Pairwise ratio-based differential abundance analysis of infant microbiome 16S sequencing data
Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that u...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 5; no. 1; p. lqad001 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications. |
---|---|
AbstractList | Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications. Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications. Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme dispersion and the relative nature of the information contained within the data. In this study, we propose a pairwise ratio analysis that uses the compositional data analysis principle of subcompositional coherence and merges it with a beta-binomial regression model. The resulting method provides a flexible and easily interpretable approach to infant 16S sequencing data differential abundance analysis that does not require zero imputation. We evaluate the proposed method using infant 16S data from clinical trials and demonstrate that the proposed method has the power to detect differences, and demonstrate how its results can be used to gain insights. We further evaluate the method using data-inspired simulations and compare its power against related methods. Our results indicate that power is high for pairwise differential abundance analysis of taxon pairs that have a large abundance. In contrast, results for sparse taxon pairs show a decrease in power and substantial variability in method performance. While our method shows promising performance on well-measured subcompositions, we advise strong filtering steps in order to avoid excessive numbers of underpowered comparisons in practical applications. |
Author | Mildau, Kevin Engel, Bas Swinkels, Sophie H N te Beest, Dennis E Gort, Gerrit Lambert, Jolanda van Eeuwijk, Fred A |
Author_xml | – sequence: 1 givenname: Kevin surname: Mildau fullname: Mildau, Kevin – sequence: 2 givenname: Dennis E orcidid: 0000-0001-5265-9008 surname: te Beest fullname: te Beest, Dennis E email: dennis.tebeest@wur.nl – sequence: 3 givenname: Bas surname: Engel fullname: Engel, Bas – sequence: 4 givenname: Gerrit surname: Gort fullname: Gort, Gerrit – sequence: 5 givenname: Jolanda surname: Lambert fullname: Lambert, Jolanda – sequence: 6 givenname: Sophie H N surname: Swinkels fullname: Swinkels, Sophie H N – sequence: 7 givenname: Fred A surname: van Eeuwijk fullname: van Eeuwijk, Fred A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36685726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9LwzAUx4Mobs5dPUqOeuiWpE2aHmX4CwYK6lHKS5OMSJtuSYvsv7fSKd7kHd47fN6X9z5n6Ni33iB0QcmCkiJdeggbUMt6B5oQeoSmTKQ0KZiQx3_mCZrH-EEIYTzjGaGnaJIKIXnOxBS9P4MLny4aHKBzbaIgGo21s9YE4zsHNQbVew2-Mhg81PvoIm4tdt6C73DjqtAq1zYGU_GCo9n1xlfOb7CGDs7RiYU6mvmhz9Db3e3r6iFZP90_rm7WSZUWtEtyVrAis1SRQuQ5lVqZyhIFkkNlVSatqpRVWvPcaC5AklQPJVU6vECYlukMXY2529AOB8SubFysTF2DN20fS5YLKWnGOB_QxYgOd8cYjC23wTUQ9iUl5bfVcrRaHqwOC5eH7F41Rv_iPw4H4HoE2n77X9gX3O2GTw |
Cites_doi | 10.1002/sta4.185 10.1177/1471082X14535524 10.1093/bioinformatics/btv608 10.32614/RJ-2017-066 10.1093/bioinformatics/btr449 10.1198/000313006X118430 10.1093/gigascience/giz107 10.1093/bioinformatics/btv165 10.1038/nrgastro.2017.97 10.1007/s11004-018-9754-x 10.1186/2049-2618-2-15 10.2307/2529131 10.1111/pai.12232 10.1111/j.2517-6161.1948.tb00014.x 10.1201/9780429455537 10.1136/gutjnl-2015-309990 10.1038/nature18850 10.1038/nmeth.2658 10.1371/journal.pcbi.1006329 10.1073/pnas.0914005107 10.1093/bioinformatics/btx650 10.1186/s12864-018-4637-6 10.1007/978-3-642-45182-9 10.1093/bib/bbx104 10.1089/cmb.2015.0157 10.1111/j.2517-6161.1995.tb02031.x 10.1146/annurev-statistics-010814-020351 10.7717/peerj.4600 10.1093/nargab/lqaa040 10.1016/j.annepidem.2016.03.002 10.1214/19-AOAS1283 10.2307/2529820 10.1038/nature24460 10.1093/bioinformatics/btw308 10.18637/jss.v028.i08 10.3389/fmicb.2017.02224 10.1007/978-981-13-1534-3 10.1139/cjm-2015-0821 10.1186/s40168-017-0237-y 10.1093/bioinformatics/btp616 10.1093/bib/bbz155 10.1093/bioinformatics/btt350 10.1186/s13059-014-0550-8 10.1002/sim.6082 10.1038/s41467-019-10656-5 10.1093/bioinformatics/bty175 10.1201/b14832 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
DBID | TOX NPM AAYXX CITATION 7X8 |
DOI | 10.1093/nargab/lqad001 |
DatabaseName | Oxford Open Access Journals PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Open Access Journals url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-9268 |
EndPage | lqad001 |
ExternalDocumentID | 10_1093_nargab_lqad001 36685726 10.1093/nargab/lqad001 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABPTD ABXVV AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS EBS EMOBN GROUPED_DOAJ IAO IGS IHR INH KSI M~E ROX RPM TOX ITC NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c391t-729294f1b0967718dbecf0ba85acfb48fbcbfbdd57ed56a803d3d38b372602d83 |
IEDL.DBID | TOX |
ISSN | 2631-9268 |
IngestDate | Fri Oct 25 09:21:35 EDT 2024 Wed Oct 16 15:12:54 EDT 2024 Sat Sep 28 08:16:18 EDT 2024 Wed Aug 28 03:17:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-729294f1b0967718dbecf0ba85acfb48fbcbfbdd57ed56a803d3d38b372602d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5265-9008 |
OpenAccessLink | https://dx.doi.org/10.1093/nargab/lqad001 |
PMID | 36685726 |
PQID | 2768814255 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2768814255 crossref_primary_10_1093_nargab_lqad001 pubmed_primary_36685726 oup_primary_10_1093_nargab_lqad001 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | NAR genomics and bioinformatics |
PublicationTitleAlternate | NAR Genom Bioinform |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Greenacre (2023012008202027300_B32) 2018 Hothorn (2023012008202027300_B42) 2008; 28 Martin (2023012008202027300_B23) 2020; 14 Gilbert (2023012008202027300_B2) 2016; 535 Dudoit (2023012008202027300_B52) 2007 Conover (2023012008202027300_B39) 1999 Martín-Fernández (2023012008202027300_B46) 2015; 15 Chen (2023012008202027300_B15) 2018; 6 Bourgon (2023012008202027300_B50) 2010; 107 Quinn (2023012008202027300_B12) 2019; 8 Hu (2023012008202027300_B24) 2018; 7 Fernandes (2023012008202027300_B13) 2014; 2 Aitchison (2023012008202027300_B31) 2003 Benjamini (2023012008202027300_B36) 1995; 57 Quinn (2023012008202027300_B16) 2018; 34 Pereira (2023012008202027300_B14) 2018; 19 Paulson (2023012008202027300_B44) 2013; 10 Skellam (2023012008202027300_B19) 1948; 10 Rau (2023012008202027300_B51) 2013; 29 Bharti (2023012008202027300_B9) 2021; 22 Zhou (2023012008202027300_B22) 2011; 27 Chen (2023012008202027300_B28) 2017; 34 Kim (2023012008202027300_B49) 2015; 32 Claesson (2023012008202027300_B3) 2017; 14 Morton (2023012008202027300_B47) 2019; 10 Chai (2023012008202027300_B26) 2018; 14 Griffiths (2023012008202027300_B20) 1973; 29 Greenacre (2023012008202027300_B48) 2019; 51 Peng (2023012008202027300_B25) 2016; 23 Williams (2023012008202027300_B21) 1975; 31 Egozcue (2023012008202027300_B7) 2020; 2 Li (2023012008202027300_B4) 2015; 2 Vandeputte (2023012008202027300_B10) 2017; 551 Love (2023012008202027300_B17) 2014; 15 Hawinkel (2023012008202027300_B30) 2017; 20 Rigby (2023012008202027300_B35) 2005; 54 Hothorn (2023012008202027300_B41) 2006; 60 Goeman (2023012008202027300_B54) 2014; 33 Mandal (2023012008202027300_B37) 2015; 26 Dickhaus (2023012008202027300_B53) 2014 R Core Team (2023012008202027300_B40) 2013 Tsilimigras (2023012008202027300_B5) 2016; 26 Brooks (2023012008202027300_B34) 2017; 9 Lovell (2023012008202027300_B33) 2020; 2 Marchesi (2023012008202027300_B1) 2016; 65 Gloor (2023012008202027300_B11) 2017; 8 Weiss (2023012008202027300_B43) 2017; 5 Wopereis (2023012008202027300_B8) 2014; 25 Xia (2023012008202027300_B6) 2018 Robinson (2023012008202027300_B18) 2009; 26 Gloor (2023012008202027300_B29) 2016; 62 Cox (2023012008202027300_B38) 1979 Chen (2023012008202027300_B27) 2016; 32 Sohn (2023012008202027300_B45) 2015; 31 |
References_xml | – volume: 7 start-page: e185 year: 2018 ident: 2023012008202027300_B24 article-title: A zero-inflated beta-binomial model for microbiome data analysis publication-title: Stat doi: 10.1002/sta4.185 contributor: fullname: Hu – volume: 15 start-page: 134 year: 2015 ident: 2023012008202027300_B46 article-title: Bayesian-multiplicative treatment of count zeros in compositional data sets publication-title: Stat. Model. doi: 10.1177/1471082X14535524 contributor: fullname: Martín-Fernández – volume: 32 start-page: 850 year: 2015 ident: 2023012008202027300_B49 article-title: Prioritizing hypothesis tests for high throughput data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv608 contributor: fullname: Kim – volume: 9 start-page: 378 year: 2017 ident: 2023012008202027300_B34 article-title: glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling publication-title: R J. doi: 10.32614/RJ-2017-066 contributor: fullname: Brooks – volume: 27 start-page: 2672 year: 2011 ident: 2023012008202027300_B22 article-title: A powerful and flexible approach to the analysis of RNA sequence count data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr449 contributor: fullname: Zhou – volume: 60 start-page: 257 year: 2006 ident: 2023012008202027300_B41 article-title: A Lego system for conditional inference publication-title: Am. Stat. doi: 10.1198/000313006X118430 contributor: fullname: Hothorn – volume: 54 start-page: 507 year: 2005 ident: 2023012008202027300_B35 article-title: Generalized additive models for location, scale and shape (with discussion) publication-title: Appl. Stat. contributor: fullname: Rigby – volume: 8 start-page: giz107 year: 2019 ident: 2023012008202027300_B12 article-title: A field guide for the compositional analysis of any-omics data publication-title: GigaScience doi: 10.1093/gigascience/giz107 contributor: fullname: Quinn – volume: 31 start-page: 2269 year: 2015 ident: 2023012008202027300_B45 article-title: A robust approach for identifying differentially abundant features in metagenomic samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv165 contributor: fullname: Sohn – volume: 14 start-page: 585 year: 2017 ident: 2023012008202027300_B3 article-title: A clinician’s guide to microbiome analysis publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.97 contributor: fullname: Claesson – volume: 51 start-page: 649 year: 2019 ident: 2023012008202027300_B48 article-title: Variable selection in compositional data analysis using pairwise logratios publication-title: Math. Geosci. doi: 10.1007/s11004-018-9754-x contributor: fullname: Greenacre – volume: 2 start-page: 15 year: 2014 ident: 2023012008202027300_B13 article-title: Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis publication-title: Microbiome doi: 10.1186/2049-2618-2-15 contributor: fullname: Fernandes – volume: 29 start-page: 637 year: 1973 ident: 2023012008202027300_B20 article-title: Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease publication-title: Biometrics doi: 10.2307/2529131 contributor: fullname: Griffiths – volume: 25 start-page: 428 year: 2014 ident: 2023012008202027300_B8 article-title: The first thousand days—intestinal microbiology of early life: establishing a symbiosis publication-title: Pediatr. Allergy Immunol. doi: 10.1111/pai.12232 contributor: fullname: Wopereis – volume: 10 start-page: 257 year: 1948 ident: 2023012008202027300_B19 article-title: A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1948.tb00014.x contributor: fullname: Skellam – volume: 2 start-page: lqaa094 year: 2020 ident: 2023012008202027300_B7 article-title: Some thoughts on counts in sequencing studies publication-title: NAR Genom. Bioinform. contributor: fullname: Egozcue – volume-title: Compositional Data Analysis in Practice year: 2018 ident: 2023012008202027300_B32 doi: 10.1201/9780429455537 contributor: fullname: Greenacre – volume: 65 start-page: 330 year: 2016 ident: 2023012008202027300_B1 article-title: The gut microbiota and host health: a new clinical frontier publication-title: Gut doi: 10.1136/gutjnl-2015-309990 contributor: fullname: Marchesi – volume: 535 start-page: 94 year: 2016 ident: 2023012008202027300_B2 article-title: Microbiome-wide association studies link dynamic microbial consortia to disease publication-title: Nature doi: 10.1038/nature18850 contributor: fullname: Gilbert – volume: 10 start-page: 1200 year: 2013 ident: 2023012008202027300_B44 article-title: Differential abundance analysis for microbial marker-gene surveys publication-title: Nat. Methods doi: 10.1038/nmeth.2658 contributor: fullname: Paulson – volume-title: Multiple Testing Procedures with Applications to Genomics year: 2007 ident: 2023012008202027300_B52 contributor: fullname: Dudoit – volume: 14 start-page: e1006329 year: 2018 ident: 2023012008202027300_B26 article-title: A marginalized two-part beta regression model for microbiome compositional data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006329 contributor: fullname: Chai – volume: 107 start-page: 9546 year: 2010 ident: 2023012008202027300_B50 article-title: Independent filtering increases detection power for high-throughput experiments publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.0914005107 contributor: fullname: Bourgon – volume: 34 start-page: 643 year: 2017 ident: 2023012008202027300_B28 article-title: An omnibus test for differential distribution analysis of microbiome sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx650 contributor: fullname: Chen – volume: 19 start-page: 274 year: 2018 ident: 2023012008202027300_B14 article-title: Comparison of normalization methods for the analysis of metagenomic gene abundance data publication-title: BMC Genomics doi: 10.1186/s12864-018-4637-6 contributor: fullname: Pereira – volume-title: Simultaneous Statistical Inference: With Applications in the Life Sciences year: 2014 ident: 2023012008202027300_B53 doi: 10.1007/978-3-642-45182-9 contributor: fullname: Dickhaus – volume: 20 start-page: 210 year: 2017 ident: 2023012008202027300_B30 article-title: A broken promise: microbiome differential abundance methods do not control the false discovery rate publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx104 contributor: fullname: Hawinkel – volume: 23 start-page: 102 year: 2016 ident: 2023012008202027300_B25 article-title: Zero-inflated beta regression for differential abundance analysis with metagenomics data publication-title: J. Comput. Biol. doi: 10.1089/cmb.2015.0157 contributor: fullname: Peng – volume: 57 start-page: 289 year: 1995 ident: 2023012008202027300_B36 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x contributor: fullname: Benjamini – volume: 2 start-page: 73 year: 2015 ident: 2023012008202027300_B4 article-title: Microbiome, metagenomics, and high-dimensional compositional data analysis publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-010814-020351 contributor: fullname: Li – volume: 6 start-page: e4600 year: 2018 ident: 2023012008202027300_B15 article-title: GMPR: a robust normalization method for zero-inflated count data with application to microbiome sequencing data publication-title: PeerJ doi: 10.7717/peerj.4600 contributor: fullname: Chen – volume: 2 start-page: lqaa040 year: 2020 ident: 2023012008202027300_B33 article-title: Counts: an outstanding challenge for log-ratio analysis of compositional data in the molecular biosciences publication-title: NAR Genom. Bioinform. doi: 10.1093/nargab/lqaa040 contributor: fullname: Lovell – volume: 26 start-page: 27663 year: 2015 ident: 2023012008202027300_B37 article-title: Analysis of composition of microbiomes: a novel method for studying microbial composition publication-title: Microb. Ecol. Health Dis. contributor: fullname: Mandal – volume-title: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing year: 2013 ident: 2023012008202027300_B40 contributor: fullname: R Core Team – volume: 26 start-page: 330 year: 2016 ident: 2023012008202027300_B5 article-title: Compositional data analysis of the microbiome: fundamentals, tools, and challenges publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2016.03.002 contributor: fullname: Tsilimigras – volume: 14 start-page: 94 year: 2020 ident: 2023012008202027300_B23 article-title: Modeling microbial abundances and dysbiosis with beta-binomial regression publication-title: Ann. Appl. Stat. doi: 10.1214/19-AOAS1283 contributor: fullname: Martin – volume-title: The Statistical Analysis of Compositional Data year: 2003 ident: 2023012008202027300_B31 contributor: fullname: Aitchison – volume: 31 start-page: 949 year: 1975 ident: 2023012008202027300_B21 article-title: The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity publication-title: Biometrics doi: 10.2307/2529820 contributor: fullname: Williams – volume: 551 start-page: 507 year: 2017 ident: 2023012008202027300_B10 article-title: Quantitative microbiome profiling links gut community variation to microbial load publication-title: Nature doi: 10.1038/nature24460 contributor: fullname: Vandeputte – volume: 32 start-page: 2611 year: 2016 ident: 2023012008202027300_B27 article-title: A two-part mixed-effects model for analyzing longitudinal microbiome compositional data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw308 contributor: fullname: Chen – volume: 28 start-page: 1 year: 2008 ident: 2023012008202027300_B42 article-title: Implementing a class of permutation tests: the coin package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i08 contributor: fullname: Hothorn – volume: 8 start-page: 2224 year: 2017 ident: 2023012008202027300_B11 article-title: Microbiome datasets are compositional: and this is not optional publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02224 contributor: fullname: Gloor – volume-title: Statistical Analysis of Microbiome Data with R year: 2018 ident: 2023012008202027300_B6 doi: 10.1007/978-981-13-1534-3 contributor: fullname: Xia – volume: 62 start-page: 692 year: 2016 ident: 2023012008202027300_B29 article-title: Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2015-0821 contributor: fullname: Gloor – volume: 5 start-page: 27 year: 2017 ident: 2023012008202027300_B43 article-title: Normalization and microbial differential abundance strategies depend upon data characteristics publication-title: Microbiome doi: 10.1186/s40168-017-0237-y contributor: fullname: Weiss – volume: 26 start-page: 139 year: 2009 ident: 2023012008202027300_B18 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 contributor: fullname: Robinson – volume: 22 start-page: 178 year: 2021 ident: 2023012008202027300_B9 article-title: Current challenges and best-practice protocols for microbiome analysis publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz155 contributor: fullname: Bharti – volume: 29 start-page: 2146 year: 2013 ident: 2023012008202027300_B51 article-title: Data-based filtering for replicated high-throughput transcriptome sequencing experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt350 contributor: fullname: Rau – volume: 15 start-page: 550 year: 2014 ident: 2023012008202027300_B17 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 contributor: fullname: Love – volume-title: Practical Nonparametric Statistics year: 1999 ident: 2023012008202027300_B39 contributor: fullname: Conover – volume: 33 start-page: 1946 year: 2014 ident: 2023012008202027300_B54 article-title: Multiple hypothesis testing in genomics publication-title: Stat. Med. doi: 10.1002/sim.6082 contributor: fullname: Goeman – volume: 10 start-page: 2719 year: 2019 ident: 2023012008202027300_B47 article-title: Establishing microbial composition measurement standards with reference frames publication-title: Nat. Commun. doi: 10.1038/s41467-019-10656-5 contributor: fullname: Morton – volume: 34 start-page: 2870 year: 2018 ident: 2023012008202027300_B16 article-title: Understanding sequencing data as compositions: an outlook and review publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty175 contributor: fullname: Quinn – volume-title: Theoretical Statistics year: 1979 ident: 2023012008202027300_B38 doi: 10.1201/b14832 contributor: fullname: Cox |
SSID | ssj0002545401 |
Score | 2.2594435 |
Snippet | Abstract
Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity,... Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity, extreme... Abstract Differential abundance analysis of infant 16S microbial sequencing data is complicated by challenging data properties, including high sparsity,... |
SourceID | proquest crossref pubmed oup |
SourceType | Aggregation Database Index Database Publisher |
StartPage | lqad001 |
Title | Pairwise ratio-based differential abundance analysis of infant microbiome 16S sequencing data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36685726 https://search.proquest.com/docview/2768814255 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB7EJ19E8apHWUXwKTTbzSbbRxFLETzAFvoiYSe7C4U21R74953NpoWqoOQ1F99M8s09ANdYEEdobiMZO59mzLJIK79EQKNzKK1D4-OQj09pb5A8DOWwHhY9_yWF3xGt0m98xdb4Q5u46tTyM9FIc_vPw3U0hdwcMj34eirj96s2WGejk-2HQVkRS3cPdmuLkN0GEe7Dli0P4O1Fj2afo7lllYQiTzaGrbaZ0Fc5Zhp9EwfJjOl6sAibOkYKQ1ixySgMWJpYxtNXVhdME00xXxJ6CIPuff-uF9WbEKJCdPjC75ttdxLHkRyOjNjEEPIuRq2kLhwmymGBhKqRmTUy1SoWhg6FIiN3pW2UOILtclraE2A2iY2KXUHkSASWODIPE_IhU5sJn-7lDbhZIZW_h4EXeUhUizxgmteYNuCKgPzzpMsVzjkprs9G6NJOl_O8TY6O4vTLkA04DgJY30ukqZL07qf_ecQZ7Pgd8KEw7By2F7OlvSBLYYHNysNuViGcZqUwX9bYwW0 |
link.rule.ids | 315,783,787,867,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairwise+ratio-based+differential+abundance+analysis+of+infant+microbiome+16S+sequencing+data&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Mildau%2C+Kevin&rft.au=te%C2%A0Beest%2C+Dennis+E&rft.au=Engel%2C+Bas&rft.au=Gort%2C+Gerrit&rft.date=2023-03-01&rft.pub=Oxford+University+Press&rft.eissn=2631-9268&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1093%2Fnargab%2Flqad001&rft.externalDocID=10.1093%2Fnargab%2Flqad001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon |