Smart Algorithms for Efficient Insulin Therapy Initiation in Individuals With Type 2 Diabetes: An in Silico Study
Background: Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to...
Saved in:
Published in | Journal of diabetes science and technology Vol. 19; no. 5; pp. 1271 - 1279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
22.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background:
Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN.
Method:
To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process.
Results:
The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia.
Conclusions:
Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety. |
---|---|
AbstractList | Background:
Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN.
Method:
To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process.
Results:
The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia.
Conclusions:
Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety. Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN. To do that, we cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process. The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia. Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety. Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN.BACKGROUNDInsulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per week based on fasting plasma glucose (FPG) measurement as recommended by the American Diabetes Association (ADA). The procedure to reach the optimal insulin dose (OID) is time-consuming, especially in subjects with high insulin needs (HIN). The aim of this study is to provide a fast and effective, but still safe, insulin titration algorithm in insulin-naive T2D subjects with HIN.To do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process.METHODTo do that, we in silico cloned 300 subjects, matching a real population of insulin-naive T2D and used a logistic regression model to classify them as subjects with HIN or subjects with low insulin needs (LIN). Then, we applied to the subjects with HIN both a more aggressive insulin dose initiation (SMART-IID) and two newly developed titration algorithms (continuous glucose monitoring [CGM]-BASED and SMART-CGM-BASED) in which CGM was used to guide the decision-making process.The new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia.RESULTSThe new titration algorithm applied to HIN-classified individuals guaranteed a faster reaching of OID, with significant improvements in time in range (TIR) and reduction in time above range (TAR) in the first months of the trial, without any clinically significant increase in the risk of hypoglycemia.Smart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety.CONCLUSIONSSmart basal insulin titration algorithms enable insulin-naive T2D individuals to achieve OID and improve their glycemic control faster than standard guidelines, without jeopardizing patient safety. |
Author | Bonet, Jacopo Dalla Man, Chiara Visentin, Roberto |
AuthorAffiliation | 1 Department of Information Engineering, University of Padua, Padova, Italy |
AuthorAffiliation_xml | – name: 1 Department of Information Engineering, University of Padua, Padova, Italy |
Author_xml | – sequence: 1 givenname: Jacopo orcidid: 0000-0003-4097-7943 surname: Bonet fullname: Bonet, Jacopo – sequence: 2 givenname: Roberto orcidid: 0000-0002-5848-5990 surname: Visentin fullname: Visentin, Roberto – sequence: 3 givenname: Chiara surname: Dalla Man fullname: Dalla Man, Chiara |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38646824$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vGyEQhlGVKp_9Ab1UHHtxAgtr2F4qK5-WIvVgVz0iDINNtAYH2Ej-98W1E6Wq1NMww_O-o5k5Q0chBkDoMyWXlApxRTvWNN1YNpw2vO0Y-YBOd7URo0QcHd474ASd5fxESMulEMfohMkx38lO0fNsrVPBk34Zky-rdcYuJnzrnDceQsHTkIfeBzxfQdKbbc198br4GHCtToP1L94Ous_4V5Xj-XYDuME3Xi-gQP6GJ3-4me-9iXhWBru9QB9d5eHTIZ6jn3e38-uH0eOP--n15HFkWEfLSLSMUiM6LpnhXEqz0IJ1Qmqw2i2EMdC6sbWs4cYRENxy64zTUreOUQcdO0ff976bYbEGa-o0Sfdqk3ydeKui9urvn-BXahlfFKWtoJyQ6vD14JDi8wC5qLXPBvpeB4hDVoxwJoQc07aiX943e-vyuugK0D1gUsw5gXtDKFG7Y6p_jlk1l3tN1ktQT3FIoS7sP4LffxegPw |
Cites_doi | 10.1056/NEJMoa0805017 10.2337/dc10-1989 10.2337/diacare.28.6.1282 10.2337/diacare.26.11.3080 10.1016/S2213-8587(14)70174-3 10.1177/1932296815610124 10.1109/TBME.2016.2535241 10.1080/00401706.1964.10490181 10.1002/dmrr.2557 10.1109/TBME.2024.3352153. 10.4103/1947-2714.153918 10.1089/dia.2020.0027 10.1080/01621459.1952.10483441 10.1016/j.diabres.2012.10.024 10.2337/dc12-1205 10.1007/s11517-014-1226-y 10.2337/cd20-as01 10.2337/dci19-0028. 10.1093/biomet/52.3-4.591 10.1089/dia.2018.0134. 10.1089/dia.2020.0110 |
ContentType | Journal Article |
Copyright | 2024 Diabetes Technology Society 2024 Diabetes Technology Society 2024 Diabetes Technology Society |
Copyright_xml | – notice: 2024 Diabetes Technology Society – notice: 2024 Diabetes Technology Society 2024 Diabetes Technology Society |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1177/19322968241245930 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1932-3107 |
EndPage | 1279 |
ExternalDocumentID | PMC11571400 38646824 10_1177_19322968241245930 10.1177_19322968241245930 |
Genre | Journal Article |
GroupedDBID | --- -TM 0R~ 53G 54M AABMB AACMV AACTG AADCB AADUE AAEWN AAGLT AAGMC AAJPV AAKGS AANEX AAPII AAQXI AARDL AARIX AATAA AATBZ AAUAS ABAWP ABCCA ABCJG ABEIX ABFWQ ABIDT ABJIS ABJNI ABJZC ABKRH ABLUO ABPNF ABQXT ABRHV ABUJY ABVFX ACARO ACDSZ ACDXX ACFEJ ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLZU ACOFE ACOXC ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDVE ADEBD ADNON ADRRZ ADVBO ADZZY AECGH AEDTQ AEKYL AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKRG AFMOU AFQAA AFUIA AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AJGYC AJHME AJUZI AJVBE AJXAJ ALJHS ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBRGL BDDNI BKIIM BKSCU BPACV BSEHC BWJAD C45 CDWPY CFDXU DC- DC. DIK DOPDO DV7 E3Z EBS EJD EMOBN F5P FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HYE J8X K.F O9- OK1 OVD P2P P6G ROL RPM SASJQ SAUOL SCNPE SFC SFH SHG SJN SPQ SPV TEORI TR2 ZONMY ZPPRI ZRKOI ZSSAH AAYXX CITATION ALTZF M4V NPM 7X8 5PM |
ID | FETCH-LOGICAL-c391t-75311c79483c4488cba73978aedafb7cce5f6dd324cf0e74d4dfcfa8a5f31fe93 |
ISSN | 1932-2968 |
IngestDate | Fri Aug 29 05:29:42 EDT 2025 Fri Jul 11 08:15:36 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Tue Jul 01 05:27:38 EDT 2025 Sun Aug 31 05:48:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | basal insulin titration continuous glucose monitoring classification mathematical models |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-75311c79483c4488cba73978aedafb7cce5f6dd324cf0e74d4dfcfa8a5f31fe93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4097-7943 0000-0002-5848-5990 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11571400 |
PMID | 38646824 |
PQID | 3043778615 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11571400 proquest_miscellaneous_3043778615 pubmed_primary_38646824 crossref_primary_10_1177_19322968241245930 sage_journals_10_1177_19322968241245930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-22 |
PublicationDateYYYYMMDD | 2024-04-22 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Sage CA: Los Angeles, CA |
PublicationTitle | Journal of diabetes science and technology |
PublicationTitleAlternate | J Diabetes Sci Technol |
PublicationYear | 2024 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Battelino, Phillip, Bratina 2011; 34 Dunn 1964; 6 Tamborlane, Beck, Bode 2008; 359 Visentin, Man, Cobelli 2016; 63 Brazeau, Mircescu, Desjardins 2013; 99 2022 Battelino, Danne, Bergenstal 2019; 42 Holst, Buse, Rodbard 2016; 10 Riddle, Rosenstock, Gerich 2003; 26 Davies, Storms, Shutler, Bianchi-Biscay, Gomis 2005; 28 Shapiro, Wilk 1965; 52 Noble, Johnston, Walton 1998; 57 2020; 38 Schiavon, Visentin, Giegerich 2020; 22 Tumminia, Crimi, Sciacca 2015; 31 Visentin, Cobelli, Dalla Man 2020; 22 Kruskal, Wallis 1952; 47 Gough, Bode, Woo 2014; 2 Puhr, Calhoun, Welsh, Walker 2018; 20 Visentin, Schiavon, Bonet Zinman, Philis-Tsimikas, Cariou 2012; 35 Facchinetti, Del Favero, Sparacino, Cobelli 2015; 53 Kalra, Gupta 2015; 7 bibr18-19322968241245930 Zinman B (bibr4-19322968241245930) 2012; 35 American Diabetes Association (bibr3-19322968241245930) 2020; 38 Visentin R (bibr12-19322968241245930) 2016; 63 Shapiro SS (bibr21-19322968241245930) 1965; 52 Riddle MC (bibr5-19322968241245930) 2003; 26 Holst JJ (bibr14-19322968241245930) 2016; 10 Engell SE (bibr8-19322968241245930) 2022 Tamborlane WV (bibr25-19322968241245930) 2008; 359 Gough SC (bibr7-19322968241245930) 2014; 2 Tumminia A (bibr26-19322968241245930) 2015; 31 Hastie T (bibr17-19322968241245930); 2001 Noble SL (bibr1-19322968241245930) 1998; 57 Golyandina N (bibr19-19322968241245930) Dunn OJ. (bibr23-19322968241245930) 1964; 6 Brazeau AS (bibr15-19322968241245930) 2013; 99 Kalra S (bibr2-19322968241245930) 2015; 7 Kruskal WH (bibr22-19322968241245930) 1952; 47 Bonet J (bibr9-19322968241245930) 2023 Davies M (bibr6-19322968241245930) 2005; 28 Facchinetti A (bibr16-19322968241245930) 2015; 53 Visentin R (bibr10-19322968241245930) 2020; 22 bibr13-19322968241245930 bibr20-19322968241245930 Schiavon M (bibr11-19322968241245930) 2020; 22 bibr27-19322968241245930 Battelino T (bibr24-19322968241245930) 2011; 34 |
References_xml | – volume: 57 start-page: 279 year: 1998 end-page: 286 article-title: Insulin lispro: a fast-acting insulin analog publication-title: Am Fam Physician – volume: 7 start-page: 81 issue: 3 year: 2015 end-page: 85 article-title: Clinical use of insulin degludec: practical experience and pragmatic suggestions publication-title: N Am J Med Sci – article-title: Tailoring the Padova type 2 diabetes simulator for treatment guidance in target populations [published online ahead of print January 10, 2024] publication-title: IEEE Trans Biomed Eng – volume: 31 start-page: 61 issue: 1 year: 2015 end-page: 68 article-title: Efficacy of real-time continuous glucose monitoring on glycaemic control and glucose variability in type 1 diabetic patients treated with either insulin pumps or multiple insulin injection therapy: a randomized controlled crossover trial publication-title: Diabetes Metab Res Rev – volume: 28 start-page: 1282 issue: 6 year: 2005 end-page: 1288 article-title: Improvement of glycemic control in subjects with poorly controlled type 2 diabetes publication-title: Diabetes Care – volume: 22 start-page: 892 issue: 12 year: 2020 end-page: 903 article-title: The Padova type 2 diabetes simulator from triple-tracer single-meal studies: in silico trials also possible in rare but not-so-rare individuals publication-title: Diabetes Technol Ther – volume: 99 start-page: 19 issue: 1 year: 2013 end-page: 23 article-title: Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes publication-title: Diabetes Res Clin Pract – volume: 35 start-page: 2464 year: 2012 end-page: 2471 article-title: Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes publication-title: Diabetes Care – volume: 22 start-page: 553 issue: 8 year: 2020 end-page: 561 article-title: In silico head-to-head comparison of insulin glargine 300 U/mL and insulin degludec 100 U/mL in type 1 diabetes publication-title: Diabetes Technol Ther – volume: 53 start-page: 1259 issue: 12 year: 2015 end-page: 1269 article-title: Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices publication-title: Med Biol Eng Comput – volume: 38 start-page: 10 issue: 1 year: 2020 end-page: 38 article-title: Standards of medical care in diabetes: 2020 abridged for primary care providers publication-title: Clin Diabetes – volume: 20 start-page: 557 issue: 8 year: 2018 end-page: 560 article-title: The effect of reduced self-monitored blood glucose testing after adoption of continuous glucose monitoring on hemoglobin A1c and time in range publication-title: Diabetes Technol Ther – volume: 34 start-page: 795 year: 2011 end-page: 800 article-title: Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes publication-title: Diabetes Care – volume: 6 start-page: 241 year: 1964 end-page: 252 article-title: Multiple comparisons using rank sums publication-title: Technometrics – volume: 26 start-page: 3080 year: 2003 end-page: 3086 article-title: The treat-to-target trial publication-title: Diabetes Care – year: 2022 article-title: Natick, MA: The Mathworks Inc – volume: 63 start-page: 2416 issue: 11 year: 2016 end-page: 2424 article-title: One-day Bayesian cloning of type 1 diabetes subjects: toward a single-day UVA/Padova type 1 diabetes simulator publication-title: IEEE Trans Biomed Eng – volume: 10 start-page: 389 year: 2016 end-page: 397 article-title: IDegLira improves both fasting and postprandial glucose control as demonstrated using continuous glucose monitoring and a standardized meal test publication-title: J Diabetes Sci Technol – volume: 2 start-page: 885 issue: 11 year: 2014 end-page: 893 article-title: Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes publication-title: Lancet Diabetes Endocrinol – volume: 47 start-page: 583 year: 1952 end-page: 621 article-title: Use of ranks in one-criterion variance analysis publication-title: J Ame Statis Assoc – volume: 42 start-page: 1593 issue: 8 year: 2019 end-page: 1603 article-title: Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range publication-title: Diabetes Care – volume: 52 start-page: 591 year: 1965 end-page: 611 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika – volume: 359 start-page: 1464 year: 2008 end-page: 1476 article-title: Continuous glucose monitoring intensive treatment of type 1, diabetes publication-title: N Engl J Med – volume: 359 start-page: 1464 year: 2008 ident: bibr25-19322968241245930 publication-title: N Engl J Med doi: 10.1056/NEJMoa0805017 – start-page: 71 volume-title: Singular Spectrum Analysis for Time Series ident: bibr19-19322968241245930 – volume: 34 start-page: 795 year: 2011 ident: bibr24-19322968241245930 publication-title: Diabetes Care doi: 10.2337/dc10-1989 – volume: 28 start-page: 1282 issue: 6 year: 2005 ident: bibr6-19322968241245930 publication-title: Diabetes Care doi: 10.2337/diacare.28.6.1282 – volume: 26 start-page: 3080 year: 2003 ident: bibr5-19322968241245930 publication-title: Diabetes Care doi: 10.2337/diacare.26.11.3080 – volume: 2 start-page: 885 issue: 11 year: 2014 ident: bibr7-19322968241245930 publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(14)70174-3 – volume: 10 start-page: 389 year: 2016 ident: bibr14-19322968241245930 publication-title: J Diabetes Sci Technol doi: 10.1177/1932296815610124 – volume: 63 start-page: 2416 issue: 11 year: 2016 ident: bibr12-19322968241245930 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2535241 – volume: 6 start-page: 241 year: 1964 ident: bibr23-19322968241245930 publication-title: Technometrics doi: 10.1080/00401706.1964.10490181 – volume: 31 start-page: 61 issue: 1 year: 2015 ident: bibr26-19322968241245930 publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.2557 – ident: bibr13-19322968241245930 doi: 10.1109/TBME.2024.3352153. – volume: 7 start-page: 81 issue: 3 year: 2015 ident: bibr2-19322968241245930 publication-title: N Am J Med Sci doi: 10.4103/1947-2714.153918 – volume: 57 start-page: 279 year: 1998 ident: bibr1-19322968241245930 publication-title: Am Fam Physician – volume-title: Proceeding of the 8th National Congress of Bioengineering year: 2023 ident: bibr9-19322968241245930 – volume: 22 start-page: 553 issue: 8 year: 2020 ident: bibr11-19322968241245930 publication-title: Diabetes Technol Ther doi: 10.1089/dia.2020.0027 – volume: 47 start-page: 583 year: 1952 ident: bibr22-19322968241245930 publication-title: J Ame Statis Assoc doi: 10.1080/01621459.1952.10483441 – volume: 99 start-page: 19 issue: 1 year: 2013 ident: bibr15-19322968241245930 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2012.10.024 – volume: 35 start-page: 2464 year: 2012 ident: bibr4-19322968241245930 publication-title: Diabetes Care doi: 10.2337/dc12-1205 – ident: bibr20-19322968241245930 – volume: 2001 start-page: 191 volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction ident: bibr17-19322968241245930 – volume: 53 start-page: 1259 issue: 12 year: 2015 ident: bibr16-19322968241245930 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-014-1226-y – volume-title: 2022 IEEE 61st Conference on Decision and Control (CDC) year: 2022 ident: bibr8-19322968241245930 – volume: 38 start-page: 10 issue: 1 year: 2020 ident: bibr3-19322968241245930 publication-title: Clin Diabetes doi: 10.2337/cd20-as01 – ident: bibr18-19322968241245930 doi: 10.2337/dci19-0028. – volume: 52 start-page: 591 year: 1965 ident: bibr21-19322968241245930 publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – ident: bibr27-19322968241245930 doi: 10.1089/dia.2018.0134. – volume: 22 start-page: 892 issue: 12 year: 2020 ident: bibr10-19322968241245930 publication-title: Diabetes Technol Ther doi: 10.1089/dia.2020.0110 |
SSID | ssj0054877 |
Score | 2.3694537 |
Snippet | Background:
Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or... Insulin-naive subjects with type 2 diabetes (T2D) start basal insulin titration from a low initial insulin dose (IID), which is adjusted weekly or twice per... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1271 |
SubjectTerms | Original |
Title | Smart Algorithms for Efficient Insulin Therapy Initiation in Individuals With Type 2 Diabetes: An in Silico Study |
URI | https://journals.sagepub.com/doi/full/10.1177/19322968241245930 https://www.ncbi.nlm.nih.gov/pubmed/38646824 https://www.proquest.com/docview/3043778615 https://pubmed.ncbi.nlm.nih.gov/PMC11571400 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviO-FLxkJCYkpE3GcOuGtwKYNtvGwFPUtcpyYRhrpWNMX_nrubCdNlCENXqL2cnWj3C_O3fl3Z0LeCAU-sGTaB1dc-lwFUz-HSMjXQumER0xyjoXCp2fTozn_sogWk4nusZY2Tb6vfl9bV_I_VgUZ2BWrZP_Bst2gIIDPYF84goXheCMbn_8E4d7s4scKQvylba2AeyVXpsoRiQCGZ57azgHwvWqsJTDLcdyVYiEHtlnupTYb6zgya5cyBM3z6gLwYiiHg0XgnjPbpXDbMiFDzByl7T-uarf4ARPx5aoVf6-wBMp2M7BU7-7UZ0z0I0nHcgMqeSX7iQpm-C2sl7tEV9Fnid1FZ7_cykK38a2bQ1GGagw3xo4Su2wznunNWvO1usOu2mffssP5yUmWHizSW-Q2g3DChN7HX9s3NgZtwrIP7AW61W9szDX6g6H_MgpKxtzaHkHQ-CzpfXLP2YfOLHIekElZPyR3Th2d4hH5ZQBEtwCiACDaAYg6AFEHILoFEAVpD0AUAUQRQJTRFkAf6MzoWfhQA5_HZH54kH468t0eHL4Kk6Dx4UkOAgWTdhwqiORjlUsBLmwsy0LqXChVRnpaFOCWK_2-FLzghVZaxjLSYaDLJHxCdmrA1i6hUnAtZMwVOLmgxxIZ4s85-NBagZvvkXftnc0ubauVLHDd6Edm8Mjr9t5nMCHiKpesy9VmnYXYrUvE4Kl75Km1RTdcGE85DuKReGClTgGbrQ_P1NXSNF3HplQBvPA88hYNmrlpYP33S3x2g0t8Tu5uH5UXZKe52pQvwctt8lcGon8ANlCkVA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Algorithms+for+Efficient+Insulin+Therapy+Initiation+in+Individuals+With+Type+2+Diabetes%3A+An+in+Silico+Study&rft.jtitle=Journal+of+diabetes+science+and+technology&rft.au=Bonet%2C+Jacopo&rft.au=Visentin%2C+Roberto&rft.au=Dalla+Man%2C+Chiara&rft.date=2024-04-22&rft.issn=1932-2968&rft.eissn=1932-3107&rft.spage=19322968241245930&rft_id=info:doi/10.1177%2F19322968241245930&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-2968&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-2968&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-2968&client=summon |