PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature
•A novel Nb2CTx/PANI-based NH3 sensor directly driven by a facile TENG is proposed.•The Nb2CTx/PANI-2 sensor exhibits a superior sensitivity (2.87 % ppm−1) toward a wide sensing range of 1–100 ppm NH3.•High RH influence on sensing response of the Nb2CTx/PANI-2 sensor is 8.94 times lower than that of...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 327; p. 128923 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.01.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel Nb2CTx/PANI-based NH3 sensor directly driven by a facile TENG is proposed.•The Nb2CTx/PANI-2 sensor exhibits a superior sensitivity (2.87 % ppm−1) toward a wide sensing range of 1–100 ppm NH3.•High RH influence on sensing response of the Nb2CTx/PANI-2 sensor is 8.94 times lower than that of PANI one.
As a new member of the MXene family, two dimensional (2D) niobium carbide MXene (Nb2CTx) holds a promising potential in gas detection due to the abundant surface terminated groups and large specific surface area. In this work, a selective NH3 sensor based on polyaniline (PANI) nanofibers-supported Nb2CTx nanosheets (Nb2CTx/PANI) directly driven by a facile triboelectric nanogenerator (TENG) is proposed to provide a possible method for enhancing the NH3-sensing response. In addition, the gas sensing properties have been optimized by regulating different spray volumes of Nb2CTx nanosheets. Test results demonstrate that the NH3-sensing response and the response speed of the Nb2CTx/PANI-2 sensor have been evidently improved, indicating a good linear response toward a wide sensing range of 1–100 ppm NH3 at room temperature (∼25℃) under 87.1 % relative humidity (RH). Moreover, the influence of high humidity on gas sensing response of the Nb2CTx/PANI-2 sensor has been efficiently reduced due to the occupied active sites for water adsorption caused by intermolecular hydrogen bonds between PANI and Nb2CTx. Finally, mechanism of the enhanced gas sensing properties has been further investigated, which should be mainly attributed to the gas sensing improvement effect of p-n junction. This work is expected to offer a useful reference for the development of high-performance Nb2CTx/polymer-based gas sensors. |
---|---|
AbstractList | •A novel Nb2CTx/PANI-based NH3 sensor directly driven by a facile TENG is proposed.•The Nb2CTx/PANI-2 sensor exhibits a superior sensitivity (2.87 % ppm−1) toward a wide sensing range of 1–100 ppm NH3.•High RH influence on sensing response of the Nb2CTx/PANI-2 sensor is 8.94 times lower than that of PANI one.
As a new member of the MXene family, two dimensional (2D) niobium carbide MXene (Nb2CTx) holds a promising potential in gas detection due to the abundant surface terminated groups and large specific surface area. In this work, a selective NH3 sensor based on polyaniline (PANI) nanofibers-supported Nb2CTx nanosheets (Nb2CTx/PANI) directly driven by a facile triboelectric nanogenerator (TENG) is proposed to provide a possible method for enhancing the NH3-sensing response. In addition, the gas sensing properties have been optimized by regulating different spray volumes of Nb2CTx nanosheets. Test results demonstrate that the NH3-sensing response and the response speed of the Nb2CTx/PANI-2 sensor have been evidently improved, indicating a good linear response toward a wide sensing range of 1–100 ppm NH3 at room temperature (∼25℃) under 87.1 % relative humidity (RH). Moreover, the influence of high humidity on gas sensing response of the Nb2CTx/PANI-2 sensor has been efficiently reduced due to the occupied active sites for water adsorption caused by intermolecular hydrogen bonds between PANI and Nb2CTx. Finally, mechanism of the enhanced gas sensing properties has been further investigated, which should be mainly attributed to the gas sensing improvement effect of p-n junction. This work is expected to offer a useful reference for the development of high-performance Nb2CTx/polymer-based gas sensors. As a new member of the MXene family, two dimensional (2D) niobium carbide MXene (Nb2CTx) holds a promising potential in gas detection due to the abundant surface terminated groups and large specific surface area. In this work, a selective NH3 sensor based on polyaniline (PANI) nanofibers-supported Nb2CTx nanosheets (Nb2CTx/PANI) directly driven by a facile triboelectric nanogenerator (TENG) is proposed to provide a possible method for enhancing the NH3-sensing response. In addition, the gas sensing properties have been optimized by regulating different spray volumes of Nb2CTx nanosheets. Test results demonstrate that the NH3-sensing response and the response speed of the Nb2CTx/PANI-2 sensor have been evidently improved, indicating a good linear response toward a wide sensing range of 1–100 ppm NH3 at room temperature (∼25℃) under 87.1 % relative humidity (RH). Moreover, the influence of high humidity on gas sensing response of the Nb2CTx/PANI-2 sensor has been efficiently reduced due to the occupied active sites for water adsorption caused by intermolecular hydrogen bonds between PANI and Nb2CTx. Finally, mechanism of the enhanced gas sensing properties has been further investigated, which should be mainly attributed to the gas sensing improvement effect of p-n junction. This work is expected to offer a useful reference for the development of high-performance Nb2CTx/polymer-based gas sensors. |
ArticleNumber | 128923 |
Author | Xie, Guangzhong Li, Shaorong Liu, Bohao Jiang, Yadong Zhao, Qiuni Wang, Si Duan, Zaihua Zhang, Yajie Tai, Huiling |
Author_xml | – sequence: 1 givenname: Si surname: Wang fullname: Wang, Si organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 2 givenname: Bohao surname: Liu fullname: Liu, Bohao organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 3 givenname: Zaihua orcidid: 0000-0003-3517-1734 surname: Duan fullname: Duan, Zaihua organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 4 givenname: Qiuni surname: Zhao fullname: Zhao, Qiuni organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 5 givenname: Yajie surname: Zhang fullname: Zhang, Yajie organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 6 givenname: Guangzhong surname: Xie fullname: Xie, Guangzhong organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 7 givenname: Yadong surname: Jiang fullname: Jiang, Yadong organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 8 givenname: Shaorong surname: Li fullname: Li, Shaorong organization: Optoelectronic Technology Engineering Centre, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 9 givenname: Huiling orcidid: 0000-0001-5966-3843 surname: Tai fullname: Tai, Huiling email: taitai1980@uestc.edu.cn organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China |
BookMark | eNp9kM1OAyEURonRxFp9AHckrqfyMwwzcWWaWk1MdVHXhIHbSNPCCNTYt5daVy5ckY_7Hcg9F-jUBw8IXVMyoYQ2t-tJ8v2EEVYyazvGT9CItpJXnEh5ikakY6KqCRHn6CKlNSGk5g0ZIf96v3jCXvuwcj3EVKXdMISYweJFz6bLr59ZegfIqQKv-02ZJNiAye4T8OKRYwv5kILHNpY7j_s9Xs4Wc6wzjiFscYbtAFHnXYRLdLbSmwRXv-cYvT3MltPH6vll_jS9f64M72iuGgktFQLq3rJWNLJtJWjGGS-5J6vGQm2EBipt01FaCqZnlrFOtJyLRhg-RjfHd4cYPnaQslqHXfTlS8UE4XXDBJelJY8tE0NKEVbKuKwPq-So3UZRog5y1VoVueogVx3lFpL-IYfotjru_2XujgyUxT8dRJWMA2_AulgEKhvcP_Q34fyTQg |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_116258 crossref_primary_10_3390_s24248154 crossref_primary_10_1016_j_rser_2024_114285 crossref_primary_10_1016_j_matchemphys_2021_125098 crossref_primary_10_1021_acsami_1c14548 crossref_primary_10_1021_acssensors_4c00431 crossref_primary_10_1039_D1MA00152C crossref_primary_10_3390_en16083520 crossref_primary_10_1007_s10853_023_08692_0 crossref_primary_10_1016_j_ccr_2023_215542 crossref_primary_10_1039_D1CC02211C crossref_primary_10_1039_D3MH01362F crossref_primary_10_1016_j_flatc_2023_100538 crossref_primary_10_1088_1402_4896_acfad1 crossref_primary_10_1002_ente_202200113 crossref_primary_10_1007_s12598_022_02087_x crossref_primary_10_1016_j_jhazmat_2021_127160 crossref_primary_10_1016_j_sna_2021_112965 crossref_primary_10_1002_admt_202200841 crossref_primary_10_1016_j_cej_2024_151818 crossref_primary_10_1002_admi_202200415 crossref_primary_10_1002_admt_202100310 crossref_primary_10_1007_s10854_021_05495_4 crossref_primary_10_1016_j_est_2021_103791 crossref_primary_10_3390_nano11102496 crossref_primary_10_1016_j_apsusc_2021_151391 crossref_primary_10_1016_j_cej_2022_136046 crossref_primary_10_3390_s24010038 crossref_primary_10_1016_j_est_2024_112445 crossref_primary_10_1063_5_0064005 crossref_primary_10_1016_j_flatc_2023_100524 crossref_primary_10_1002_admi_202101984 crossref_primary_10_1021_acsanm_3c04927 crossref_primary_10_1007_s10854_023_11854_0 crossref_primary_10_1016_j_apsusc_2023_157529 crossref_primary_10_1016_j_mseb_2022_115729 crossref_primary_10_1016_j_mtchem_2025_102515 crossref_primary_10_1016_j_jallcom_2022_165878 crossref_primary_10_1016_j_matt_2021_12_021 crossref_primary_10_1016_j_cej_2023_144039 crossref_primary_10_1016_j_ceramint_2024_11_270 crossref_primary_10_1007_s42114_024_01204_x crossref_primary_10_1016_j_jcis_2024_03_099 crossref_primary_10_3390_chemosensors9080206 crossref_primary_10_1039_D4RA02615B crossref_primary_10_1016_j_ceramint_2024_12_431 crossref_primary_10_1016_j_bios_2022_114847 crossref_primary_10_1109_ACCESS_2021_3123083 crossref_primary_10_1021_acsapm_3c01200 crossref_primary_10_1016_j_est_2024_113262 crossref_primary_10_1080_10601325_2022_2111262 crossref_primary_10_1016_j_apsusc_2022_156008 crossref_primary_10_3390_chemosensors10070264 crossref_primary_10_1149_2754_2726_ac5ac6 crossref_primary_10_1016_j_jallcom_2024_174155 crossref_primary_10_1016_j_nanoso_2023_100995 crossref_primary_10_1021_acsaelm_2c01405 crossref_primary_10_1016_j_surfin_2023_103099 crossref_primary_10_1021_acsmaterialslett_3c00698 crossref_primary_10_1016_j_nanoen_2024_109291 crossref_primary_10_1007_s10854_024_11923_y crossref_primary_10_1016_j_cplett_2025_142044 crossref_primary_10_1039_D3TA04974D crossref_primary_10_1016_j_ijbiomac_2024_137226 crossref_primary_10_1016_j_jelechem_2022_117088 crossref_primary_10_1016_j_snb_2022_132302 crossref_primary_10_1016_j_flatc_2023_100584 crossref_primary_10_1002_adma_202008276 crossref_primary_10_1016_j_jece_2024_115294 crossref_primary_10_2139_ssrn_4003913 crossref_primary_10_1016_j_nanoen_2024_109335 crossref_primary_10_1016_j_snb_2022_133113 crossref_primary_10_1016_j_snb_2021_130069 crossref_primary_10_1016_j_apmt_2024_102163 crossref_primary_10_3389_fchem_2024_1532018 crossref_primary_10_1016_j_matchemphys_2021_125453 crossref_primary_10_1016_j_diamond_2024_111473 crossref_primary_10_1016_j_mtphys_2021_100527 crossref_primary_10_1016_j_talanta_2024_126700 crossref_primary_10_1016_j_jallcom_2022_168563 crossref_primary_10_1016_j_talanta_2024_127086 crossref_primary_10_1016_j_microc_2024_112369 crossref_primary_10_1016_j_cej_2024_152683 crossref_primary_10_3390_s21165640 crossref_primary_10_1021_acsami_2c14162 crossref_primary_10_1016_j_snb_2022_133225 crossref_primary_10_1002_jccs_202100229 crossref_primary_10_3390_mi12111350 crossref_primary_10_3390_mi12020186 crossref_primary_10_1007_s12598_021_01937_4 crossref_primary_10_1021_acsomega_3c06533 crossref_primary_10_1016_j_nanoen_2024_109672 crossref_primary_10_1021_acsami_3c07966 crossref_primary_10_1021_acsanm_3c02270 crossref_primary_10_1016_j_psep_2024_05_084 crossref_primary_10_1021_acsanm_2c04940 crossref_primary_10_1021_acssensors_3c01804 crossref_primary_10_1007_s40820_024_01349_w crossref_primary_10_1016_j_ceramint_2023_04_067 crossref_primary_10_1016_j_ccr_2022_214517 crossref_primary_10_1016_j_mtsust_2024_100839 crossref_primary_10_1016_j_surfin_2024_105076 crossref_primary_10_1149_1945_7111_acfc2b crossref_primary_10_1016_j_sna_2025_116398 crossref_primary_10_3390_chemosensors12080147 crossref_primary_10_3390_chemosensors9080225 crossref_primary_10_1016_j_jallcom_2024_177710 crossref_primary_10_1016_j_jallcom_2024_176340 crossref_primary_10_3390_s22030972 crossref_primary_10_1016_j_mtchem_2024_102049 crossref_primary_10_1002_adfm_202208131 crossref_primary_10_1109_JSEN_2023_3318517 crossref_primary_10_1016_j_carbpol_2024_123074 crossref_primary_10_1016_j_colsurfa_2023_131377 crossref_primary_10_1016_j_apsusc_2021_150272 crossref_primary_10_1016_j_cej_2025_161414 crossref_primary_10_3390_batteries9040235 crossref_primary_10_3390_molecules29194558 crossref_primary_10_1039_D1TA05694H crossref_primary_10_1088_1361_6528_ad2b4a crossref_primary_10_1039_D3TA07687C crossref_primary_10_1002_adsu_202200083 crossref_primary_10_1016_j_snb_2022_131421 crossref_primary_10_1016_j_cis_2022_102828 crossref_primary_10_1021_acsanm_3c05965 crossref_primary_10_1016_j_progsolidstchem_2023_100392 crossref_primary_10_3390_bios13060604 crossref_primary_10_1016_j_cej_2024_152652 crossref_primary_10_1088_1361_6528_ad82f3 crossref_primary_10_3390_chemosensors10030097 crossref_primary_10_1016_j_nanoen_2023_108788 crossref_primary_10_1039_D2TA01788A crossref_primary_10_1016_j_apsusc_2022_153564 crossref_primary_10_1109_JSEN_2025_3526256 crossref_primary_10_1360_TB_2021_1340 crossref_primary_10_1002_adfm_202112913 crossref_primary_10_1002_eem2_12700 crossref_primary_10_1016_j_apsadv_2023_100516 crossref_primary_10_1016_j_jallcom_2023_173230 crossref_primary_10_1016_j_snb_2021_130782 crossref_primary_10_3390_nano11112956 crossref_primary_10_2139_ssrn_4051155 |
Cites_doi | 10.1021/acsami.7b11055 10.1016/j.cclet.2019.12.005 10.1002/inf2.12032 10.1016/j.snb.2018.02.157 10.1007/s40820-017-0146-4 10.1021/ja067545z 10.1016/j.snb.2004.11.054 10.1016/j.surfcoat.2019.04.031 10.1016/j.jallcom.2019.03.124 10.1016/j.snb.2019.126874 10.1016/j.snb.2017.01.046 10.1016/j.colsurfa.2016.01.024 10.1021/acssensors.9b01308 10.1021/acsami.8b09169 10.1039/C7NJ03343E 10.1016/j.snb.2019.02.094 10.1016/j.apsusc.2018.05.148 10.3390/s150202644 10.1016/j.snb.2019.03.073 10.1016/j.nanoen.2020.105256 10.1016/j.measurement.2018.12.097 10.1016/j.nanoen.2019.104372 10.1016/j.snb.2018.11.018 10.1021/acssensors.9b00127 10.1016/j.nanoen.2018.06.041 10.1016/j.nanoen.2019.01.042 10.1016/j.snb.2020.128104 10.1021/acs.chemmater.9b04408 10.6028/jres.081A.011 10.1088/1361-6528/ab2d48 10.1016/j.joule.2018.10.017 10.1016/j.snb.2018.05.093 10.1021/acsami.9b21765 10.1016/j.snb.2017.12.022 10.1016/j.nanoen.2019.06.025 10.1016/j.snb.2020.128144 10.1021/acsnano.7b07460 10.1016/j.snb.2018.06.072 10.1080/10408347.2011.521729 10.1016/j.jcis.2018.11.034 10.1021/ja405735d 10.1016/j.ijbiomac.2012.06.022 10.1002/admi.201970101 10.1038/ncomms9975 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 15, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 15, 2021 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2020.128923 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2020_128923 S0925400520312703 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c391t-67e8155e4bd28567887ea2323bd2b0f6de4c5ae17d6911567cb2d2295833565c3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Wed Aug 20 02:57:00 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Tue Jul 01 01:27:45 EDT 2025 Tue Feb 13 08:07:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bilayer film Triboelectric nanogenerator NH3 sensor Nb2CTxnanosheets Nb2CTx/PANI PANI nanofibers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-67e8155e4bd28567887ea2323bd2b0f6de4c5ae17d6911567cb2d2295833565c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5966-3843 0000-0003-3517-1734 |
PQID | 2503462537 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2503462537 crossref_citationtrail_10_1016_j_snb_2020_128923 crossref_primary_10_1016_j_snb_2020_128923 elsevier_sciencedirect_doi_10_1016_j_snb_2020_128923 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Kaushik, Eliáš, Michalička, Hegemann, Pytlíček, Nečas, Zajíčková (bib0070) 2019; 370 Wang, Xie, Tai, Su, Yang, Zhang, Du, Jiang (bib0185) 2018; 51 Joseph, Jemmis (bib0215) 2007; 129 Gao, Li, Huang, Mei, Lin, Ou, Zhang, Guo, Zhang, Xu, Zhang (bib0125) 2020; 32 Majzlíková, Sedláček, Prášek, Pekárek, Svatoš, Bannov, Jašek, Synek, Eliáš, Zajíčková, Hubálek (bib0075) 2015; 15 Loghin, Abdellah, Falco, Becherer, Lugli, Rivadeneyra (bib0065) 2019; 136 Kulkarni, Navale, Navale, Stadler, Ramgir, Patil (bib0035) 2019; 288 Naguib, Halim, Lu, Cook, Hultman, Gogotsi, Barsoum (bib0175) 2013; 135 Liu, Zhang, Wu, Xiong, Zhou (bib0210) 2012; 51 Tai, Duan, He, Li, Xu, Liu, Jiang (bib0160) 2019; 298 Achary, Kumar, Barik, Nayak, Tripathy, Kar, Dash (bib0090) 2018; 272 Li, Liu, Yang, Zhao, Wang, Liu, You, He, Wang, Yan, Sun, Liang, Lu (bib0060) 2019; 289 Tai, Wang, Duan, Jiang (bib0015) 2020 Liu, Tai, Zhang, Ye, Su, Jiang (bib0050) 2017; 246 Hajian, Khakbaz, Moshayedi, Maddipatla, Narakathu, Turkani, Bazuin, Pourfath, Atashbar (bib0130) 2018 Tanguy, Arjmand, Yan (bib0115) 2019; 6 Yang, Liu, Wang, Liu, He, Li, Wang, You, Yan, Sun, Duan, Lu (bib0145) 2019; 4 Ouyang, Chen, Qin, Zeng, Zhang, Wang, Xie (bib0100) 2018; 455 Wu, He, Hu, Wu, Sun, Xie, Zhang, Zhu, Zhou (bib0140) 2019; 4 Liu, Tai, Zhang, Yuan, Du, Xie, Jiang (bib0045) 2018; 261 Niu, Wang, Yi, Zhou, Wang (bib0225) 2015; 6 Pang, Yang, Chen, Zhang, Wang, Huang, Wei (bib0235) 2016; 494 Gund, Park, Harpalsinh, Kota, Shin, Kim, Gogotsi, Park (bib0170) 2019; 3 Greenspan (bib0195) 1977; 81 Wang, Jiang, Tai, Liu, Duan, Yuan, Pan, Xie, Du, Su (bib0190) 2019; 63 Järvinen, Lorite, Peräntie, Toth, Saarakkala, Virtanen, Kordas (bib0095) 2019; 30 Zhang, Yang, Zhang, Zhang, Chen, Feng (bib0165) 2019; 10 Liu, Shi, Chen, He, Chen, Cao (bib0085) 2019; 281 Wang, Tai, Liu, Duan, Yuan, Pan, Su, Xie, Du, Jiang (bib0025) 2019; 58 Li, Wang, Yang, He, Wang, Zhao, Lu, Tian, Liu, Sun, Yan, Lu (bib0055) 2018; 273 Li, Jiao, Zhao, Yang (bib0040) 2018; 264 Zhao, Wang, Wei, Wang, Han (bib0240) 2019; 1 Lee, Wang (bib0030) 2019; 789 Soomro, Jawaid, Zhu, Abbas, Xu (bib0120) 2020; 31 Li, Xu, Jiang, He, Liu, Xie, Li, Li, Wang, Tai (bib0105) 2020; 316 Jha, Wan, Jacob, Guha (bib0110) 2018; 42 Liu, Wang, Yuan, Duan, Zhao, Zhang, Su, Jiang, Xie, Tai (bib0205) 2020 Wen, Shen, Sun (bib0180) 2017; 9 Wang, Wang, Zhao, Wei, Li, Liu, Liu (bib0080) 2019; 19 Qin, Gu, Shang, Luo, Zhang, Cui, Du (bib0230) 2020; 68 Hibbard, Killard (bib0220) 2011; 41 Timmer, Olthuis, Van Den Berg (bib0005) 2005; 107 Li, Lee, Kim, Lee (bib0020) 2018; 10 Kim, Koh, Ren, Kwon, Maleski, Cho, Anasori, Kim, Choi, Kim, Gogotsi, Jung (bib0150) 2018; 12 Jin, Fang, Wang, Xu, liu, Wei, Zhou, Zhang, Xu (bib0200) 2019; 537 Lee, Vahidmohammadi, Prorok, Yoon, Beidaghi, Kim (bib0135) 2017; 9 Lee, Eom, Shin, Ambade, Bang, Kim, Han (bib0155) 2020; 12 Li, Liu, Yang, Zhao, Wang, Liu, You, He, Wang, Yan, Sun, Liang, Lu (bib0010) 2019; 289 Wen (10.1016/j.snb.2020.128923_bib0180) 2017; 9 Li (10.1016/j.snb.2020.128923_bib0010) 2019; 289 Wang (10.1016/j.snb.2020.128923_bib0080) 2019; 19 Wang (10.1016/j.snb.2020.128923_bib0185) 2018; 51 Greenspan (10.1016/j.snb.2020.128923_bib0195) 1977; 81 Li (10.1016/j.snb.2020.128923_bib0060) 2019; 289 Achary (10.1016/j.snb.2020.128923_bib0090) 2018; 272 Majzlíková (10.1016/j.snb.2020.128923_bib0075) 2015; 15 Wang (10.1016/j.snb.2020.128923_bib0190) 2019; 63 Lee (10.1016/j.snb.2020.128923_bib0135) 2017; 9 Yang (10.1016/j.snb.2020.128923_bib0145) 2019; 4 Hibbard (10.1016/j.snb.2020.128923_bib0220) 2011; 41 Tai (10.1016/j.snb.2020.128923_bib0160) 2019; 298 Zhang (10.1016/j.snb.2020.128923_bib0165) 2019; 10 Niu (10.1016/j.snb.2020.128923_bib0225) 2015; 6 Wang (10.1016/j.snb.2020.128923_bib0025) 2019; 58 Lee (10.1016/j.snb.2020.128923_bib0155) 2020; 12 Liu (10.1016/j.snb.2020.128923_bib0205) 2020 Pang (10.1016/j.snb.2020.128923_bib0235) 2016; 494 Järvinen (10.1016/j.snb.2020.128923_bib0095) 2019; 30 Liu (10.1016/j.snb.2020.128923_bib0050) 2017; 246 Qin (10.1016/j.snb.2020.128923_bib0230) 2020; 68 Liu (10.1016/j.snb.2020.128923_bib0085) 2019; 281 Naguib (10.1016/j.snb.2020.128923_bib0175) 2013; 135 Tai (10.1016/j.snb.2020.128923_bib0015) 2020 Joseph (10.1016/j.snb.2020.128923_bib0215) 2007; 129 Jin (10.1016/j.snb.2020.128923_bib0200) 2019; 537 Jha (10.1016/j.snb.2020.128923_bib0110) 2018; 42 Lee (10.1016/j.snb.2020.128923_bib0030) 2019; 789 Kulkarni (10.1016/j.snb.2020.128923_bib0035) 2019; 288 Loghin (10.1016/j.snb.2020.128923_bib0065) 2019; 136 Soomro (10.1016/j.snb.2020.128923_bib0120) 2020; 31 Li (10.1016/j.snb.2020.128923_bib0040) 2018; 264 Gund (10.1016/j.snb.2020.128923_bib0170) 2019; 3 Liu (10.1016/j.snb.2020.128923_bib0210) 2012; 51 Li (10.1016/j.snb.2020.128923_bib0055) 2018; 273 Li (10.1016/j.snb.2020.128923_bib0105) 2020; 316 Kim (10.1016/j.snb.2020.128923_bib0150) 2018; 12 Zhao (10.1016/j.snb.2020.128923_bib0240) 2019; 1 Ouyang (10.1016/j.snb.2020.128923_bib0100) 2018; 455 Gao (10.1016/j.snb.2020.128923_bib0125) 2020; 32 Wu (10.1016/j.snb.2020.128923_bib0140) 2019; 4 Hajian (10.1016/j.snb.2020.128923_bib0130) 2018 Tanguy (10.1016/j.snb.2020.128923_bib0115) 2019; 6 Li (10.1016/j.snb.2020.128923_bib0020) 2018; 10 Timmer (10.1016/j.snb.2020.128923_bib0005) 2005; 107 Liu (10.1016/j.snb.2020.128923_bib0045) 2018; 261 Kaushik (10.1016/j.snb.2020.128923_bib0070) 2019; 370 |
References_xml | – volume: 1 start-page: 407 year: 2019 end-page: 416 ident: bib0240 article-title: High‐performance flexible sensing devices based on polyaniline/MXene nanocomposites publication-title: InfoMat. – volume: 494 start-page: 248 year: 2016 end-page: 255 ident: bib0235 article-title: A room temperature ammonia gas sensor based on cellulose/TiO publication-title: Colloids Surf. A Physicochem. Eng. Asp. – year: 2020 ident: bib0015 article-title: Evolution of breath analysis based on humidity and gas sensors: potential and challenges publication-title: Sens. Actuators B Chem. – volume: 107 start-page: 666 year: 2005 end-page: 677 ident: bib0005 article-title: Ammonia sensors and their applications - A review publication-title: Sens. Actuators B Chem. – volume: 288 start-page: 279 year: 2019 end-page: 288 ident: bib0035 article-title: Hybrid polyaniline-WO publication-title: Sens. Actuators B Chem. – volume: 4 start-page: 2763 year: 2019 end-page: 2770 ident: bib0140 article-title: Ti publication-title: ACS Sens. – volume: 9 start-page: 45 year: 2017 ident: bib0180 article-title: Nanogenerators for self-powered gas sensing publication-title: Nano-Micro Lett. – volume: 10 start-page: 27858 year: 2018 end-page: 27867 ident: bib0020 article-title: Flexible room-temperature NH publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1703 year: 2020 end-page: 1747 ident: bib0125 article-title: MXene/Polymer membranes: synthesis, properties, and emerging applications publication-title: Chem. Mater. – volume: 261 start-page: 587 year: 2018 end-page: 597 ident: bib0045 article-title: A high-performance flexible gas sensor based on self-assembled PANI-CeO publication-title: Sens. Actuators B Chem. – volume: 136 start-page: 323 year: 2019 end-page: 325 ident: bib0065 article-title: Time stability of carbon nanotube gas sensors publication-title: Meas. J. Int. Meas. Confed. – volume: 4 start-page: 1261 year: 2019 end-page: 1269 ident: bib0145 article-title: Improvement of gas and humidity sensing properties of organ-like mxene by alkaline treatment publication-title: ACS Sens. – volume: 58 start-page: 312 year: 2019 end-page: 321 ident: bib0025 article-title: A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring publication-title: Nano Energy – volume: 370 start-page: 235 year: 2019 end-page: 243 ident: bib0070 article-title: Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing publication-title: Surf. Coatings Technol. – volume: 9 start-page: 37184 year: 2017 end-page: 37190 ident: bib0135 article-title: Room temperature gas sensing of two-dimensional titanium carbide (MXene) publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 735 year: 2018 end-page: 745 ident: bib0110 article-title: Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS publication-title: New J. Chem. – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: bib0225 article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics publication-title: Nat. Commun. – volume: 129 start-page: 4620 year: 2007 end-page: 4632 ident: bib0215 article-title: Red-, blue-, or no-shift in hydrogen bonds: a unified explanation publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 21 year: 2011 end-page: 35 ident: bib0220 article-title: Breath ammonia analysis: clinical application and measurement publication-title: Crit. Rev. Anal. Chem. – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bib0165 article-title: Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators publication-title: Nat. Commun. – volume: 281 start-page: 789 year: 2019 end-page: 794 ident: bib0085 article-title: The naked-eye NH publication-title: Sens. Actuators B Chem. – volume: 537 start-page: 306 year: 2019 end-page: 315 ident: bib0200 article-title: Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb publication-title: J. Colloid Interface Sci. – volume: 19 start-page: 1 year: 2019 end-page: 10 ident: bib0080 article-title: Simple synthesis of cobalt carbonate hydroxide hydrate and reduced graphene oxide hybrid structure for high-performance room temperature NH publication-title: Sensors – volume: 6 start-page: 1 year: 2019 end-page: 13 ident: bib0115 article-title: Nanocomposite of nitrogen-doped Graphene/Polyaniline for enhanced ammonia gas detection publication-title: Adv. Mater. Interfaces – volume: 31 start-page: 922 year: 2020 end-page: 930 ident: bib0120 article-title: A mini-review on MXenes as versatile substrate for advanced sensors publication-title: Chin. Chem. Lett. – volume: 246 start-page: 85 year: 2017 end-page: 95 ident: bib0050 article-title: Enhanced ammonia-sensing properties of PANI-TiO publication-title: Sens. Actuators B Chem. – volume: 3 start-page: 164 year: 2019 end-page: 176 ident: bib0170 article-title: MXene/Polymer hybrid materials for flexible AC-Filtering electrochemical capacitors publication-title: Joule – volume: 51 start-page: 566 year: 2012 end-page: 575 ident: bib0210 article-title: Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility publication-title: Int. J. Biol. Macromol. – volume: 289 start-page: 252 year: 2019 end-page: 259 ident: bib0010 article-title: Design and preparation of the WO publication-title: Sens. Actuators B Chem. – year: 2020 ident: bib0205 article-title: Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability publication-title: Nano Energy – volume: 81 start-page: 89 year: 1977 end-page: 96 ident: bib0195 article-title: Humidity fixed points of binary saturated aqueous solutions publication-title: J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. – volume: 264 start-page: 285 year: 2018 end-page: 295 ident: bib0040 article-title: High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties publication-title: Sens. Actuators B Chem. – volume: 289 start-page: 252 year: 2019 end-page: 259 ident: bib0060 article-title: Design and preparation of the WO publication-title: Sens. Actuators B Chem. – volume: 316 year: 2020 ident: bib0105 article-title: Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 986 year: 2018 end-page: 993 ident: bib0150 article-title: Metallic Ti publication-title: ACS Nano – volume: 15 start-page: 2644 year: 2015 end-page: 2661 ident: bib0075 article-title: Sensing properties of multiwalled carbon nanotubes grown in MW plasma torch: electronic and electrochemical behavior, gas sensing, field emission, IR absorption publication-title: Sensors – volume: 455 start-page: 45 year: 2018 end-page: 52 ident: bib0100 article-title: Two-dimensional WS publication-title: Appl. Surf. Sci. – volume: 272 start-page: 100 year: 2018 end-page: 109 ident: bib0090 article-title: Reduced graphene oxide-CuFe publication-title: Sens. Actuators B Chem. – start-page: 1 year: 2018 end-page: 4 ident: bib0130 article-title: Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti publication-title: Proc. IEEE Sens. – volume: 298 year: 2019 ident: bib0160 article-title: Enhanced ammonia response of Ti publication-title: Sens. Actuators B Chem. – volume: 63 year: 2019 ident: bib0190 article-title: An integrated flexible self-powered wearable respiration sensor publication-title: Nano Energy – volume: 68 year: 2020 ident: bib0230 article-title: A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator publication-title: Nano Energy – volume: 135 start-page: 15966 year: 2013 end-page: 15969 ident: bib0175 article-title: New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 231 year: 2018 end-page: 240 ident: bib0185 article-title: Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature publication-title: Nano Energy – volume: 30 year: 2019 ident: bib0095 article-title: WS publication-title: Nanotechnology – volume: 789 start-page: 693 year: 2019 end-page: 696 ident: bib0030 article-title: High-performance room temperature NH publication-title: J. Alloys. Compd. – volume: 273 start-page: 726 year: 2018 end-page: 734 ident: bib0055 article-title: Room temperature high performance NH publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 10434 year: 2020 end-page: 10442 ident: bib0155 article-title: Room-temperature, highly durable Ti publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 37184 year: 2017 ident: 10.1016/j.snb.2020.128923_bib0135 article-title: Room temperature gas sensing of two-dimensional titanium carbide (MXene) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11055 – volume: 31 start-page: 922 year: 2020 ident: 10.1016/j.snb.2020.128923_bib0120 article-title: A mini-review on MXenes as versatile substrate for advanced sensors publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.12.005 – volume: 1 start-page: 407 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0240 article-title: High‐performance flexible sensing devices based on polyaniline/MXene nanocomposites publication-title: InfoMat. doi: 10.1002/inf2.12032 – volume: 264 start-page: 285 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0040 article-title: High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.02.157 – volume: 9 start-page: 45 year: 2017 ident: 10.1016/j.snb.2020.128923_bib0180 article-title: Nanogenerators for self-powered gas sensing publication-title: Nano-Micro Lett. doi: 10.1007/s40820-017-0146-4 – volume: 129 start-page: 4620 year: 2007 ident: 10.1016/j.snb.2020.128923_bib0215 article-title: Red-, blue-, or no-shift in hydrogen bonds: a unified explanation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067545z – volume: 107 start-page: 666 year: 2005 ident: 10.1016/j.snb.2020.128923_bib0005 article-title: Ammonia sensors and their applications - A review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2004.11.054 – volume: 370 start-page: 235 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0070 article-title: Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2019.04.031 – volume: 789 start-page: 693 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0030 article-title: High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2019.03.124 – volume: 298 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0160 article-title: Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.126874 – volume: 246 start-page: 85 year: 2017 ident: 10.1016/j.snb.2020.128923_bib0050 article-title: Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.01.046 – volume: 494 start-page: 248 year: 2016 ident: 10.1016/j.snb.2020.128923_bib0235 article-title: A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2016.01.024 – volume: 4 start-page: 2763 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0140 article-title: Ti3C2MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature publication-title: ACS Sens. doi: 10.1021/acssensors.9b01308 – volume: 10 start-page: 27858 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0020 article-title: Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09169 – volume: 42 start-page: 735 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0110 article-title: Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites publication-title: New J. Chem. doi: 10.1039/C7NJ03343E – volume: 288 start-page: 279 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0035 article-title: Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.02.094 – volume: 455 start-page: 45 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0100 article-title: Two-dimensional WS2 -based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.148 – volume: 15 start-page: 2644 year: 2015 ident: 10.1016/j.snb.2020.128923_bib0075 article-title: Sensing properties of multiwalled carbon nanotubes grown in MW plasma torch: electronic and electrochemical behavior, gas sensing, field emission, IR absorption publication-title: Sensors doi: 10.3390/s150202644 – volume: 289 start-page: 252 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0060 article-title: Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.03.073 – year: 2020 ident: 10.1016/j.snb.2020.128923_bib0205 article-title: Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105256 – volume: 136 start-page: 323 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0065 article-title: Time stability of carbon nanotube gas sensors publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2018.12.097 – volume: 68 year: 2020 ident: 10.1016/j.snb.2020.128923_bib0230 article-title: A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104372 – volume: 281 start-page: 789 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0085 article-title: The naked-eye NH3 sensor based on fluorinated graphene publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.11.018 – volume: 4 start-page: 1261 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0145 article-title: Improvement of gas and humidity sensing properties of organ-like mxene by alkaline treatment publication-title: ACS Sens. doi: 10.1021/acssensors.9b00127 – volume: 51 start-page: 231 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0185 article-title: Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.041 – volume: 58 start-page: 312 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0025 article-title: A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.042 – volume: 289 start-page: 252 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0010 article-title: Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.03.073 – year: 2020 ident: 10.1016/j.snb.2020.128923_bib0015 article-title: Evolution of breath analysis based on humidity and gas sensors: potential and challenges publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128104 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0080 article-title: Simple synthesis of cobalt carbonate hydroxide hydrate and reduced graphene oxide hybrid structure for high-performance room temperature NH3 sensor publication-title: Sensors – volume: 32 start-page: 1703 year: 2020 ident: 10.1016/j.snb.2020.128923_bib0125 article-title: MXene/Polymer membranes: synthesis, properties, and emerging applications publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04408 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0165 article-title: Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators publication-title: Nat. Commun. – volume: 81 start-page: 89 year: 1977 ident: 10.1016/j.snb.2020.128923_bib0195 article-title: Humidity fixed points of binary saturated aqueous solutions publication-title: J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. doi: 10.6028/jres.081A.011 – volume: 30 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0095 article-title: WS2 and MoS2 thin film gas sensors with high response to NH3 in air at low temperature publication-title: Nanotechnology doi: 10.1088/1361-6528/ab2d48 – volume: 3 start-page: 164 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0170 article-title: MXene/Polymer hybrid materials for flexible AC-Filtering electrochemical capacitors publication-title: Joule doi: 10.1016/j.joule.2018.10.017 – volume: 272 start-page: 100 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0090 article-title: Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.05.093 – volume: 12 start-page: 10434 year: 2020 ident: 10.1016/j.snb.2020.128923_bib0155 article-title: Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21765 – volume: 261 start-page: 587 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0045 article-title: A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3detection at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.12.022 – volume: 63 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0190 article-title: An integrated flexible self-powered wearable respiration sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.025 – volume: 316 year: 2020 ident: 10.1016/j.snb.2020.128923_bib0105 article-title: Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128144 – volume: 12 start-page: 986 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0150 article-title: Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-Noise ratio publication-title: ACS Nano doi: 10.1021/acsnano.7b07460 – volume: 273 start-page: 726 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0055 article-title: Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.06.072 – volume: 41 start-page: 21 year: 2011 ident: 10.1016/j.snb.2020.128923_bib0220 article-title: Breath ammonia analysis: clinical application and measurement publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2011.521729 – volume: 537 start-page: 306 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0200 article-title: Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.11.034 – start-page: 1 year: 2018 ident: 10.1016/j.snb.2020.128923_bib0130 article-title: Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti3C2Tx MXene as Ammonia sensor: a first-principles study publication-title: Proc. IEEE Sens. – volume: 135 start-page: 15966 year: 2013 ident: 10.1016/j.snb.2020.128923_bib0175 article-title: New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405735d – volume: 51 start-page: 566 year: 2012 ident: 10.1016/j.snb.2020.128923_bib0210 article-title: Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.06.022 – volume: 6 start-page: 1 year: 2019 ident: 10.1016/j.snb.2020.128923_bib0115 article-title: Nanocomposite of nitrogen-doped Graphene/Polyaniline for enhanced ammonia gas detection publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201970101 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.snb.2020.128923_bib0225 article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics publication-title: Nat. Commun. doi: 10.1038/ncomms9975 |
SSID | ssj0004360 |
Score | 2.6408436 |
Snippet | •A novel Nb2CTx/PANI-based NH3 sensor directly driven by a facile TENG is proposed.•The Nb2CTx/PANI-2 sensor exhibits a superior sensitivity (2.87 % ppm−1)... As a new member of the MXene family, two dimensional (2D) niobium carbide MXene (Nb2CTx) holds a promising potential in gas detection due to the abundant... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128923 |
SubjectTerms | Adsorbed water Ammonia Bilayer film Gas sensors Humidity Hydrogen bonds Nanofibers Nanogenerators Nanosheets Nb2CTx/PANI Nb2CTxnanosheets NH3 sensor Niobium carbide P-n junctions PANI nanofibers Polyanilines Relative humidity Room temperature Sensors Triboelectric nanogenerator |
Title | PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature |
URI | https://dx.doi.org/10.1016/j.snb.2020.128923 https://www.proquest.com/docview/2503462537 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA-iFz2In-iuSg57EuJrkzRpj4-H7tPFIvgEb6H5KLos3YetsF78253Ja3VdWA8e205KmUxnfkN-M0PIt8BVoQtbs1o7SFCUL1ju8ooFlyiEE3Uah01clmp6Iy9us9slMhlqYZBW2fv-hU-P3rq_M-q1OZrf34-ukwKSm8jjEHh8ih0_pdRo5SfPbzQPKWKlMAozlB5ONiPHq20spIgceyzkBRf_i03_eOkYes42yHqPGel48VmbZCk0W2Ttr06C26S5GpfntKkasBWLHPf2cR5blntaWj6Z_YnP2rsQupaFWC_laRtn4IC7o-VUUB-6SMtqqH9AF0jtE52dlt9p1VGE1xS7WPUtmHfIzdnpbDJl_SgF5kSRdkzpkANyCNJ6nmcKKYShAjAl4NomtfJBuqwKqfYKvB8IOMs9TvrGmiyVObFLlpvfTdgj1EnNvQMUVedecl3kCrJciLS81onPebFPkkGJxvV9xnHcxS8zEMp-GtC7Qb2bhd73yfHrkvmiycZHwnLYGfPOUgwEgY-WHQy7aPrftDWA_4SEDFDoL59761eyypHkkqQszQ7IcvfwGA4BpXT2KJrhEVkZn_-Yli9lNeQy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QE4oPIlCgV84IRkbWInTnJcrVqytI2Q2Eq9WfFHRCsUVk0qwb9nxuuUgtQeOCaxo2jszLyR37wB-OCFqorKdLwrLCYoylW8tGXLvU0UwYkuDc0mThtVn2Wfz_PzHVhOtTBEq4y-f-vTg7eOd-bRmvPNxcX8a1JhchN4HJKOT-UD2CV1qnwGu4vVcd38KY-UoViYxnOaMB1uBprX0BvMEgXJLJSVkHeFp38cdYg-R3vwJMJGtth-2VPY8f0zeHxLTPA59F8WzYr1bY_bxRDNfbjeBNVyxxojluuf4dnwzftx4D6UTDk2hDY46PFYU0vm_BiYWT1zV-QFmfnF1ofNJ9aOjBA2IyGrqML8As6ODtfLmsduCtzKKh25KnyJ4MFnxokyV8Qi9C3iKYnXJumU85nNW58WTqEDxAHWCEfNvqksS-VWvoRZ_6P3r4DZrBDOIpDqSpeJoioVJroYbEVXJK4U1T4kkxG1jVLj1PHiu544ZZca7a7J7npr9334eDNls9XZuG9wNq2M_muzaIwD9007mFZRxz910AgBZYZJoCxe_99b38PDen16ok9WzfEbeCSI85KkPM0PYDZeXfu3CFpG8y5uyt9ERebj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PANI+nanofibers-supported+Nb2CTx+nanosheets-enabled+selective+NH3+detection+driven+by+TENG+at+room+temperature&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Wang%2C+Si&rft.au=Liu%2C+Bohao&rft.au=Duan%2C+Zaihua&rft.au=Zhao%2C+Qiuni&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=327&rft_id=info:doi/10.1016%2Fj.snb.2020.128923&rft.externalDocID=S0925400520312703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |