Recovering NDVI over lake surfaces: Initial insights from CYGNSS data enhanced by ERA-5 inputs
The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. Howev...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 135; p. 104253 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. However, NDVI observations using optical sensors are often affected by cloud and fog in areas with numerous water bodies, such as Taihu Lake. Sensors operating in the microwave band can effectively mitigate this issue, particularly the emerging Global Navigation Satellite System Reflectometry (GNSS-R), which offers high temporal resolution and cost-effectiveness. In this paper, we propose a new method to recover lake-surface NDVI on cloudy days, utilizing GNSS-R observables and auxiliary meteorological data in conjunction with a machine learning regression algorithm called Bagging Tree. We also examine the effective range of GNSS-R data within this application scenario. Meanwhile, the Weighted Linear Regression-Laplacian Prior Regulation Method (WLR-LPRM) image gap-filling algorithm is used as a benchmark to evaluate recovery accuracy. The regression coefficient of NDVI retrieved using the proposed method is 0.95, with a root mean square error (RMSE) of 0.021 and a mean absolute error (MAE) of 0.010. Compared to the previous work on GNSS-R algal bloom detection with overall accuracy of 0.82, this work shows significant improvement in both accuracy and utility. The recovery of lake surface NDVI provides detailed insights into algal blooms, including quantifiable metrics such as the amount and spatial distribution, which are crucial for effective monitoring and management. Additionally, the recovered image textures exhibit high clarity and closely resemble the reference NDVI images. Experimental evaluation using simulated and actual cloud blocks indicates the model’s robustness to recover NDVI under varying cloud cover conditions. In summary, this study demonstrates the capability of GNSS-R aided by supplementary data for recovering missing NDVI values on lake surfaces when optical observations are absent for the first time.
•Recovering lake surface NDVI using CYGNSS data for the first time with high accuracy.•This method is a good supplement for optical lake surface NDVI remote sensing on cloudy days.•A great extension of GNSS-R application aided by ERA-5 data. |
---|---|
AbstractList | The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. However, NDVI observations using optical sensors are often affected by cloud and fog in areas with numerous water bodies, such as Taihu Lake. Sensors operating in the microwave band can effectively mitigate this issue, particularly the emerging Global Navigation Satellite System Reflectometry (GNSS-R), which offers high temporal resolution and cost-effectiveness. In this paper, we propose a new method to recover lake-surface NDVI on cloudy days, utilizing GNSS-R observables and auxiliary meteorological data in conjunction with a machine learning regression algorithm called Bagging Tree. We also examine the effective range of GNSS-R data within this application scenario. Meanwhile, the Weighted Linear Regression-Laplacian Prior Regulation Method (WLR-LPRM) image gap-filling algorithm is used as a benchmark to evaluate recovery accuracy. The regression coefficient of NDVI retrieved using the proposed method is 0.95, with a root mean square error (RMSE) of 0.021 and a mean absolute error (MAE) of 0.010. Compared to the previous work on GNSS-R algal bloom detection with overall accuracy of 0.82, this work shows significant improvement in both accuracy and utility. The recovery of lake surface NDVI provides detailed insights into algal blooms, including quantifiable metrics such as the amount and spatial distribution, which are crucial for effective monitoring and management. Additionally, the recovered image textures exhibit high clarity and closely resemble the reference NDVI images. Experimental evaluation using simulated and actual cloud blocks indicates the model’s robustness to recover NDVI under varying cloud cover conditions. In summary, this study demonstrates the capability of GNSS-R aided by supplementary data for recovering missing NDVI values on lake surfaces when optical observations are absent for the first time.
•Recovering lake surface NDVI using CYGNSS data for the first time with high accuracy.•This method is a good supplement for optical lake surface NDVI remote sensing on cloudy days.•A great extension of GNSS-R application aided by ERA-5 data. The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. However, NDVI observations using optical sensors are often affected by cloud and fog in areas with numerous water bodies, such as Taihu Lake. Sensors operating in the microwave band can effectively mitigate this issue, particularly the emerging Global Navigation Satellite System Reflectometry (GNSS-R), which offers high temporal resolution and cost-effectiveness. In this paper, we propose a new method to recover lake-surface NDVI on cloudy days, utilizing GNSS-R observables and auxiliary meteorological data in conjunction with a machine learning regression algorithm called Bagging Tree. We also examine the effective range of GNSS-R data within this application scenario. Meanwhile, the Weighted Linear Regression-Laplacian Prior Regulation Method (WLR-LPRM) image gap-filling algorithm is used as a benchmark to evaluate recovery accuracy. The regression coefficient of NDVI retrieved using the proposed method is 0.95, with a root mean square error (RMSE) of 0.021 and a mean absolute error (MAE) of 0.010. Compared to the previous work on GNSS-R algal bloom detection with overall accuracy of 0.82, this work shows significant improvement in both accuracy and utility. The recovery of lake surface NDVI provides detailed insights into algal blooms, including quantifiable metrics such as the amount and spatial distribution, which are crucial for effective monitoring and management. Additionally, the recovered image textures exhibit high clarity and closely resemble the reference NDVI images. Experimental evaluation using simulated and actual cloud blocks indicates the model’s robustness to recover NDVI under varying cloud cover conditions. In summary, this study demonstrates the capability of GNSS-R aided by supplementary data for recovering missing NDVI values on lake surfaces when optical observations are absent for the first time. |
ArticleNumber | 104253 |
Author | Yan, Qingyun Zhen, Yinqing |
Author_xml | – sequence: 1 givenname: Yinqing surname: Zhen fullname: Zhen, Yinqing – sequence: 2 givenname: Qingyun surname: Yan fullname: Yan, Qingyun email: 003257@nuist.edu.cn |
BookMark | eNp9UctuFDEQ9CFIefEB3HzkMovf9sApWpKwUhSkJCBxwfLaPRsPs-PFno2Uv8ebiTjm1KpWVXWr6hQdjWkEhD5QsqCEqk_9onebBSNMVCyY5EfohErVNkZwdoxOS-kJoVorc4J-34FPT5DjuMG3X3-u8AHgwf0BXPa5cx7KZ7wa4xTdgONY4uZxKrjLaYuXv65v7-9xcJPDMD660UPA62d8eXfRyMrd7adyjt51bijw_nWeoR9Xlw_Lb83N9-vV8uKm8bylU6MpC0x4KQMI4jX1vuMs6OAD75iHNXedCq02tAvcrNeOy9Bp4ikBYQzVjp-h1ewbkuvtLsety882uWhfFilvrMtT9ANYIolTXBAZghZGKUNbxbyinFMp65Xq9XH22uX0dw9lsttYPAyDGyHti608QY1pW16pdKb6nErJ0P0_TYk9dGF7W7uwhy7s3EXVfJk1UPN4ipBt8REO4cUMfqoPxzfU_wDXAJL1 |
Cites_doi | 10.3390/s8063988 10.1016/j.isprsjprs.2018.12.013 10.1016/j.rse.2020.111944 10.1007/s00343-015-4019-8 10.1016/j.scitotenv.2022.158096 10.1016/j.envadv.2020.100008 10.1007/BF00058655 10.1016/j.isprsjprs.2019.01.025 10.1109/JSTARS.2024.3449773 10.1109/JSTARS.2019.2954130 10.1007/s00267-019-01217-z 10.1109/JSTARS.2016.2582690 10.1007/s11269-020-02704-3 10.1016/j.rse.2010.12.010 10.1109/TGRS.2002.802476 10.1016/j.desal.2014.09.037 10.1016/j.marpolbul.2019.01.002 10.3390/rs13122248 10.1109/MGRS.2021.3115448 10.1109/TGRS.2017.2771253 10.1109/MGRS.2015.2432092 10.1023/A:1010933404324 10.1109/TGRS.2023.3237461 10.3390/app12178654 10.1029/2008EO220001 10.1029/2018GL077905 10.1021/es401517h 10.1080/01431161.2011.602651 10.1109/LGRS.2018.2852143 10.1109/TGRS.2020.3024744 10.1109/LGRS.2020.3039519 10.1080/01431161.2015.1103915 10.1109/36.841977 10.1109/MGRS.2015.2441912 10.1007/BF00994018 10.3390/rs15123122 10.1007/s11356-017-0305-7 10.1109/TGRS.2022.3144289 10.1038/s41598-018-27127-4 10.1109/JSTARS.2020.2982993 10.1007/s13349-022-00555-7 10.1016/j.scitotenv.2022.159182 10.1016/j.rse.2012.12.012 10.1109/TGRS.2017.2656162 10.1016/j.rse.2022.113181 10.3390/rs15082157 10.1007/s12665-013-2764-6 10.1016/j.isprsjprs.2020.05.013 10.1109/JSTARS.2016.2555898 10.3390/s120607778 10.1016/j.hal.2019.03.008 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2024.104253 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_050a63405dd7486681962c61331556d9 10_1016_j_jag_2024_104253 S1569843224006095 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AAXKI AAXUO ABFYP ABJNI ABLST ABQEM ABQYD ABWVN ACLVX ACRLP ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AEIPS AFJKZ AFXIZ AGYEJ AHEUO AIKHN AITUG AKIFW ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY M41 O-L P-8 P-9 P2P R2- RIG ROL SES SPC SSE SSJ ~02 AATTM AAYWO AAYXX AGCQF AGQPQ AGRNS AIIUN APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c391t-712d24c55de40c71ccf32d7dcd3f2ceb3af6d9781fd38bba35df70c10e48817a3 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:26:13 EDT 2025 Wed Jul 02 04:50:03 EDT 2025 Sun Jul 06 05:08:52 EDT 2025 Sat Mar 22 15:54:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gap filling Meteorological data Lake surface NDVI Bagging tree GNSS-R |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-712d24c55de40c71ccf32d7dcd3f2ceb3af6d9781fd38bba35df70c10e48817a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/050a63405dd7486681962c61331556d9 |
PQID | 3154188993 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_050a63405dd7486681962c61331556d9 proquest_miscellaneous_3154188993 crossref_primary_10_1016_j_jag_2024_104253 elsevier_sciencedirect_doi_10_1016_j_jag_2024_104253 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 20241201 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zuffada, Downs, Russo, Loria, O’Brien, Galdi, di Bisceglie, Zavorotny, Lavalle, Morris (b60) 2021 Shen, Xu, Guo (b39) 2012; 12 Ruf, Chew, Lang, Morris, Nave, Ridley, Balasubramaniam (b35) 2018; 8 Huang, Chu, Dong, Hu, Yu (b20) 2015; 355 Zhao, Seo, Chen (b58) 2022; 12 Zhen, Yan (b59) 2023; 15 Yilmaz (b51) 2023; 856 Zhao, Liu, Wei (b57) 2020; 2 Al-Khaldi, Johnson, Horton, McKague, Twigg, Russel, Policelli, Ouellette, Bindlish, Park (b1) 2024; 17 Liu, Glamore, Tamburic, Morrow, Johnson (b25) 2022; 851 Li (b23) 2021 Shen, Li, Cheng, Zeng, Yang, Li, Zhang (b38) 2015; 3 Zeng, Yin, Wang, Huai (b54) 2019; 139 Breiman (b4) 1996; 24 Chen, Tang, Yang, Fan, Bilal, Li (b7) 2020; 13 Mosavi, Hosseini, Choubin, Goodarzi, Dineva, Sardooi (b31) 2021; 35 Cortes (b11) 1995; 20 Miao, Heaton, Zheng, Charlet, Liu (b30) 2012; 33 Wang, Shi (b44) 2008; 89 Santi, Paloscia, Pettinato, Fontanelli, Clarizia, Comite, Dente, Guerriero, Pierdicca, Floury (b37) 2020; 13 Merentitis, Debes (b29) 2015; 3 Yan, Huang, Jin, Jia (b50) 2020; 247 Wang, Li, Zhang, Shen, Zhang (b43) 2015; 33 Xu, Jia, Pickering, Jia (b45) 2019; 149 Yan, Huang (b48) 2016; 9 Chew, Small (b10) 2018; 45 Wang, Hessen, Samset, Stordal (b42) 2022; 280 Yan, Chen, Jin, Liu, Jia, Zhen, Chen, Huang (b46) 2022 Ma, Duan, Gu, Zhang (b27) 2008; 8 Downs, Kettner, Chapman, Brakenridge, O’Brien, Zuffada (b12) 2023; 61 Zavorotny, Voronovich (b52) 2000; 38 Li, Wang, Cheng, Wu, Gan, Fang (b24) 2019; 148 Zeng, Shen, Zhang (b53) 2013; 131 Zhang, Wang, Zhou, Meng, Han, Yang (b56) 2022 Briem, Benediktsson, Sveinsson (b6) 2002; 40 Du, Li, Wang, Liu, Zheng, Mu, Li (b13) 2017; 24 Huang, Li, Yang, Sun, Yu, Zhang, Chen, Xu (b21) 2014; 71 Pierdicca, Comite, Camps, Carreno-Luengo, Cenci, Clarizia, Costantini, Dente, Guerriero, Mollfulleda, Paloscia, Park, Santi, Zribi, Floury (b32) 2022; 10 Breiman (b5) 2001; 45 Voronovich, Zavorotny (b41) 2017; 56 Zhang, Liu, Shen (b55) 2022; 12 Tao, Yuan, Fengchang, Wei (b40) 2013; 47 Chen, Yan (b8) 2024; 133 Halmy, Gessler (b18) 2015; 36 Lu, Ma, Zhang (b26) 2011; 4 Elkadiri, Manche, Sultan, Al-Dousari, Uddin, Chouinard, Abotalib (b15) 2016; 9 Haykin (b19) 1998 Griffith, Gobler (b17) 2020; 91 Rodriguez-Alvarez, Munoz-Martin, Morris (b33) 2023; 15 Rodriguez-Alvarez, Oudrhiri (b34) 2021; 13 Ban, Zhang, Yu, Zheng, Chen (b3) 2022; 60 Meraner, Ebel, Zhu, Schmitt (b28) 2020; 166 Yan, Huang (b49) 2018; 15 Yan, Gong, Jin, Huang, Zhang (b47) 2022; 19 Huo, Gan, Geng, Cao, Song, Yu, Li (b22) 2020; 109 Ruf (b36) 2022 Gao, Gu (b16) 2017; 55 Ames, Steiner, Liebold, Milz, Eitniear (b2) 2019; 64 Chen, Zhu, Vogelmann, Gao, Jin (b9) 2011; 115 Ebel, Meraner, Schmitt, Zhu (b14) 2021; 59 Ruf (10.1016/j.jag.2024.104253_b35) 2018; 8 Zhao (10.1016/j.jag.2024.104253_b57) 2020; 2 Cortes (10.1016/j.jag.2024.104253_b11) 1995; 20 Gao (10.1016/j.jag.2024.104253_b16) 2017; 55 Ruf (10.1016/j.jag.2024.104253_b36) 2022 Zhang (10.1016/j.jag.2024.104253_b56) 2022 Chen (10.1016/j.jag.2024.104253_b7) 2020; 13 Griffith (10.1016/j.jag.2024.104253_b17) 2020; 91 Meraner (10.1016/j.jag.2024.104253_b28) 2020; 166 Briem (10.1016/j.jag.2024.104253_b6) 2002; 40 Yan (10.1016/j.jag.2024.104253_b47) 2022; 19 Ma (10.1016/j.jag.2024.104253_b27) 2008; 8 Halmy (10.1016/j.jag.2024.104253_b18) 2015; 36 Li (10.1016/j.jag.2024.104253_b24) 2019; 148 Xu (10.1016/j.jag.2024.104253_b45) 2019; 149 Yan (10.1016/j.jag.2024.104253_b49) 2018; 15 Ames (10.1016/j.jag.2024.104253_b2) 2019; 64 Yan (10.1016/j.jag.2024.104253_b50) 2020; 247 Huo (10.1016/j.jag.2024.104253_b22) 2020; 109 Merentitis (10.1016/j.jag.2024.104253_b29) 2015; 3 Shen (10.1016/j.jag.2024.104253_b39) 2012; 12 Liu (10.1016/j.jag.2024.104253_b25) 2022; 851 Ebel (10.1016/j.jag.2024.104253_b14) 2021; 59 Zeng (10.1016/j.jag.2024.104253_b53) 2013; 131 Haykin (10.1016/j.jag.2024.104253_b19) 1998 Miao (10.1016/j.jag.2024.104253_b30) 2012; 33 Shen (10.1016/j.jag.2024.104253_b38) 2015; 3 Huang (10.1016/j.jag.2024.104253_b21) 2014; 71 Zeng (10.1016/j.jag.2024.104253_b54) 2019; 139 Chew (10.1016/j.jag.2024.104253_b10) 2018; 45 Lu (10.1016/j.jag.2024.104253_b26) 2011; 4 Al-Khaldi (10.1016/j.jag.2024.104253_b1) 2024; 17 Santi (10.1016/j.jag.2024.104253_b37) 2020; 13 Chen (10.1016/j.jag.2024.104253_b8) 2024; 133 Zavorotny (10.1016/j.jag.2024.104253_b52) 2000; 38 Chen (10.1016/j.jag.2024.104253_b9) 2011; 115 Yilmaz (10.1016/j.jag.2024.104253_b51) 2023; 856 Wang (10.1016/j.jag.2024.104253_b44) 2008; 89 Zhao (10.1016/j.jag.2024.104253_b58) 2022; 12 Breiman (10.1016/j.jag.2024.104253_b4) 1996; 24 Tao (10.1016/j.jag.2024.104253_b40) 2013; 47 Ban (10.1016/j.jag.2024.104253_b3) 2022; 60 Wang (10.1016/j.jag.2024.104253_b42) 2022; 280 Rodriguez-Alvarez (10.1016/j.jag.2024.104253_b33) 2023; 15 Zhang (10.1016/j.jag.2024.104253_b55) 2022; 12 Huang (10.1016/j.jag.2024.104253_b20) 2015; 355 Zhen (10.1016/j.jag.2024.104253_b59) 2023; 15 Voronovich (10.1016/j.jag.2024.104253_b41) 2017; 56 Downs (10.1016/j.jag.2024.104253_b12) 2023; 61 Yan (10.1016/j.jag.2024.104253_b46) 2022 Yan (10.1016/j.jag.2024.104253_b48) 2016; 9 Rodriguez-Alvarez (10.1016/j.jag.2024.104253_b34) 2021; 13 Wang (10.1016/j.jag.2024.104253_b43) 2015; 33 Zuffada (10.1016/j.jag.2024.104253_b60) 2021 Du (10.1016/j.jag.2024.104253_b13) 2017; 24 Elkadiri (10.1016/j.jag.2024.104253_b15) 2016; 9 Mosavi (10.1016/j.jag.2024.104253_b31) 2021; 35 Breiman (10.1016/j.jag.2024.104253_b5) 2001; 45 Li (10.1016/j.jag.2024.104253_b23) 2021 Pierdicca (10.1016/j.jag.2024.104253_b32) 2022; 10 |
References_xml | – volume: 38 start-page: 951 year: 2000 end-page: 964 ident: b52 article-title: Scattering of GPS signals from the ocean with wind remote sensing application publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 3988 year: 2008 end-page: 4005 ident: b27 article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery publication-title: Sensors – volume: 3 start-page: 61 year: 2015 end-page: 85 ident: b38 article-title: Missing information reconstruction of remote sensing data: A technical review publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 35 start-page: 23 year: 2021 end-page: 37 ident: b31 article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction publication-title: Water Resour. Manage. – volume: 133 year: 2024 ident: b8 article-title: Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 4 start-page: 374 year: 2011 end-page: 385 ident: b26 article-title: Analysis of black water aggregation in Taihu Lake publication-title: Water Sci. Eng. – volume: 2 year: 2020 ident: b57 article-title: Monitoring cyanobacterial harmful algal blooms at high spatiotemporal resolution by fusing landsat and MODIS imagery publication-title: Environ. Adv. – volume: 115 start-page: 1053 year: 2011 end-page: 1064 ident: b9 article-title: A simple and effective method for filling gaps in landsat ETM+ SLC-off images publication-title: Remote Sens. Environ. – start-page: 950 year: 2021 end-page: 953 ident: b60 article-title: State of the art in GNSS-R capabilities over inland waters publication-title: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS – volume: 8 year: 2018 ident: b35 article-title: A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation publication-title: Sci. Rep. – volume: 851 year: 2022 ident: b25 article-title: Remote sensing to detect harmful algal blooms in inland waterbodies publication-title: Sci. Total Environ. – volume: 12 start-page: 7778 year: 2012 end-page: 7803 ident: b39 article-title: Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework publication-title: Sensors (Switzerland) – volume: 19 year: 2022 ident: b47 article-title: Near real-time soil moisture in China retrieved from CyGNSS reflectivity publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 9 start-page: 4795 year: 2016 end-page: 4801 ident: b48 article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 139 start-page: 270 year: 2019 end-page: 274 ident: b54 article-title: Significantly decreasing harmful algal blooms in China seas in the early 21st century publication-title: Mar. Pollut. Bull. – volume: 13 start-page: 143 year: 2020 end-page: 153 ident: b7 article-title: Thick clouds removal from multitemporal ZY-3 satellite images using deep learning publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 36 start-page: 5613 year: 2015 end-page: 5636 ident: b18 article-title: The application of ensemble techniques for land-cover classification in arid lands publication-title: Int. J. Remote Sens. – year: 2022 ident: b36 article-title: CYGNSS handbook – volume: 15 start-page: 1510 year: 2018 end-page: 1514 ident: b49 article-title: Sea ice sensing from GNSS-R data using convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b5 article-title: Random forests publication-title: Mach. Learn. – volume: 55 start-page: 3656 year: 2017 end-page: 3668 ident: b16 article-title: Multitemporal landsat missing data recovery based on tempo-spectral angle model publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 856 year: 2023 ident: b51 article-title: Accuracy assessment of temperature trends from ERA5 and ERA5-land publication-title: Sci. Total Environ. – volume: 61 start-page: 1 year: 2023 end-page: 13 ident: b12 article-title: Assessing the relative performance of GNSS-R flood extent observations: Case study in south Sudan publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b23 article-title: Dynamics and Impact Factors of Aquatic Vegetation in Inland Lakes Using MODIS Data – volume: 166 start-page: 333 year: 2020 end-page: 346 ident: b28 article-title: Cloud removal in sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 15 start-page: 3122 year: 2023 ident: b59 article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data publication-title: Remote Sens. – volume: 47 start-page: 9093 year: 2013 end-page: 9101 ident: b40 article-title: Six-decade change in water chemistry of large freshwater lake Taihu, China publication-title: Environ. Sci. Technol. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b4 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 148 start-page: 103 year: 2019 end-page: 113 ident: b24 article-title: Cloud removal in remote sensing images using nonnegative matrix factorization and error correction publication-title: ISPRS J. Photogram. Remote Sens. – volume: 64 start-page: 689 year: 2019 end-page: 700 ident: b2 article-title: Perceptions of water-related environmental concerns in northwest ohio one year after a lake erie harmful algal bloom publication-title: Environ. Manag. – year: 2022 ident: b46 article-title: Inland water mapping based on GA-LinkNet from CyGNSS data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 9 start-page: 5159 year: 2016 end-page: 5171 ident: b15 article-title: Development of a coupled spatiotemporal algal bloom model for coastal areas: A remote sensing and data mining-based approach publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 149 start-page: 215 year: 2019 end-page: 225 ident: b45 article-title: Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 247 year: 2020 ident: b50 article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data publication-title: Remote Sens. Environ. – volume: 45 start-page: 4049 year: 2018 end-page: 4057 ident: b10 article-title: Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture publication-title: Geophys. Res. Lett. – volume: 24 start-page: 28079 year: 2017 end-page: 28101 ident: b13 article-title: Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu lake based on GOCI imagery publication-title: Environ. Sci. Pollut. Res. – volume: 33 start-page: 1823 year: 2012 end-page: 1849 ident: b30 article-title: Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data publication-title: Int. J. Remote Sens. – volume: 10 start-page: 8 year: 2022 end-page: 38 ident: b32 article-title: The potential of spaceborne GNSS reflectometry for soil moisture, biomass, and freeze–thaw monitoring: Summary of a European space agency-funded study publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 3 start-page: 86 year: 2015 end-page: 99 ident: b29 article-title: Many hands make light work - on ensemble learning techniques for data fusion in remote sensing publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 131 start-page: 182 year: 2013 end-page: 194 ident: b53 article-title: Recovering missing pixels for landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method publication-title: Remote Sens. Environ. – volume: 109 year: 2020 ident: b22 article-title: Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins publication-title: Harmful Algae – volume: 13 year: 2021 ident: b34 article-title: The bistatic radar as an effective tool for detecting and monitoring the presence of phytoplankton on the ocean surface publication-title: Remote Sens. – volume: 355 start-page: 99 year: 2015 end-page: 109 ident: b20 article-title: A membrane combined process to cope with algae blooms in water publication-title: Desalination – start-page: 1 year: 2022 end-page: 14 ident: b56 article-title: Feasibility study of spaceborne GNSS-R detection of algal blooms in Taihu Lake publication-title: J. Beijing Univ. Aeronaut. Astronaut. – volume: 12 start-page: 447 year: 2022 end-page: 463 ident: b58 article-title: Displacement analysis of point cloud removed ground collapse effect in SMW by CANUPO machine learning algorithm publication-title: J. Civ. Struct. Health Monit. – volume: 71 start-page: 3705 year: 2014 end-page: 3714 ident: b21 article-title: Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS publication-title: Environ. Earth Sci. – volume: 59 start-page: 5866 year: 2021 end-page: 5878 ident: b14 article-title: Multisensor data fusion for cloud removal in global and all-season sentinel-2 imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 17 start-page: 15480 year: 2024 end-page: 15493 ident: b1 article-title: An analysis of a commercial GNSS-R soil moisture dataset publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 13 start-page: 2351 year: 2020 end-page: 2368 ident: b37 article-title: Remote sensing of forest biomass using gnss reflectometry publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 91 year: 2020 ident: b17 article-title: Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems publication-title: Harmful Algae – year: 1998 ident: b19 article-title: Neural Networks: A Comprehensive Foundation – volume: 33 start-page: 139 year: 2015 end-page: 148 ident: b43 article-title: Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images publication-title: Chin. J. Oceanol. Limnol. – volume: 12 start-page: 8654 year: 2022 ident: b55 article-title: A review of ensemble learning algorithms used in remote sensing applications publication-title: Appl. Sci. – volume: 40 start-page: 2291 year: 2002 end-page: 2299 ident: b6 article-title: Multiple classifiers applied to multisource remote sensing data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 15 start-page: 2157 year: 2023 ident: b33 article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field publication-title: Remote Sens. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b11 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 56 start-page: 1959 year: 2017 end-page: 1968 ident: b41 article-title: Bistatic radar equation for signals of opportunity revisited publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 89 start-page: 201 year: 2008 end-page: 202 ident: b44 article-title: Satellite-observed algae blooms in China’s Lake Taihu publication-title: EOS Trans. Am. Geophys. Union – volume: 60 year: 2022 ident: b3 article-title: Detection of red tide over sea surface using GNSS-R spaceborne observations publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 280 year: 2022 ident: b42 article-title: Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-land land surface temperature data publication-title: Remote Sens. Environ. – volume: 8 start-page: 3988 year: 2008 ident: 10.1016/j.jag.2024.104253_b27 article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery publication-title: Sensors doi: 10.3390/s8063988 – volume: 148 start-page: 103 year: 2019 ident: 10.1016/j.jag.2024.104253_b24 article-title: Cloud removal in remote sensing images using nonnegative matrix factorization and error correction publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2018.12.013 – volume: 247 year: 2020 ident: 10.1016/j.jag.2024.104253_b50 article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111944 – volume: 33 start-page: 139 year: 2015 ident: 10.1016/j.jag.2024.104253_b43 article-title: Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images publication-title: Chin. J. Oceanol. Limnol. doi: 10.1007/s00343-015-4019-8 – year: 1998 ident: 10.1016/j.jag.2024.104253_b19 – year: 2022 ident: 10.1016/j.jag.2024.104253_b46 article-title: Inland water mapping based on GA-LinkNet from CyGNSS data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 851 year: 2022 ident: 10.1016/j.jag.2024.104253_b25 article-title: Remote sensing to detect harmful algal blooms in inland waterbodies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158096 – volume: 2 year: 2020 ident: 10.1016/j.jag.2024.104253_b57 article-title: Monitoring cyanobacterial harmful algal blooms at high spatiotemporal resolution by fusing landsat and MODIS imagery publication-title: Environ. Adv. doi: 10.1016/j.envadv.2020.100008 – start-page: 1 year: 2022 ident: 10.1016/j.jag.2024.104253_b56 article-title: Feasibility study of spaceborne GNSS-R detection of algal blooms in Taihu Lake publication-title: J. Beijing Univ. Aeronaut. Astronaut. – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jag.2024.104253_b4 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 4 start-page: 374 year: 2011 ident: 10.1016/j.jag.2024.104253_b26 article-title: Analysis of black water aggregation in Taihu Lake publication-title: Water Sci. Eng. – volume: 149 start-page: 215 year: 2019 ident: 10.1016/j.jag.2024.104253_b45 article-title: Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.025 – volume: 17 start-page: 15480 year: 2024 ident: 10.1016/j.jag.2024.104253_b1 article-title: An analysis of a commercial GNSS-R soil moisture dataset publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3449773 – volume: 13 start-page: 143 year: 2020 ident: 10.1016/j.jag.2024.104253_b7 article-title: Thick clouds removal from multitemporal ZY-3 satellite images using deep learning publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2954130 – volume: 64 start-page: 689 year: 2019 ident: 10.1016/j.jag.2024.104253_b2 article-title: Perceptions of water-related environmental concerns in northwest ohio one year after a lake erie harmful algal bloom publication-title: Environ. Manag. doi: 10.1007/s00267-019-01217-z – volume: 9 start-page: 4795 year: 2016 ident: 10.1016/j.jag.2024.104253_b48 article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2582690 – volume: 35 start-page: 23 year: 2021 ident: 10.1016/j.jag.2024.104253_b31 article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction publication-title: Water Resour. Manage. doi: 10.1007/s11269-020-02704-3 – volume: 115 start-page: 1053 issue: 4 year: 2011 ident: 10.1016/j.jag.2024.104253_b9 article-title: A simple and effective method for filling gaps in landsat ETM+ SLC-off images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.010 – volume: 40 start-page: 2291 year: 2002 ident: 10.1016/j.jag.2024.104253_b6 article-title: Multiple classifiers applied to multisource remote sensing data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.802476 – volume: 355 start-page: 99 year: 2015 ident: 10.1016/j.jag.2024.104253_b20 article-title: A membrane combined process to cope with algae blooms in water publication-title: Desalination doi: 10.1016/j.desal.2014.09.037 – volume: 139 start-page: 270 year: 2019 ident: 10.1016/j.jag.2024.104253_b54 article-title: Significantly decreasing harmful algal blooms in China seas in the early 21st century publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.01.002 – volume: 13 year: 2021 ident: 10.1016/j.jag.2024.104253_b34 article-title: The bistatic radar as an effective tool for detecting and monitoring the presence of phytoplankton on the ocean surface publication-title: Remote Sens. doi: 10.3390/rs13122248 – volume: 10 start-page: 8 issue: 2 year: 2022 ident: 10.1016/j.jag.2024.104253_b32 article-title: The potential of spaceborne GNSS reflectometry for soil moisture, biomass, and freeze–thaw monitoring: Summary of a European space agency-funded study publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2021.3115448 – volume: 56 start-page: 1959 issue: 4 year: 2017 ident: 10.1016/j.jag.2024.104253_b41 article-title: Bistatic radar equation for signals of opportunity revisited publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2771253 – volume: 3 start-page: 86 issue: 3 year: 2015 ident: 10.1016/j.jag.2024.104253_b29 article-title: Many hands make light work - on ensemble learning techniques for data fusion in remote sensing publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2432092 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jag.2024.104253_b5 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jag.2024.104253_b12 article-title: Assessing the relative performance of GNSS-R flood extent observations: Case study in south Sudan publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3237461 – volume: 12 start-page: 8654 issue: 17 year: 2022 ident: 10.1016/j.jag.2024.104253_b55 article-title: A review of ensemble learning algorithms used in remote sensing applications publication-title: Appl. Sci. doi: 10.3390/app12178654 – volume: 89 start-page: 201 issue: 22 year: 2008 ident: 10.1016/j.jag.2024.104253_b44 article-title: Satellite-observed algae blooms in China’s Lake Taihu publication-title: EOS Trans. Am. Geophys. Union doi: 10.1029/2008EO220001 – volume: 45 start-page: 4049 year: 2018 ident: 10.1016/j.jag.2024.104253_b10 article-title: Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077905 – volume: 47 start-page: 9093 year: 2013 ident: 10.1016/j.jag.2024.104253_b40 article-title: Six-decade change in water chemistry of large freshwater lake Taihu, China publication-title: Environ. Sci. Technol. doi: 10.1021/es401517h – volume: 33 start-page: 1823 year: 2012 ident: 10.1016/j.jag.2024.104253_b30 article-title: Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.602651 – volume: 15 start-page: 1510 year: 2018 ident: 10.1016/j.jag.2024.104253_b49 article-title: Sea ice sensing from GNSS-R data using convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2852143 – volume: 59 start-page: 5866 year: 2021 ident: 10.1016/j.jag.2024.104253_b14 article-title: Multisensor data fusion for cloud removal in global and all-season sentinel-2 imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3024744 – volume: 19 year: 2022 ident: 10.1016/j.jag.2024.104253_b47 article-title: Near real-time soil moisture in China retrieved from CyGNSS reflectivity publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3039519 – volume: 36 start-page: 5613 year: 2015 ident: 10.1016/j.jag.2024.104253_b18 article-title: The application of ensemble techniques for land-cover classification in arid lands publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1103915 – volume: 38 start-page: 951 year: 2000 ident: 10.1016/j.jag.2024.104253_b52 article-title: Scattering of GPS signals from the ocean with wind remote sensing application publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.841977 – volume: 133 year: 2024 ident: 10.1016/j.jag.2024.104253_b8 article-title: Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 3 start-page: 61 issue: 3 year: 2015 ident: 10.1016/j.jag.2024.104253_b38 article-title: Missing information reconstruction of remote sensing data: A technical review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2441912 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jag.2024.104253_b11 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 15 start-page: 3122 year: 2023 ident: 10.1016/j.jag.2024.104253_b59 article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data publication-title: Remote Sens. doi: 10.3390/rs15123122 – start-page: 950 year: 2021 ident: 10.1016/j.jag.2024.104253_b60 article-title: State of the art in GNSS-R capabilities over inland waters – volume: 24 start-page: 28079 year: 2017 ident: 10.1016/j.jag.2024.104253_b13 article-title: Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu lake based on GOCI imagery publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0305-7 – volume: 60 year: 2022 ident: 10.1016/j.jag.2024.104253_b3 article-title: Detection of red tide over sea surface using GNSS-R spaceborne observations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3144289 – year: 2021 ident: 10.1016/j.jag.2024.104253_b23 – volume: 8 year: 2018 ident: 10.1016/j.jag.2024.104253_b35 article-title: A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation publication-title: Sci. Rep. doi: 10.1038/s41598-018-27127-4 – volume: 13 start-page: 2351 year: 2020 ident: 10.1016/j.jag.2024.104253_b37 article-title: Remote sensing of forest biomass using gnss reflectometry publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2982993 – volume: 12 start-page: 447 year: 2022 ident: 10.1016/j.jag.2024.104253_b58 article-title: Displacement analysis of point cloud removed ground collapse effect in SMW by CANUPO machine learning algorithm publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-022-00555-7 – volume: 856 year: 2023 ident: 10.1016/j.jag.2024.104253_b51 article-title: Accuracy assessment of temperature trends from ERA5 and ERA5-land publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159182 – volume: 131 start-page: 182 year: 2013 ident: 10.1016/j.jag.2024.104253_b53 article-title: Recovering missing pixels for landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.012 – volume: 55 start-page: 3656 issue: 7 year: 2017 ident: 10.1016/j.jag.2024.104253_b16 article-title: Multitemporal landsat missing data recovery based on tempo-spectral angle model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2656162 – volume: 280 year: 2022 ident: 10.1016/j.jag.2024.104253_b42 article-title: Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-land land surface temperature data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113181 – volume: 15 start-page: 2157 issue: 8 year: 2023 ident: 10.1016/j.jag.2024.104253_b33 article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field publication-title: Remote Sens. doi: 10.3390/rs15082157 – volume: 71 start-page: 3705 year: 2014 ident: 10.1016/j.jag.2024.104253_b21 article-title: Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2764-6 – volume: 166 start-page: 333 year: 2020 ident: 10.1016/j.jag.2024.104253_b28 article-title: Cloud removal in sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.05.013 – year: 2022 ident: 10.1016/j.jag.2024.104253_b36 – volume: 9 start-page: 5159 year: 2016 ident: 10.1016/j.jag.2024.104253_b15 article-title: Development of a coupled spatiotemporal algal bloom model for coastal areas: A remote sensing and data mining-based approach publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2555898 – volume: 12 start-page: 7778 year: 2012 ident: 10.1016/j.jag.2024.104253_b39 article-title: Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework publication-title: Sensors (Switzerland) doi: 10.3390/s120607778 – volume: 109 year: 2020 ident: 10.1016/j.jag.2024.104253_b22 article-title: Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins publication-title: Harmful Algae – volume: 91 year: 2020 ident: 10.1016/j.jag.2024.104253_b17 article-title: Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems publication-title: Harmful Algae doi: 10.1016/j.hal.2019.03.008 |
SSID | ssj0017768 |
Score | 2.393563 |
Snippet | The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 104253 |
SubjectTerms | algae algal blooms algorithms Bagging tree cloud cover cost effectiveness Gap filling global positioning systems GNSS-R Lake surface NDVI lakes Meteorological data normalized difference vegetation index reflectometry regression analysis spatial data water pollution |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKeoEDgkJFeMlInJBW2fVzl1sIKQmIHAhF5YLl9aOkoE2UTZD498zsoxAOHDjaGj_kseeh-WZMyHMELMYyKxJZOJGIYHlSiOiTELjU0VtQMpgo_H6hZufi7YW8OCKTPhcGYZWd7G9leiOtu55Rd5qjzWo1WoLnUeSCNyhILJt2gxwz0K7pgByP5-9mi-tggtZtRhzQJzigD242MK8rewleIhMY7GSSH6inpor_gZb6S143SujsDrndWY903G7wLjkK1Qm59UdNwRNyOv2dugak3dut75Ev6Gn-aKjo4vWnOcUG_W6_BVrvtxGhWS_pHLFEMGxV1ei11xTTT-jk85vFckkRTUpD9bUBDdDyJ51-GCcSaDf7XX2fnJ9NP05mSfe7QuJ4ke0SnTHPhJPSB5E6nTkXOfPaO88jc-Bj26g8VsSKnudlabn0UacuSwO8-UxbfkoG1boKDwhlCpYFIleAAeiEssKnzFuZqVy7svBD8qI_VLNpi2iYHl12ZYADBjlgWg4MySs89mtCrH_ddKy3l6a7ACaVqVUcjE3vtciVArtGMQemCQf7CLY9JKJnmjm4TjDV6l9rP-sZbOCZYezEVmG9rw3MK7IcnFP-8P-mfkRuYqtFwjwmg912H56APbMrn3b39ReBS_De priority: 102 providerName: Elsevier |
Title | Recovering NDVI over lake surfaces: Initial insights from CYGNSS data enhanced by ERA-5 inputs |
URI | https://dx.doi.org/10.1016/j.jag.2024.104253 https://www.proquest.com/docview/3154188993 https://doaj.org/article/050a63405dd7486681962c61331556d9 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucABQaFieVRG4oRkEb8TbsuyZZfHCrUUlQuW4we0oLRqdpH498zkAS0HuHCKEk1ia8bON6P5ZkzIYyQs5ppXTFdBMZW8ZJXKkaUktc3RA8hgofDblVkcqldH-ujCUV_ICevbA_eKe1rowhsJbkWMVpXGAIIZEQCEJCChiV3pHmDeGEwN-QNr-yI4bSpWKinGfGbH7DrxnyEwFArzm0LLS4jUNe6_BEx__KI73Nm7SW4MDiOd9hO9Ra6kZptcv9BGcJvszH9Xq4HosF3b2-QTBpffOym6evFhSfGGfvNfE2035xnZWM_oEulD8Npx02Kg3lKsOKGzjy9XBwcUCaQ0NV86ngCtf9D5_pRpkD3brNs75HBv_n62YMOBCizIiq-Z5SIKFbSOSRXB8hCyFNHGEGUWAcJqn0GjtuQ5yrKuvdQx2yLwIsE259bLHbLVnDbpLqHCwLAgFCrw-YIyXsVCRK-5KW2oqzghT0alurO-b4YbCWUnDizg0AKut8CEPEe1_xLEltfdA1gIblgI7l8LYULUaDQ3eA-9VwCfOv7b2I9GAzvYWZgu8U063bQOvqt4CfGovPc_5nefXMNheyrMA7K1Pt-kh-DQrOtdcnU623_zDq_L14vVbreWfwI8QfB0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOCAoVy9NIcEGKNrGdOEHisLRbNmybA9uicsE4tlO2rbKrzS6ov4s_yEweheXAAanHOBPbmrE9M5lvxoS8RMBikQeJFyZGeMJp7iWisJ5zPJSF1aBkMFH4MItGx-LDSXiyQX52uTAIq2zP_uZMr0_rtqXfcrM_n077E_A8kljwGgWJZdNaZOXYXf4Av616m-6BkF8xtj882h157dUCnuFJsPRkwCwTJgytE76RgTEFZ1ZaY3nBDDiYuogsloMqLI_zXPPQFtI3ge9gwQdSc-j3BtnCaliwrbYG6XiUXQUvpGwy8GB-Hk6wC6bWsLIzfQpeKRMYXGUhX1OH9a0Ba1rxL_1QK739u-ROa63SQcOQe2TDldvk9h81DLfJzvB3qhyQtmdFdZ98Qc_2e01Fs71PKcUHeqHPHa1WiwKhYG9oitgl-GxaVviXoKKY7kJ3P7_PJhOK6FXqym81SIHml3T4ceCFQDtfLasH5PhaWL5DNstZ6R4SyiIYFohMAganEZEW1mdWh0EUS5Mntkded0xV86Zoh-rQbGcKJKBQAqqRQI-8Q7ZfEWK97bphtjhV7YJTfujriINxa60UcRSBHRUxA6YQB3sMpt0johOaWlu-0NX0X2O_6ASsYFtjrEaXbraqFPQrghicYf7o_7p-Tm6Ojg4P1EGajR-TW_imQeE8IZvLxco9BVtqmT9r1y4lX697u_wCgq8vgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovering+NDVI+over+lake+surfaces%3A+Initial+insights+from+CYGNSS+data+enhanced+by+ERA-5+inputs&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Yinqing+Zhen&rft.au=Qingyun+Yan&rft.date=2024-12-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=135&rft.spage=104253&rft_id=info:doi/10.1016%2Fj.jag.2024.104253&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_050a63405dd7486681962c61331556d9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |