Recovering NDVI over lake surfaces: Initial insights from CYGNSS data enhanced by ERA-5 inputs

The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. Howev...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 135; p. 104253
Main Authors Zhen, Yinqing, Yan, Qingyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. However, NDVI observations using optical sensors are often affected by cloud and fog in areas with numerous water bodies, such as Taihu Lake. Sensors operating in the microwave band can effectively mitigate this issue, particularly the emerging Global Navigation Satellite System Reflectometry (GNSS-R), which offers high temporal resolution and cost-effectiveness. In this paper, we propose a new method to recover lake-surface NDVI on cloudy days, utilizing GNSS-R observables and auxiliary meteorological data in conjunction with a machine learning regression algorithm called Bagging Tree. We also examine the effective range of GNSS-R data within this application scenario. Meanwhile, the Weighted Linear Regression-Laplacian Prior Regulation Method (WLR-LPRM) image gap-filling algorithm is used as a benchmark to evaluate recovery accuracy. The regression coefficient of NDVI retrieved using the proposed method is 0.95, with a root mean square error (RMSE) of 0.021 and a mean absolute error (MAE) of 0.010. Compared to the previous work on GNSS-R algal bloom detection with overall accuracy of 0.82, this work shows significant improvement in both accuracy and utility. The recovery of lake surface NDVI provides detailed insights into algal blooms, including quantifiable metrics such as the amount and spatial distribution, which are crucial for effective monitoring and management. Additionally, the recovered image textures exhibit high clarity and closely resemble the reference NDVI images. Experimental evaluation using simulated and actual cloud blocks indicates the model’s robustness to recover NDVI under varying cloud cover conditions. In summary, this study demonstrates the capability of GNSS-R aided by supplementary data for recovering missing NDVI values on lake surfaces when optical observations are absent for the first time. •Recovering lake surface NDVI using CYGNSS data for the first time with high accuracy.•This method is a good supplement for optical lake surface NDVI remote sensing on cloudy days.•A great extension of GNSS-R application aided by ERA-5 data.
AbstractList The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. However, NDVI observations using optical sensors are often affected by cloud and fog in areas with numerous water bodies, such as Taihu Lake. Sensors operating in the microwave band can effectively mitigate this issue, particularly the emerging Global Navigation Satellite System Reflectometry (GNSS-R), which offers high temporal resolution and cost-effectiveness. In this paper, we propose a new method to recover lake-surface NDVI on cloudy days, utilizing GNSS-R observables and auxiliary meteorological data in conjunction with a machine learning regression algorithm called Bagging Tree. We also examine the effective range of GNSS-R data within this application scenario. Meanwhile, the Weighted Linear Regression-Laplacian Prior Regulation Method (WLR-LPRM) image gap-filling algorithm is used as a benchmark to evaluate recovery accuracy. The regression coefficient of NDVI retrieved using the proposed method is 0.95, with a root mean square error (RMSE) of 0.021 and a mean absolute error (MAE) of 0.010. Compared to the previous work on GNSS-R algal bloom detection with overall accuracy of 0.82, this work shows significant improvement in both accuracy and utility. The recovery of lake surface NDVI provides detailed insights into algal blooms, including quantifiable metrics such as the amount and spatial distribution, which are crucial for effective monitoring and management. Additionally, the recovered image textures exhibit high clarity and closely resemble the reference NDVI images. Experimental evaluation using simulated and actual cloud blocks indicates the model’s robustness to recover NDVI under varying cloud cover conditions. In summary, this study demonstrates the capability of GNSS-R aided by supplementary data for recovering missing NDVI values on lake surfaces when optical observations are absent for the first time. •Recovering lake surface NDVI using CYGNSS data for the first time with high accuracy.•This method is a good supplement for optical lake surface NDVI remote sensing on cloudy days.•A great extension of GNSS-R application aided by ERA-5 data.
The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters can be assessed through remote sensing techniques, specifically using the Normalized Difference Vegetation Index (NDVI) for measurement. However, NDVI observations using optical sensors are often affected by cloud and fog in areas with numerous water bodies, such as Taihu Lake. Sensors operating in the microwave band can effectively mitigate this issue, particularly the emerging Global Navigation Satellite System Reflectometry (GNSS-R), which offers high temporal resolution and cost-effectiveness. In this paper, we propose a new method to recover lake-surface NDVI on cloudy days, utilizing GNSS-R observables and auxiliary meteorological data in conjunction with a machine learning regression algorithm called Bagging Tree. We also examine the effective range of GNSS-R data within this application scenario. Meanwhile, the Weighted Linear Regression-Laplacian Prior Regulation Method (WLR-LPRM) image gap-filling algorithm is used as a benchmark to evaluate recovery accuracy. The regression coefficient of NDVI retrieved using the proposed method is 0.95, with a root mean square error (RMSE) of 0.021 and a mean absolute error (MAE) of 0.010. Compared to the previous work on GNSS-R algal bloom detection with overall accuracy of 0.82, this work shows significant improvement in both accuracy and utility. The recovery of lake surface NDVI provides detailed insights into algal blooms, including quantifiable metrics such as the amount and spatial distribution, which are crucial for effective monitoring and management. Additionally, the recovered image textures exhibit high clarity and closely resemble the reference NDVI images. Experimental evaluation using simulated and actual cloud blocks indicates the model’s robustness to recover NDVI under varying cloud cover conditions. In summary, this study demonstrates the capability of GNSS-R aided by supplementary data for recovering missing NDVI values on lake surfaces when optical observations are absent for the first time.
ArticleNumber 104253
Author Yan, Qingyun
Zhen, Yinqing
Author_xml – sequence: 1
  givenname: Yinqing
  surname: Zhen
  fullname: Zhen, Yinqing
– sequence: 2
  givenname: Qingyun
  surname: Yan
  fullname: Yan, Qingyun
  email: 003257@nuist.edu.cn
BookMark eNp9UctuFDEQ9CFIefEB3HzkMovf9sApWpKwUhSkJCBxwfLaPRsPs-PFno2Uv8ebiTjm1KpWVXWr6hQdjWkEhD5QsqCEqk_9onebBSNMVCyY5EfohErVNkZwdoxOS-kJoVorc4J-34FPT5DjuMG3X3-u8AHgwf0BXPa5cx7KZ7wa4xTdgONY4uZxKrjLaYuXv65v7-9xcJPDMD660UPA62d8eXfRyMrd7adyjt51bijw_nWeoR9Xlw_Lb83N9-vV8uKm8bylU6MpC0x4KQMI4jX1vuMs6OAD75iHNXedCq02tAvcrNeOy9Bp4ikBYQzVjp-h1ewbkuvtLsety882uWhfFilvrMtT9ANYIolTXBAZghZGKUNbxbyinFMp65Xq9XH22uX0dw9lsttYPAyDGyHti608QY1pW16pdKb6nErJ0P0_TYk9dGF7W7uwhy7s3EXVfJk1UPN4ipBt8REO4cUMfqoPxzfU_wDXAJL1
Cites_doi 10.3390/s8063988
10.1016/j.isprsjprs.2018.12.013
10.1016/j.rse.2020.111944
10.1007/s00343-015-4019-8
10.1016/j.scitotenv.2022.158096
10.1016/j.envadv.2020.100008
10.1007/BF00058655
10.1016/j.isprsjprs.2019.01.025
10.1109/JSTARS.2024.3449773
10.1109/JSTARS.2019.2954130
10.1007/s00267-019-01217-z
10.1109/JSTARS.2016.2582690
10.1007/s11269-020-02704-3
10.1016/j.rse.2010.12.010
10.1109/TGRS.2002.802476
10.1016/j.desal.2014.09.037
10.1016/j.marpolbul.2019.01.002
10.3390/rs13122248
10.1109/MGRS.2021.3115448
10.1109/TGRS.2017.2771253
10.1109/MGRS.2015.2432092
10.1023/A:1010933404324
10.1109/TGRS.2023.3237461
10.3390/app12178654
10.1029/2008EO220001
10.1029/2018GL077905
10.1021/es401517h
10.1080/01431161.2011.602651
10.1109/LGRS.2018.2852143
10.1109/TGRS.2020.3024744
10.1109/LGRS.2020.3039519
10.1080/01431161.2015.1103915
10.1109/36.841977
10.1109/MGRS.2015.2441912
10.1007/BF00994018
10.3390/rs15123122
10.1007/s11356-017-0305-7
10.1109/TGRS.2022.3144289
10.1038/s41598-018-27127-4
10.1109/JSTARS.2020.2982993
10.1007/s13349-022-00555-7
10.1016/j.scitotenv.2022.159182
10.1016/j.rse.2012.12.012
10.1109/TGRS.2017.2656162
10.1016/j.rse.2022.113181
10.3390/rs15082157
10.1007/s12665-013-2764-6
10.1016/j.isprsjprs.2020.05.013
10.1109/JSTARS.2016.2555898
10.3390/s120607778
10.1016/j.hal.2019.03.008
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2024.104253
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_050a63405dd7486681962c61331556d9
10_1016_j_jag_2024_104253
S1569843224006095
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGYEJ
AHEUO
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SES
SPC
SSE
SSJ
~02
AATTM
AAYWO
AAYXX
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
BNPGV
CITATION
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c391t-712d24c55de40c71ccf32d7dcd3f2ceb3af6d9781fd38bba35df70c10e48817a3
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Wed Aug 27 01:26:13 EDT 2025
Wed Jul 02 04:50:03 EDT 2025
Sun Jul 06 05:08:52 EDT 2025
Sat Mar 22 15:54:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gap filling
Meteorological data
Lake surface NDVI
Bagging tree
GNSS-R
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-712d24c55de40c71ccf32d7dcd3f2ceb3af6d9781fd38bba35df70c10e48817a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/050a63405dd7486681962c61331556d9
PQID 3154188993
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_050a63405dd7486681962c61331556d9
proquest_miscellaneous_3154188993
crossref_primary_10_1016_j_jag_2024_104253
elsevier_sciencedirect_doi_10_1016_j_jag_2024_104253
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
20241201
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zuffada, Downs, Russo, Loria, O’Brien, Galdi, di Bisceglie, Zavorotny, Lavalle, Morris (b60) 2021
Shen, Xu, Guo (b39) 2012; 12
Ruf, Chew, Lang, Morris, Nave, Ridley, Balasubramaniam (b35) 2018; 8
Huang, Chu, Dong, Hu, Yu (b20) 2015; 355
Zhao, Seo, Chen (b58) 2022; 12
Zhen, Yan (b59) 2023; 15
Yilmaz (b51) 2023; 856
Zhao, Liu, Wei (b57) 2020; 2
Al-Khaldi, Johnson, Horton, McKague, Twigg, Russel, Policelli, Ouellette, Bindlish, Park (b1) 2024; 17
Liu, Glamore, Tamburic, Morrow, Johnson (b25) 2022; 851
Li (b23) 2021
Shen, Li, Cheng, Zeng, Yang, Li, Zhang (b38) 2015; 3
Zeng, Yin, Wang, Huai (b54) 2019; 139
Breiman (b4) 1996; 24
Chen, Tang, Yang, Fan, Bilal, Li (b7) 2020; 13
Mosavi, Hosseini, Choubin, Goodarzi, Dineva, Sardooi (b31) 2021; 35
Cortes (b11) 1995; 20
Miao, Heaton, Zheng, Charlet, Liu (b30) 2012; 33
Wang, Shi (b44) 2008; 89
Santi, Paloscia, Pettinato, Fontanelli, Clarizia, Comite, Dente, Guerriero, Pierdicca, Floury (b37) 2020; 13
Merentitis, Debes (b29) 2015; 3
Yan, Huang, Jin, Jia (b50) 2020; 247
Wang, Li, Zhang, Shen, Zhang (b43) 2015; 33
Xu, Jia, Pickering, Jia (b45) 2019; 149
Yan, Huang (b48) 2016; 9
Chew, Small (b10) 2018; 45
Wang, Hessen, Samset, Stordal (b42) 2022; 280
Yan, Chen, Jin, Liu, Jia, Zhen, Chen, Huang (b46) 2022
Ma, Duan, Gu, Zhang (b27) 2008; 8
Downs, Kettner, Chapman, Brakenridge, O’Brien, Zuffada (b12) 2023; 61
Zavorotny, Voronovich (b52) 2000; 38
Li, Wang, Cheng, Wu, Gan, Fang (b24) 2019; 148
Zeng, Shen, Zhang (b53) 2013; 131
Zhang, Wang, Zhou, Meng, Han, Yang (b56) 2022
Briem, Benediktsson, Sveinsson (b6) 2002; 40
Du, Li, Wang, Liu, Zheng, Mu, Li (b13) 2017; 24
Huang, Li, Yang, Sun, Yu, Zhang, Chen, Xu (b21) 2014; 71
Pierdicca, Comite, Camps, Carreno-Luengo, Cenci, Clarizia, Costantini, Dente, Guerriero, Mollfulleda, Paloscia, Park, Santi, Zribi, Floury (b32) 2022; 10
Breiman (b5) 2001; 45
Voronovich, Zavorotny (b41) 2017; 56
Zhang, Liu, Shen (b55) 2022; 12
Tao, Yuan, Fengchang, Wei (b40) 2013; 47
Chen, Yan (b8) 2024; 133
Halmy, Gessler (b18) 2015; 36
Lu, Ma, Zhang (b26) 2011; 4
Elkadiri, Manche, Sultan, Al-Dousari, Uddin, Chouinard, Abotalib (b15) 2016; 9
Haykin (b19) 1998
Griffith, Gobler (b17) 2020; 91
Rodriguez-Alvarez, Munoz-Martin, Morris (b33) 2023; 15
Rodriguez-Alvarez, Oudrhiri (b34) 2021; 13
Ban, Zhang, Yu, Zheng, Chen (b3) 2022; 60
Meraner, Ebel, Zhu, Schmitt (b28) 2020; 166
Yan, Huang (b49) 2018; 15
Yan, Gong, Jin, Huang, Zhang (b47) 2022; 19
Huo, Gan, Geng, Cao, Song, Yu, Li (b22) 2020; 109
Ruf (b36) 2022
Gao, Gu (b16) 2017; 55
Ames, Steiner, Liebold, Milz, Eitniear (b2) 2019; 64
Chen, Zhu, Vogelmann, Gao, Jin (b9) 2011; 115
Ebel, Meraner, Schmitt, Zhu (b14) 2021; 59
Ruf (10.1016/j.jag.2024.104253_b35) 2018; 8
Zhao (10.1016/j.jag.2024.104253_b57) 2020; 2
Cortes (10.1016/j.jag.2024.104253_b11) 1995; 20
Gao (10.1016/j.jag.2024.104253_b16) 2017; 55
Ruf (10.1016/j.jag.2024.104253_b36) 2022
Zhang (10.1016/j.jag.2024.104253_b56) 2022
Chen (10.1016/j.jag.2024.104253_b7) 2020; 13
Griffith (10.1016/j.jag.2024.104253_b17) 2020; 91
Meraner (10.1016/j.jag.2024.104253_b28) 2020; 166
Briem (10.1016/j.jag.2024.104253_b6) 2002; 40
Yan (10.1016/j.jag.2024.104253_b47) 2022; 19
Ma (10.1016/j.jag.2024.104253_b27) 2008; 8
Halmy (10.1016/j.jag.2024.104253_b18) 2015; 36
Li (10.1016/j.jag.2024.104253_b24) 2019; 148
Xu (10.1016/j.jag.2024.104253_b45) 2019; 149
Yan (10.1016/j.jag.2024.104253_b49) 2018; 15
Ames (10.1016/j.jag.2024.104253_b2) 2019; 64
Yan (10.1016/j.jag.2024.104253_b50) 2020; 247
Huo (10.1016/j.jag.2024.104253_b22) 2020; 109
Merentitis (10.1016/j.jag.2024.104253_b29) 2015; 3
Shen (10.1016/j.jag.2024.104253_b39) 2012; 12
Liu (10.1016/j.jag.2024.104253_b25) 2022; 851
Ebel (10.1016/j.jag.2024.104253_b14) 2021; 59
Zeng (10.1016/j.jag.2024.104253_b53) 2013; 131
Haykin (10.1016/j.jag.2024.104253_b19) 1998
Miao (10.1016/j.jag.2024.104253_b30) 2012; 33
Shen (10.1016/j.jag.2024.104253_b38) 2015; 3
Huang (10.1016/j.jag.2024.104253_b21) 2014; 71
Zeng (10.1016/j.jag.2024.104253_b54) 2019; 139
Chew (10.1016/j.jag.2024.104253_b10) 2018; 45
Lu (10.1016/j.jag.2024.104253_b26) 2011; 4
Al-Khaldi (10.1016/j.jag.2024.104253_b1) 2024; 17
Santi (10.1016/j.jag.2024.104253_b37) 2020; 13
Chen (10.1016/j.jag.2024.104253_b8) 2024; 133
Zavorotny (10.1016/j.jag.2024.104253_b52) 2000; 38
Chen (10.1016/j.jag.2024.104253_b9) 2011; 115
Yilmaz (10.1016/j.jag.2024.104253_b51) 2023; 856
Wang (10.1016/j.jag.2024.104253_b44) 2008; 89
Zhao (10.1016/j.jag.2024.104253_b58) 2022; 12
Breiman (10.1016/j.jag.2024.104253_b4) 1996; 24
Tao (10.1016/j.jag.2024.104253_b40) 2013; 47
Ban (10.1016/j.jag.2024.104253_b3) 2022; 60
Wang (10.1016/j.jag.2024.104253_b42) 2022; 280
Rodriguez-Alvarez (10.1016/j.jag.2024.104253_b33) 2023; 15
Zhang (10.1016/j.jag.2024.104253_b55) 2022; 12
Huang (10.1016/j.jag.2024.104253_b20) 2015; 355
Zhen (10.1016/j.jag.2024.104253_b59) 2023; 15
Voronovich (10.1016/j.jag.2024.104253_b41) 2017; 56
Downs (10.1016/j.jag.2024.104253_b12) 2023; 61
Yan (10.1016/j.jag.2024.104253_b46) 2022
Yan (10.1016/j.jag.2024.104253_b48) 2016; 9
Rodriguez-Alvarez (10.1016/j.jag.2024.104253_b34) 2021; 13
Wang (10.1016/j.jag.2024.104253_b43) 2015; 33
Zuffada (10.1016/j.jag.2024.104253_b60) 2021
Du (10.1016/j.jag.2024.104253_b13) 2017; 24
Elkadiri (10.1016/j.jag.2024.104253_b15) 2016; 9
Mosavi (10.1016/j.jag.2024.104253_b31) 2021; 35
Breiman (10.1016/j.jag.2024.104253_b5) 2001; 45
Li (10.1016/j.jag.2024.104253_b23) 2021
Pierdicca (10.1016/j.jag.2024.104253_b32) 2022; 10
References_xml – volume: 38
  start-page: 951
  year: 2000
  end-page: 964
  ident: b52
  article-title: Scattering of GPS signals from the ocean with wind remote sensing application
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 3988
  year: 2008
  end-page: 4005
  ident: b27
  article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery
  publication-title: Sensors
– volume: 3
  start-page: 61
  year: 2015
  end-page: 85
  ident: b38
  article-title: Missing information reconstruction of remote sensing data: A technical review
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 35
  start-page: 23
  year: 2021
  end-page: 37
  ident: b31
  article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction
  publication-title: Water Resour. Manage.
– volume: 133
  year: 2024
  ident: b8
  article-title: Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 4
  start-page: 374
  year: 2011
  end-page: 385
  ident: b26
  article-title: Analysis of black water aggregation in Taihu Lake
  publication-title: Water Sci. Eng.
– volume: 2
  year: 2020
  ident: b57
  article-title: Monitoring cyanobacterial harmful algal blooms at high spatiotemporal resolution by fusing landsat and MODIS imagery
  publication-title: Environ. Adv.
– volume: 115
  start-page: 1053
  year: 2011
  end-page: 1064
  ident: b9
  article-title: A simple and effective method for filling gaps in landsat ETM+ SLC-off images
  publication-title: Remote Sens. Environ.
– start-page: 950
  year: 2021
  end-page: 953
  ident: b60
  article-title: State of the art in GNSS-R capabilities over inland waters
  publication-title: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
– volume: 8
  year: 2018
  ident: b35
  article-title: A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation
  publication-title: Sci. Rep.
– volume: 851
  year: 2022
  ident: b25
  article-title: Remote sensing to detect harmful algal blooms in inland waterbodies
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 7778
  year: 2012
  end-page: 7803
  ident: b39
  article-title: Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework
  publication-title: Sensors (Switzerland)
– volume: 19
  year: 2022
  ident: b47
  article-title: Near real-time soil moisture in China retrieved from CyGNSS reflectivity
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 9
  start-page: 4795
  year: 2016
  end-page: 4801
  ident: b48
  article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 139
  start-page: 270
  year: 2019
  end-page: 274
  ident: b54
  article-title: Significantly decreasing harmful algal blooms in China seas in the early 21st century
  publication-title: Mar. Pollut. Bull.
– volume: 13
  start-page: 143
  year: 2020
  end-page: 153
  ident: b7
  article-title: Thick clouds removal from multitemporal ZY-3 satellite images using deep learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 36
  start-page: 5613
  year: 2015
  end-page: 5636
  ident: b18
  article-title: The application of ensemble techniques for land-cover classification in arid lands
  publication-title: Int. J. Remote Sens.
