Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall
The conjugate natural convection–conduction heat transfer in a square domain composed of nanofluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot...
Saved in:
Published in | International journal of thermal sciences Vol. 67; pp. 135 - 151 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Masson SAS
01.05.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conjugate natural convection–conduction heat transfer in a square domain composed of nanofluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature Tc. Equations governing the heat transfer in the triangular wall and heat and nanofluid flow, based on the Darcy model, in the nanofluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nanofluids properties model is adopted. Three nanoparticle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nanoparticles volume fraction φ (0–0.2), Rayleigh number Ra (10–1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio Kro (0.44, 1, 23.8), and the triangular wall thickness D (0.1–1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of φ, are observed and accounted.
► Conjugate heat transfer in a square porous cavity heated diagonally and filled with nanofluids is studied. ► Heat transfer may be enhanced or deteriorated with increasing nanoparticles volume fraction. ► The Rayleigh number and the triangular wall thickness are important factors. ► Copper nanoparticles give greater heat transfer than alumina oxide and titanium oxide. |
---|---|
AbstractList | The conjugate natural convection–conduction heat transfer in a square domain composed of nanofluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature Tc. Equations governing the heat transfer in the triangular wall and heat and nanofluid flow, based on the Darcy model, in the nanofluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nanofluids properties model is adopted. Three nanoparticle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nanoparticles volume fraction φ (0–0.2), Rayleigh number Ra (10–1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio Kro (0.44, 1, 23.8), and the triangular wall thickness D (0.1–1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of φ, are observed and accounted.
► Conjugate heat transfer in a square porous cavity heated diagonally and filled with nanofluids is studied. ► Heat transfer may be enhanced or deteriorated with increasing nanoparticles volume fraction. ► The Rayleigh number and the triangular wall thickness are important factors. ► Copper nanoparticles give greater heat transfer than alumina oxide and titanium oxide. |
Author | Ismael, Muneer A. Chamkha, Ali J. |
Author_xml | – sequence: 1 givenname: Ali J. surname: Chamkha fullname: Chamkha, Ali J. email: achamkha@yahoo.com organization: Manufacturing Engineering Department, The Public Authority for Applied Education and Training, P.O. Box 42325, Shuweikh 70654, Kuwait – sequence: 2 givenname: Muneer A. surname: Ismael fullname: Ismael, Muneer A. organization: Mechanical Engineering Department, Engineering College, University of Basrah, Basrah, Iraq |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27165663$$DView record in Pascal Francis |
BookMark | eNqNkE9LAzEQxYNU0KrfIQgetyabdnfjTepfKHjRc5gmkzbrNluStKXf3tSKeBQGEibvvZn8hmTge4-EXHM24oxXt-3ItWmJYQVd1G5UMl6OcjFWnpBzXtdNMeZVNcj3UrKC1aU8I8MYW8ZYLZk8J4tp79vNAhLSJUKiKYCPFgN1ngJd96HfRKph69KeWtd1aOjOpSX14HvbbZyJFLz59uan-T6bUnDgF5sOAk1Lpz_pDrrukpzavCNe_ZwX5OPp8X36Uszenl-n97NCC8lT0YyFhpJZgVJXtpYS52PUpmlANwKaSS2BAxPC1Jxb3qDJ_YmWAk2DZWUm4oLcHXN16GMMaNU6uBWEveJMHZCpVv1Fpg7IVK6MLJtvjuY1RA2dzSy0i78JZc2rSVWJrHs46jD_ZOswqJyEXqNxAXVSpnf_GfcF4xeM_g |
CitedBy_id | crossref_primary_10_1007_s10973_018_7652_6 crossref_primary_10_1016_j_apt_2017_06_011 crossref_primary_10_32604_cmes_2021_014524 crossref_primary_10_1016_j_icheatmasstransfer_2022_105889 crossref_primary_10_1007_s11242_014_0415_3 crossref_primary_10_1016_j_tsep_2020_100584 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2022044114 crossref_primary_10_1016_j_physa_2019_122826 crossref_primary_10_1108_HFF_05_2018_0193 crossref_primary_10_1007_s10973_018_7984_2 crossref_primary_10_1115_1_4045753 crossref_primary_10_1108_HFF_01_2019_0030 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_070 crossref_primary_10_5937_fmet2001082M crossref_primary_10_1007_s43153_022_00251_5 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119694 crossref_primary_10_1016_j_jppr_2018_07_009 crossref_primary_10_1016_j_pnucene_2022_104136 crossref_primary_10_1016_j_icheatmasstransfer_2019_104409 crossref_primary_10_1016_j_jtice_2015_09_012 crossref_primary_10_1108_HFF_05_2018_0189 crossref_primary_10_1016_j_applthermaleng_2016_03_015 crossref_primary_10_1016_j_molliq_2018_03_066 crossref_primary_10_1140_epjp_s13360_020_00226_w crossref_primary_10_1016_j_aej_2019_12_017 crossref_primary_10_1080_10407782_2013_851560 crossref_primary_10_1007_s42452_021_04157_8 crossref_primary_10_1007_s10973_018_7069_2 crossref_primary_10_1080_08927014_2017_1311326 crossref_primary_10_1016_j_asej_2016_02_010 crossref_primary_10_1016_j_icheatmasstransfer_2020_104777 crossref_primary_10_1016_j_molliq_2017_09_012 crossref_primary_10_1007_s10973_021_11072_y crossref_primary_10_1007_s40819_023_01602_7 crossref_primary_10_1177_0954406214563735 crossref_primary_10_1051_matecconf_202030701027 crossref_primary_10_3390_su13052590 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_071 crossref_primary_10_1007_s10973_020_09832_3 crossref_primary_10_1016_j_molliq_2017_11_177 crossref_primary_10_1016_j_physa_2019_122443 crossref_primary_10_1016_j_apt_2020_05_009 crossref_primary_10_1108_HFF_04_2018_0162 crossref_primary_10_1177_09544062211042652 crossref_primary_10_1063_1_4981911 crossref_primary_10_1016_j_molliq_2017_05_104 crossref_primary_10_1115_1_4044120 crossref_primary_10_1007_s10973_019_08617_7 crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_031 crossref_primary_10_1016_j_jmmm_2016_05_006 crossref_primary_10_1016_j_cjph_2017_09_011 crossref_primary_10_1016_j_cjph_2017_11_026 crossref_primary_10_1007_s40571_022_00531_4 crossref_primary_10_1016_j_physa_2016_11_107 crossref_primary_10_1016_j_rser_2014_08_040 crossref_primary_10_1016_j_ijmecsci_2017_03_007 crossref_primary_10_1016_j_csite_2022_102233 crossref_primary_10_1016_j_icheatmasstransfer_2019_104442 crossref_primary_10_1016_j_molliq_2018_03_006 crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_009 crossref_primary_10_2514_1_T5821 crossref_primary_10_1007_s10973_019_08019_9 crossref_primary_10_1016_j_molliq_2016_02_083 crossref_primary_10_1108_HFF_05_2020_0282 crossref_primary_10_1016_j_jtice_2016_08_033 crossref_primary_10_1142_S0129183119501055 crossref_primary_10_1007_s10973_018_7472_8 crossref_primary_10_1016_j_powtec_2017_12_030 crossref_primary_10_1007_s10973_020_10222_y crossref_primary_10_1063_5_0041574 crossref_primary_10_32604_cmc_2021_012471 crossref_primary_10_1007_s10973_022_11509_y crossref_primary_10_1016_j_ijmecsci_2020_106161 crossref_primary_10_1108_HFF_07_2019_0549 crossref_primary_10_1115_1_4039213 crossref_primary_10_1007_s10973_017_6918_8 crossref_primary_10_1007_s10973_019_08575_0 crossref_primary_10_1177_1687814019875284 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_084 crossref_primary_10_1016_j_aej_2022_07_057 crossref_primary_10_1016_j_molliq_2018_01_145 crossref_primary_10_1038_s41598_019_57062_x crossref_primary_10_1108_HFF_12_2021_0789 crossref_primary_10_1002_mma_6797 crossref_primary_10_1016_j_ijmecsci_2017_12_025 crossref_primary_10_1108_HFF_04_2019_0317 crossref_primary_10_1140_epjp_s13360_021_01320_3 crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_080 crossref_primary_10_1016_j_physa_2019_124087 crossref_primary_10_1016_j_jtice_2018_04_019 crossref_primary_10_3390_sym14020406 crossref_primary_10_1016_j_physa_2018_06_036 crossref_primary_10_1108_HFF_06_2019_0461 crossref_primary_10_1155_2021_6696748 crossref_primary_10_1016_j_icheatmasstransfer_2019_104449 crossref_primary_10_1007_s10973_023_12709_w crossref_primary_10_1016_j_enganabound_2023_05_007 crossref_primary_10_1080_17455030_2021_1896819 crossref_primary_10_1007_s10973_018_7473_7 crossref_primary_10_1016_j_molliq_2015_12_102 crossref_primary_10_1016_j_ijft_2023_100299 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_093 crossref_primary_10_1515_jnet_2022_0070 crossref_primary_10_18186_thermal_672297 crossref_primary_10_1002_htj_22549 crossref_primary_10_1007_s00521_020_04776_z crossref_primary_10_1016_j_ijthermalsci_2017_10_039 crossref_primary_10_3390_en15186615 crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_092 crossref_primary_10_1371_journal_pone_0126486 crossref_primary_10_1016_j_energy_2021_120952 crossref_primary_10_1108_HFF_02_2020_0093 crossref_primary_10_1115_1_4036203 crossref_primary_10_1007_s10973_019_08191_y crossref_primary_10_1080_10407782_2016_1230423 crossref_primary_10_1108_HFF_05_2018_0212 crossref_primary_10_1080_10407782_2017_1422632 crossref_primary_10_1016_j_ijmecsci_2019_105192 crossref_primary_10_1007_s42452_019_1927_9 crossref_primary_10_1088_1742_6596_662_1_012017 crossref_primary_10_1080_17455030_2022_2110331 crossref_primary_10_1007_s10973_021_10739_w crossref_primary_10_1016_j_cherd_2018_03_009 crossref_primary_10_1139_cjp_2016_0570 crossref_primary_10_1016_j_ijmecsci_2017_12_049 crossref_primary_10_1115_1_4034599 crossref_primary_10_1115_1_4039642 crossref_primary_10_1007_s10973_018_7455_9 crossref_primary_10_1016_j_jtice_2017_04_037 crossref_primary_10_1115_1_4037087 crossref_primary_10_1016_j_ijhydene_2022_08_079 crossref_primary_10_1140_epjp_s13360_024_04988_5 crossref_primary_10_1177_1687814020952217 crossref_primary_10_1007_s11012_017_0639_8 crossref_primary_10_1016_j_ijheatmasstransfer_2016_11_074 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_104 crossref_primary_10_1016_j_spmi_2016_10_062 crossref_primary_10_1108_HFF_02_2017_0061 crossref_primary_10_1016_j_jtice_2018_03_013 crossref_primary_10_1140_epjs_s11734_024_01111_8 crossref_primary_10_1007_s10973_019_08532_x crossref_primary_10_1080_10407782_2023_2233144 crossref_primary_10_3390_math10122044 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_015 crossref_primary_10_1115_1_4035973 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_046 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_078 crossref_primary_10_1080_10407782_2017_1337990 crossref_primary_10_1140_epjp_i2018_11878_2 crossref_primary_10_1140_epjst_e2019_900085_0 |
Cites_doi | 10.1016/S0017-9310(03)00156-X 10.1016/j.ijheatmasstransfer.2004.07.012 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.euromechflu.2011.11.004 10.1016/j.ijthermalsci.2011.06.005 10.1007/s11242-010-9601-0 10.1016/j.ijthermalsci.2011.12.018 10.1016/j.ijthermalsci.2011.08.019 10.1016/j.icheatmasstransfer.2007.11.004 10.1016/j.ijthermalsci.2011.05.008 10.1016/j.ijthermalsci.2006.06.010 10.1016/j.ijthermalsci.2011.04.003 10.1007/s00231-002-0382-z 10.1016/j.cap.2007.04.060 10.1016/j.ijheatfluidflow.2009.02.003 10.1063/1.1700493 10.1016/j.ijthermalsci.2010.02.013 10.1016/j.ijheatfluidflow.2009.02.001 10.1155/2012/435873 10.1080/08916159808946559 10.1016/j.ijthermalsci.2007.10.005 10.1016/j.ijthermalsci.2012.01.002 10.1016/j.icheatmasstransfer.2010.06.005 10.1016/j.ijheatmasstransfer.2010.09.053 10.1016/j.ijheatmasstransfer.2011.10.018 10.1080/15567265.2010.549931 10.1016/j.spmi.2011.01.002 10.1016/j.ijthermalsci.2006.08.003 10.1016/j.camwa.2011.02.001 10.1007/s11242-011-9743-8 10.1186/1556-276X-6-300 10.1016/j.ijheatfluidflow.2009.11.003 10.1016/j.icheatmasstransfer.2010.12.022 10.1016/j.ijheatmasstransfer.2009.07.024 10.1016/j.ijthermalsci.2010.07.006 10.1016/j.ijthermalsci.2009.09.002 10.1016/j.icheatmasstransfer.2011.11.002 10.1016/j.partic.2009.01.007 10.1016/j.ijheatmasstransfer.2009.02.006 10.1016/j.icheatmasstransfer.2010.06.004 10.1016/j.icheatmasstransfer.2007.02.005 10.1016/j.icheatmasstransfer.2010.10.001 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Masson SAS 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Masson SAS – notice: 2014 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1016/j.ijthermalsci.2012.12.002 |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences Physics |
EISSN | 1778-4166 |
EndPage | 151 |
ExternalDocumentID | 10_1016_j_ijthermalsci_2012_12_002 27165663 S1290072912003225 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- AALMO ABPIF ABPTK ADALY IPNFZ IQODW AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c391t-843ca20f3e9c6f799eb4ecd88ac83a8579a1a033d711f18edac85c93ed8e26d53 |
IEDL.DBID | AIKHN |
ISSN | 1290-0729 |
IngestDate | Thu Sep 26 18:45:57 EDT 2024 Fri Nov 25 01:09:41 EST 2022 Fri Feb 23 02:28:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conjugate heat transfer Cavity Triangular solid wall Darcy model Nanofluids Porous medium Nanoparticle Nanofluid Triangular shape Natural convection Boundary condition Cavity flow Modeling Heat source Porous medium flow Thick wall Numerical simulation Square section Heat transfer Finite difference method |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-843ca20f3e9c6f799eb4ecd88ac83a8579a1a033d711f18edac85c93ed8e26d53 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1016_j_ijthermalsci_2012_12_002 pascalfrancis_primary_27165663 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2012_12_002 |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of thermal sciences |
PublicationYear | 2013 |
Publisher | Elsevier Masson SAS Elsevier |
Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier |
References | Hajipour, Dehkordi (bib40) 2012; 55 Abu-Nada, Masoud, Oztop, Campo (bib22) 2010; 49 Gorla, Chamkha (bib37) 2011; 15 Kakaç, Pramuanjaroenkij (bib12) 2009; 52 Khanafer, Vafai, Lightstone (bib13) 2003; 46 Santra, Sen, Chakraborty (bib16) 2008; 47 Tiwari, Das (bib15) 2007; 50 Esmaeilpour, Abdollahzadeh (bib29) 2012; 52 Aminossadati, Ghasemi (bib26) 2011; 61 Khodadadi, Hosseinizadeh (bib14) 2007; 34 Sun, Pop (bib42) 2011; 50 Wen, Ding (bib6) 2004; 47 Saleh, Roslan, Hashim (bib27) 2011; 54 Nield, Kuznetsov (bib35) 2009; 52 Abu-Nada, Oztop (bib24) 2009; 30 Shahi, Mahmoudi, Talebi (bib33) 2011; 38 Cimpean, Pop (bib39) 2012; 55 Abu-Nada (bib20) 2011; 50 Saeid (bib45) 2007; 46 Ahmad, Pop (bib36) 2010; 37 Yu, Xie (bib2) 2012 Wang, Mujumdar (bib10) 2007; 46 Arefmanesh, Amini, Mahmoodia, Najafi (bib18) 2012; 33 Brinkman (bib43) 1952; 20 Choi, Eastman (bib3) 1995 Salari, Tabar, Tabar, Danesh (bib34) 2012; 62 Choi, Yoo, Oh (bib7) 2008; 8 Lin, Violi (bib23) 2010; 31 Mahmoodi (bib30) 2011; 50 Mahmoudi, Shahi, Raouf, Ghasemian (bib32) 2010; 37 Abu-Nada (bib19) 2009; 30 Abu-Nada, Chamkha (bib21) 2010; 49 Saleh, Saeid, Hashim, Mustafa (bib44) 2011; 88 Fedele, Colla, Bobbo, Barison, Agresti (bib9) 2011; 6 Oztop, Abu-Nada, Varol, Al-Salem (bib25) 2011; 49 Cheng (bib41) 2012; 39 Wen, Lin, Vafaei, Zhang (bib11) 2009; 7 Chamkha, Gorla, Ghodeswar (bib38) 2011; 86 Mahmoudi, Shahi, Raouf (bib31) 2011; 38 Pak, Cho (bib4) 1998; 11 Ho, Liu, Chang, Lin (bib8) 2010; 49 D. Singh, J. Toutbort, G. Chen, Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation, Annual Report, Argonne National Laboratory, 2006. Abu-Nada, Masoud, Hijazi (bib17) 2008; 35 Putra, Roetzel, Das (bib5) 2003; 39 Mahmoodi, Hashemi (bib28) 2012; 55 Abu-Nada (10.1016/j.ijthermalsci.2012.12.002_bib17) 2008; 35 Mahmoudi (10.1016/j.ijthermalsci.2012.12.002_bib32) 2010; 37 Shahi (10.1016/j.ijthermalsci.2012.12.002_bib33) 2011; 38 Saeid (10.1016/j.ijthermalsci.2012.12.002_bib45) 2007; 46 Gorla (10.1016/j.ijthermalsci.2012.12.002_bib37) 2011; 15 Sun (10.1016/j.ijthermalsci.2012.12.002_bib42) 2011; 50 Abu-Nada (10.1016/j.ijthermalsci.2012.12.002_bib21) 2010; 49 Lin (10.1016/j.ijthermalsci.2012.12.002_bib23) 2010; 31 Choi (10.1016/j.ijthermalsci.2012.12.002_bib3) 1995 Abu-Nada (10.1016/j.ijthermalsci.2012.12.002_bib24) 2009; 30 Aminossadati (10.1016/j.ijthermalsci.2012.12.002_bib26) 2011; 61 Pak (10.1016/j.ijthermalsci.2012.12.002_bib4) 1998; 11 Wang (10.1016/j.ijthermalsci.2012.12.002_bib10) 2007; 46 Salari (10.1016/j.ijthermalsci.2012.12.002_bib34) 2012; 62 Putra (10.1016/j.ijthermalsci.2012.12.002_bib5) 2003; 39 Hajipour (10.1016/j.ijthermalsci.2012.12.002_bib40) 2012; 55 Kakaç (10.1016/j.ijthermalsci.2012.12.002_bib12) 2009; 52 Nield (10.1016/j.ijthermalsci.2012.12.002_bib35) 2009; 52 Arefmanesh (10.1016/j.ijthermalsci.2012.12.002_bib18) 2012; 33 Saleh (10.1016/j.ijthermalsci.2012.12.002_bib27) 2011; 54 Cimpean (10.1016/j.ijthermalsci.2012.12.002_bib39) 2012; 55 Brinkman (10.1016/j.ijthermalsci.2012.12.002_bib43) 1952; 20 Yu (10.1016/j.ijthermalsci.2012.12.002_bib2) 2012 Khanafer (10.1016/j.ijthermalsci.2012.12.002_bib13) 2003; 46 Tiwari (10.1016/j.ijthermalsci.2012.12.002_bib15) 2007; 50 Mahmoodi (10.1016/j.ijthermalsci.2012.12.002_bib30) 2011; 50 10.1016/j.ijthermalsci.2012.12.002_bib1 Abu-Nada (10.1016/j.ijthermalsci.2012.12.002_bib19) 2009; 30 Oztop (10.1016/j.ijthermalsci.2012.12.002_bib25) 2011; 49 Chamkha (10.1016/j.ijthermalsci.2012.12.002_bib38) 2011; 86 Ahmad (10.1016/j.ijthermalsci.2012.12.002_bib36) 2010; 37 Wen (10.1016/j.ijthermalsci.2012.12.002_bib11) 2009; 7 Abu-Nada (10.1016/j.ijthermalsci.2012.12.002_bib20) 2011; 50 Abu-Nada (10.1016/j.ijthermalsci.2012.12.002_bib22) 2010; 49 Esmaeilpour (10.1016/j.ijthermalsci.2012.12.002_bib29) 2012; 52 Saleh (10.1016/j.ijthermalsci.2012.12.002_bib44) 2011; 88 Ho (10.1016/j.ijthermalsci.2012.12.002_bib8) 2010; 49 Cheng (10.1016/j.ijthermalsci.2012.12.002_bib41) 2012; 39 Santra (10.1016/j.ijthermalsci.2012.12.002_bib16) 2008; 47 Fedele (10.1016/j.ijthermalsci.2012.12.002_bib9) 2011; 6 Mahmoodi (10.1016/j.ijthermalsci.2012.12.002_bib28) 2012; 55 Choi (10.1016/j.ijthermalsci.2012.12.002_bib7) 2008; 8 Mahmoudi (10.1016/j.ijthermalsci.2012.12.002_bib31) 2011; 38 Wen (10.1016/j.ijthermalsci.2012.12.002_bib6) 2004; 47 Khodadadi (10.1016/j.ijthermalsci.2012.12.002_bib14) 2007; 34 |
References_xml | – volume: 11 start-page: 151 year: 1998 end-page: 170 ident: bib4 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp. Heat Transfer contributor: fullname: Cho – volume: 52 start-page: 127 year: 2012 end-page: 136 ident: bib29 article-title: Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls publication-title: Int. J. Therm. Sci. contributor: fullname: Abdollahzadeh – year: 1995 ident: bib3 article-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles contributor: fullname: Eastman – volume: 61 start-page: 1739 year: 2011 end-page: 2175 ident: bib26 article-title: Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid publication-title: Comput. Math. Appl. contributor: fullname: Ghasemi – volume: 62 start-page: 158 year: 2012 end-page: 177 ident: bib34 article-title: Mixed convection of nanofluid flows in a square lid-driven cavity heated partially from both the bottom and side walls publication-title: Numer. Heat Trans., Part A contributor: fullname: Danesh – volume: 46 start-page: 3639 year: 2003 end-page: 3653 ident: bib13 article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transfer contributor: fullname: Lightstone – volume: 47 start-page: 1113 year: 2008 end-page: 1122 ident: bib16 article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid publication-title: Int. J. Therm. Sci. contributor: fullname: Chakraborty – volume: 49 start-page: 479 year: 2010 end-page: 491 ident: bib22 article-title: Effect of nanofluid variable properties on natural convection in enclosures publication-title: Int. J. Therm. Sci. contributor: fullname: Campo – volume: 31 start-page: 236 year: 2010 end-page: 245 ident: bib23 article-title: Natural convection heat transfer of nanofluids in a vertical cavity: effects of non-uniform particle diameter and temperature on thermal conductivity publication-title: Int. J. Heat Fluid Flow contributor: fullname: Violi – volume: 37 start-page: 987 year: 2010 end-page: 991 ident: bib36 article-title: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Pop – volume: 86 start-page: 13 year: 2011 end-page: 22 ident: bib38 article-title: Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid publication-title: Transp. Porous Media contributor: fullname: Ghodeswar – volume: 55 start-page: 907 year: 2012 end-page: 914 ident: bib39 article-title: Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium publication-title: Int. J. Heat Mass Transfer contributor: fullname: Pop – volume: 55 start-page: 76 year: 2012 end-page: 89 ident: bib28 article-title: Numerical study of natural convection of a nanofluid in C-shaped enclosures publication-title: Int. J. Therm. Sci. contributor: fullname: Hashemi – volume: 37 start-page: 1135 year: 2010 end-page: 1141 ident: bib32 article-title: Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Ghasemian – volume: 55 start-page: 103 year: 2012 end-page: 113 ident: bib40 article-title: Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium publication-title: Int. J. Therm. Sci. contributor: fullname: Dehkordi – volume: 46 start-page: 1 year: 2007 end-page: 19 ident: bib10 article-title: Heat transfer characteristics of nanofluids: a review publication-title: Int. J. Therm. Sci. contributor: fullname: Mujumdar – volume: 50 start-page: 2141 year: 2011 end-page: 2153 ident: bib42 article-title: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall publication-title: Int. J. Thermal Sci. contributor: fullname: Pop – volume: 35 start-page: 657 year: 2008 end-page: 665 ident: bib17 article-title: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Hijazi – volume: 38 start-page: 119 year: 2011 end-page: 127 ident: bib31 article-title: Modeling of conjugated heat transfer in a thick walled enclosure filled with nanofluid publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Raouf – volume: 52 start-page: 5792 year: 2009 end-page: 5795 ident: bib35 article-title: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid publication-title: Int. J. Heat Mass Transfer contributor: fullname: Kuznetsov – volume: 15 start-page: 81 year: 2011 end-page: 94 ident: bib37 article-title: Natural convective boundary layer flow over a non isothermal vertical plate embedded in a porous medium saturated with a nanofluid publication-title: Nanosc. Microsc. Therm. contributor: fullname: Chamkha – volume: 47 start-page: 5181 year: 2004 end-page: 5188 ident: bib6 article-title: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions publication-title: Int. J. Heat Mass Transfer contributor: fullname: Ding – volume: 52 start-page: 3187 year: 2009 end-page: 3196 ident: bib12 article-title: Review of convective heat transfer enhancement with nanofluids publication-title: Int. J. Heat Mass Transfer contributor: fullname: Pramuanjaroenkij – volume: 34 start-page: 534 year: 2007 end-page: 543 ident: bib14 article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Hosseinizadeh – volume: 88 start-page: 357 year: 2011 end-page: 368 ident: bib44 article-title: Effect of conduction in bottom wall on Darcy–Bénard convection in a porous enclosure publication-title: Transp. Porous Media contributor: fullname: Mustafa – volume: 6 start-page: 1 year: 2011 end-page: 8 ident: bib9 article-title: Experimental stability analysis of different water based nanofluids publication-title: Nanoscale Res. Lett. contributor: fullname: Agresti – volume: 39 start-page: 775 year: 2003 end-page: 784 ident: bib5 article-title: Natural convection of nano-fluids publication-title: Heat Mass Transfer contributor: fullname: Das – volume: 20 start-page: 571 year: 1952 ident: bib43 article-title: The viscosity of concentrated suspensions and solutions publication-title: J. Chem. Phys. contributor: fullname: Brinkman – volume: 50 start-page: 1720 year: 2011 end-page: 1730 ident: bib20 article-title: Rayleigh–Bénard convection in nanofluids: effect of temperature dependent properties publication-title: Int. J. Therm. Sci. contributor: fullname: Abu-Nada – volume: 39 start-page: 231 year: 2012 end-page: 235 ident: bib41 article-title: Natural convection boundary layer flow over a truncated cone in a porous medium saturated by a nanofluid publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Cheng – volume: 49 start-page: 453 year: 2011 end-page: 467 ident: bib25 article-title: Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures publication-title: Superlattices Microstruct. contributor: fullname: Al-Salem – volume: 49 start-page: 1345 year: 2010 end-page: 1353 ident: bib8 article-title: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study publication-title: Int. J. Therm. Sci. contributor: fullname: Lin – volume: 33 start-page: 95 year: 2012 end-page: 104 ident: bib18 article-title: Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid publication-title: Eur. J. Mech. B/Fluids contributor: fullname: Najafi – volume: 30 start-page: 679 year: 2009 end-page: 690 ident: bib19 article-title: Effects of variable viscosity and thermal conductivity of Al publication-title: Int. J. Heat Fluid Flow contributor: fullname: Abu-Nada – volume: 50 start-page: 2161 year: 2011 end-page: 2175 ident: bib30 article-title: Numerical simulation of free convection of nanofluid in a square cavity with an inside heater publication-title: Int. J. Therm. Sci. contributor: fullname: Mahmoodi – volume: 8 start-page: 710 year: 2008 end-page: 712 ident: bib7 article-title: Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants publication-title: Curr. Appl. Phys. contributor: fullname: Oh – volume: 50 start-page: 2002 year: 2007 end-page: 2018 ident: bib15 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transfer contributor: fullname: Das – volume: 30 start-page: 669 year: 2009 end-page: 678 ident: bib24 article-title: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid publication-title: Int. J. Heat Fluid Flow contributor: fullname: Oztop – start-page: 1 year: 2012 end-page: 17 ident: bib2 article-title: A review on nanofluids: preparation, stability mechanisms, and applications publication-title: J. Nanomater contributor: fullname: Xie – volume: 7 start-page: 141 year: 2009 end-page: 150 ident: bib11 article-title: Review of nanofluids for heat transfer applications publication-title: Particuology contributor: fullname: Zhang – volume: 49 start-page: 2339 year: 2010 end-page: 2352 ident: bib21 article-title: Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-water nanofluid publication-title: Int. J. Therm. Sci. contributor: fullname: Chamkha – volume: 54 start-page: 194 year: 2011 end-page: 201 ident: bib27 article-title: Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure publication-title: Int. J. Heat Mass Transfer contributor: fullname: Hashim – volume: 38 start-page: 533 year: 2011 end-page: 542 ident: bib33 article-title: A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder publication-title: Int. Commun. Heat Mass Transfer contributor: fullname: Talebi – volume: 46 start-page: 531 year: 2007 end-page: 539 ident: bib45 article-title: Conjugate natural convection in a porous enclosure: effect of conduction in one of the vertical walls publication-title: Int. J. Thermal Sci. contributor: fullname: Saeid – volume: 46 start-page: 3639 year: 2003 ident: 10.1016/j.ijthermalsci.2012.12.002_bib13 article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(03)00156-X contributor: fullname: Khanafer – volume: 47 start-page: 5181 year: 2004 ident: 10.1016/j.ijthermalsci.2012.12.002_bib6 article-title: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.07.012 contributor: fullname: Wen – volume: 50 start-page: 2002 year: 2007 ident: 10.1016/j.ijthermalsci.2012.12.002_bib15 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.09.034 contributor: fullname: Tiwari – volume: 33 start-page: 95 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib18 article-title: Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid publication-title: Eur. J. Mech. B/Fluids doi: 10.1016/j.euromechflu.2011.11.004 contributor: fullname: Arefmanesh – volume: 50 start-page: 2141 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib42 article-title: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2011.06.005 contributor: fullname: Sun – volume: 86 start-page: 13 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib38 article-title: Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid publication-title: Transp. Porous Media doi: 10.1007/s11242-010-9601-0 contributor: fullname: Chamkha – volume: 55 start-page: 103 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib40 article-title: Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.12.018 contributor: fullname: Hajipour – volume: 52 start-page: 127 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib29 article-title: Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.08.019 contributor: fullname: Esmaeilpour – volume: 35 start-page: 657 year: 2008 ident: 10.1016/j.ijthermalsci.2012.12.002_bib17 article-title: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2007.11.004 contributor: fullname: Abu-Nada – volume: 50 start-page: 2161 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib30 article-title: Numerical simulation of free convection of nanofluid in a square cavity with an inside heater publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.05.008 contributor: fullname: Mahmoodi – volume: 46 start-page: 1 year: 2007 ident: 10.1016/j.ijthermalsci.2012.12.002_bib10 article-title: Heat transfer characteristics of nanofluids: a review publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.06.010 contributor: fullname: Wang – volume: 50 start-page: 1720 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib20 article-title: Rayleigh–Bénard convection in nanofluids: effect of temperature dependent properties publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.04.003 contributor: fullname: Abu-Nada – volume: 39 start-page: 775 year: 2003 ident: 10.1016/j.ijthermalsci.2012.12.002_bib5 article-title: Natural convection of nano-fluids publication-title: Heat Mass Transfer doi: 10.1007/s00231-002-0382-z contributor: fullname: Putra – volume: 8 start-page: 710 year: 2008 ident: 10.1016/j.ijthermalsci.2012.12.002_bib7 article-title: Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2007.04.060 contributor: fullname: Choi – volume: 30 start-page: 679 year: 2009 ident: 10.1016/j.ijthermalsci.2012.12.002_bib19 article-title: Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.02.003 contributor: fullname: Abu-Nada – volume: 20 start-page: 571 year: 1952 ident: 10.1016/j.ijthermalsci.2012.12.002_bib43 article-title: The viscosity of concentrated suspensions and solutions publication-title: J. Chem. Phys. doi: 10.1063/1.1700493 contributor: fullname: Brinkman – volume: 49 start-page: 1345 year: 2010 ident: 10.1016/j.ijthermalsci.2012.12.002_bib8 article-title: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.02.013 contributor: fullname: Ho – volume: 30 start-page: 669 year: 2009 ident: 10.1016/j.ijthermalsci.2012.12.002_bib24 article-title: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.02.001 contributor: fullname: Abu-Nada – start-page: 1 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib2 article-title: A review on nanofluids: preparation, stability mechanisms, and applications publication-title: J. Nanomater doi: 10.1155/2012/435873 contributor: fullname: Yu – volume: 11 start-page: 151 year: 1998 ident: 10.1016/j.ijthermalsci.2012.12.002_bib4 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp. Heat Transfer doi: 10.1080/08916159808946559 contributor: fullname: Pak – volume: 47 start-page: 1113 year: 2008 ident: 10.1016/j.ijthermalsci.2012.12.002_bib16 article-title: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2007.10.005 contributor: fullname: Santra – volume: 55 start-page: 76 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib28 article-title: Numerical study of natural convection of a nanofluid in C-shaped enclosures publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.01.002 contributor: fullname: Mahmoodi – year: 1995 ident: 10.1016/j.ijthermalsci.2012.12.002_bib3 contributor: fullname: Choi – volume: 37 start-page: 1135 year: 2010 ident: 10.1016/j.ijthermalsci.2012.12.002_bib32 article-title: Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.06.005 contributor: fullname: Mahmoudi – volume: 54 start-page: 194 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib27 article-title: Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.09.053 contributor: fullname: Saleh – volume: 55 start-page: 907 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib39 article-title: Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.10.018 contributor: fullname: Cimpean – volume: 15 start-page: 81 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib37 article-title: Natural convective boundary layer flow over a non isothermal vertical plate embedded in a porous medium saturated with a nanofluid publication-title: Nanosc. Microsc. Therm. doi: 10.1080/15567265.2010.549931 contributor: fullname: Gorla – volume: 49 start-page: 453 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib25 article-title: Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2011.01.002 contributor: fullname: Oztop – volume: 46 start-page: 531 year: 2007 ident: 10.1016/j.ijthermalsci.2012.12.002_bib45 article-title: Conjugate natural convection in a porous enclosure: effect of conduction in one of the vertical walls publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2006.08.003 contributor: fullname: Saeid – volume: 61 start-page: 1739 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib26 article-title: Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.02.001 contributor: fullname: Aminossadati – volume: 62 start-page: 158 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib34 article-title: Mixed convection of nanofluid flows in a square lid-driven cavity heated partially from both the bottom and side walls publication-title: Numer. Heat Trans., Part A contributor: fullname: Salari – volume: 88 start-page: 357 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib44 article-title: Effect of conduction in bottom wall on Darcy–Bénard convection in a porous enclosure publication-title: Transp. Porous Media doi: 10.1007/s11242-011-9743-8 contributor: fullname: Saleh – volume: 6 start-page: 1 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib9 article-title: Experimental stability analysis of different water based nanofluids publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-300 contributor: fullname: Fedele – volume: 31 start-page: 236 year: 2010 ident: 10.1016/j.ijthermalsci.2012.12.002_bib23 article-title: Natural convection heat transfer of nanofluids in a vertical cavity: effects of non-uniform particle diameter and temperature on thermal conductivity publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.11.003 contributor: fullname: Lin – volume: 38 start-page: 533 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib33 article-title: A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.12.022 contributor: fullname: Shahi – volume: 52 start-page: 5792 year: 2009 ident: 10.1016/j.ijthermalsci.2012.12.002_bib35 article-title: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.07.024 contributor: fullname: Nield – volume: 49 start-page: 2339 year: 2010 ident: 10.1016/j.ijthermalsci.2012.12.002_bib21 article-title: Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-water nanofluid publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.07.006 contributor: fullname: Abu-Nada – volume: 49 start-page: 479 year: 2010 ident: 10.1016/j.ijthermalsci.2012.12.002_bib22 article-title: Effect of nanofluid variable properties on natural convection in enclosures publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.09.002 contributor: fullname: Abu-Nada – volume: 39 start-page: 231 year: 2012 ident: 10.1016/j.ijthermalsci.2012.12.002_bib41 article-title: Natural convection boundary layer flow over a truncated cone in a porous medium saturated by a nanofluid publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.11.002 contributor: fullname: Cheng – volume: 7 start-page: 141 year: 2009 ident: 10.1016/j.ijthermalsci.2012.12.002_bib11 article-title: Review of nanofluids for heat transfer applications publication-title: Particuology doi: 10.1016/j.partic.2009.01.007 contributor: fullname: Wen – volume: 52 start-page: 3187 year: 2009 ident: 10.1016/j.ijthermalsci.2012.12.002_bib12 article-title: Review of convective heat transfer enhancement with nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.02.006 contributor: fullname: Kakaç – ident: 10.1016/j.ijthermalsci.2012.12.002_bib1 – volume: 37 start-page: 987 year: 2010 ident: 10.1016/j.ijthermalsci.2012.12.002_bib36 article-title: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.06.004 contributor: fullname: Ahmad – volume: 34 start-page: 534 year: 2007 ident: 10.1016/j.ijthermalsci.2012.12.002_bib14 article-title: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2007.02.005 contributor: fullname: Khodadadi – volume: 38 start-page: 119 year: 2011 ident: 10.1016/j.ijthermalsci.2012.12.002_bib31 article-title: Modeling of conjugated heat transfer in a thick walled enclosure filled with nanofluid publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.10.001 contributor: fullname: Mahmoudi |
SSID | ssj0007909 |
Score | 2.4983974 |
Snippet | The conjugate natural convection–conduction heat transfer in a square domain composed of nanofluids filled porous cavity heated by a triangular solid wall is... |
SourceID | crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 135 |
SubjectTerms | Applied sciences Cavity Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Conjugate heat transfer Darcy model Energy Energy. Thermal use of fuels Exact sciences and technology Flows through porous media Fluid dynamics Fundamental areas of phenomenology (including applications) General and physical chemistry Heat transfer Nanofluids Nonhomogeneous flows Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Porous medium Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Triangular solid wall |
Title | Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall |
URI | https://dx.doi.org/10.1016/j.ijthermalsci.2012.12.002 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH60yWWjjK7rWLs26LCrm9hSLOmwQwkraQu5bIXejKwfxVmmhDSh9NK_ve85dkmhh0HBF1t6yHwSn54en94D-KGENTwvB4kUQSbCBZdoayS-SuxvSzxx1ALZST6-EVe3w9sdGLV3YUhW2XD_htNrtm6-9Bs0-4uq6v-mCArlvU5JX4XLche6uB0J0YHu-eX1ePJCyFLXSg_qn5BBm3u0lnlVU3K0_uFc24qUXlkdHWyiLG_sU3sLc4_ohU3Zi6296GIfPjVOJDvf_Odn2PHxAD5upRb8AnejeZyuKUbGiG7ZqnZQ_ZJVkRmGTjee-Jk1VDmCBboP6BiFZFk0cR5m68rdMxNdbYtN5SMaUYGPSJXrl4xE8n_Zg5nNDuHm4tef0Thpiioklut0lSjBrckGgXtt8yC19qXw1illrOJGDaU2qRlw7mSahlR5h9-HVnPvlM9yN-RfoRPn0X8Dhi3C2VSHvORIBdqgSZkHLwbWBa7yI-AthMVikzujaEVl02Ib-IKAL_BB4I_gZ4t28WolFEjy_2XfezVFL0NnkjIN5fz4nQN8hw9ZXRODVI8n0Fkt1_4UPZNV2YPds6e016y_Zz_N5y4 |
link.rule.ids | 315,786,790,4521,24144,27955,27956,45618,45712 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaWclgQWgELorAPH7hmm8RJbB84oIpVgW4vtFJvkeMHSre4VR9a7YXfzoybQCvtYSWkXGLPyNZnazwefZ4h5KPItGJFFUc8czzKjDOR1IrDLwd5XcGNIxBkR8Vgkn2b5tMj0m_fwiCtsrH9O5serHXT0mvQ7C3ruvcDIyiY9zpBfhVsyyfkKXoDyOu6-v2P58Fl4HmgdITibebRQPKqZ-hm_YKV1jXyvNIQG2xiLA-cUi-Wag3YuV3Ri72T6PolOWlcSPp5N8tX5Mj61-T5XmLBU_Kzv_CzLUbIKBpbugnuqV3R2lNFweWG-z7VCutGUIevAQ3FgCz1yi_cfFubNVXeBF3oqu5BCct7eKxbv6JIkb-ld2o-f0Mm11_G_UHUlFSINJPJJhIZ0yqNHbNSF45LaavMaiOE0oIpkXOpEhUzZniSuERYA-25lswaYdPC5Owt6fiFt-8IhZ7M6ES6omJgCKQClapwNou1cUwUXcJaCMvlLnNG2VLKZuU-8CUCX8IHwHfJpxbt8mAflGDiH6V_cbBEf4dOOeYZKtj7_xzgkhwPxjfDcvh19P0DeZaG6hjIfzwjnc1qa8_BR9lUF2EP_gFTS-gD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conjugate+heat+transfer+in+a+porous+cavity+filled+with+nanofluids+and+heated+by+a+triangular+thick+wall&rft.jtitle=International+journal+of+thermal+sciences&rft.au=CHAMKHA%2C+Ali+J&rft.au=ISMAEL%2C+Muneer+A&rft.date=2013-05-01&rft.pub=Elsevier&rft.issn=1290-0729&rft.eissn=1778-4166&rft.volume=67&rft.spage=135&rft.epage=151&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2012.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=27165663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |