Smart Algorithms for Efficient Insulin Therapy Initiation in Individuals With Type 2 Diabetes: An in Silico Study

Background: Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to...

Full description

Saved in:
Bibliographic Details
Published inJournal of diabetes science and technology Vol. 19; no. 5; pp. 1271 - 1279
Main Authors Bonet, Jacopo, Visentin, Roberto, Dalla Man, Chiara
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 22.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN. Method: To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process. Results: The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia. Conclusions: Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.
AbstractList Background: Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN. Method: To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process. Results: The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia. Conclusions: Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.
Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN. To do that, we cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process. The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia. Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.
Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN.BACKGROUNDInsulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN.To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process.METHODTo do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process.The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia.RESULTSThe new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia.Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.CONCLUSIONSSmart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.
Author Bonet, Jacopo
Dalla Man, Chiara
Visentin, Roberto
AuthorAffiliation 1 Department of Information Engineering, University of Padua, Padova, Italy
AuthorAffiliation_xml – name: 1 Department of Information Engineering, University of Padua, Padova, Italy
Author_xml – sequence: 1
  givenname: Jacopo
  orcidid: 0000-0003-4097-7943
  surname: Bonet
  fullname: Bonet, Jacopo
– sequence: 2
  givenname: Roberto
  orcidid: 0000-0002-5848-5990
  surname: Visentin
  fullname: Visentin, Roberto
– sequence: 3
  givenname: Chiara
  surname: Dalla Man
  fullname: Dalla Man, Chiara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38646824$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vGyEQhlGVKp_9Ab1UHHtxAgtr2F4qK5-WIvVgVz0iDINNtAYH2Ej-98W1E6Wq1NMww_O-o5k5Q0chBkDoMyWXlApxRTvWNN1YNpw2vO0Y-YBOd7URo0QcHd474ASd5fxESMulEMfohMkx38lO0fNsrVPBk34Zky-rdcYuJnzrnDceQsHTkIfeBzxfQdKbbc198br4GHCtToP1L94Ous_4V5Xj-XYDuME3Xi-gQP6GJ3-4me-9iXhWBru9QB9d5eHTIZ6jn3e38-uH0eOP--n15HFkWEfLSLSMUiM6LpnhXEqz0IJ1Qmqw2i2EMdC6sbWs4cYRENxy64zTUreOUQcdO0ff976bYbEGa-o0Sfdqk3ydeKui9urvn-BXahlfFKWtoJyQ6vD14JDi8wC5qLXPBvpeB4hDVoxwJoQc07aiX943e-vyuugK0D1gUsw5gXtDKFG7Y6p_jlk1l3tN1ktQT3FIoS7sP4LffxegPw
Cites_doi 10.1056/NEJMoa0805017
10.2337/dc10-1989
10.2337/diacare.28.6.1282
10.2337/diacare.26.11.3080
10.1016/S2213-8587(14)70174-3
10.1177/1932296815610124
10.1109/TBME.2016.2535241
10.1080/00401706.1964.10490181
10.1002/dmrr.2557
10.1109/TBME.2024.3352153.
10.4103/1947-2714.153918
10.1089/dia.2020.0027
10.1080/01621459.1952.10483441
10.1016/j.diabres.2012.10.024
10.2337/dc12-1205
10.1007/s11517-014-1226-y
10.2337/cd20-as01
10.2337/dci19-0028.
10.1093/biomet/52.3-4.591
10.1089/dia.2018.0134.
10.1089/dia.2020.0110
ContentType Journal Article
Copyright 2024 Diabetes Technology Society
2024 Diabetes Technology Society 2024 Diabetes Technology Society
Copyright_xml – notice: 2024 Diabetes Technology Society
– notice: 2024 Diabetes Technology Society 2024 Diabetes Technology Society
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1177/19322968241245930
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1932-3107
EndPage 1279
ExternalDocumentID PMC11571400
38646824
10_1177_19322968241245930
10.1177_19322968241245930
Genre Journal Article
GroupedDBID ---
-TM
0R~
53G
54M
AABMB
AACMV
AACTG
AADCB
AADUE
AAEWN
AAGLT
AAGMC
AAJPV
AAKGS
AANEX
AAPII
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABCJG
ABEIX
ABFWQ
ABIDT
ABJIS
ABJNI
ABJZC
ABKRH
ABLUO
ABPNF
ABQXT
ABRHV
ABUJY
ABVFX
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDVE
ADEBD
ADNON
ADRRZ
ADVBO
ADZZY
AECGH
AEDTQ
AEKYL
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFUIA
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AJGYC
AJHME
AJUZI
AJVBE
AJXAJ
ALJHS
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
C45
CDWPY
CFDXU
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EJD
EMOBN
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HYE
J8X
K.F
O9-
OK1
OVD
P2P
P6G
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SFH
SHG
SJN
SPQ
SPV
TEORI
TR2
ZONMY
ZPPRI
ZRKOI
ZSSAH
AAYXX
CITATION
ALTZF
M4V
NPM
7X8
5PM
ID FETCH-LOGICAL-c391t-75311c79483c4488cba73978aedafb7cce5f6dd324cf0e74d4dfcfa8a5f31fe93
ISSN 1932-2968
IngestDate Fri Aug 29 05:29:42 EDT 2025
Fri Jul 11 08:15:36 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Tue Jul 01 05:27:38 EDT 2025
Sun Aug 31 05:48:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords basal insulin titration
continuous glucose monitoring
classification
mathematical models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-75311c79483c4488cba73978aedafb7cce5f6dd324cf0e74d4dfcfa8a5f31fe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4097-7943
0000-0002-5848-5990
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11571400
PMID 38646824
PQID 3043778615
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11571400
proquest_miscellaneous_3043778615
pubmed_primary_38646824
crossref_primary_10_1177_19322968241245930
sage_journals_10_1177_19322968241245930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-22
PublicationDateYYYYMMDD 2024-04-22
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-22
  day: 22
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Sage CA: Los Angeles, CA
PublicationTitle Journal of diabetes science and technology
PublicationTitleAlternate J Diabetes Sci Technol
PublicationYear 2024
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Battelino, Phillip, Bratina 2011; 34
Dunn 1964; 6
Tamborlane, Beck, Bode 2008; 359
Visentin, Man, Cobelli 2016; 63
Brazeau, Mircescu, Desjardins 2013; 99
2022
Battelino, Danne, Bergenstal 2019; 42
Holst, Buse, Rodbard 2016; 10
Riddle, Rosenstock, Gerich 2003; 26
Davies, Storms, Shutler, Bianchi-Biscay, Gomis 2005; 28
Shapiro, Wilk 1965; 52
Noble, Johnston, Walton 1998; 57
2020; 38
Schiavon, Visentin, Giegerich 2020; 22
Tumminia, Crimi, Sciacca 2015; 31
Visentin, Cobelli, Dalla Man 2020; 22
Kruskal, Wallis 1952; 47
Gough, Bode, Woo 2014; 2
Puhr, Calhoun, Welsh, Walker 2018; 20
Visentin, Schiavon, Bonet
Zinman, Philis-Tsimikas, Cariou 2012; 35
Facchinetti, Del Favero, Sparacino, Cobelli 2015; 53
Kalra, Gupta 2015; 7
bibr18-19322968241245930
Zinman B (bibr4-19322968241245930) 2012; 35
American Diabetes Association (bibr3-19322968241245930) 2020; 38
Visentin R (bibr12-19322968241245930) 2016; 63
Shapiro SS (bibr21-19322968241245930) 1965; 52
Riddle MC (bibr5-19322968241245930) 2003; 26
Holst JJ (bibr14-19322968241245930) 2016; 10
Engell SE (bibr8-19322968241245930) 2022
Tamborlane WV (bibr25-19322968241245930) 2008; 359
Gough SC (bibr7-19322968241245930) 2014; 2
Tumminia A (bibr26-19322968241245930) 2015; 31
Hastie T (bibr17-19322968241245930); 2001
Noble SL (bibr1-19322968241245930) 1998; 57
Golyandina N (bibr19-19322968241245930)
Dunn OJ. (bibr23-19322968241245930) 1964; 6
Brazeau AS (bibr15-19322968241245930) 2013; 99
Kalra S (bibr2-19322968241245930) 2015; 7
Kruskal WH (bibr22-19322968241245930) 1952; 47
Bonet J (bibr9-19322968241245930) 2023
Davies M (bibr6-19322968241245930) 2005; 28
Facchinetti A (bibr16-19322968241245930) 2015; 53
Visentin R (bibr10-19322968241245930) 2020; 22
bibr13-19322968241245930
bibr20-19322968241245930
Schiavon M (bibr11-19322968241245930) 2020; 22
bibr27-19322968241245930
Battelino T (bibr24-19322968241245930) 2011; 34
References_xml – volume: 57
  start-page: 279
  year: 1998
  end-page: 286
  article-title: Insulin lispro: a fast-acting insulin analog
  publication-title: Am Fam Physician
– volume: 7
  start-page: 81
  issue: 3
  year: 2015
  end-page: 85
  article-title: Clinical use of insulin degludec: practical experience and pragmatic suggestions
  publication-title: N Am J Med Sci
– article-title: Tailoring the Padova type 2 diabetes simulator for treatment guidance in target populations [published online ahead of print January 10, 2024]
  publication-title: IEEE Trans Biomed Eng
– volume: 31
  start-page: 61
  issue: 1
  year: 2015
  end-page: 68
  article-title: Efficacy of real-time continuous glucose monitoring on glycaemic control and glucose variability in type 1 diabetic patients treated with either insulin pumps or multiple insulin injection therapy: a randomized controlled crossover trial
  publication-title: Diabetes Metab Res Rev
– volume: 28
  start-page: 1282
  issue: 6
  year: 2005
  end-page: 1288
  article-title: Improvement of glycemic control in subjects with poorly controlled type 2 diabetes
  publication-title: Diabetes Care
– volume: 22
  start-page: 892
  issue: 12
  year: 2020
  end-page: 903
  article-title: The Padova type 2 diabetes simulator from triple-tracer single-meal studies: in silico trials also possible in rare but not-so-rare individuals
  publication-title: Diabetes Technol Ther
– volume: 99
  start-page: 19
  issue: 1
  year: 2013
  end-page: 23
  article-title: Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes
  publication-title: Diabetes Res Clin Pract
– volume: 35
  start-page: 2464
  year: 2012
  end-page: 2471
  article-title: Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes
  publication-title: Diabetes Care
– volume: 22
  start-page: 553
  issue: 8
  year: 2020
  end-page: 561
  article-title: In silico head-to-head comparison of insulin glargine 300 U/mL and insulin degludec 100 U/mL in type 1 diabetes
  publication-title: Diabetes Technol Ther
– volume: 53
  start-page: 1259
  issue: 12
  year: 2015
  end-page: 1269
  article-title: Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices
  publication-title: Med Biol Eng Comput
– volume: 38
  start-page: 10
  issue: 1
  year: 2020
  end-page: 38
  article-title: Standards of medical care in diabetes: 2020 abridged for primary care providers
  publication-title: Clin Diabetes
– volume: 20
  start-page: 557
  issue: 8
  year: 2018
  end-page: 560
  article-title: The effect of reduced self-monitored blood glucose testing after adoption of continuous glucose monitoring on hemoglobin A1c and time in range
  publication-title: Diabetes Technol Ther
– volume: 34
  start-page: 795
  year: 2011
  end-page: 800
  article-title: Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes
  publication-title: Diabetes Care
– volume: 6
  start-page: 241
  year: 1964
  end-page: 252
  article-title: Multiple comparisons using rank sums
  publication-title: Technometrics
– volume: 26
  start-page: 3080
  year: 2003
  end-page: 3086
  article-title: The treat-to-target trial
  publication-title: Diabetes Care
– year: 2022
  article-title: Natick, MA: The Mathworks Inc
– volume: 63
  start-page: 2416
  issue: 11
  year: 2016
  end-page: 2424
  article-title: One-day Bayesian cloning of type 1 diabetes subjects: toward a single-day UVA/Padova type 1 diabetes simulator
  publication-title: IEEE Trans Biomed Eng
– volume: 10
  start-page: 389
  year: 2016
  end-page: 397
  article-title: IDegLira improves both fasting and postprandial glucose control as demonstrated using continuous glucose monitoring and a standardized meal test
  publication-title: J Diabetes Sci Technol
– volume: 2
  start-page: 885
  issue: 11
  year: 2014
  end-page: 893
  article-title: Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes
  publication-title: Lancet Diabetes Endocrinol
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J Ame Statis Assoc
– volume: 42
  start-page: 1593
  issue: 8
  year: 2019
  end-page: 1603
  article-title: Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range
  publication-title: Diabetes Care
– volume: 52
  start-page: 591
  year: 1965
  end-page: 611
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
– volume: 359
  start-page: 1464
  year: 2008
  end-page: 1476
  article-title: Continuous glucose monitoring intensive treatment of type 1, diabetes
  publication-title: N Engl J Med
– volume: 359
  start-page: 1464
  year: 2008
  ident: bibr25-19322968241245930
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0805017
– start-page: 71
  volume-title: Singular Spectrum Analysis for Time Series
  ident: bibr19-19322968241245930
– volume: 34
  start-page: 795
  year: 2011
  ident: bibr24-19322968241245930
  publication-title: Diabetes Care
  doi: 10.2337/dc10-1989
– volume: 28
  start-page: 1282
  issue: 6
  year: 2005
  ident: bibr6-19322968241245930
  publication-title: Diabetes Care
  doi: 10.2337/diacare.28.6.1282
– volume: 26
  start-page: 3080
  year: 2003
  ident: bibr5-19322968241245930
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.11.3080
– volume: 2
  start-page: 885
  issue: 11
  year: 2014
  ident: bibr7-19322968241245930
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(14)70174-3
– volume: 10
  start-page: 389
  year: 2016
  ident: bibr14-19322968241245930
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296815610124
– volume: 63
  start-page: 2416
  issue: 11
  year: 2016
  ident: bibr12-19322968241245930
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2535241
– volume: 6
  start-page: 241
  year: 1964
  ident: bibr23-19322968241245930
  publication-title: Technometrics
  doi: 10.1080/00401706.1964.10490181
– volume: 31
  start-page: 61
  issue: 1
  year: 2015
  ident: bibr26-19322968241245930
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.2557
– ident: bibr13-19322968241245930
  doi: 10.1109/TBME.2024.3352153.
– volume: 7
  start-page: 81
  issue: 3
  year: 2015
  ident: bibr2-19322968241245930
  publication-title: N Am J Med Sci
  doi: 10.4103/1947-2714.153918
– volume: 57
  start-page: 279
  year: 1998
  ident: bibr1-19322968241245930
  publication-title: Am Fam Physician
– volume-title: Proceeding of the 8th National Congress of Bioengineering
  year: 2023
  ident: bibr9-19322968241245930
– volume: 22
  start-page: 553
  issue: 8
  year: 2020
  ident: bibr11-19322968241245930
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2020.0027
– volume: 47
  start-page: 583
  year: 1952
  ident: bibr22-19322968241245930
  publication-title: J Ame Statis Assoc
  doi: 10.1080/01621459.1952.10483441
– volume: 99
  start-page: 19
  issue: 1
  year: 2013
  ident: bibr15-19322968241245930
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2012.10.024
– volume: 35
  start-page: 2464
  year: 2012
  ident: bibr4-19322968241245930
  publication-title: Diabetes Care
  doi: 10.2337/dc12-1205
– ident: bibr20-19322968241245930
– volume: 2001
  start-page: 191
  volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  ident: bibr17-19322968241245930
– volume: 53
  start-page: 1259
  issue: 12
  year: 2015
  ident: bibr16-19322968241245930
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-014-1226-y
– volume-title: 2022 IEEE 61st Conference on Decision and Control (CDC)
  year: 2022
  ident: bibr8-19322968241245930
– volume: 38
  start-page: 10
  issue: 1
  year: 2020
  ident: bibr3-19322968241245930
  publication-title: Clin Diabetes
  doi: 10.2337/cd20-as01
– ident: bibr18-19322968241245930
  doi: 10.2337/dci19-0028.
– volume: 52
  start-page: 591
  year: 1965
  ident: bibr21-19322968241245930
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– ident: bibr27-19322968241245930
  doi: 10.1089/dia.2018.0134.
– volume: 22
  start-page: 892
  issue: 12
  year: 2020
  ident: bibr10-19322968241245930
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2020.0110
SSID ssj0054877
Score 2.3694537
Snippet Background: Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or...
Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1271
SubjectTerms Original
Title Smart Algorithms for Efficient Insulin Therapy Initiation in Individuals With Type 2 Diabetes: An in Silico Study
URI https://journals.sagepub.com/doi/full/10.1177/19322968241245930
https://www.ncbi.nlm.nih.gov/pubmed/38646824
https://www.proquest.com/docview/3043778615
https://pubmed.ncbi.nlm.nih.gov/PMC11571400
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviO-FLxkJCYkpE3GcOuGtwKYNtvGwFPUtcpyYRhrpWNMX_nrubCdNlCENXqL2cnWj3C_O3fl3Z0LeCAU-sGTaB1dc-lwFUz-HSMjXQumER0xyjoXCp2fTozn_sogWk4nusZY2Tb6vfl9bV_I_VgUZ2BWrZP_Bst2gIIDPYF84goXheCMbn_8E4d7s4scKQvylba2AeyVXpsoRiQCGZ57azgHwvWqsJTDLcdyVYiEHtlnupTYb6zgya5cyBM3z6gLwYiiHg0XgnjPbpXDbMiFDzByl7T-uarf4ARPx5aoVf6-wBMp2M7BU7-7UZ0z0I0nHcgMqeSX7iQpm-C2sl7tEV9Fnid1FZ7_cykK38a2bQ1GGagw3xo4Su2wznunNWvO1usOu2mffssP5yUmWHizSW-Q2g3DChN7HX9s3NgZtwrIP7AW61W9szDX6g6H_MgpKxtzaHkHQ-CzpfXLP2YfOLHIekElZPyR3Th2d4hH5ZQBEtwCiACDaAYg6AFEHILoFEAVpD0AUAUQRQJTRFkAf6MzoWfhQA5_HZH54kH468t0eHL4Kk6Dx4UkOAgWTdhwqiORjlUsBLmwsy0LqXChVRnpaFOCWK_2-FLzghVZaxjLSYaDLJHxCdmrA1i6hUnAtZMwVOLmgxxIZ4s85-NBagZvvkXftnc0ubauVLHDd6Edm8Mjr9t5nMCHiKpesy9VmnYXYrUvE4Kl75Km1RTdcGE85DuKReGClTgGbrQ_P1NXSNF3HplQBvPA88hYNmrlpYP33S3x2g0t8Tu5uH5UXZKe52pQvwctt8lcGon8ANlCkVA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Algorithms+for+Efficient+Insulin+Therapy+Initiation+in+Individuals+With+Type+2+Diabetes%3A+An+in+Silico+Study&rft.jtitle=Journal+of+diabetes+science+and+technology&rft.au=Bonet%2C+Jacopo&rft.au=Visentin%2C+Roberto&rft.au=Dalla+Man%2C+Chiara&rft.date=2024-04-22&rft.issn=1932-2968&rft.eissn=1932-3107&rft.spage=19322968241245930&rft_id=info:doi/10.1177%2F19322968241245930&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-2968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-2968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-2968&client=summon