– year: 2022
  ident: b36
  article-title: CYGNSS handbook
– volume: 15
  start-page: 1510
  year: 2018
  end-page: 1514
  ident: b49
  article-title: Sea ice sensing from GNSS-R data using convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b5
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 55
  start-page: 3656
  year: 2017
  end-page: 3668
  ident: b16
  article-title: Multitemporal landsat missing data recovery based on tempo-spectral angle model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 856
  year: 2023
  ident: b51
  article-title: Accuracy assessment of temperature trends from ERA5 and ERA5-land
  publication-title: Sci. Total Environ.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 13
  ident: b12
  article-title: Assessing the relative performance of GNSS-R flood extent observations: Case study in south Sudan
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b23
  article-title: Dynamics and Impact Factors of Aquatic Vegetation in Inland Lakes Using MODIS Data
– volume: 166
  start-page: 333
  year: 2020
  end-page: 346
  ident: b28
  article-title: Cloud removal in sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 15
  start-page: 3122
  year: 2023
  ident: b59
  article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data
  publication-title: Remote Sens.
– volume: 47
  start-page: 9093
  year: 2013
  end-page: 9101
  ident: b40
  article-title: Six-decade change in water chemistry of large freshwater lake Taihu, China
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b4
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 148
  start-page: 103
  year: 2019
  end-page: 113
  ident: b24
  article-title: Cloud removal in remote sensing images using nonnegative matrix factorization and error correction
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 64
  start-page: 689
  year: 2019
  end-page: 700
  ident: b2
  article-title: Perceptions of water-related environmental concerns in northwest ohio one year after a lake erie harmful algal bloom
  publication-title: Environ. Manag.
– year: 2022
  ident: b46
  article-title: Inland water mapping based on GA-LinkNet from CyGNSS data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 9
  start-page: 5159
  year: 2016
  end-page: 5171
  ident: b15
  article-title: Development of a coupled spatiotemporal algal bloom model for coastal areas: A remote sensing and data mining-based approach
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 149
  start-page: 215
  year: 2019
  end-page: 225
  ident: b45
  article-title: Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 247
  year: 2020
  ident: b50
  article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 4049
  year: 2018
  end-page: 4057
  ident: b10
  article-title: Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture
  publication-title: Geophys. Res. Lett.
– volume: 24
  start-page: 28079
  year: 2017
  end-page: 28101
  ident: b13
  article-title: Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu lake based on GOCI imagery
  publication-title: Environ. Sci. Pollut. Res.
– volume: 33
  start-page: 1823
  year: 2012
  end-page: 1849
  ident: b30
  article-title: Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 8
  year: 2022
  end-page: 38
  ident: b32
  article-title: The potential of spaceborne GNSS reflectometry for soil moisture, biomass, and freeze–thaw monitoring: Summary of a European space agency-funded study
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 3
  start-page: 86
  year: 2015
  end-page: 99
  ident: b29
  article-title: Many hands make light work - on ensemble learning techniques for data fusion in remote sensing
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 131
  start-page: 182
  year: 2013
  end-page: 194
  ident: b53
  article-title: Recovering missing pixels for landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
– volume: 109
  year: 2020
  ident: b22
  article-title: Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins
  publication-title: Harmful Algae
– volume: 13
  year: 2021
  ident: b34
  article-title: The bistatic radar as an effective tool for detecting and monitoring the presence of phytoplankton on the ocean surface
  publication-title: Remote Sens.
– volume: 355
  start-page: 99
  year: 2015
  end-page: 109
  ident: b20
  article-title: A membrane combined process to cope with algae blooms in water
  publication-title: Desalination
– start-page: 1
  year: 2022
  end-page: 14
  ident: b56
  article-title: Feasibility study of spaceborne GNSS-R detection of algal blooms in Taihu Lake
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– volume: 12
  start-page: 447
  year: 2022
  end-page: 463
  ident: b58
  article-title: Displacement analysis of point cloud removed ground collapse effect in SMW by CANUPO machine learning algorithm
  publication-title: J. Civ. Struct. Health Monit.
– volume: 71
  start-page: 3705
  year: 2014
  end-page: 3714
  ident: b21
  article-title: Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS
  publication-title: Environ. Earth Sci.
– volume: 59
  start-page: 5866
  year: 2021
  end-page: 5878
  ident: b14
  article-title: Multisensor data fusion for cloud removal in global and all-season sentinel-2 imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 15480
  year: 2024
  end-page: 15493
  ident: b1
  article-title: An analysis of a commercial GNSS-R soil moisture dataset
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 13
  start-page: 2351
  year: 2020
  end-page: 2368
  ident: b37
  article-title: Remote sensing of forest biomass using gnss reflectometry
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 91
  year: 2020
  ident: b17
  article-title: Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems
  publication-title: Harmful Algae
– year: 1998
  ident: b19
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 33
  start-page: 139
  year: 2015
  end-page: 148
  ident: b43
  article-title: Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images
  publication-title: Chin. J. Oceanol. Limnol.
– volume: 12
  start-page: 8654
  year: 2022
  ident: b55
  article-title: A review of ensemble learning algorithms used in remote sensing applications
  publication-title: Appl. Sci.
– volume: 40
  start-page: 2291
  year: 2002
  end-page: 2299
  ident: b6
  article-title: Multiple classifiers applied to multisource remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 2157
  year: 2023
  ident: b33
  article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field
  publication-title: Remote Sens.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b11
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 56
  start-page: 1959
  year: 2017
  end-page: 1968
  ident: b41
  article-title: Bistatic radar equation for signals of opportunity revisited
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 89
  start-page: 201
  year: 2008
  end-page: 202
  ident: b44
  article-title: Satellite-observed algae blooms in China’s Lake Taihu
  publication-title: EOS Trans. Am. Geophys. Union
– volume: 60
  year: 2022
  ident: b3
  article-title: Detection of red tide over sea surface using GNSS-R spaceborne observations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 280
  year: 2022
  ident: b42
  article-title: Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-land land surface temperature data
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 3988
  year: 2008
  ident: 10.1016/j.jag.2024.104253_b27
  article-title: Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery
  publication-title: Sensors
  doi: 10.3390/s8063988
– volume: 148
  start-page: 103
  year: 2019
  ident: 10.1016/j.jag.2024.104253_b24
  article-title: Cloud removal in remote sensing images using nonnegative matrix factorization and error correction
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.12.013
– volume: 247
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b50
  article-title: Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111944
– volume: 33
  start-page: 139
  year: 2015
  ident: 10.1016/j.jag.2024.104253_b43
  article-title: Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images
  publication-title: Chin. J. Oceanol. Limnol.
  doi: 10.1007/s00343-015-4019-8
– year: 1998
  ident: 10.1016/j.jag.2024.104253_b19
– year: 2022
  ident: 10.1016/j.jag.2024.104253_b46
  article-title: Inland water mapping based on GA-LinkNet from CyGNSS data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 851
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b25
  article-title: Remote sensing to detect harmful algal blooms in inland waterbodies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158096
– volume: 2
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b57
  article-title: Monitoring cyanobacterial harmful algal blooms at high spatiotemporal resolution by fusing landsat and MODIS imagery
  publication-title: Environ. Adv.
  doi: 10.1016/j.envadv.2020.100008
– start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b56
  article-title: Feasibility study of spaceborne GNSS-R detection of algal blooms in Taihu Lake
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jag.2024.104253_b4
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 4
  start-page: 374
  year: 2011
  ident: 10.1016/j.jag.2024.104253_b26
  article-title: Analysis of black water aggregation in Taihu Lake
  publication-title: Water Sci. Eng.
– volume: 149
  start-page: 215
  year: 2019
  ident: 10.1016/j.jag.2024.104253_b45
  article-title: Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.025
– volume: 17
  start-page: 15480
  year: 2024
  ident: 10.1016/j.jag.2024.104253_b1
  article-title: An analysis of a commercial GNSS-R soil moisture dataset
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3449773
– volume: 13
  start-page: 143
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b7
  article-title: Thick clouds removal from multitemporal ZY-3 satellite images using deep learning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2954130
– volume: 64
  start-page: 689
  year: 2019
  ident: 10.1016/j.jag.2024.104253_b2
  article-title: Perceptions of water-related environmental concerns in northwest ohio one year after a lake erie harmful algal bloom
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-019-01217-z
– volume: 9
  start-page: 4795
  year: 2016
  ident: 10.1016/j.jag.2024.104253_b48
  article-title: Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the U.K. TechDemoSat-1 mission
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2582690
– volume: 35
  start-page: 23
  year: 2021
  ident: 10.1016/j.jag.2024.104253_b31
  article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-020-02704-3
– volume: 115
  start-page: 1053
  issue: 4
  year: 2011
  ident: 10.1016/j.jag.2024.104253_b9
  article-title: A simple and effective method for filling gaps in landsat ETM+ SLC-off images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.010
– volume: 40
  start-page: 2291
  year: 2002
  ident: 10.1016/j.jag.2024.104253_b6
  article-title: Multiple classifiers applied to multisource remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.802476
– volume: 355
  start-page: 99
  year: 2015
  ident: 10.1016/j.jag.2024.104253_b20
  article-title: A membrane combined process to cope with algae blooms in water
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.09.037
– volume: 139
  start-page: 270
  year: 2019
  ident: 10.1016/j.jag.2024.104253_b54
  article-title: Significantly decreasing harmful algal blooms in China seas in the early 21st century
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2019.01.002
– volume: 13
  year: 2021
  ident: 10.1016/j.jag.2024.104253_b34
  article-title: The bistatic radar as an effective tool for detecting and monitoring the presence of phytoplankton on the ocean surface
  publication-title: Remote Sens.
  doi: 10.3390/rs13122248
– volume: 10
  start-page: 8
  issue: 2
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b32
  article-title: The potential of spaceborne GNSS reflectometry for soil moisture, biomass, and freeze–thaw monitoring: Summary of a European space agency-funded study
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2021.3115448
– volume: 56
  start-page: 1959
  issue: 4
  year: 2017
  ident: 10.1016/j.jag.2024.104253_b41
  article-title: Bistatic radar equation for signals of opportunity revisited
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2771253
– volume: 3
  start-page: 86
  issue: 3
  year: 2015
  ident: 10.1016/j.jag.2024.104253_b29
  article-title: Many hands make light work - on ensemble learning techniques for data fusion in remote sensing
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2432092
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jag.2024.104253_b5
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2024.104253_b12
  article-title: Assessing the relative performance of GNSS-R flood extent observations: Case study in south Sudan
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3237461
– volume: 12
  start-page: 8654
  issue: 17
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b55
  article-title: A review of ensemble learning algorithms used in remote sensing applications
  publication-title: Appl. Sci.
  doi: 10.3390/app12178654
– volume: 89
  start-page: 201
  issue: 22
  year: 2008
  ident: 10.1016/j.jag.2024.104253_b44
  article-title: Satellite-observed algae blooms in China’s Lake Taihu
  publication-title: EOS Trans. Am. Geophys. Union
  doi: 10.1029/2008EO220001
– volume: 45
  start-page: 4049
  year: 2018
  ident: 10.1016/j.jag.2024.104253_b10
  article-title: Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077905
– volume: 47
  start-page: 9093
  year: 2013
  ident: 10.1016/j.jag.2024.104253_b40
  article-title: Six-decade change in water chemistry of large freshwater lake Taihu, China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401517h
– volume: 33
  start-page: 1823
  year: 2012
  ident: 10.1016/j.jag.2024.104253_b30
  article-title: Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.602651
– volume: 15
  start-page: 1510
  year: 2018
  ident: 10.1016/j.jag.2024.104253_b49
  article-title: Sea ice sensing from GNSS-R data using convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2852143
– volume: 59
  start-page: 5866
  year: 2021
  ident: 10.1016/j.jag.2024.104253_b14
  article-title: Multisensor data fusion for cloud removal in global and all-season sentinel-2 imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3024744
– volume: 19
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b47
  article-title: Near real-time soil moisture in China retrieved from CyGNSS reflectivity
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3039519
– volume: 36
  start-page: 5613
  year: 2015
  ident: 10.1016/j.jag.2024.104253_b18
  article-title: The application of ensemble techniques for land-cover classification in arid lands
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1103915
– volume: 38
  start-page: 951
  year: 2000
  ident: 10.1016/j.jag.2024.104253_b52
  article-title: Scattering of GPS signals from the ocean with wind remote sensing application
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.841977
– volume: 133
  year: 2024
  ident: 10.1016/j.jag.2024.104253_b8
  article-title: Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 3
  start-page: 61
  issue: 3
  year: 2015
  ident: 10.1016/j.jag.2024.104253_b38
  article-title: Missing information reconstruction of remote sensing data: A technical review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2441912
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jag.2024.104253_b11
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 15
  start-page: 3122
  year: 2023
  ident: 10.1016/j.jag.2024.104253_b59
  article-title: Improving spaceborne GNSS-R algal bloom detection with meteorological data
  publication-title: Remote Sens.
  doi: 10.3390/rs15123122
– start-page: 950
  year: 2021
  ident: 10.1016/j.jag.2024.104253_b60
  article-title: State of the art in GNSS-R capabilities over inland waters
– volume: 24
  start-page: 28079
  year: 2017
  ident: 10.1016/j.jag.2024.104253_b13
  article-title: Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu lake based on GOCI imagery
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0305-7
– volume: 60
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b3
  article-title: Detection of red tide over sea surface using GNSS-R spaceborne observations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3144289
– year: 2021
  ident: 10.1016/j.jag.2024.104253_b23
– volume: 8
  year: 2018
  ident: 10.1016/j.jag.2024.104253_b35
  article-title: A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27127-4
– volume: 13
  start-page: 2351
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b37
  article-title: Remote sensing of forest biomass using gnss reflectometry
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2982993
– volume: 12
  start-page: 447
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b58
  article-title: Displacement analysis of point cloud removed ground collapse effect in SMW by CANUPO machine learning algorithm
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-022-00555-7
– volume: 856
  year: 2023
  ident: 10.1016/j.jag.2024.104253_b51
  article-title: Accuracy assessment of temperature trends from ERA5 and ERA5-land
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159182
– volume: 131
  start-page: 182
  year: 2013
  ident: 10.1016/j.jag.2024.104253_b53
  article-title: Recovering missing pixels for landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.012
– volume: 55
  start-page: 3656
  issue: 7
  year: 2017
  ident: 10.1016/j.jag.2024.104253_b16
  article-title: Multitemporal landsat missing data recovery based on tempo-spectral angle model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2656162
– volume: 280
  year: 2022
  ident: 10.1016/j.jag.2024.104253_b42
  article-title: Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-land land surface temperature data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113181
– volume: 15
  start-page: 2157
  issue: 8
  year: 2023
  ident: 10.1016/j.jag.2024.104253_b33
  article-title: Latest advances in the global navigation satellite system—reflectometry (GNSS-R) field
  publication-title: Remote Sens.
  doi: 10.3390/rs15082157
– volume: 71
  start-page: 3705
  year: 2014
  ident: 10.1016/j.jag.2024.104253_b21
  article-title: Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2764-6
– volume: 166
  start-page: 333
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b28
  article-title: Cloud removal in sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.05.013
– year: 2022
  ident: 10.1016/j.jag.2024.104253_b36
– volume: 9
  start-page: 5159
  year: 2016
  ident: 10.1016/j.jag.2024.104253_b15
  article-title: Development of a coupled spatiotemporal algal bloom model for coastal areas: A remote sensing and data mining-based approach
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2555898
– volume: 12
  start-page: 7778
  year: 2012
  ident: 10.1016/j.jag.2024.104253_b39
  article-title: Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s120607778
– volume: 109
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b22
  article-title: Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins
  publication-title: Harmful Algae
– volume: 91
  year: 2020
  ident: 10.1016/j.jag.2024.104253_b17
  article-title: Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.03.008
SSID ssj0017768
Score 2.393563
Snippet The escalating water pollution in many lakes has led to more frequent occurrences of algal bloom disasters in recent decades. The severity of these disasters...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 104253
SubjectTerms algae
algal blooms
algorithms
Bagging tree
cloud cover
cost effectiveness
Gap filling
global positioning systems
GNSS-R
Lake surface NDVI
lakes
Meteorological data
normalized difference vegetation index
reflectometry
regression analysis
spatial data
water pollution
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKeoEDgkJFeMlInJBW2fVzl1sIKQmIHAhF5YLl9aOkoE2UTZD498zsoxAOHDjaGj_kseeh-WZMyHMELMYyKxJZOJGIYHlSiOiTELjU0VtQMpgo_H6hZufi7YW8OCKTPhcGYZWd7G9leiOtu55Rd5qjzWo1WoLnUeSCNyhILJt2gxwz0K7pgByP5-9mi-tggtZtRhzQJzigD242MK8rewleIhMY7GSSH6inpor_gZb6S143SujsDrndWY903G7wLjkK1Qm59UdNwRNyOv2dugak3dut75Ev6Gn-aKjo4vWnOcUG_W6_BVrvtxGhWS_pHLFEMGxV1ei11xTTT-jk85vFckkRTUpD9bUBDdDyJ51-GCcSaDf7XX2fnJ9NP05mSfe7QuJ4ke0SnTHPhJPSB5E6nTkXOfPaO88jc-Bj26g8VsSKnudlabn0UacuSwO8-UxbfkoG1boKDwhlCpYFIleAAeiEssKnzFuZqVy7svBD8qI_VLNpi2iYHl12ZYADBjlgWg4MySs89mtCrH_ddKy3l6a7ACaVqVUcjE3vtciVArtGMQemCQf7CLY9JKJnmjm4TjDV6l9rP-sZbOCZYezEVmG9rw3MK7IcnFP-8P-mfkRuYqtFwjwmg912H56APbMrn3b39ReBS_De
  priority: 102
  providerName: Elsevier
Title Recovering NDVI over lake surfaces: Initial insights from CYGNSS data enhanced by ERA-5 inputs
URI https://dx.doi.org/10.1016/j.jag.2024.104253
https://www.proquest.com/docview/3154188993
https://doaj.org/article/050a63405dd7486681962c61331556d9
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucABQaFieVRG4oRkEb8TbsuyZZfHCrUUlQuW4we0oLRqdpH498zkAS0HuHCKEk1ia8bON6P5ZkzIYyQs5ppXTFdBMZW8ZJXKkaUktc3RA8hgofDblVkcqldH-ujCUV_ICevbA_eKe1rowhsJbkWMVpXGAIIZEQCEJCChiV3pHmDeGEwN-QNr-yI4bSpWKinGfGbH7DrxnyEwFArzm0LLS4jUNe6_BEx__KI73Nm7SW4MDiOd9hO9Ra6kZptcv9BGcJvszH9Xq4HosF3b2-QTBpffOym6evFhSfGGfvNfE2035xnZWM_oEulD8Npx02Kg3lKsOKGzjy9XBwcUCaQ0NV86ngCtf9D5_pRpkD3brNs75HBv_n62YMOBCizIiq-Z5SIKFbSOSRXB8hCyFNHGEGUWAcJqn0GjtuQ5yrKuvdQx2yLwIsE259bLHbLVnDbpLqHCwLAgFCrw-YIyXsVCRK-5KW2oqzghT0alurO-b4YbCWUnDizg0AKut8CEPEe1_xLEltfdA1gIblgI7l8LYULUaDQ3eA-9VwCfOv7b2I9GAzvYWZgu8U063bQOvqt4CfGovPc_5nefXMNheyrMA7K1Pt-kh-DQrOtdcnU623_zDq_L14vVbreWfwI8QfB0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOCAoVy9NIcEGKNrGdOEHisLRbNmybA9uicsE4tlO2rbKrzS6ov4s_yEweheXAAanHOBPbmrE9M5lvxoS8RMBikQeJFyZGeMJp7iWisJ5zPJSF1aBkMFH4MItGx-LDSXiyQX52uTAIq2zP_uZMr0_rtqXfcrM_n077E_A8kljwGgWJZdNaZOXYXf4Av616m-6BkF8xtj882h157dUCnuFJsPRkwCwTJgytE76RgTEFZ1ZaY3nBDDiYuogsloMqLI_zXPPQFtI3ge9gwQdSc-j3BtnCaliwrbYG6XiUXQUvpGwy8GB-Hk6wC6bWsLIzfQpeKRMYXGUhX1OH9a0Ba1rxL_1QK739u-ROa63SQcOQe2TDldvk9h81DLfJzvB3qhyQtmdFdZ98Qc_2e01Fs71PKcUHeqHPHa1WiwKhYG9oitgl-GxaVviXoKKY7kJ3P7_PJhOK6FXqym81SIHml3T4ceCFQDtfLasH5PhaWL5DNstZ6R4SyiIYFohMAganEZEW1mdWh0EUS5Mntkded0xV86Zoh-rQbGcKJKBQAqqRQI-8Q7ZfEWK97bphtjhV7YJTfujriINxa60UcRSBHRUxA6YQB3sMpt0johOaWlu-0NX0X2O_6ASsYFtjrEaXbraqFPQrghicYf7o_7p-Tm6Ojg4P1EGajR-TW_imQeE8IZvLxco9BVtqmT9r1y4lX697u_wCgq8vgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovering+NDVI+over+lake+surfaces%3A+Initial+insights+from+CYGNSS+data+enhanced+by+ERA-5+inputs&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Yinqing+Zhen&rft.au=Qingyun+Yan&rft.date=2024-12-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=135&rft.spage=104253&rft_id=info:doi/10.1016%2Fj.jag.2024.104253&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_050a63405dd7486681962c61331556d9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon