.112789_b39
  article-title: High-accurate SPH method with multidimensional optimal order detection limiting
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.06.032
– start-page: 2951
  year: 2012
  ident: 10.1016/j.cma.2019.112789_b43
  article-title: Practical bayesian optimization of machine learning algorithms
– volume: 126
  start-page: 202
  issue: 1
  year: 1996
  ident: 10.1016/j.cma.2019.112789_b12
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– volume: 43
  start-page: 541
  issue: 6
  year: 2013
  ident: 10.1016/j.cma.2019.112789_b10
  article-title: A brief survey on discontinuous Galerkin methods in computational fluid dynamics
  publication-title: Adv. Mech.
– volume: vol. 43
  start-page: 163
  year: 2011
  ident: 10.1016/j.cma.2019.112789_b14
  article-title: Numerical methods for high-speed flows
– volume: 401
  start-page: 109020
  year: 2020
  ident: 10.1016/j.cma.2019.112789_b23
  article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109020
– volume: vol. 325
  year: 2016
  ident: 10.1016/j.cma.2019.112789_b4
– year: 2002
  ident: 10.1016/j.cma.2019.112789_b5
– volume: 190
  start-page: 5719
  issue: 43–44
  year: 2001
  ident: 10.1016/j.cma.2019.112789_b24
  article-title: The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00193-1
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2019.112789_b17
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 229
  start-page: 1213
  issue: 4
  year: 2010
  ident: 10.1016/j.cma.2019.112789_b15
  article-title: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.10.028
– volume: 27
  start-page: 1
  issue: 1
  year: 1978
  ident: 10.1016/j.cma.2019.112789_b48
  article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(78)90023-2
– ident: 10.1016/j.cma.2019.112789_b29
– year: 2002
  ident: 10.1016/j.cma.2019.112789_b3
SSID ssj0000812
Score 2.7226398
Snippet In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112789
SubjectTerms Boundary conditions
Conservation laws
Density
Discontinuity
Domains
Equations of state
Euler equations
Euler-Lagrange equation
Forward problem
Hidden fluid mechanics
High speed
Inverse problems
Machine learning
Neural networks
Numerical methods
Oblique shock waves
Parameter identification
Riemann problem
Schlieren photography
Velocity
Title Physics-informed neural networks for high-speed flows
URI https://dx.doi.org/10.1016/j.cma.2019.112789
https://www.proquest.com/docview/2353611193
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvTgj6k4naMHT0Jc2iZNcxzDMRV3crBbaNMEJqMbduLNv92XNPUXsoPXkoTyNXnve_Tl-xC64jrRcVwwnBtrYZZxjUUBVas2ygDdMAl3_imP02Qyo_dzNm-hUXMXxrZV-thfx3QXrf2TgUdzsF4s7B1farXYLQUhSerMrCnldpffvH-1eUDKqxXDKcN2dPNn0_V4KSc9FAp7kYZbp_e_c9OvKO1Sz_gQ7XvOGAzr1zpCLV120IHnj4E_nVUH7X0TFzxGzDV3qgrX2qgw0mpXwjpl3fldBfA4sHLFuFpDDgvMcvVWnaDZ-PZpNMHeJAGrWIQbnDJiuCEFHB_jDG2jSBmaKqJCRQuo3khGC6aNLkINZIQKmkFVqrgWcSYMkJ9T1C5XpT5DAWNRTkxEeJQLmmSZSGPKAJc8FZppJrqINPBI5RXErZHFUjatYs8SEJUWUVkj2kXXn1PWtXzGtsG0wVz-2AMSwvu2ab3m-0h_ACsZxSxOII6L-Px_q16g3ciW1q7drIfam5dXfQn8Y5P33Qbro53h3cNk-gGMdtbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH4Z20E9-DEVp1N78CSUpW3SNscxHJ37OG2wW2jTBCajG3bi3zdJU7-QHbyGJISnyZP3pW-eB-AhEqEIgpy4mdQWZmkkXJqrrFVILlW4IcPI-KdMZ2GywM9LsmzAoH4Lo8sqLfdXnG7Y2rb0LJq97Wql3_hircWuQxAUxtrMuqXVqUgTWv3ROJl9EXLsVaLhmLh6QP1z05R5caM-5FH9libSZu9_X0-_iNrcPsNTOLZho9OvVnYGDVG04cSGkI49oGUbjr7pC54DMfWdvHQreVTVU8tXqnmKqvi7dFSzoxWL3XKrrjFHrjfv5QUshk_zQeJanwSXB9TbuTFBMpIoVydIGk9b3-cSxxxxj-NcJXAoxTkRUuSeUPEIpjhViSmPBA1SKlX8cwnNYlOIK3AI8TMkfRT5GcVhmtI4wEThksVUEEFoB1AND-NWRFx7WaxZXS32whSiTCPKKkQ78Pg5ZFspaOzrjGvM2Y9twBTD7xvWrb8Ps2ewZH5AglBROQ2u_zfrPRwk8-mETUaz8Q0c-jrTNtVnXWjuXt_ErQpHdtmd3W4fADDZkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+neural+networks+for+high-speed+flows&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Mao%2C+Zhiping&rft.au=Jagtap%2C+Ameya+D&rft.au=Em+Karniadakis%2C+George&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=360&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2019.112789&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon