Pairwise ratio-based differential abundance analysis of infant microbiome 16S sequencing data

Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that u...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 5; no. 1; p. lqad001
Main Authors Mildau, Kevin, te Beest, Dennis E, Engel, Bas, Gort, Gerrit, Lambert, Jolanda, Swinkels, Sophie H N, van Eeuwijk, Fred A
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2023
Online AccessGet full text

Cover

Loading…
Abstract Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications.
AbstractList Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications.
Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications.
Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications.
Author Mildau, Kevin
Engel, Bas
Swinkels, Sophie H N
te Beest, Dennis E
Gort, Gerrit
Lambert, Jolanda
van Eeuwijk, Fred A
Author_xml – sequence: 1
  givenname: Kevin
  surname: Mildau
  fullname: Mildau, Kevin
– sequence: 2
  givenname: Dennis E
  orcidid: 0000-0001-5265-9008
  surname: te Beest
  fullname: te Beest, Dennis E
  email: dennis.tebeest@wur.nl
– sequence: 3
  givenname: Bas
  surname: Engel
  fullname: Engel, Bas
– sequence: 4
  givenname: Gerrit
  surname: Gort
  fullname: Gort, Gerrit
– sequence: 5
  givenname: Jolanda
  surname: Lambert
  fullname: Lambert, Jolanda
– sequence: 6
  givenname: Sophie H N
  surname: Swinkels
  fullname: Swinkels, Sophie H N
– sequence: 7
  givenname: Fred A
  surname: van Eeuwijk
  fullname: van Eeuwijk, Fred A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36685726$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9LwzAUx4Mobs5dPUqOeuiWpE2aHmX4CwYK6lHKS5OMSJtuSYvsv7fSKd7kHd47fN6X9z5n6Ni33iB0QcmCkiJdeggbUMt6B5oQeoSmTKQ0KZiQx3_mCZrH-EEIYTzjGaGnaJIKIXnOxBS9P4MLny4aHKBzbaIgGo21s9YE4zsHNQbVew2-Mhg81PvoIm4tdt6C73DjqtAq1zYGU_GCo9n1xlfOb7CGDs7RiYU6mvmhz9Db3e3r6iFZP90_rm7WSZUWtEtyVrAis1SRQuQ5lVqZyhIFkkNlVSatqpRVWvPcaC5AklQPJVU6vECYlukMXY2529AOB8SubFysTF2DN20fS5YLKWnGOB_QxYgOd8cYjC23wTUQ9iUl5bfVcrRaHqwOC5eH7F41Rv_iPw4H4HoE2n77X9gX3O2GTw
Cites_doi 10.1002/sta4.185
10.1177/1471082X14535524
10.1093/bioinformatics/btv608
10.32614/RJ-2017-066
10.1093/bioinformatics/btr449
10.1198/000313006X118430
10.1093/gigascience/giz107
10.1093/bioinformatics/btv165
10.1038/nrgastro.2017.97
10.1007/s11004-018-9754-x
10.1186/2049-2618-2-15
10.2307/2529131
10.1111/pai.12232
10.1111/j.2517-6161.1948.tb00014.x
10.1201/9780429455537
10.1136/gutjnl-2015-309990
10.1038/nature18850
10.1038/nmeth.2658
10.1371/journal.pcbi.1006329
10.1073/pnas.0914005107
10.1093/bioinformatics/btx650
10.1186/s12864-018-4637-6
10.1007/978-3-642-45182-9
10.1093/bib/bbx104
10.1089/cmb.2015.0157
10.1111/j.2517-6161.1995.tb02031.x
10.1146/annurev-statistics-010814-020351
10.7717/peerj.4600
10.1093/nargab/lqaa040
10.1016/j.annepidem.2016.03.002
10.1214/19-AOAS1283
10.2307/2529820
10.1038/nature24460
10.1093/bioinformatics/btw308
10.18637/jss.v028.i08
10.3389/fmicb.2017.02224
10.1007/978-981-13-1534-3
10.1139/cjm-2015-0821
10.1186/s40168-017-0237-y
10.1093/bioinformatics/btp616
10.1093/bib/bbz155
10.1093/bioinformatics/btt350
10.1186/s13059-014-0550-8
10.1002/sim.6082
10.1038/s41467-019-10656-5
10.1093/bioinformatics/bty175
10.1201/b14832
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
DBID TOX
NPM
AAYXX
CITATION
7X8
DOI 10.1093/nargab/lqad001
DatabaseName Oxford Open Access Journals
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Open Access Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2631-9268
EndPage lqad001
ExternalDocumentID 10_1093_nargab_lqad001
36685726
10.1093/nargab/lqad001
Genre Journal Article
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABPTD
ABXVV
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
EBS
EMOBN
GROUPED_DOAJ
IAO
IGS
IHR
INH
KSI
M~E
ROX
RPM
TOX
ITC
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c391t-729294f1b0967718dbecf0ba85acfb48fbcbfbdd57ed56a803d3d38b372602d83
IEDL.DBID TOX
ISSN 2631-9268
IngestDate Fri Oct 25 09:21:35 EDT 2024
Wed Oct 16 15:12:54 EDT 2024
Sat Sep 28 08:16:18 EDT 2024
Wed Aug 28 03:17:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-729294f1b0967718dbecf0ba85acfb48fbcbfbdd57ed56a803d3d38b372602d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5265-9008
OpenAccessLink https://dx.doi.org/10.1093/nargab/lqad001
PMID 36685726
PQID 2768814255
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2768814255
crossref_primary_10_1093_nargab_lqad001
pubmed_primary_36685726
oup_primary_10_1093_nargab_lqad001
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle NAR genomics and bioinformatics
PublicationTitleAlternate NAR Genom Bioinform
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Greenacre (2023012008202027300_B32) 2018
Hothorn (2023012008202027300_B42) 2008; 28
Martin (2023012008202027300_B23) 2020; 14
Gilbert (2023012008202027300_B2) 2016; 535
Dudoit (2023012008202027300_B52) 2007
Conover (2023012008202027300_B39) 1999
Martín-Fernández (2023012008202027300_B46) 2015; 15
Chen (2023012008202027300_B15) 2018; 6
Bourgon (2023012008202027300_B50) 2010; 107
Quinn (2023012008202027300_B12) 2019; 8
Hu (2023012008202027300_B24) 2018; 7
Fernandes (2023012008202027300_B13) 2014; 2
Aitchison (2023012008202027300_B31) 2003
Benjamini (2023012008202027300_B36) 1995; 57
Quinn (2023012008202027300_B16) 2018; 34
Pereira (2023012008202027300_B14) 2018; 19
Paulson (2023012008202027300_B44) 2013; 10
Skellam (2023012008202027300_B19) 1948; 10
Rau (2023012008202027300_B51) 2013; 29
Bharti (2023012008202027300_B9) 2021; 22
Zhou (2023012008202027300_B22) 2011; 27
Chen (2023012008202027300_B28) 2017; 34
Kim (2023012008202027300_B49) 2015; 32
Claesson (2023012008202027300_B3) 2017; 14
Morton (2023012008202027300_B47) 2019; 10
Chai (2023012008202027300_B26) 2018; 14
Griffiths (2023012008202027300_B20) 1973; 29
Greenacre (2023012008202027300_B48) 2019; 51
Peng (2023012008202027300_B25) 2016; 23
Williams (2023012008202027300_B21) 1975; 31
Egozcue (2023012008202027300_B7) 2020; 2
Li (2023012008202027300_B4) 2015; 2
Vandeputte (2023012008202027300_B10) 2017; 551
Love (2023012008202027300_B17) 2014; 15
Hawinkel (2023012008202027300_B30) 2017; 20
Rigby (2023012008202027300_B35) 2005; 54
Hothorn (2023012008202027300_B41) 2006; 60
Goeman (2023012008202027300_B54) 2014; 33
Mandal (2023012008202027300_B37) 2015; 26
Dickhaus (2023012008202027300_B53) 2014
R Core Team (2023012008202027300_B40) 2013
Tsilimigras (2023012008202027300_B5) 2016; 26
Brooks (2023012008202027300_B34) 2017; 9
Lovell (2023012008202027300_B33) 2020; 2
Marchesi (2023012008202027300_B1) 2016; 65
Gloor (2023012008202027300_B11) 2017; 8
Weiss (2023012008202027300_B43) 2017; 5
Wopereis (2023012008202027300_B8) 2014; 25
Xia (2023012008202027300_B6) 2018
Robinson (2023012008202027300_B18) 2009; 26
Gloor (2023012008202027300_B29) 2016; 62
Cox (2023012008202027300_B38) 1979
Chen (2023012008202027300_B27) 2016; 32
Sohn (2023012008202027300_B45) 2015; 31
References_xml – volume: 7
  start-page: e185
  year: 2018
  ident: 2023012008202027300_B24
  article-title: A zero-inflated beta-binomial model for microbiome data analysis
  publication-title: Stat
  doi: 10.1002/sta4.185
  contributor:
    fullname: Hu
– volume: 15
  start-page: 134
  year: 2015
  ident: 2023012008202027300_B46
  article-title: Bayesian-multiplicative treatment of count zeros in compositional data sets
  publication-title: Stat. Model.
  doi: 10.1177/1471082X14535524
  contributor:
    fullname: Martín-Fernández
– volume: 32
  start-page: 850
  year: 2015
  ident: 2023012008202027300_B49
  article-title: Prioritizing hypothesis tests for high throughput data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv608
  contributor:
    fullname: Kim
– volume: 9
  start-page: 378
  year: 2017
  ident: 2023012008202027300_B34
  article-title: glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling
  publication-title: R J.
  doi: 10.32614/RJ-2017-066
  contributor:
    fullname: Brooks
– volume: 27
  start-page: 2672
  year: 2011
  ident: 2023012008202027300_B22
  article-title: A powerful and flexible approach to the analysis of RNA sequence count data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr449
  contributor:
    fullname: Zhou
– volume: 60
  start-page: 257
  year: 2006
  ident: 2023012008202027300_B41
  article-title: A Lego system for conditional inference
  publication-title: Am. Stat.
  doi: 10.1198/000313006X118430
  contributor:
    fullname: Hothorn
– volume: 54
  start-page: 507
  year: 2005
  ident: 2023012008202027300_B35
  article-title: Generalized additive models for location, scale and shape (with discussion)
  publication-title: Appl. Stat.
  contributor:
    fullname: Rigby
– volume: 8
  start-page: giz107
  year: 2019
  ident: 2023012008202027300_B12
  article-title: A field guide for the compositional analysis of any-omics data
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz107
  contributor:
    fullname: Quinn
– volume: 31
  start-page: 2269
  year: 2015
  ident: 2023012008202027300_B45
  article-title: A robust approach for identifying differentially abundant features in metagenomic samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv165
  contributor:
    fullname: Sohn
– volume: 14
  start-page: 585
  year: 2017
  ident: 2023012008202027300_B3
  article-title: A clinician’s guide to microbiome analysis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.97
  contributor:
    fullname: Claesson
– volume: 51
  start-page: 649
  year: 2019
  ident: 2023012008202027300_B48
  article-title: Variable selection in compositional data analysis using pairwise logratios
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-018-9754-x
  contributor:
    fullname: Greenacre
– volume: 2
  start-page: 15
  year: 2014
  ident: 2023012008202027300_B13
  article-title: Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-15
  contributor:
    fullname: Fernandes
– volume: 29
  start-page: 637
  year: 1973
  ident: 2023012008202027300_B20
  article-title: Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease
  publication-title: Biometrics
  doi: 10.2307/2529131
  contributor:
    fullname: Griffiths
– volume: 25
  start-page: 428
  year: 2014
  ident: 2023012008202027300_B8
  article-title: The first thousand days—intestinal microbiology of early life: establishing a symbiosis
  publication-title: Pediatr. Allergy Immunol.
  doi: 10.1111/pai.12232
  contributor:
    fullname: Wopereis
– volume: 10
  start-page: 257
  year: 1948
  ident: 2023012008202027300_B19
  article-title: A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1948.tb00014.x
  contributor:
    fullname: Skellam
– volume: 2
  start-page: lqaa094
  year: 2020
  ident: 2023012008202027300_B7
  article-title: Some thoughts on counts in sequencing studies
  publication-title: NAR Genom. Bioinform.
  contributor:
    fullname: Egozcue
– volume-title: Compositional Data Analysis in Practice
  year: 2018
  ident: 2023012008202027300_B32
  doi: 10.1201/9780429455537
  contributor:
    fullname: Greenacre
– volume: 65
  start-page: 330
  year: 2016
  ident: 2023012008202027300_B1
  article-title: The gut microbiota and host health: a new clinical frontier
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309990
  contributor:
    fullname: Marchesi
– volume: 535
  start-page: 94
  year: 2016
  ident: 2023012008202027300_B2
  article-title: Microbiome-wide association studies link dynamic microbial consortia to disease
  publication-title: Nature
  doi: 10.1038/nature18850
  contributor:
    fullname: Gilbert
– volume: 10
  start-page: 1200
  year: 2013
  ident: 2023012008202027300_B44
  article-title: Differential abundance analysis for microbial marker-gene surveys
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2658
  contributor:
    fullname: Paulson
– volume-title: Multiple Testing Procedures with Applications to Genomics
  year: 2007
  ident: 2023012008202027300_B52
  contributor:
    fullname: Dudoit
– volume: 14
  start-page: e1006329
  year: 2018
  ident: 2023012008202027300_B26
  article-title: A marginalized two-part beta regression model for microbiome compositional data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006329
  contributor:
    fullname: Chai
– volume: 107
  start-page: 9546
  year: 2010
  ident: 2023012008202027300_B50
  article-title: Independent filtering increases detection power for high-throughput experiments
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0914005107
  contributor:
    fullname: Bourgon
– volume: 34
  start-page: 643
  year: 2017
  ident: 2023012008202027300_B28
  article-title: An omnibus test for differential distribution analysis of microbiome sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx650
  contributor:
    fullname: Chen
– volume: 19
  start-page: 274
  year: 2018
  ident: 2023012008202027300_B14
  article-title: Comparison of normalization methods for the analysis of metagenomic gene abundance data
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4637-6
  contributor:
    fullname: Pereira
– volume-title: Simultaneous Statistical Inference: With Applications in the Life Sciences
  year: 2014
  ident: 2023012008202027300_B53
  doi: 10.1007/978-3-642-45182-9
  contributor:
    fullname: Dickhaus
– volume: 20
  start-page: 210
  year: 2017
  ident: 2023012008202027300_B30
  article-title: A broken promise: microbiome differential abundance methods do not control the false discovery rate
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx104
  contributor:
    fullname: Hawinkel
– volume: 23
  start-page: 102
  year: 2016
  ident: 2023012008202027300_B25
  article-title: Zero-inflated beta regression for differential abundance analysis with metagenomics data
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2015.0157
  contributor:
    fullname: Peng
– volume: 57
  start-page: 289
  year: 1995
  ident: 2023012008202027300_B36
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
  contributor:
    fullname: Benjamini
– volume: 2
  start-page: 73
  year: 2015
  ident: 2023012008202027300_B4
  article-title: Microbiome, metagenomics, and high-dimensional compositional data analysis
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-010814-020351
  contributor:
    fullname: Li
– volume: 6
  start-page: e4600
  year: 2018
  ident: 2023012008202027300_B15
  article-title: GMPR: a robust normalization method for zero-inflated count data with application to microbiome sequencing data
  publication-title: PeerJ
  doi: 10.7717/peerj.4600
  contributor:
    fullname: Chen
– volume: 2
  start-page: lqaa040
  year: 2020
  ident: 2023012008202027300_B33
  article-title: Counts: an outstanding challenge for log-ratio analysis of compositional data in the molecular biosciences
  publication-title: NAR Genom. Bioinform.
  doi: 10.1093/nargab/lqaa040
  contributor:
    fullname: Lovell
– volume: 26
  start-page: 27663
  year: 2015
  ident: 2023012008202027300_B37
  article-title: Analysis of composition of microbiomes: a novel method for studying microbial composition
  publication-title: Microb. Ecol. Health Dis.
  contributor:
    fullname: Mandal
– volume-title: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing
  year: 2013
  ident: 2023012008202027300_B40
  contributor:
    fullname: R Core Team
– volume: 26
  start-page: 330
  year: 2016
  ident: 2023012008202027300_B5
  article-title: Compositional data analysis of the microbiome: fundamentals, tools, and challenges
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2016.03.002
  contributor:
    fullname: Tsilimigras
– volume: 14
  start-page: 94
  year: 2020
  ident: 2023012008202027300_B23
  article-title: Modeling microbial abundances and dysbiosis with beta-binomial regression
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/19-AOAS1283
  contributor:
    fullname: Martin
– volume-title: The Statistical Analysis of Compositional Data
  year: 2003
  ident: 2023012008202027300_B31
  contributor:
    fullname: Aitchison
– volume: 31
  start-page: 949
  year: 1975
  ident: 2023012008202027300_B21
  article-title: The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity
  publication-title: Biometrics
  doi: 10.2307/2529820
  contributor:
    fullname: Williams
– volume: 551
  start-page: 507
  year: 2017
  ident: 2023012008202027300_B10
  article-title: Quantitative microbiome profiling links gut community variation to microbial load
  publication-title: Nature
  doi: 10.1038/nature24460
  contributor:
    fullname: Vandeputte
– volume: 32
  start-page: 2611
  year: 2016
  ident: 2023012008202027300_B27
  article-title: A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw308
  contributor:
    fullname: Chen
– volume: 28
  start-page: 1
  year: 2008
  ident: 2023012008202027300_B42
  article-title: Implementing a class of permutation tests: the coin package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i08
  contributor:
    fullname: Hothorn
– volume: 8
  start-page: 2224
  year: 2017
  ident: 2023012008202027300_B11
  article-title: Microbiome datasets are compositional: and this is not optional
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02224
  contributor:
    fullname: Gloor
– volume-title: Statistical Analysis of Microbiome Data with R
  year: 2018
  ident: 2023012008202027300_B6
  doi: 10.1007/978-981-13-1534-3
  contributor:
    fullname: Xia
– volume: 62
  start-page: 692
  year: 2016
  ident: 2023012008202027300_B29
  article-title: Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data
  publication-title: Can. J. Microbiol.
  doi: 10.1139/cjm-2015-0821
  contributor:
    fullname: Gloor
– volume: 5
  start-page: 27
  year: 2017
  ident: 2023012008202027300_B43
  article-title: Normalization and microbial differential abundance strategies depend upon data characteristics
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0237-y
  contributor:
    fullname: Weiss
– volume: 26
  start-page: 139
  year: 2009
  ident: 2023012008202027300_B18
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
  contributor:
    fullname: Robinson
– volume: 22
  start-page: 178
  year: 2021
  ident: 2023012008202027300_B9
  article-title: Current challenges and best-practice protocols for microbiome analysis
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz155
  contributor:
    fullname: Bharti
– volume: 29
  start-page: 2146
  year: 2013
  ident: 2023012008202027300_B51
  article-title: Data-based filtering for replicated high-throughput transcriptome sequencing experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt350
  contributor:
    fullname: Rau
– volume: 15
  start-page: 550
  year: 2014
  ident: 2023012008202027300_B17
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
  contributor:
    fullname: Love
– volume-title: Practical Nonparametric Statistics
  year: 1999
  ident: 2023012008202027300_B39
  contributor:
    fullname: Conover
– volume: 33
  start-page: 1946
  year: 2014
  ident: 2023012008202027300_B54
  article-title: Multiple hypothesis testing in genomics
  publication-title: Stat. Med.
  doi: 10.1002/sim.6082
  contributor:
    fullname: Goeman
– volume: 10
  start-page: 2719
  year: 2019
  ident: 2023012008202027300_B47
  article-title: Establishing microbial composition measurement standards with reference frames
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10656-5
  contributor:
    fullname: Morton
– volume: 34
  start-page: 2870
  year: 2018
  ident: 2023012008202027300_B16
  article-title: Understanding sequencing data as compositions: an outlook and review
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty175
  contributor:
    fullname: Quinn
– volume-title: Theoretical Statistics
  year: 1979
  ident: 2023012008202027300_B38
  doi: 10.1201/b14832
  contributor:
    fullname: Cox
SSID ssj0002545401
Score 2.2594435
Snippet Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity,...
Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme...
Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity,...
SourceID proquest
crossref
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage lqad001
Title Pairwise ratio-based differential abundance analysis of infant microbiome 16S sequencing data
URI https://www.ncbi.nlm.nih.gov/pubmed/36685726
https://search.proquest.com/docview/2768814255
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB7EJ19E8apHWUXwKTTbzSbbRxFLETzAFvoiYSe7C4U21R74953NpoWqoOQ1F99M8s09ANdYEEdobiMZO59mzLJIK79EQKNzKK1D4-OQj09pb5A8DOWwHhY9_yWF3xGt0m98xdb4Q5u46tTyM9FIc_vPw3U0hdwcMj34eirj96s2WGejk-2HQVkRS3cPdmuLkN0GEe7Dli0P4O1Fj2afo7lllYQiTzaGrbaZ0Fc5Zhp9EwfJjOl6sAibOkYKQ1ixySgMWJpYxtNXVhdME00xXxJ6CIPuff-uF9WbEKJCdPjC75ttdxLHkRyOjNjEEPIuRq2kLhwmymGBhKqRmTUy1SoWhg6FIiN3pW2UOILtclraE2A2iY2KXUHkSASWODIPE_IhU5sJn-7lDbhZIZW_h4EXeUhUizxgmteYNuCKgPzzpMsVzjkprs9G6NJOl_O8TY6O4vTLkA04DgJY30ukqZL07qf_ecQZ7Pgd8KEw7By2F7OlvSBLYYHNysNuViGcZqUwX9bYwW0
link.rule.ids 315,783,787,867,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairwise+ratio-based+differential+abundance+analysis+of+infant+microbiome+16S+sequencing+data&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Mildau%2C+Kevin&rft.au=te%C2%A0Beest%2C+Dennis+E&rft.au=Engel%2C+Bas&rft.au=Gort%2C+Gerrit&rft.date=2023-03-01&rft.pub=Oxford+University+Press&rft.eissn=2631-9268&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1093%2Fnargab%2Flqad001&rft.externalDocID=10.1093%2Fnargab%2Flqad001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon