Amperometric sensor for the detection of hydrogen stable isotopes based on Pt nanoparticles confined within single-walled carbon nanotubes (SWNTs)
The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic pr...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 356; p. 131344 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.04.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic properties of SWNTs and space-confined effect of Pt catalyst have been investigated for detecting H2 and D2. The Pt-SWNT-in electrode shows an excellent linear response in a wide range of 160–8000 ppm hydrogen in N2 atmosphere with the correlation coefficient of 0.9993, and compared to the electrode with Pt nanoparticles supported outside of SWNTs, its sensitivity per Pt loading is 3 times, moreover, it gives larger response current for detection of H2 in air and D2 in N2 atmosphere. Additionally, the Pt-SWNT-in electrode provides a response current to deuterium 0.9 times that to hydrogen in N2. The results present the Pt-SWNT-in electrode with superior sensitivity, selectivity, stability and a response variation for detection of hydrogen and deuterium, which would take advantage of the space-confined effect of SWNTs on Pt catalysts to enhance the sensor performance for detecting hydrogen stable isotopes, and provide an approach to discriminate between hydrogen and deuterium.
•Space-confined Pt nanoparticles in SWNTs combine good properties of SWNTs and Pt.•The confinement of Pt in SWNTs enhances sensitivity and response to H2 and D2.•The confinement of Pt in SWNTs enhances selectivity and stability.•Sensor response variation of H2 and D2 allows to discriminate between H2 and D2. |
---|---|
AbstractList | The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic properties of SWNTs and space-confined effect of Pt catalyst have been investigated for detecting H2 and D2. The Pt-SWNT-in electrode shows an excellent linear response in a wide range of 160–8000 ppm hydrogen in N2 atmosphere with the correlation coefficient of 0.9993, and compared to the electrode with Pt nanoparticles supported outside of SWNTs, its sensitivity per Pt loading is 3 times, moreover, it gives larger response current for detection of H2 in air and D2 in N2 atmosphere. Additionally, the Pt-SWNT-in electrode provides a response current to deuterium 0.9 times that to hydrogen in N2. The results present the Pt-SWNT-in electrode with superior sensitivity, selectivity, stability and a response variation for detection of hydrogen and deuterium, which would take advantage of the space-confined effect of SWNTs on Pt catalysts to enhance the sensor performance for detecting hydrogen stable isotopes, and provide an approach to discriminate between hydrogen and deuterium. The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes, hydrogen (H2) and deuterium (D2). Amperometric gas sensors based on SWNT-filled Pt composite material (Pt-SWNT-in) to combine the good electronic properties of SWNTs and space-confined effect of Pt catalyst have been investigated for detecting H2 and D2. The Pt-SWNT-in electrode shows an excellent linear response in a wide range of 160–8000 ppm hydrogen in N2 atmosphere with the correlation coefficient of 0.9993, and compared to the electrode with Pt nanoparticles supported outside of SWNTs, its sensitivity per Pt loading is 3 times, moreover, it gives larger response current for detection of H2 in air and D2 in N2 atmosphere. Additionally, the Pt-SWNT-in electrode provides a response current to deuterium 0.9 times that to hydrogen in N2. The results present the Pt-SWNT-in electrode with superior sensitivity, selectivity, stability and a response variation for detection of hydrogen and deuterium, which would take advantage of the space-confined effect of SWNTs on Pt catalysts to enhance the sensor performance for detecting hydrogen stable isotopes, and provide an approach to discriminate between hydrogen and deuterium. •Space-confined Pt nanoparticles in SWNTs combine good properties of SWNTs and Pt.•The confinement of Pt in SWNTs enhances sensitivity and response to H2 and D2.•The confinement of Pt in SWNTs enhances selectivity and stability.•Sensor response variation of H2 and D2 allows to discriminate between H2 and D2. |
ArticleNumber | 131344 |
Author | Hu, Jiacheng Lv, Chao Sang, Ge Zeng, Ning Xu, Cigang |
Author_xml | – sequence: 1 givenname: Jiacheng surname: Hu fullname: Hu, Jiacheng – sequence: 2 givenname: Ge surname: Sang fullname: Sang, Ge email: angelsg@163.com – sequence: 3 givenname: Ning surname: Zeng fullname: Zeng, Ning – sequence: 4 givenname: Chao surname: Lv fullname: Lv, Chao – sequence: 5 givenname: Cigang surname: Xu fullname: Xu, Cigang email: georgercgxu@qq.com |
BookMark | eNp9kU2LFDEQhoOs4OzqD_AW8KKHHqs6ne5pPC2LHwuLCq54DPmo3snQk7RJxmX_hr_YDONpD3sIgdT7pKh6ztlZiIEYe42wRsD-_W6dg1m30OIaBYque8ZWuBlEI2AYztgKxlY2HYB8wc5z3gFAJ3pYsb-X-4VS3FNJ3vJMIcfEp3rKlrijQrb4GHic-PbBpXhHgeeizUzc51jiQpkbncnxGvpeeNAhLjoVb-dasTFMPtTivS9bX0kf7mZq7vU810erk6nUESkHU-Nvf_z6epvfvWTPJz1nevX_vmA_P328vfrS3Hz7fH11edNYMWJpBuc0OtO6FkfZ600nWoN2GI3sho2Q0jkzWmfICY3WCAInUeKI0iK4rtuIC_bm9O-S4u8D5aJ28ZBCbanavh_aHkBATQ2nlE0x50STsr7o41JK0n5WCOooQO1UFaCOAtRJQCXxEbkkv9fp4Unmw4mhOvgfT0ll6ylYcj5VFcpF_wT9D8ugooQ |
CitedBy_id | crossref_primary_10_1109_LSENS_2023_3272779 crossref_primary_10_3390_chemosensors10090363 crossref_primary_10_3390_s24206637 crossref_primary_10_1016_j_ijhydene_2025_02_067 crossref_primary_10_1016_j_ijhydene_2023_02_033 crossref_primary_10_1149_1945_7111_ad22d8 crossref_primary_10_1002_adsr_202200057 crossref_primary_10_1002_cnma_202200355 crossref_primary_10_1039_D4RA08446B crossref_primary_10_1016_S1872_5805_23_60749_8 crossref_primary_10_1007_s10854_023_10386_x crossref_primary_10_1016_j_ijhydene_2023_12_153 crossref_primary_10_1109_JSEN_2022_3221114 crossref_primary_10_1109_JSEN_2024_3374354 |
Cites_doi | 10.1016/j.jelechem.2018.11.038 10.1126/science.274.5294.1897 10.1016/j.snb.2020.129194 10.1002/bkcs.10585 10.1021/ac1004426 10.1038/srep15033 10.1016/j.electacta.2006.03.113 10.1021/jp1086703 10.1016/j.ijhydene.2009.10.064 10.1016/j.molcata.2007.07.003 10.1021/j100795a015 10.1016/j.ijhydene.2015.02.120 10.1016/j.snb.2004.09.042 10.1016/j.snb.2010.11.045 10.1021/ja056721l 10.1002/cctc.201300527 10.1016/j.snb.2014.11.005 10.1080/18811248.2002.9715205 10.1021/i260044a003 10.1039/a707632k 10.1021/jp063166g 10.1002/adma.200701466 10.1016/j.ijhydene.2010.08.009 10.1016/j.carbon.2003.09.015 10.1039/C5CC07079A 10.1016/0039-6028(82)90124-8 10.1016/j.elecom.2005.07.015 10.1016/j.jpowsour.2020.228607 10.1126/science.261.5128.1545 10.1039/b811560e 10.1021/ac991213d 10.1039/D0CY00960A 10.3390/s17061417 10.1016/j.snb.2020.128678 10.1021/acssensors.7b00620 10.1016/j.ijhydene.2020.12.193 10.1039/b9nr00015a 10.1155/2009/493904 10.1166/jnn.2013.7261 10.1081/SS-120022595 10.1016/S0167-2738(03)00212-1 10.1002/anie.201006870 10.1021/ma60015a020 10.1021/cr0681039 10.1002/anie.201406812 10.1016/j.snb.2011.04.070 10.1016/j.ijhydene.2014.03.251 10.1149/1.1509462 10.1149/2.0981501jes 10.1016/j.snb.2010.11.004 10.1021/cr800339k 10.1021/acsnano.8b07700 10.1016/j.snb.2016.06.058 10.3390/s100504430 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. Apr 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Apr 1, 2022 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2021.131344 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2021_131344 S0925400521019122 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c391t-7dda1db2d21956a8432b1c79b5478355ddb9cdbed3a1cb3e0d5151915c10d4483 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 06:02:23 EDT 2025 Thu Apr 24 23:06:06 EDT 2025 Tue Jul 01 01:28:01 EDT 2025 Fri Feb 23 02:41:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Space-confined effect Electrochemical sensor SWNT-filled Pt composite Amperometric gas sensor Hydrogen stable isotope |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-7dda1db2d21956a8432b1c79b5478355ddb9cdbed3a1cb3e0d5151915c10d4483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2667260030 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2667260030 crossref_citationtrail_10_1016_j_snb_2021_131344 crossref_primary_10_1016_j_snb_2021_131344 elsevier_sciencedirect_doi_10_1016_j_snb_2021_131344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Rashid, Bui, Hoang, Seong, Lim, Kim (bib11) 2015; 36 Rashid, Hussain, Shoaib, Basit, Khan, Kim (bib9) 2019; 833 Ono, Yuan, Heinrich, Cuenya (bib31) 2010; 114 Kaniyoor, Jafri, Arockiadoss, Ramaprabhu (bib3) 2009; 1 Angiola, Rutherglen, Galatsis, Martucci (bib5) 2016; 236 Korotcenkov, Han, Stetter (bib26) 2009; 109 Jauhar, Ma, Xiao, Jiang, Sy, Li, Yu, Chen (bib41) 2020; 473 Durst, Simon, Hasché, Gasteiger (bib42) 2015; 162 Lischka, Mosch, Groß (bib37) 2007; 52 La, Kim, Jun, Jung, Seong, Choo, Kim (bib10) 2011; 155 Chao, Yao, Buttner, Stetter (bib39) 2005; 106 Gao, Zhang, Chen, Pan, Yan, Wu, Yuan, Song (bib30) 2004; 42 (Accessed 1 November 2021). Ahmad Fauzi, Hamidah, Sato, Shintani, Putri, Kitamura, Hatakeyama, Quitain, Kida (bib53) 2020; 323 Wang, Yeow (bib8) 2009; 2009 Haddon (bib18) 1993; 261 Stetter, Li (bib6) 2008; 108 . Zheng, Li, Deng, Li, Ding, Nie, Wei (bib38) 2020; 10 Marcu, Viespe (bib15) 2017; 17 Wang, Guo, Pan, Chen, Bao (bib22) 2008; 18 Chen, Guan, Li, Yang, Li (bib20) 2011; 50 Liu, Hwang, Tzeng (bib2) 2002; 149 Trang Nguyen, Serp (bib28) 2013; 5 Wang, Lu, Li, Li (bib23) 2015; 51 Baldizzone, Mezzavilla, Carvalho, Meier, Schuppert, Heggen, Galeano, Grunwaldt, Schüth, Mayrhofer (bib35) 2014; 53 Lee, Hwang, Cha, Lee, Lee, Pak, Lee, Ju (bib4) 2011; 153 Rashid, Jun, Jung, Kim (bib12) 2015; 208 Palmisano, Boon-Brett, Bonato, Harskamp, Buttner, Post, Burgess, Rivkin (bib47) 2014; 39 Orme, Stone, Benson, Peterson (bib51) 2003; 38 Pasternak, Christensen, Heller (bib50) 1970; 3 Sloan, Hammer, Zwiefka-Sibley, Green, Sloan (bib27) 1998 European Commission , Joint Research Centre. Institute for Environment and Sustainability., Dutch Metrology Institute., Universitaet des Saarlandes., Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds., Publications Office, LU, 2015. L. Xing, F. Du, J.-J. Liang, Y.-S. Chen, Q.-L. Zhou, Preparation of Pt/SWNTs for Heterogeneous Asymmetric Hydrogenation of Ethyl Pyruvate, 2007, 7. Rashid, Jun, Kim (bib25) 2013; 13 Wu, Chen, Xu (bib33) 2005; 7 McCandless (bib52) 1972; 11 Hübert, Boon-Brett, Black, Banach (bib1) 2011; 157 Tian, Jiang, Zhao, Shi, Zhang, Deng, Zhang (bib44) 2021; 329 Steininger, Lehwald, Ibach (bib36) 1982; 123 Romero, Ahumada, Garay, Baruzzi (bib54) 2010; 82 Shiozawa, Briones-Leon, Domanov, Zechner, Sato, Suenaga, Saito, Eisterer, Weschke, Lang, Peterlik, Pichler (bib24) 2015; 5 Boon-Brett, Bousek, Black, Moretto, Castello, Hübert, Banach (bib45) 2010; 35 Chen, Pan, Willinger, Su, Bao (bib19) 2006; 128 Matsumoto, Hayashi, Iwahara (bib14) 2002; 39 Hu, Xiong, Hou, Weng, Luo, Yang (bib32) 2010; 35 Voiry, Chhowalla, Gogotsi, Kotov, Li, Penner, Schaak, Weiss (bib40) 2018; 12 Matsumoto (bib17) 2003; 161 Shiozawa, Pichler, Grüneis, Pfeiffer, Kuzmany, Liu, Suenaga, Kataura (bib21) 2008; 20 Helm, Jalukse, Leito (bib48) 2010; 10 Virji, Kaner, Weiller (bib16) 2006; 110 Bard, Faulkner (bib43) 2001 Palmisano, Weidner, Boon-Brett, Bonato, Harskamp, Moretto, Post, Burgess, Rivkin, Buttner (bib49) 2015; 40 Iordache, Ionete, Iordache, Tanasa, Stamatin, Ana Grigorescu (bib13) 2021; 46 Lewis, Ruetschi (bib56) 1963; 67 Baron, Saffell (bib7) 2017; 2 Ugarte, Châtelain, de Heer (bib34) 1996; 274 Cui, Kim, Choi, Nam, Cha, Paeng (bib55) 2000; 72 Kaniyoor (10.1016/j.snb.2021.131344_bib3) 2009; 1 Matsumoto (10.1016/j.snb.2021.131344_bib14) 2002; 39 Pasternak (10.1016/j.snb.2021.131344_bib50) 1970; 3 Hu (10.1016/j.snb.2021.131344_bib32) 2010; 35 Tian (10.1016/j.snb.2021.131344_bib44) 2021; 329 Rashid (10.1016/j.snb.2021.131344_bib9) 2019; 833 Ono (10.1016/j.snb.2021.131344_bib31) 2010; 114 Baldizzone (10.1016/j.snb.2021.131344_bib35) 2014; 53 Palmisano (10.1016/j.snb.2021.131344_bib49) 2015; 40 Trang Nguyen (10.1016/j.snb.2021.131344_bib28) 2013; 5 Wu (10.1016/j.snb.2021.131344_bib33) 2005; 7 Gao (10.1016/j.snb.2021.131344_bib30) 2004; 42 Boon-Brett (10.1016/j.snb.2021.131344_bib45) 2010; 35 10.1016/j.snb.2021.131344_bib29 Cui (10.1016/j.snb.2021.131344_bib55) 2000; 72 Lee (10.1016/j.snb.2021.131344_bib4) 2011; 153 Ugarte (10.1016/j.snb.2021.131344_bib34) 1996; 274 Jauhar (10.1016/j.snb.2021.131344_bib41) 2020; 473 McCandless (10.1016/j.snb.2021.131344_bib52) 1972; 11 Ahmad Fauzi (10.1016/j.snb.2021.131344_bib53) 2020; 323 Voiry (10.1016/j.snb.2021.131344_bib40) 2018; 12 Liu (10.1016/j.snb.2021.131344_bib2) 2002; 149 Angiola (10.1016/j.snb.2021.131344_bib5) 2016; 236 La (10.1016/j.snb.2021.131344_bib10) 2011; 155 Virji (10.1016/j.snb.2021.131344_bib16) 2006; 110 Helm (10.1016/j.snb.2021.131344_bib48) 2010; 10 Rashid (10.1016/j.snb.2021.131344_bib12) 2015; 208 Chen (10.1016/j.snb.2021.131344_bib19) 2006; 128 Stetter (10.1016/j.snb.2021.131344_bib6) 2008; 108 Hübert (10.1016/j.snb.2021.131344_bib1) 2011; 157 Wang (10.1016/j.snb.2021.131344_bib23) 2015; 51 10.1016/j.snb.2021.131344_bib46 Durst (10.1016/j.snb.2021.131344_bib42) 2015; 162 Rashid (10.1016/j.snb.2021.131344_bib11) 2015; 36 Rashid (10.1016/j.snb.2021.131344_bib25) 2013; 13 Orme (10.1016/j.snb.2021.131344_bib51) 2003; 38 Marcu (10.1016/j.snb.2021.131344_bib15) 2017; 17 Sloan (10.1016/j.snb.2021.131344_bib27) 1998 Zheng (10.1016/j.snb.2021.131344_bib38) 2020; 10 Iordache (10.1016/j.snb.2021.131344_bib13) 2021; 46 Lischka (10.1016/j.snb.2021.131344_bib37) 2007; 52 Chen (10.1016/j.snb.2021.131344_bib20) 2011; 50 Wang (10.1016/j.snb.2021.131344_bib22) 2008; 18 Romero (10.1016/j.snb.2021.131344_bib54) 2010; 82 Wang (10.1016/j.snb.2021.131344_bib8) 2009; 2009 Lewis (10.1016/j.snb.2021.131344_bib56) 1963; 67 Haddon (10.1016/j.snb.2021.131344_bib18) 1993; 261 Baron (10.1016/j.snb.2021.131344_bib7) 2017; 2 Korotcenkov (10.1016/j.snb.2021.131344_bib26) 2009; 109 Palmisano (10.1016/j.snb.2021.131344_bib47) 2014; 39 Shiozawa (10.1016/j.snb.2021.131344_bib21) 2008; 20 Chao (10.1016/j.snb.2021.131344_bib39) 2005; 106 Shiozawa (10.1016/j.snb.2021.131344_bib24) 2015; 5 Steininger (10.1016/j.snb.2021.131344_bib36) 1982; 123 Matsumoto (10.1016/j.snb.2021.131344_bib17) 2003; 161 Bard (10.1016/j.snb.2021.131344_bib43) 2001 |
References_xml | – volume: 52 start-page: 2219 year: 2007 end-page: 2228 ident: bib37 article-title: Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers publication-title: Electrochim. Acta – volume: 208 start-page: 7 year: 2015 end-page: 13 ident: bib12 article-title: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells publication-title: Sens. Actuators B Chem. – volume: 149 start-page: H173 year: 2002 ident: bib2 article-title: Solid-state amperometric hydrogen sensor using Pt/C/Nafion composite electrodes prepared by a hot-pressed method publication-title: J. Electrochem. Soc. – volume: 833 start-page: 173 year: 2019 end-page: 180 ident: bib9 article-title: An amperometric hydrogen sensor based on Pt nanoparticles supported multi-wall carbon nanotubes publication-title: J. Electroanal. Chem. – volume: 72 start-page: 1925 year: 2000 end-page: 1929 ident: bib55 article-title: A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent publication-title: Anal. Chem. – volume: 236 start-page: 1098 year: 2016 end-page: 1103 ident: bib5 article-title: Transparent carbon nanotube film as sensitive material for surface plasmon resonance based optical sensors publication-title: Sens. Actuators B Chem. – volume: 3 start-page: 366 year: 1970 end-page: 371 ident: bib50 article-title: Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene publication-title: Macromolecules – reference: L. Xing, F. Du, J.-J. Liang, Y.-S. Chen, Q.-L. Zhou, Preparation of Pt/SWNTs for Heterogeneous Asymmetric Hydrogenation of Ethyl Pyruvate, 2007, 7. – volume: 109 start-page: 1402 year: 2009 end-page: 1433 ident: bib26 article-title: Review of electrochemical hydrogen sensors publication-title: Chem. Rev. – volume: 153 start-page: 392 year: 2011 end-page: 397 ident: bib4 article-title: Micromachined catalytic combustible hydrogen gas sensor publication-title: Sens. Actuators B Chem. – volume: 123 start-page: 1 year: 1982 end-page: 17 ident: bib36 article-title: Adsorption of oxygen on Pt(111) publication-title: Surf. Sci. – volume: 2 start-page: 1553 year: 2017 end-page: 1566 ident: bib7 article-title: Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: a review publication-title: ACS Sens. – volume: 5 start-page: 3595 year: 2013 end-page: 3603 ident: bib28 article-title: Confinement of metal nanoparticles in carbon nanotubes publication-title: ChemCatChem – volume: 18 start-page: 5782 year: 2008 end-page: 5786 ident: bib22 article-title: Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels publication-title: J. Mater. Chem. – volume: 161 start-page: 93 year: 2003 end-page: 103 ident: bib17 article-title: Electrochemical hydrogen isotope sensing via the high-temperature proton conductor CaZr0.90In0.10O3−α publication-title: Solid State Ion. – volume: 46 start-page: 11015 year: 2021 end-page: 11024 ident: bib13 article-title: Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing - application as gas sensor publication-title: Int. J. Hydrog. Energy – volume: 5 start-page: 15033 year: 2015 ident: bib24 article-title: Nickel clusters embedded in carbon nanotubes as high performance magnets publication-title: Sci. Rep. – volume: 274 start-page: 1897 year: 1996 end-page: 1899 ident: bib34 article-title: Nanocapillarity and chemistry in carbon nanotubes publication-title: Science – volume: 10 start-page: 4430 year: 2010 end-page: 4455 ident: bib48 article-title: Measurement uncertainty estimation in amperometric sensors: a tutorial review publication-title: Sensors – volume: 17 start-page: 1417 year: 2017 ident: bib15 article-title: Surface acoustic wave sensors for hydrogen and deuterium detection publication-title: Sensors – volume: 13 start-page: 3627 year: 2013 end-page: 3633 ident: bib25 article-title: Material properties of the Pt electrode deposited on nafion membrane by the impregnation–reduction method publication-title: J. Nanosci. Nanotechnol. – volume: 20 start-page: 1443 year: 2008 end-page: 1449 ident: bib21 article-title: A catalytic reaction inside a single-walled carbon nanotube publication-title: Adv. Mater. – volume: 10 start-page: 4743 year: 2020 end-page: 4751 ident: bib38 article-title: Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations publication-title: Catal. Sci. Technol. – volume: 12 start-page: 9635 year: 2018 end-page: 9638 ident: bib40 article-title: Best practices for reporting electrocatalytic performance of nanomaterials publication-title: ACS Nano – volume: 110 start-page: 22266 year: 2006 end-page: 22270 ident: bib16 article-title: Hydrogen sensors based on conductivity changes in polyaniline nanofibers † publication-title: J. Phys. Chem. B. – reference: European Commission , Joint Research Centre. Institute for Environment and Sustainability., Dutch Metrology Institute., Universitaet des Saarlandes., Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds., Publications Office, LU, 2015. – volume: 11 start-page: 470 year: 1972 end-page: 478 ident: bib52 article-title: Separation of binary mixtures of CO and H2 by permeation through polymeric films publication-title: Ind. Eng. Chem. Proc. Des. Dev. – volume: 39 start-page: 20491 year: 2014 end-page: 20496 ident: bib47 article-title: Evaluation of selectivity of commercial hydrogen sensors publication-title: Int. J. Hydrog. Energy – volume: 36 start-page: 2940 year: 2015 end-page: 2943 ident: bib11 article-title: Hollow Pt nanostructure-decorated MWNT electrode for amperometric hydrogen detection publication-title: Bull. Korean Chem. Soc. – volume: 51 start-page: 17615 year: 2015 end-page: 17618 ident: bib23 article-title: A remarkable difference in CO 2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes publication-title: Chem. Commun. – volume: 42 start-page: 47 year: 2004 end-page: 52 ident: bib30 article-title: Carbon nanotubes filled with metallic nanowires publication-title: Carbon – volume: 1 start-page: 382 year: 2009 end-page: 386 ident: bib3 article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor publication-title: Nanoscale – volume: 323 year: 2020 ident: bib53 article-title: Carbon-based potentiometric hydrogen sensor using a proton conducting graphene oxide membrane coupled with a WO3 sensing electrode publication-title: Sens. Actuators B Chem. – volume: 108 start-page: 352 year: 2008 end-page: 366 ident: bib6 article-title: Amperometric gas sensors A review publication-title: Chem. Rev. – volume: 50 start-page: 4913 year: 2011 end-page: 4917 ident: bib20 article-title: Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1237 year: 2005 end-page: 1243 ident: bib33 article-title: Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation publication-title: Electrochem. Commun. – volume: 40 start-page: 11740 year: 2015 end-page: 11747 ident: bib49 article-title: Selectivity and resistance to poisons of commercial hydrogen sensors publication-title: Int. J. Hydrog. Energy – volume: 35 start-page: 373 year: 2010 end-page: 384 ident: bib45 article-title: Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications publication-title: Int. J. Hydrog. Energy – volume: 261 start-page: 1545 year: 1993 end-page: 1550 ident: bib18 article-title: Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules publication-title: Science – reference: (Accessed 1 November 2021). – volume: 162 start-page: F190 year: 2015 end-page: F203 ident: bib42 article-title: Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media publication-title: J. Electrochem. Soc. – volume: 53 start-page: 14250 year: 2014 end-page: 14254 ident: bib35 article-title: Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts publication-title: Angew. Chem. Int. Ed. – volume: 157 start-page: 329 year: 2011 end-page: 352 ident: bib1 article-title: Hydrogen sensors – a review publication-title: Sens. Actuators B Chem. – volume: 329 year: 2021 ident: bib44 article-title: A ppb-level hydrogen sensor based on activated Pd nanoparticles loaded on oxidized nickel foam publication-title: Sens. Actuators B Chem. – volume: 38 start-page: 3225 year: 2003 end-page: 3238 ident: bib51 article-title: Testing of polymer membranes for the selective permeability of hydrogen publication-title: Sep. Sci. Technol. – volume: 67 start-page: 65 year: 1963 end-page: 68 ident: bib56 article-title: The oxidation of hydrogen and deuterium on a rotating disk electrode publication-title: J. Phys. Chem. – volume: 473 year: 2020 ident: bib41 article-title: Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability publication-title: J. Power Sources – reference: . – volume: 35 start-page: 10118 year: 2010 end-page: 10126 ident: bib32 article-title: The roles of metals and their oxide species in hydrophobic Pt–Ru catalysts for the interphase H/D isotope separation publication-title: Int. J. Hydrog. Energy – volume: 128 start-page: 3136 year: 2006 end-page: 3137 ident: bib19 article-title: Facile autoreduction of iron oxide/carbon nanotube encapsulates publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 22119 year: 2010 end-page: 22133 ident: bib31 article-title: Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: support effects publication-title: J. Phys. Chem. C – volume: 82 start-page: 5568 year: 2010 end-page: 5572 ident: bib54 article-title: Amperometric biosensor for direct blood lactate detection publication-title: Anal. Chem. – volume: 39 start-page: 367 year: 2002 end-page: 370 ident: bib14 article-title: Electrochemical hydrogen isotope sensor based on solid electrolytes publication-title: J. Nucl. Sci. Technol. – volume: 2009 start-page: 1 year: 2009 end-page: 24 ident: bib8 article-title: A review of carbon nanotubes-based gas sensors publication-title: J. Sens. – start-page: 347 year: 1998 end-page: 348 ident: bib27 article-title: The opening and filling of single walled carbon nanotubes (SWTs) publication-title: Chem. Commun. – year: 2001 ident: bib43 publication-title: Electrochemical Methods: Fundamentals and Applications – volume: 155 start-page: 191 year: 2011 end-page: 198 ident: bib10 article-title: Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection publication-title: Sens. Actuators B Chem. – volume: 106 start-page: 784 year: 2005 end-page: 790 ident: bib39 article-title: Amperometric sensor for selective and stable hydrogen measurement publication-title: Sens. Actuators B Chem. – volume: 833 start-page: 173 year: 2019 ident: 10.1016/j.snb.2021.131344_bib9 article-title: An amperometric hydrogen sensor based on Pt nanoparticles supported multi-wall carbon nanotubes publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.11.038 – volume: 274 start-page: 1897 year: 1996 ident: 10.1016/j.snb.2021.131344_bib34 article-title: Nanocapillarity and chemistry in carbon nanotubes publication-title: Science doi: 10.1126/science.274.5294.1897 – volume: 329 year: 2021 ident: 10.1016/j.snb.2021.131344_bib44 article-title: A ppb-level hydrogen sensor based on activated Pd nanoparticles loaded on oxidized nickel foam publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.129194 – volume: 36 start-page: 2940 year: 2015 ident: 10.1016/j.snb.2021.131344_bib11 article-title: Hollow Pt nanostructure-decorated MWNT electrode for amperometric hydrogen detection publication-title: Bull. Korean Chem. Soc. doi: 10.1002/bkcs.10585 – volume: 82 start-page: 5568 year: 2010 ident: 10.1016/j.snb.2021.131344_bib54 article-title: Amperometric biosensor for direct blood lactate detection publication-title: Anal. Chem. doi: 10.1021/ac1004426 – volume: 5 start-page: 15033 year: 2015 ident: 10.1016/j.snb.2021.131344_bib24 article-title: Nickel clusters embedded in carbon nanotubes as high performance magnets publication-title: Sci. Rep. doi: 10.1038/srep15033 – volume: 52 start-page: 2219 year: 2007 ident: 10.1016/j.snb.2021.131344_bib37 article-title: Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.113 – volume: 114 start-page: 22119 year: 2010 ident: 10.1016/j.snb.2021.131344_bib31 article-title: Formation and thermal stability of platinum oxides on size-selected platinum nanoparticles: support effects publication-title: J. Phys. Chem. C doi: 10.1021/jp1086703 – volume: 35 start-page: 373 year: 2010 ident: 10.1016/j.snb.2021.131344_bib45 article-title: Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.10.064 – ident: 10.1016/j.snb.2021.131344_bib29 doi: 10.1016/j.molcata.2007.07.003 – volume: 67 start-page: 65 year: 1963 ident: 10.1016/j.snb.2021.131344_bib56 article-title: The oxidation of hydrogen and deuterium on a rotating disk electrode publication-title: J. Phys. Chem. doi: 10.1021/j100795a015 – volume: 40 start-page: 11740 year: 2015 ident: 10.1016/j.snb.2021.131344_bib49 article-title: Selectivity and resistance to poisons of commercial hydrogen sensors publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.02.120 – volume: 106 start-page: 784 year: 2005 ident: 10.1016/j.snb.2021.131344_bib39 article-title: Amperometric sensor for selective and stable hydrogen measurement publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2004.09.042 – volume: 155 start-page: 191 year: 2011 ident: 10.1016/j.snb.2021.131344_bib10 article-title: Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2010.11.045 – volume: 128 start-page: 3136 year: 2006 ident: 10.1016/j.snb.2021.131344_bib19 article-title: Facile autoreduction of iron oxide/carbon nanotube encapsulates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056721l – volume: 5 start-page: 3595 year: 2013 ident: 10.1016/j.snb.2021.131344_bib28 article-title: Confinement of metal nanoparticles in carbon nanotubes publication-title: ChemCatChem doi: 10.1002/cctc.201300527 – volume: 208 start-page: 7 year: 2015 ident: 10.1016/j.snb.2021.131344_bib12 article-title: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.11.005 – volume: 39 start-page: 367 year: 2002 ident: 10.1016/j.snb.2021.131344_bib14 article-title: Electrochemical hydrogen isotope sensor based on solid electrolytes publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2002.9715205 – volume: 11 start-page: 470 year: 1972 ident: 10.1016/j.snb.2021.131344_bib52 article-title: Separation of binary mixtures of CO and H2 by permeation through polymeric films publication-title: Ind. Eng. Chem. Proc. Des. Dev. doi: 10.1021/i260044a003 – start-page: 347 year: 1998 ident: 10.1016/j.snb.2021.131344_bib27 article-title: The opening and filling of single walled carbon nanotubes (SWTs) publication-title: Chem. Commun. doi: 10.1039/a707632k – volume: 110 start-page: 22266 year: 2006 ident: 10.1016/j.snb.2021.131344_bib16 article-title: Hydrogen sensors based on conductivity changes in polyaniline nanofibers † publication-title: J. Phys. Chem. B. doi: 10.1021/jp063166g – volume: 20 start-page: 1443 year: 2008 ident: 10.1016/j.snb.2021.131344_bib21 article-title: A catalytic reaction inside a single-walled carbon nanotube publication-title: Adv. Mater. doi: 10.1002/adma.200701466 – volume: 35 start-page: 10118 year: 2010 ident: 10.1016/j.snb.2021.131344_bib32 article-title: The roles of metals and their oxide species in hydrophobic Pt–Ru catalysts for the interphase H/D isotope separation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.08.009 – volume: 42 start-page: 47 year: 2004 ident: 10.1016/j.snb.2021.131344_bib30 article-title: Carbon nanotubes filled with metallic nanowires publication-title: Carbon doi: 10.1016/j.carbon.2003.09.015 – volume: 51 start-page: 17615 year: 2015 ident: 10.1016/j.snb.2021.131344_bib23 article-title: A remarkable difference in CO 2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes publication-title: Chem. Commun. doi: 10.1039/C5CC07079A – volume: 123 start-page: 1 year: 1982 ident: 10.1016/j.snb.2021.131344_bib36 article-title: Adsorption of oxygen on Pt(111) publication-title: Surf. Sci. doi: 10.1016/0039-6028(82)90124-8 – volume: 7 start-page: 1237 year: 2005 ident: 10.1016/j.snb.2021.131344_bib33 article-title: Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2005.07.015 – year: 2001 ident: 10.1016/j.snb.2021.131344_bib43 – volume: 473 year: 2020 ident: 10.1016/j.snb.2021.131344_bib41 article-title: Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228607 – volume: 261 start-page: 1545 year: 1993 ident: 10.1016/j.snb.2021.131344_bib18 article-title: Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules publication-title: Science doi: 10.1126/science.261.5128.1545 – volume: 18 start-page: 5782 year: 2008 ident: 10.1016/j.snb.2021.131344_bib22 article-title: Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels publication-title: J. Mater. Chem. doi: 10.1039/b811560e – volume: 72 start-page: 1925 year: 2000 ident: 10.1016/j.snb.2021.131344_bib55 article-title: A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent publication-title: Anal. Chem. doi: 10.1021/ac991213d – volume: 10 start-page: 4743 year: 2020 ident: 10.1016/j.snb.2021.131344_bib38 article-title: Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY00960A – volume: 17 start-page: 1417 year: 2017 ident: 10.1016/j.snb.2021.131344_bib15 article-title: Surface acoustic wave sensors for hydrogen and deuterium detection publication-title: Sensors doi: 10.3390/s17061417 – volume: 323 year: 2020 ident: 10.1016/j.snb.2021.131344_bib53 article-title: Carbon-based potentiometric hydrogen sensor using a proton conducting graphene oxide membrane coupled with a WO3 sensing electrode publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128678 – volume: 2 start-page: 1553 year: 2017 ident: 10.1016/j.snb.2021.131344_bib7 article-title: Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: a review publication-title: ACS Sens. doi: 10.1021/acssensors.7b00620 – volume: 46 start-page: 11015 year: 2021 ident: 10.1016/j.snb.2021.131344_bib13 article-title: Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing - application as gas sensor publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.12.193 – volume: 1 start-page: 382 year: 2009 ident: 10.1016/j.snb.2021.131344_bib3 article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor publication-title: Nanoscale doi: 10.1039/b9nr00015a – volume: 2009 start-page: 1 year: 2009 ident: 10.1016/j.snb.2021.131344_bib8 article-title: A review of carbon nanotubes-based gas sensors publication-title: J. Sens. doi: 10.1155/2009/493904 – volume: 13 start-page: 3627 year: 2013 ident: 10.1016/j.snb.2021.131344_bib25 article-title: Material properties of the Pt electrode deposited on nafion membrane by the impregnation–reduction method publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2013.7261 – volume: 38 start-page: 3225 year: 2003 ident: 10.1016/j.snb.2021.131344_bib51 article-title: Testing of polymer membranes for the selective permeability of hydrogen publication-title: Sep. Sci. Technol. doi: 10.1081/SS-120022595 – volume: 161 start-page: 93 year: 2003 ident: 10.1016/j.snb.2021.131344_bib17 article-title: Electrochemical hydrogen isotope sensing via the high-temperature proton conductor CaZr0.90In0.10O3−α publication-title: Solid State Ion. doi: 10.1016/S0167-2738(03)00212-1 – volume: 50 start-page: 4913 year: 2011 ident: 10.1016/j.snb.2021.131344_bib20 article-title: Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006870 – volume: 3 start-page: 366 year: 1970 ident: 10.1016/j.snb.2021.131344_bib50 article-title: Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene publication-title: Macromolecules doi: 10.1021/ma60015a020 – volume: 108 start-page: 352 year: 2008 ident: 10.1016/j.snb.2021.131344_bib6 article-title: Amperometric gas sensors A review publication-title: Chem. Rev. doi: 10.1021/cr0681039 – ident: 10.1016/j.snb.2021.131344_bib46 – volume: 53 start-page: 14250 year: 2014 ident: 10.1016/j.snb.2021.131344_bib35 article-title: Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406812 – volume: 157 start-page: 329 year: 2011 ident: 10.1016/j.snb.2021.131344_bib1 article-title: Hydrogen sensors – a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.04.070 – volume: 39 start-page: 20491 year: 2014 ident: 10.1016/j.snb.2021.131344_bib47 article-title: Evaluation of selectivity of commercial hydrogen sensors publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.03.251 – volume: 149 start-page: H173 year: 2002 ident: 10.1016/j.snb.2021.131344_bib2 article-title: Solid-state amperometric hydrogen sensor using Pt/C/Nafion composite electrodes prepared by a hot-pressed method publication-title: J. Electrochem. Soc. doi: 10.1149/1.1509462 – volume: 162 start-page: F190 year: 2015 ident: 10.1016/j.snb.2021.131344_bib42 article-title: Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media publication-title: J. Electrochem. Soc. doi: 10.1149/2.0981501jes – volume: 153 start-page: 392 year: 2011 ident: 10.1016/j.snb.2021.131344_bib4 article-title: Micromachined catalytic combustible hydrogen gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2010.11.004 – volume: 109 start-page: 1402 year: 2009 ident: 10.1016/j.snb.2021.131344_bib26 article-title: Review of electrochemical hydrogen sensors publication-title: Chem. Rev. doi: 10.1021/cr800339k – volume: 12 start-page: 9635 year: 2018 ident: 10.1016/j.snb.2021.131344_bib40 article-title: Best practices for reporting electrocatalytic performance of nanomaterials publication-title: ACS Nano doi: 10.1021/acsnano.8b07700 – volume: 236 start-page: 1098 year: 2016 ident: 10.1016/j.snb.2021.131344_bib5 article-title: Transparent carbon nanotube film as sensitive material for surface plasmon resonance based optical sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.06.058 – volume: 10 start-page: 4430 year: 2010 ident: 10.1016/j.snb.2021.131344_bib48 article-title: Measurement uncertainty estimation in amperometric sensors: a tutorial review publication-title: Sensors doi: 10.3390/s100504430 |
SSID | ssj0004360 |
Score | 2.4607368 |
Snippet | The development of hydrogen-based energy and nuclear energy requires new sensing material and high-performance gas sensor for hydrogen stable isotopes,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131344 |
SubjectTerms | Amperometric gas sensor Catalysts Composite materials Correlation coefficients Deuterium Electrical measurement Electrochemical sensor Electrodes Gas sensors Hydrogen Hydrogen stable isotope Hydrogen-based energy Isotopes Nanoparticles Nuclear energy Nuclear reactors Selectivity Sensitivity Sensors Single wall carbon nanotubes Space-confined effect SWNT-filled Pt composite |
Title | Amperometric sensor for the detection of hydrogen stable isotopes based on Pt nanoparticles confined within single-walled carbon nanotubes (SWNTs) |
URI | https://dx.doi.org/10.1016/j.snb.2021.131344 https://www.proquest.com/docview/2667260030 |
Volume | 356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V7YUeEE9RCNUeOACSG-8jsfcYRa0CiAiprZrbandnI1KldhQ7Qlz4EfxiZhy7pUjNgYsP1ozX2hnPfLOeB2PvfKp1jI5qnbRLtPPDxAcpkugzEAM3N7qZsfR1Opxc6s-zwWyPjbtaGEqrbG3_1qY31rq90293s79aLPrnqcHgho41UauMkGSHtc5Iy09-3aV5aNVUChNxQtTdn80mx6sqPIaIUpwIJZTWD_mmf6x043rOnrDHLWbko-1rPWV7sXjGDv_qJPic_R7dUMfvG5qPFXiFsWm55ohHOeI7DrFuEq4KXs7595-wLlFrOMJCv4x8UZV1uYoVJ38GHIm-1bxwBQbTbc4cx5B5jksBp0PbBXLiksuY_KAxLMCDW3vkIpZ645H8_fnV9KL68IJdnp1ejCdJO24hCcqIOskAnAAvQVINocu1kl6EzHhq-YWwBMCbAD6CciJ4FVNALIQ7PwgiBYzy1Eu2X5RFfMV40CYFKsLFC8ab8zw3mXQ-DdLk-cDAEUu7jbah7UVOIzGWtks6u7YoG0uysVvZHLGPtyyrbSOOXcS6k569p00WHcUutl4nadt-ypVFBJNRF3-Vvv6_p75hjyTVTDTpPj22X6838S0imdofN6p6zA5Gn75Mpn8Az0Pzhw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QE4IJ6iUMAHDoAUNn6kiY-rimpL2xVSt6I3y_Z4xaJtstqkQvwNfjEzWYeXRA9ccohm4sgzmfnGmQdjr3yudYyOap20y7TzB5kPUmTRlyAKtzC6n7F0NjuYXugPl8XlDjscamEorTLZ_q1N7611ujNOuzleL5fj89xgcEPHmqhVRki0w7vUnaoYsd3J8cl09qs8UvXFwkSfEcPwc7NP82prj1GiFO-EEkrrf7mnvwx1732O7rG7CTbyyfbN7rOdWD9gd35rJviQfZ9cUdPvKxqRFXiL4Wmz4QhJOUI8DrHrc65q3iz452-waVBxOCJDv4p82TZds44tJ5cGHIk-drx2NcbTKW2OY9S8wKWA07ntEjlxyVXMvtIkFuDBbTxyEUt37ZH89fmn2bx984hdHL2fH06zNHEhC8qILisBnAAvQVIZoau0kl6E0njq-oXIBMCbAD6CciJ4FXNAOISbXwSRAwZ66jEb1U0dnzAetMmB6nDxgiHnoqpMKZ3PgzRVVRjYY_mw0TakduQ0FWNlh7yzLxZlY0k2diubPfb2J8t624vjJmI9SM_-oVAWfcVNbPuDpG36mluLIKakRv4qf_p_T33Jbk3nZ6f29Hh28ozdllRC0Wf_7LNRt7mOzxHYdP5FUtwfJ5T2OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amperometric+sensor+for+the+detection+of+hydrogen+stable+isotopes+based+on+Pt+nanoparticles+confined+within+single-walled+carbon+nanotubes+%28SWNTs%29&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Hu%2C+Jiacheng&rft.au=Sang%2C+Ge&rft.au=Zeng%2C+Ning&rft.au=Lv%2C+Chao&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=356&rft_id=info:doi/10.1016%2Fj.snb.2021.131344&rft.externalDocID=S0925400521019122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |