Amperometric sensor for the detection of hydrogen stable isotopes based on Pt nanoparticles confined within single-walled carbon nanotubes (SWNTs)

The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic pr...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 356; p. 131344
Main Authors Hu, Jiacheng, Sang, Ge, Zeng, Ning, Lv, Chao, Xu, Cigang
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.04.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic properties of SWNTs and space-confined effect of Pt catalyst have been investigated for detecting H2 and D2. The Pt-SWNT-in electrode shows an excellent linear response in a wide range of 160–8000 ppm hydrogen in N2 atmosphere with the correlation coefficient of 0.9993, and compared to the electrode with Pt nanoparticles supported outside of SWNTs, its sensitivity per Pt loading is 3 times, moreover, it gives larger response current for detection of H2 in air and D2 in N2 atmosphere. Additionally, the Pt-SWNT-in electrode provides a response current to deuterium 0.9 times that to hydrogen in N2. The results present the Pt-SWNT-in electrode with superior sensitivity, selectivity, stability and a response variation for detection of hydrogen and deuterium, which would take advantage of the space-confined effect of SWNTs on Pt catalysts to enhance the sensor performance for detecting hydrogen stable isotopes, and provide an approach to discriminate between hydrogen and deuterium. •Space-confined Pt nanoparticles in SWNTs combine good properties of SWNTs and Pt.•The confinement of Pt in SWNTs enhances sensitivity and response to H2 and D2.•The confinement of Pt in SWNTs enhances selectivity and stability.•Sensor response variation of H2 and D2 allows to discriminate between H2 and D2.
AbstractList The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic properties of SWNTs and space-confined effect of Pt catalyst have been investigated for detecting H2 and D2. The Pt-SWNT-in electrode shows an excellent linear response in a wide range of 160–8000 ppm hydrogen in N2 atmosphere with the correlation coefficient of 0.9993, and compared to the electrode with Pt nanoparticles supported outside of SWNTs, its sensitivity per Pt loading is 3 times, moreover, it gives larger response current for detection of H2 in air and D2 in N2 atmosphere. Additionally, the Pt-SWNT-in electrode provides a response current to deuterium 0.9 times that to hydrogen in N2. The results present the Pt-SWNT-in electrode with superior sensitivity, selectivity, stability and a response variation for detection of hydrogen and deuterium, which would take advantage of the space-confined effect of SWNTs on Pt catalysts to enhance the sensor performance for detecting hydrogen stable isotopes, and provide an approach to discriminate between hydrogen and deuterium.
The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic properties of SWNTs and space-confined effect of Pt catalyst have been investigated for detecting H2 and D2. The Pt-SWNT-in electrode shows an excellent linear response in a wide range of 160–8000 ppm hydrogen in N2 atmosphere with the correlation coefficient of 0.9993, and compared to the electrode with Pt nanoparticles supported outside of SWNTs, its sensitivity per Pt loading is 3 times, moreover, it gives larger response current for detection of H2 in air and D2 in N2 atmosphere. Additionally, the Pt-SWNT-in electrode provides a response current to deuterium 0.9 times that to hydrogen in N2. The results present the Pt-SWNT-in electrode with superior sensitivity, selectivity, stability and a response variation for detection of hydrogen and deuterium, which would take advantage of the space-confined effect of SWNTs on Pt catalysts to enhance the sensor performance for detecting hydrogen stable isotopes, and provide an approach to discriminate between hydrogen and deuterium. •Space-confined Pt nanoparticles in SWNTs combine good properties of SWNTs and Pt.•The confinement of Pt in SWNTs enhances sensitivity and response to H2 and D2.•The confinement of Pt in SWNTs enhances selectivity and stability.•Sensor response variation of H2 and D2 allows to discriminate between H2 and D2.
ArticleNumber 131344
Author Hu, Jiacheng
Lv, Chao
Sang, Ge
Zeng, Ning
Xu, Cigang
Author_xml – sequence: 1
  givenname: Jiacheng
  surname: Hu
  fullname: Hu, Jiacheng
– sequence: 2
  givenname: Ge
  surname: Sang
  fullname: Sang, Ge
  email: angelsg@163.com
– sequence: 3
  givenname: Ning
  surname: Zeng
  fullname: Zeng, Ning
– sequence: 4
  givenname: Chao
  surname: Lv
  fullname: Lv, Chao
– sequence: 5
  givenname: Cigang
  surname: Xu
  fullname: Xu, Cigang
  email: georgercgxu@qq.com
BookMark eNp9kU2LFDEQhoOs4OzqD_AW8KKHHqs6ne5pPC2LHwuLCq54DPmo3snQk7RJxmX_hr_YDONpD3sIgdT7pKh6ztlZiIEYe42wRsD-_W6dg1m30OIaBYque8ZWuBlEI2AYztgKxlY2HYB8wc5z3gFAJ3pYsb-X-4VS3FNJ3vJMIcfEp3rKlrijQrb4GHic-PbBpXhHgeeizUzc51jiQpkbncnxGvpeeNAhLjoVb-dasTFMPtTivS9bX0kf7mZq7vU810erk6nUESkHU-Nvf_z6epvfvWTPJz1nevX_vmA_P328vfrS3Hz7fH11edNYMWJpBuc0OtO6FkfZ600nWoN2GI3sho2Q0jkzWmfICY3WCAInUeKI0iK4rtuIC_bm9O-S4u8D5aJ28ZBCbanavh_aHkBATQ2nlE0x50STsr7o41JK0n5WCOooQO1UFaCOAtRJQCXxEbkkv9fp4Unmw4mhOvgfT0ll6ylYcj5VFcpF_wT9D8ugooQ
CitedBy_id crossref_primary_10_1109_LSENS_2023_3272779
crossref_primary_10_3390_chemosensors10090363
crossref_primary_10_3390_s24206637
crossref_primary_10_1016_j_ijhydene_2025_02_067
crossref_primary_10_1016_j_ijhydene_2023_02_033
crossref_primary_10_1149_1945_7111_ad22d8
crossref_primary_10_1002_adsr_202200057
crossref_primary_10_1002_cnma_202200355
crossref_primary_10_1039_D4RA08446B
crossref_primary_10_1016_S1872_5805_23_60749_8
crossref_primary_10_1007_s10854_023_10386_x
crossref_primary_10_1016_j_ijhydene_2023_12_153
crossref_primary_10_1109_JSEN_2022_3221114
crossref_primary_10_1109_JSEN_2024_3374354
Cites_doi 10.1016/j.jelechem.2018.11.038
10.1126/science.274.5294.1897
10.1016/j.snb.2020.129194
10.1002/bkcs.10585
10.1021/ac1004426
10.1038/srep15033
10.1016/j.electacta.2006.03.113
10.1021/jp1086703
10.1016/j.ijhydene.2009.10.064
10.1016/j.molcata.2007.07.003
10.1021/j100795a015
10.1016/j.ijhydene.2015.02.120
10.1016/j.snb.2004.09.042
10.1016/j.snb.2010.11.045
10.1021/ja056721l
10.1002/cctc.201300527
10.1016/j.snb.2014.11.005
10.1080/18811248.2002.9715205
10.1021/i260044a003
10.1039/a707632k
10.1021/jp063166g
10.1002/adma.200701466
10.1016/j.ijhydene.2010.08.009
10.1016/j.carbon.2003.09.015
10.1039/C5CC07079A
10.1016/0039-6028(82)90124-8
10.1016/j.elecom.2005.07.015
10.1016/j.jpowsour.2020.228607
10.1126/science.261.5128.1545
10.1039/b811560e
10.1021/ac991213d
10.1039/D0CY00960A
10.3390/s17061417
10.1016/j.snb.2020.128678
10.1021/acssensors.7b00620
10.1016/j.ijhydene.2020.12.193
10.1039/b9nr00015a
10.1155/2009/493904
10.1166/jnn.2013.7261
10.1081/SS-120022595
10.1016/S0167-2738(03)00212-1
10.1002/anie.201006870
10.1021/ma60015a020
10.1021/cr0681039
10.1002/anie.201406812
10.1016/j.snb.2011.04.070
10.1016/j.ijhydene.2014.03.251
10.1149/1.1509462
10.1149/2.0981501jes
10.1016/j.snb.2010.11.004
10.1021/cr800339k
10.1021/acsnano.8b07700
10.1016/j.snb.2016.06.058
10.3390/s100504430
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Apr 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Apr 1, 2022
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2021.131344
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2021_131344
S0925400521019122
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c391t-7dda1db2d21956a8432b1c79b5478355ddb9cdbed3a1cb3e0d5151915c10d4483
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 06:02:23 EDT 2025
Thu Apr 24 23:06:06 EDT 2025
Tue Jul 01 01:28:01 EDT 2025
Fri Feb 23 02:41:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Space-confined effect
Electrochemical sensor
SWNT-filled Pt composite
Amperometric gas sensor
Hydrogen stable isotope
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-7dda1db2d21956a8432b1c79b5478355ddb9cdbed3a1cb3e0d5151915c10d4483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2667260030
PQPubID 2047454
ParticipantIDs proquest_journals_2667260030
crossref_citationtrail_10_1016_j_snb_2021_131344
crossref_primary_10_1016_j_snb_2021_131344
elsevier_sciencedirect_doi_10_1016_j_snb_2021_131344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Rashid, Bui, Hoang, Seong, Lim, Kim (bib11) 2015; 36
Rashid, Hussain, Shoaib, Basit, Khan, Kim (bib9) 2019; 833
Ono, Yuan, Heinrich, Cuenya (bib31) 2010; 114
Kaniyoor, Jafri, Arockiadoss, Ramaprabhu (bib3) 2009; 1
Angiola, Rutherglen, Galatsis, Martucci (bib5) 2016; 236
Korotcenkov, Han, Stetter (bib26) 2009; 109
Jauhar, Ma, Xiao, Jiang, Sy, Li, Yu, Chen (bib41) 2020; 473
Durst, Simon, Hasché, Gasteiger (bib42) 2015; 162
Lischka, Mosch, Groß (bib37) 2007; 52
La, Kim, Jun, Jung, Seong, Choo, Kim (bib10) 2011; 155
Chao, Yao, Buttner, Stetter (bib39) 2005; 106
Gao, Zhang, Chen, Pan, Yan, Wu, Yuan, Song (bib30) 2004; 42
(Accessed 1 November 2021).
Ahmad Fauzi, Hamidah, Sato, Shintani, Putri, Kitamura, Hatakeyama, Quitain, Kida (bib53) 2020; 323
Wang, Yeow (bib8) 2009; 2009
Haddon (bib18) 1993; 261
Stetter, Li (bib6) 2008; 108
.
Zheng, Li, Deng, Li, Ding, Nie, Wei (bib38) 2020; 10
Marcu, Viespe (bib15) 2017; 17
Wang, Guo, Pan, Chen, Bao (bib22) 2008; 18
Chen, Guan, Li, Yang, Li (bib20) 2011; 50
Liu, Hwang, Tzeng (bib2) 2002; 149
Trang Nguyen, Serp (bib28) 2013; 5
Wang, Lu, Li, Li (bib23) 2015; 51
Baldizzone, Mezzavilla, Carvalho, Meier, Schuppert, Heggen, Galeano, Grunwaldt, Schüth, Mayrhofer (bib35) 2014; 53
Lee, Hwang, Cha, Lee, Lee, Pak, Lee, Ju (bib4) 2011; 153
Rashid, Jun, Jung, Kim (bib12) 2015; 208
Palmisano, Boon-Brett, Bonato, Harskamp, Buttner, Post, Burgess, Rivkin (bib47) 2014; 39
Orme, Stone, Benson, Peterson (bib51) 2003; 38
Pasternak, Christensen, Heller (bib50) 1970; 3
Sloan, Hammer, Zwiefka-Sibley, Green, Sloan (bib27) 1998
European Commission , Joint Research Centre. Institute for Environment and Sustainability., Dutch Metrology Institute., Universitaet des Saarlandes., Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds., Publications Office, LU, 2015.
L. Xing, F. Du, J.-J. Liang, Y.-S. Chen, Q.-L. Zhou, Preparation of Pt/SWNTs for Heterogeneous Asymmetric Hydrogenation of Ethyl Pyruvate, 2007, 7.
Rashid, Jun, Kim (bib25) 2013; 13
Wu, Chen, Xu (bib33) 2005; 7
McCandless (bib52) 1972; 11
Hübert, Boon-Brett, Black, Banach (bib1) 2011; 157
Tian, Jiang, Zhao, Shi, Zhang, Deng, Zhang (bib44) 2021; 329
Steininger, Lehwald, Ibach (bib36) 1982; 123
Romero, Ahumada, Garay, Baruzzi (bib54) 2010; 82
Shiozawa, Briones-Leon, Domanov, Zechner, Sato, Suenaga, Saito, Eisterer, Weschke, Lang, Peterlik, Pichler (bib24) 2015; 5
Boon-Brett, Bousek, Black, Moretto, Castello, Hübert, Banach (bib45) 2010; 35
Chen, Pan, Willinger, Su, Bao (bib19) 2006; 128
Matsumoto, Hayashi, Iwahara (bib14) 2002; 39
Hu, Xiong, Hou, Weng, Luo, Yang (bib32) 2010; 35
Voiry, Chhowalla, Gogotsi, Kotov, Li, Penner, Schaak, Weiss (bib40) 2018; 12
Matsumoto (bib17) 2003; 161
Shiozawa, Pichler, Grüneis, Pfeiffer, Kuzmany, Liu, Suenaga, Kataura (bib21) 2008; 20
Helm, Jalukse, Leito (bib48) 2010; 10
Virji, Kaner, Weiller (bib16) 2006; 110
Bard, Faulkner (bib43) 2001
Palmisano, Weidner, Boon-Brett, Bonato, Harskamp, Moretto, Post, Burgess, Rivkin, Buttner (bib49) 2015; 40
Iordache, Ionete, Iordache, Tanasa, Stamatin, Ana Grigorescu (bib13) 2021; 46
Lewis, Ruetschi (bib56) 1963; 67
Baron, Saffell (bib7) 2017; 2
Ugarte, Châtelain, de Heer (bib34) 1996; 274
Cui, Kim, Choi, Nam, Cha, Paeng (bib55) 2000; 72
Kaniyoor (10.1016/j.snb.2021.131344_bib3) 2009; 1
Matsumoto (10.1016/j.snb.2021.131344_bib14) 2002; 39
Pasternak (10.1016/j.snb.2021.131344_bib50) 1970; 3
Hu (10.1016/j.snb.2021.131344_bib32) 2010; 35
Tian (10.1016/j.snb.2021.131344_bib44) 2021; 329
Rashid (10.1016/j.snb.2021.131344_bib9) 2019; 833
Ono (10.1016/j.snb.2021.131344_bib31) 2010; 114
Baldizzone (10.1016/j.snb.2021.131344_bib35) 2014; 53
Palmisano (10.1016/j.snb.2021.131344_bib49) 2015; 40
Trang Nguyen (10.1016/j.snb.2021.131344_bib28) 2013; 5
Wu (10.1016/j.snb.2021.131344_bib33) 2005; 7
Gao (10.1016/j.snb.2021.131344_bib30) 2004; 42
Boon-Brett (10.1016/j.snb.2021.131344_bib45) 2010; 35
10.1016/j.snb.2021.131344_bib29
Cui (10.1016/j.snb.2021.131344_bib55) 2000; 72
Lee (10.1016/j.snb.2021.131344_bib4) 2011; 153
Ugarte (10.1016/j.snb.2021.131344_bib34) 1996; 274
Jauhar (10.1016/j.snb.2021.131344_bib41) 2020; 473
McCandless (10.1016/j.snb.2021.131344_bib52) 1972; 11
Ahmad Fauzi (10.1016/j.snb.2021.131344_bib53) 2020; 323
Voiry (10.1016/j.snb.2021.131344_bib40) 2018; 12
Liu (10.1016/j.snb.2021.131344_bib2) 2002; 149
Angiola (10.1016/j.snb.2021.131344_bib5) 2016; 236
La (10.1016/j.snb.2021.131344_bib10) 2011; 155
Virji (10.1016/j.snb.2021.131344_bib16) 2006; 110
Helm (10.1016/j.snb.2021.131344_bib48) 2010; 10
Rashid (10.1016/j.snb.2021.131344_bib12) 2015; 208
Chen (10.1016/j.snb.2021.131344_bib19) 2006; 128
Stetter (10.1016/j.snb.2021.131344_bib6) 2008; 108
Hübert (10.1016/j.snb.2021.131344_bib1) 2011; 157
Wang (10.1016/j.snb.2021.131344_bib23) 2015; 51
10.1016/j.snb.2021.131344_bib46
Durst (10.1016/j.snb.2021.131344_bib42) 2015; 162
Rashid (10.1016/j.snb.2021.131344_bib11) 2015; 36
Rashid (10.1016/j.snb.2021.131344_bib25) 2013; 13
Orme (10.1016/j.snb.2021.131344_bib51) 2003; 38
Marcu (10.1016/j.snb.2021.131344_bib15) 2017; 17
Sloan (10.1016/j.snb.2021.131344_bib27) 1998
Zheng (10.1016/j.snb.2021.131344_bib38) 2020; 10
Iordache (10.1016/j.snb.2021.131344_bib13) 2021; 46
Lischka (10.1016/j.snb.2021.131344_bib37) 2007; 52
Chen (10.1016/j.snb.2021.131344_bib20) 2011; 50
Wang (10.1016/j.snb.2021.131344_bib22) 2008; 18
Romero (10.1016/j.snb.2021.131344_bib54) 2010; 82
Wang (10.1016/j.snb.2021.131344_bib8) 2009; 2009
Lewis (10.1016/j.snb.2021.131344_bib56) 1963; 67
Haddon (10.1016/j.snb.2021.131344_bib18) 1993; 261
Baron (10.1016/j.snb.2021.131344_bib7) 2017; 2
Korotcenkov (10.1016/j.snb.2021.131344_bib26) 2009; 109
Palmisano (10.1016/j.snb.2021.131344_bib47) 2014; 39
Shiozawa (10.1016/j.snb.2021.131344_bib21) 2008; 20
Chao (10.1016/j.snb.2021.131344_bib39) 2005; 106
Shiozawa (10.1016/j.snb.2021.131344_bib24) 2015; 5
Steininger (10.1016/j.snb.2021.131344_bib36) 1982; 123
Matsumoto (10.1016/j.snb.2021.131344_bib17) 2003; 161
Bard (10.1016/j.snb.2021.131344_bib43) 2001
References_xml – volume: 52
  start-page: 2219
  year: 2007
  end-page: 2228
  ident: bib37
  article-title: Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers
  publication-title: Electrochim. Acta
– volume: 208
  start-page: 7
  year: 2015
  end-page: 13
  ident: bib12
  article-title: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells
  publication-title: Sens. Actuators B Chem.
– volume: 149
  start-page: H173
  year: 2002
  ident: bib2
  article-title: Solid-state amperometric hydrogen sensor using Pt/C/Nafion composite electrodes prepared by a hot-pressed method
  publication-title: J. Electrochem. Soc.
– volume: 833
  start-page: 173
  year: 2019
  end-page: 180
  ident: bib9
  article-title: An amperometric hydrogen sensor based on Pt nanoparticles supported multi-wall carbon nanotubes
  publication-title: J. Electroanal. Chem.
– volume: 72
  start-page: 1925
  year: 2000
  end-page: 1929
  ident: bib55
  article-title: A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent
  publication-title: Anal. Chem.
– volume: 236
  start-page: 1098
  year: 2016
  end-page: 1103
  ident: bib5
  article-title: Transparent carbon nanotube film as sensitive material for surface plasmon resonance based optical sensors
  publication-title: Sens. Actuators B Chem.
– volume: 3
  start-page: 366
  year: 1970
  end-page: 371
  ident: bib50
  article-title: Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene
  publication-title: Macromolecules
– reference: L. Xing, F. Du, J.-J. Liang, Y.-S. Chen, Q.-L. Zhou, Preparation of Pt/SWNTs for Heterogeneous Asymmetric Hydrogenation of Ethyl Pyruvate, 2007, 7.
– volume: 109
  start-page: 1402
  year: 2009
  end-page: 1433
  ident: bib26
  article-title: Review of electrochemical hydrogen sensors
  publication-title: Chem. Rev.
– volume: 153
  start-page: 392
  year: 2011
  end-page: 397
  ident: bib4
  article-title: Micromachined catalytic combustible hydrogen gas sensor
  publication-title: Sens. Actuators B Chem.
– volume: 123
  start-page: 1
  year: 1982
  end-page: 17
  ident: bib36
  article-title: Adsorption of oxygen on Pt(111)
  publication-title: Surf. Sci.
– volume: 2
  start-page: 1553
  year: 2017
  end-page: 1566
  ident: bib7
  article-title: Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: a review
  publication-title: ACS Sens.
– volume: 5
  start-page: 3595
  year: 2013
  end-page: 3603
  ident: bib28
  article-title: Confinement of metal nanoparticles in carbon nanotubes
  publication-title: ChemCatChem
– volume: 18
  start-page: 5782
  year: 2008
  end-page: 5786
  ident: bib22
  article-title: Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels
  publication-title: J. Mater. Chem.
– volume: 161
  start-page: 93
  year: 2003
  end-page: 103
  ident: bib17
  article-title: Electrochemical hydrogen isotope sensing via the high-temperature proton conductor CaZr0.90In0.10O3−α
  publication-title: Solid State Ion.
– volume: 46
  start-page: 11015
  year: 2021
  end-page: 11024
  ident: bib13
  article-title: Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing - application as gas sensor
  publication-title: Int. J. Hydrog. Energy
– volume: 5
  start-page: 15033
  year: 2015
  ident: bib24
  article-title: Nickel clusters embedded in carbon nanotubes as high performance magnets
  publication-title: Sci. Rep.
– volume: 274
  start-page: 1897
  year: 1996
  end-page: 1899
  ident: bib34
  article-title: Nanocapillarity and chemistry in carbon nanotubes
  publication-title: Science
– volume: 10
  start-page: 4430
  year: 2010
  end-page: 4455
  ident: bib48
  article-title: Measurement uncertainty estimation in amperometric sensors: a tutorial review
  publication-title: Sensors
– volume: 17
  start-page: 1417
  year: 2017
  ident: bib15
  article-title: Surface acoustic wave sensors for hydrogen and deuterium detection
  publication-title: Sensors
– volume: 13
  start-page: 3627
  year: 2013
  end-page: 3633
  ident: bib25
  article-title: Material properties of the Pt electrode deposited on nafion membrane by the impregnation–reduction method
  publication-title: J. Nanosci. Nanotechnol.
– volume: 20
  start-page: 1443
  year: 2008
  end-page: 1449
  ident: bib21
  article-title: A catalytic reaction inside a single-walled carbon nanotube
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4743
  year: 2020
  end-page: 4751
  ident: bib38
  article-title: Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations
  publication-title: Catal. Sci. Technol.
– volume: 12
  start-page: 9635
  year: 2018
  end-page: 9638
  ident: bib40
  article-title: Best practices for reporting electrocatalytic performance of nanomaterials
  publication-title: ACS Nano
– volume: 110
  start-page: 22266
  year: 2006
  end-page: 22270
  ident: bib16
  article-title: Hydrogen sensors based on conductivity changes in polyaniline nanofibers †
  publication-title: J. Phys. Chem. B.
– reference: European Commission , Joint Research Centre. Institute for Environment and Sustainability., Dutch Metrology Institute., Universitaet des Saarlandes., Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds., Publications Office, LU, 2015.
– volume: 11
  start-page: 470
  year: 1972
  end-page: 478
  ident: bib52
  article-title: Separation of binary mixtures of CO and H2 by permeation through polymeric films
  publication-title: Ind. Eng. Chem. Proc. Des. Dev.
– volume: 39
  start-page: 20491
  year: 2014
  end-page: 20496
  ident: bib47
  article-title: Evaluation of selectivity of commercial hydrogen sensors
  publication-title: Int. J. Hydrog. Energy
– volume: 36
  start-page: 2940
  year: 2015
  end-page: 2943
  ident: bib11
  article-title: Hollow Pt nanostructure-decorated MWNT electrode for amperometric hydrogen detection
  publication-title: Bull. Korean Chem. Soc.
– volume: 51
  start-page: 17615
  year: 2015
  end-page: 17618
  ident: bib23
  article-title: A remarkable difference in CO 2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes
  publication-title: Chem. Commun.
– volume: 42
  start-page: 47
  year: 2004
  end-page: 52
  ident: bib30
  article-title: Carbon nanotubes filled with metallic nanowires
  publication-title: Carbon
– volume: 1
  start-page: 382
  year: 2009
  end-page: 386
  ident: bib3
  article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor
  publication-title: Nanoscale
– volume: 323
  year: 2020
  ident: bib53
  article-title: Carbon-based potentiometric hydrogen sensor using a proton conducting graphene oxide membrane coupled with a WO3 sensing electrode
  publication-title: Sens. Actuators B Chem.
– volume: 108
  start-page: 352
  year: 2008
  end-page: 366
  ident: bib6
  article-title: Amperometric gas sensors A review
  publication-title: Chem. Rev.
– volume: 50
  start-page: 4913
  year: 2011
  end-page: 4917
  ident: bib20
  article-title: Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1237
  year: 2005
  end-page: 1243
  ident: bib33
  article-title: Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation
  publication-title: Electrochem. Commun.
– volume: 40
  start-page: 11740
  year: 2015
  end-page: 11747
  ident: bib49
  article-title: Selectivity and resistance to poisons of commercial hydrogen sensors
  publication-title: Int. J. Hydrog. Energy
– volume: 35
  start-page: 373
  year: 2010
  end-page: 384
  ident: bib45
  article-title: Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications
  publication-title: Int. J. Hydrog. Energy
– volume: 261
  start-page: 1545
  year: 1993
  end-page: 1550
  ident: bib18
  article-title: Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules
  publication-title: Science
– reference: (Accessed 1 November 2021).
– volume: 162
  start-page: F190
  year: 2015
  end-page: F203
  ident: bib42
  article-title: Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media
  publication-title: J. Electrochem. Soc.
– volume: 53
  start-page: 14250
  year: 2014
  end-page: 14254
  ident: bib35
  article-title: Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 157
  start-page: 329
  year: 2011
  end-page: 352
  ident: bib1
  article-title: Hydrogen sensors – a review
  publication-title: Sens. Actuators B Chem.
– volume: 329
  year: 2021
  ident: bib44
  article-title: A ppb-level hydrogen sensor based on activated Pd nanoparticles loaded on oxidized nickel foam
  publication-title: Sens. Actuators B Chem.
– volume: 38
  start-page: 3225
  year: 2003
  end-page: 3238
  ident: bib51
  article-title: Testing of polymer membranes for the selective permeability of hydrogen
  publication-title: Sep. Sci. Technol.
– volume: 67
  start-page: 65
  year: 1963
  end-page: 68
  ident: bib56
  article-title: The oxidation of hydrogen and deuterium on a rotating disk electrode
  publication-title: J. Phys. Chem.
– volume: 473
  year: 2020
  ident: bib41
  article-title: Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability
  publication-title: J. Power Sources
– reference: .
– volume: 35
  start-page: 10118
  year: 2010
  end-page: 10126
  ident: bib32
  article-title: The roles of metals and their oxide species in hydrophobic Pt–Ru catalysts for the interphase H/D isotope separation
  publication-title: Int. J. Hydrog. Energy
– volume: 128
  start-page: 3136
  year: 2006
  end-page: 3137
  ident: bib19
  article-title: Facile autoreduction of iron oxide/carbon nanotube encapsulates
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 22119
  year: 2010
  end-page: 22133
  ident: bib31
  article-title: Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: support effects
  publication-title: J. Phys. Chem. C
– volume: 82
  start-page: 5568
  year: 2010
  end-page: 5572
  ident: bib54
  article-title: Amperometric biosensor for direct blood lactate detection
  publication-title: Anal. Chem.
– volume: 39
  start-page: 367
  year: 2002
  end-page: 370
  ident: bib14
  article-title: Electrochemical hydrogen isotope sensor based on solid electrolytes
  publication-title: J. Nucl. Sci. Technol.
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 24
  ident: bib8
  article-title: A review of carbon nanotubes-based gas sensors
  publication-title: J. Sens.
– start-page: 347
  year: 1998
  end-page: 348
  ident: bib27
  article-title: The opening and filling of single walled carbon nanotubes (SWTs)
  publication-title: Chem. Commun.
– year: 2001
  ident: bib43
  publication-title: Electrochemical Methods: Fundamentals and Applications
– volume: 155
  start-page: 191
  year: 2011
  end-page: 198
  ident: bib10
  article-title: Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection
  publication-title: Sens. Actuators B Chem.
– volume: 106
  start-page: 784
  year: 2005
  end-page: 790
  ident: bib39
  article-title: Amperometric sensor for selective and stable hydrogen measurement
  publication-title: Sens. Actuators B Chem.
– volume: 833
  start-page: 173
  year: 2019
  ident: 10.1016/j.snb.2021.131344_bib9
  article-title: An amperometric hydrogen sensor based on Pt nanoparticles supported multi-wall carbon nanotubes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.11.038
– volume: 274
  start-page: 1897
  year: 1996
  ident: 10.1016/j.snb.2021.131344_bib34
  article-title: Nanocapillarity and chemistry in carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.274.5294.1897
– volume: 329
  year: 2021
  ident: 10.1016/j.snb.2021.131344_bib44
  article-title: A ppb-level hydrogen sensor based on activated Pd nanoparticles loaded on oxidized nickel foam
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.129194
– volume: 36
  start-page: 2940
  year: 2015
  ident: 10.1016/j.snb.2021.131344_bib11
  article-title: Hollow Pt nanostructure-decorated MWNT electrode for amperometric hydrogen detection
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.1002/bkcs.10585
– volume: 82
  start-page: 5568
  year: 2010
  ident: 10.1016/j.snb.2021.131344_bib54
  article-title: Amperometric biosensor for direct blood lactate detection
  publication-title: Anal. Chem.
  doi: 10.1021/ac1004426
– volume: 5
  start-page: 15033
  year: 2015
  ident: 10.1016/j.snb.2021.131344_bib24
  article-title: Nickel clusters embedded in carbon nanotubes as high performance magnets
  publication-title: Sci. Rep.
  doi: 10.1038/srep15033
– volume: 52
  start-page: 2219
  year: 2007
  ident: 10.1016/j.snb.2021.131344_bib37
  article-title: Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.113
– volume: 114
  start-page: 22119
  year: 2010
  ident: 10.1016/j.snb.2021.131344_bib31
  article-title: Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: support effects
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1086703
– volume: 35
  start-page: 373
  year: 2010
  ident: 10.1016/j.snb.2021.131344_bib45
  article-title: Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.10.064
– ident: 10.1016/j.snb.2021.131344_bib29
  doi: 10.1016/j.molcata.2007.07.003
– volume: 67
  start-page: 65
  year: 1963
  ident: 10.1016/j.snb.2021.131344_bib56
  article-title: The oxidation of hydrogen and deuterium on a rotating disk electrode
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100795a015
– volume: 40
  start-page: 11740
  year: 2015
  ident: 10.1016/j.snb.2021.131344_bib49
  article-title: Selectivity and resistance to poisons of commercial hydrogen sensors
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.02.120
– volume: 106
  start-page: 784
  year: 2005
  ident: 10.1016/j.snb.2021.131344_bib39
  article-title: Amperometric sensor for selective and stable hydrogen measurement
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2004.09.042
– volume: 155
  start-page: 191
  year: 2011
  ident: 10.1016/j.snb.2021.131344_bib10
  article-title: Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2010.11.045
– volume: 128
  start-page: 3136
  year: 2006
  ident: 10.1016/j.snb.2021.131344_bib19
  article-title: Facile autoreduction of iron oxide/carbon nanotube encapsulates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056721l
– volume: 5
  start-page: 3595
  year: 2013
  ident: 10.1016/j.snb.2021.131344_bib28
  article-title: Confinement of metal nanoparticles in carbon nanotubes
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300527
– volume: 208
  start-page: 7
  year: 2015
  ident: 10.1016/j.snb.2021.131344_bib12
  article-title: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.11.005
– volume: 39
  start-page: 367
  year: 2002
  ident: 10.1016/j.snb.2021.131344_bib14
  article-title: Electrochemical hydrogen isotope sensor based on solid electrolytes
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2002.9715205
– volume: 11
  start-page: 470
  year: 1972
  ident: 10.1016/j.snb.2021.131344_bib52
  article-title: Separation of binary mixtures of CO and H2 by permeation through polymeric films
  publication-title: Ind. Eng. Chem. Proc. Des. Dev.
  doi: 10.1021/i260044a003
– start-page: 347
  year: 1998
  ident: 10.1016/j.snb.2021.131344_bib27
  article-title: The opening and filling of single walled carbon nanotubes (SWTs)
  publication-title: Chem. Commun.
  doi: 10.1039/a707632k
– volume: 110
  start-page: 22266
  year: 2006
  ident: 10.1016/j.snb.2021.131344_bib16
  article-title: Hydrogen sensors based on conductivity changes in polyaniline nanofibers †
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp063166g
– volume: 20
  start-page: 1443
  year: 2008
  ident: 10.1016/j.snb.2021.131344_bib21
  article-title: A catalytic reaction inside a single-walled carbon nanotube
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701466
– volume: 35
  start-page: 10118
  year: 2010
  ident: 10.1016/j.snb.2021.131344_bib32
  article-title: The roles of metals and their oxide species in hydrophobic Pt–Ru catalysts for the interphase H/D isotope separation
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.08.009
– volume: 42
  start-page: 47
  year: 2004
  ident: 10.1016/j.snb.2021.131344_bib30
  article-title: Carbon nanotubes filled with metallic nanowires
  publication-title: Carbon
  doi: 10.1016/j.carbon.2003.09.015
– volume: 51
  start-page: 17615
  year: 2015
  ident: 10.1016/j.snb.2021.131344_bib23
  article-title: A remarkable difference in CO 2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07079A
– volume: 123
  start-page: 1
  year: 1982
  ident: 10.1016/j.snb.2021.131344_bib36
  article-title: Adsorption of oxygen on Pt(111)
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(82)90124-8
– volume: 7
  start-page: 1237
  year: 2005
  ident: 10.1016/j.snb.2021.131344_bib33
  article-title: Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2005.07.015
– year: 2001
  ident: 10.1016/j.snb.2021.131344_bib43
– volume: 473
  year: 2020
  ident: 10.1016/j.snb.2021.131344_bib41
  article-title: Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228607
– volume: 261
  start-page: 1545
  year: 1993
  ident: 10.1016/j.snb.2021.131344_bib18
  article-title: Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules
  publication-title: Science
  doi: 10.1126/science.261.5128.1545
– volume: 18
  start-page: 5782
  year: 2008
  ident: 10.1016/j.snb.2021.131344_bib22
  article-title: Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels
  publication-title: J. Mater. Chem.
  doi: 10.1039/b811560e
– volume: 72
  start-page: 1925
  year: 2000
  ident: 10.1016/j.snb.2021.131344_bib55
  article-title: A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent
  publication-title: Anal. Chem.
  doi: 10.1021/ac991213d
– volume: 10
  start-page: 4743
  year: 2020
  ident: 10.1016/j.snb.2021.131344_bib38
  article-title: Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00960A
– volume: 17
  start-page: 1417
  year: 2017
  ident: 10.1016/j.snb.2021.131344_bib15
  article-title: Surface acoustic wave sensors for hydrogen and deuterium detection
  publication-title: Sensors
  doi: 10.3390/s17061417
– volume: 323
  year: 2020
  ident: 10.1016/j.snb.2021.131344_bib53
  article-title: Carbon-based potentiometric hydrogen sensor using a proton conducting graphene oxide membrane coupled with a WO3 sensing electrode
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128678
– volume: 2
  start-page: 1553
  year: 2017
  ident: 10.1016/j.snb.2021.131344_bib7
  article-title: Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: a review
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00620
– volume: 46
  start-page: 11015
  year: 2021
  ident: 10.1016/j.snb.2021.131344_bib13
  article-title: Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing - application as gas sensor
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.12.193
– volume: 1
  start-page: 382
  year: 2009
  ident: 10.1016/j.snb.2021.131344_bib3
  article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor
  publication-title: Nanoscale
  doi: 10.1039/b9nr00015a
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.snb.2021.131344_bib8
  article-title: A review of carbon nanotubes-based gas sensors
  publication-title: J. Sens.
  doi: 10.1155/2009/493904
– volume: 13
  start-page: 3627
  year: 2013
  ident: 10.1016/j.snb.2021.131344_bib25
  article-title: Material properties of the Pt electrode deposited on nafion membrane by the impregnation–reduction method
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2013.7261
– volume: 38
  start-page: 3225
  year: 2003
  ident: 10.1016/j.snb.2021.131344_bib51
  article-title: Testing of polymer membranes for the selective permeability of hydrogen
  publication-title: Sep. Sci. Technol.
  doi: 10.1081/SS-120022595
– volume: 161
  start-page: 93
  year: 2003
  ident: 10.1016/j.snb.2021.131344_bib17
  article-title: Electrochemical hydrogen isotope sensing via the high-temperature proton conductor CaZr0.90In0.10O3−α
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(03)00212-1
– volume: 50
  start-page: 4913
  year: 2011
  ident: 10.1016/j.snb.2021.131344_bib20
  article-title: Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006870
– volume: 3
  start-page: 366
  year: 1970
  ident: 10.1016/j.snb.2021.131344_bib50
  article-title: Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene
  publication-title: Macromolecules
  doi: 10.1021/ma60015a020
– volume: 108
  start-page: 352
  year: 2008
  ident: 10.1016/j.snb.2021.131344_bib6
  article-title: Amperometric gas sensors A review
  publication-title: Chem. Rev.
  doi: 10.1021/cr0681039
– ident: 10.1016/j.snb.2021.131344_bib46
– volume: 53
  start-page: 14250
  year: 2014
  ident: 10.1016/j.snb.2021.131344_bib35
  article-title: Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406812
– volume: 157
  start-page: 329
  year: 2011
  ident: 10.1016/j.snb.2021.131344_bib1
  article-title: Hydrogen sensors – a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.04.070
– volume: 39
  start-page: 20491
  year: 2014
  ident: 10.1016/j.snb.2021.131344_bib47
  article-title: Evaluation of selectivity of commercial hydrogen sensors
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.03.251
– volume: 149
  start-page: H173
  year: 2002
  ident: 10.1016/j.snb.2021.131344_bib2
  article-title: Solid-state amperometric hydrogen sensor using Pt/C/Nafion composite electrodes prepared by a hot-pressed method
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1509462
– volume: 162
  start-page: F190
  year: 2015
  ident: 10.1016/j.snb.2021.131344_bib42
  article-title: Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0981501jes
– volume: 153
  start-page: 392
  year: 2011
  ident: 10.1016/j.snb.2021.131344_bib4
  article-title: Micromachined catalytic combustible hydrogen gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2010.11.004
– volume: 109
  start-page: 1402
  year: 2009
  ident: 10.1016/j.snb.2021.131344_bib26
  article-title: Review of electrochemical hydrogen sensors
  publication-title: Chem. Rev.
  doi: 10.1021/cr800339k
– volume: 12
  start-page: 9635
  year: 2018
  ident: 10.1016/j.snb.2021.131344_bib40
  article-title: Best practices for reporting electrocatalytic performance of nanomaterials
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07700
– volume: 236
  start-page: 1098
  year: 2016
  ident: 10.1016/j.snb.2021.131344_bib5
  article-title: Transparent carbon nanotube film as sensitive material for surface plasmon resonance based optical sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.06.058
– volume: 10
  start-page: 4430
  year: 2010
  ident: 10.1016/j.snb.2021.131344_bib48
  article-title: Measurement uncertainty estimation in amperometric sensors: a tutorial review
  publication-title: Sensors
  doi: 10.3390/s100504430
SSID ssj0004360
Score 2.4607368
Snippet The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131344
SubjectTerms Amperometric gas sensor
Catalysts
Composite materials
Correlation coefficients
Deuterium
Electrical measurement
Electrochemical sensor
Electrodes
Gas sensors
Hydrogen
Hydrogen stable isotope
Hydrogen-based energy
Isotopes
Nanoparticles
Nuclear energy
Nuclear reactors
Selectivity
Sensitivity
Sensors
Single wall carbon nanotubes
Space-confined effect
SWNT-filled Pt composite
Title Amperometric sensor for the detection of hydrogen stable isotopes based on Pt nanoparticles confined within single-walled carbon nanotubes (SWNTs)
URI https://dx.doi.org/10.1016/j.snb.2021.131344
https://www.proquest.com/docview/2667260030
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V7YUeEE9RCNUeOACSG-8jsfcYRa0CiAiprZrbandnI1KldhQ7Qlz4EfxiZhy7pUjNgYsP1ozX2hnPfLOeB2PvfKp1jI5qnbRLtPPDxAcpkugzEAM3N7qZsfR1Opxc6s-zwWyPjbtaGEqrbG3_1qY31rq90293s79aLPrnqcHgho41UauMkGSHtc5Iy09-3aV5aNVUChNxQtTdn80mx6sqPIaIUpwIJZTWD_mmf6x043rOnrDHLWbko-1rPWV7sXjGDv_qJPic_R7dUMfvG5qPFXiFsWm55ohHOeI7DrFuEq4KXs7595-wLlFrOMJCv4x8UZV1uYoVJ38GHIm-1bxwBQbTbc4cx5B5jksBp0PbBXLiksuY_KAxLMCDW3vkIpZ645H8_fnV9KL68IJdnp1ejCdJO24hCcqIOskAnAAvQVINocu1kl6EzHhq-YWwBMCbAD6CciJ4FVNALIQ7PwgiBYzy1Eu2X5RFfMV40CYFKsLFC8ab8zw3mXQ-DdLk-cDAEUu7jbah7UVOIzGWtks6u7YoG0uysVvZHLGPtyyrbSOOXcS6k569p00WHcUutl4nadt-ypVFBJNRF3-Vvv6_p75hjyTVTDTpPj22X6838S0imdofN6p6zA5Gn75Mpn8Az0Pzhw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QE4IJ6iUMAHDoAUNn6kiY-rimpL2xVSt6I3y_Z4xaJtstqkQvwNfjEzWYeXRA9ccohm4sgzmfnGmQdjr3yudYyOap20y7TzB5kPUmTRlyAKtzC6n7F0NjuYXugPl8XlDjscamEorTLZ_q1N7611ujNOuzleL5fj89xgcEPHmqhVRki0w7vUnaoYsd3J8cl09qs8UvXFwkSfEcPwc7NP82prj1GiFO-EEkrrf7mnvwx1732O7rG7CTbyyfbN7rOdWD9gd35rJviQfZ9cUdPvKxqRFXiL4Wmz4QhJOUI8DrHrc65q3iz452-waVBxOCJDv4p82TZds44tJ5cGHIk-drx2NcbTKW2OY9S8wKWA07ntEjlxyVXMvtIkFuDBbTxyEUt37ZH89fmn2bx984hdHL2fH06zNHEhC8qILisBnAAvQVIZoau0kl6E0njq-oXIBMCbAD6CciJ4FXNAOISbXwSRAwZ66jEb1U0dnzAetMmB6nDxgiHnoqpMKZ3PgzRVVRjYY_mw0TakduQ0FWNlh7yzLxZlY0k2diubPfb2J8t624vjJmI9SM_-oVAWfcVNbPuDpG36mluLIKakRv4qf_p_T33Jbk3nZ6f29Hh28ozdllRC0Wf_7LNRt7mOzxHYdP5FUtwfJ5T2OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amperometric+sensor+for+the+detection+of+hydrogen+stable+isotopes+based+on+Pt+nanoparticles+confined+within+single-walled+carbon+nanotubes+%28SWNTs%29&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Hu%2C+Jiacheng&rft.au=Sang%2C+Ge&rft.au=Zeng%2C+Ning&rft.au=Lv%2C+Chao&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=356&rft_id=info:doi/10.1016%2Fj.snb.2021.131344&rft.externalDocID=S0925400521019122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon