Lattice plainification advances highly effective SnSe crystalline thermoelectrics
Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transp...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 380; no. 6647; pp. 841 - 846 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
26.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (
ZT
) of ~1.5 at 300 kelvin, with an average
ZT
of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (Δ
T
) of ~300 kelvin and a seven-pair Peltier cooling Δ
T
max
of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling.
Thermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu
et al
. added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski
Introducing copper to a sodium-doped tin selenide improves the room temperature thermoelectric properties. |
---|---|
AbstractList | Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (ZT) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (ΔT) of ~300 kelvin and a seven-pair Peltier cooling ΔTmax of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling.Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (ZT) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (ΔT) of ~300 kelvin and a seven-pair Peltier cooling ΔTmax of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling. Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit ( ZT ) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (Δ T ) of ~300 kelvin and a seven-pair Peltier cooling Δ T max of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling. Thermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al . added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski Introducing copper to a sodium-doped tin selenide improves the room temperature thermoelectric properties. Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit ( ) of ~1.5 at 300 kelvin, with an average of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (Δ ) of ~300 kelvin and a seven-pair Peltier cooling Δ of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling. Editor’s summaryThermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al. added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski |
Author | Hong, Tao Ge, Zhenhua Zhao, Li-Dong Liu, Dongrui Wang, Ziyuan Qin, Bingchao Gao, Xiang Wang, Yuping Qin, Yongxin Su, Lizhong Yang, Tianyu Wang, Dongyang |
Author_xml | – sequence: 1 givenname: Dongrui orcidid: 0000-0003-4577-6526 surname: Liu fullname: Liu, Dongrui organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Dongyang orcidid: 0000-0001-8149-7394 surname: Wang fullname: Wang, Dongyang organization: Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China – sequence: 3 givenname: Tao orcidid: 0000-0001-8349-7793 surname: Hong fullname: Hong, Tao organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 4 givenname: Ziyuan orcidid: 0000-0002-2632-2337 surname: Wang fullname: Wang, Ziyuan organization: Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 5 givenname: Yuping orcidid: 0000-0001-8080-7338 surname: Wang fullname: Wang, Yuping organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 6 givenname: Yongxin orcidid: 0000-0002-1699-1369 surname: Qin fullname: Qin, Yongxin organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 7 givenname: Lizhong orcidid: 0000-0002-3313-0886 surname: Su fullname: Su, Lizhong organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 8 givenname: Tianyu orcidid: 0000-0003-2624-4997 surname: Yang fullname: Yang, Tianyu organization: Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 9 givenname: Xiang orcidid: 0000-0002-7496-158X surname: Gao fullname: Gao, Xiang organization: Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China – sequence: 10 givenname: Zhenhua orcidid: 0000-0001-8810-5103 surname: Ge fullname: Ge, Zhenhua organization: Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 11 givenname: Bingchao orcidid: 0000-0003-2720-5922 surname: Qin fullname: Qin, Bingchao organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 12 givenname: Li-Dong orcidid: 0000-0003-1247-4345 surname: Zhao fullname: Zhao, Li-Dong organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37228203$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LAzEQxYMoWqtnb7LgxcvafGyS3aMUv6Agop5DNjvbRtJsTVKh_71R20vB0xzm9x4z752iQz94QOiC4BtCqJhEY8EbuNHdXJJGHKARwQ0vG4rZIRphzERZY8lP0GmMHxjnXcOO0QmTlNaZGaGXmU7JGihWTltve2t0soMvdPels3EsFna-cJsC-h5Msl9QvPpXKEzYxKSdsx6KtICwHMDlfbAmnqGjXrsI59s5Ru_3d2_Tx3L2_PA0vZ2VhjUklYKblrcVh14Cq4DwWrSE864SUlPdCWwwkUa3XStZUzGoZC0psLYiLdUVCDZG13--qzB8riEmtbTRgHPaw7CO6udBTGuJ64xe7aEfwzr4fF2mSF0LygXO1OWWWrdL6NQq2KUOG7ULKwP8DzBhiDFAr4xNv3GloK1TBKufUtS2FLUtJesme7qd9X-Kb7wWkj4 |
CitedBy_id | crossref_primary_10_1002_idm2_12134 crossref_primary_10_1016_j_jmat_2024_04_006 crossref_primary_10_1002_adfm_202406428 crossref_primary_10_20517_ss_2023_34 crossref_primary_10_1002_adfm_202419984 crossref_primary_10_1016_j_mtphys_2024_101534 crossref_primary_10_1002_aenm_202401345 crossref_primary_10_1002_aenm_202405024 crossref_primary_10_1063_5_0192731 crossref_primary_10_1007_s40843_024_3110_7 crossref_primary_10_1002_adfm_202304512 crossref_primary_10_1360_TB_2023_0553 crossref_primary_10_1002_adfm_202414288 crossref_primary_10_1016_j_jallcom_2024_175502 crossref_primary_10_1039_D3EE01047C crossref_primary_10_1039_D4CP01491J crossref_primary_10_1002_ange_202408908 crossref_primary_10_1007_s11665_025_10706_8 crossref_primary_10_1016_j_jeurceramsoc_2024_03_045 crossref_primary_10_1002_aenm_202403194 crossref_primary_10_1021_acsami_3c09823 crossref_primary_10_1016_j_jmat_2024_100938 crossref_primary_10_1016_j_vacuum_2024_113712 crossref_primary_10_1002_adfm_202415008 crossref_primary_10_1016_j_applthermaleng_2025_125457 crossref_primary_10_1126_science_adi2174 crossref_primary_10_1002_adma_202406009 crossref_primary_10_1002_anie_202401758 crossref_primary_10_1016_j_ceramint_2024_03_173 crossref_primary_10_1002_adfm_202500731 crossref_primary_10_1016_j_nantod_2024_102460 crossref_primary_10_1021_acsaem_4c00772 crossref_primary_10_1016_j_cej_2024_151405 crossref_primary_10_1016_j_mtphys_2024_101517 crossref_primary_10_1016_j_nanoen_2025_110690 crossref_primary_10_1063_5_0194378 crossref_primary_10_1002_smll_202405019 crossref_primary_10_1111_jace_19958 crossref_primary_10_1021_jacs_4c01525 crossref_primary_10_1039_D4EE04639K crossref_primary_10_1002_smsc_202400284 crossref_primary_10_1002_adfm_202414194 crossref_primary_10_1002_adma_202313742 crossref_primary_10_1039_D4EE00019F crossref_primary_10_1038_s41467_024_51772_1 crossref_primary_10_1002_ange_202308515 crossref_primary_10_1016_j_jallcom_2024_174672 crossref_primary_10_1002_smll_202411022 crossref_primary_10_1002_smll_202306701 crossref_primary_10_1002_adfm_202410816 crossref_primary_10_3390_en17051036 crossref_primary_10_1039_D4TA08632E crossref_primary_10_1007_s12598_024_02880_w crossref_primary_10_1088_2053_1591_ad9cf1 crossref_primary_10_1007_s42765_024_00441_5 crossref_primary_10_1016_j_device_2025_100748 crossref_primary_10_1063_5_0159347 crossref_primary_10_1002_adfm_202311814 crossref_primary_10_1002_adma_202417594 crossref_primary_10_1016_j_ceramint_2024_01_440 crossref_primary_10_1016_j_nanoen_2024_109615 crossref_primary_10_1063_5_0206545 crossref_primary_10_1038_s41467_024_55490_6 crossref_primary_10_1021_acsaem_4c02972 crossref_primary_10_1063_5_0220010 crossref_primary_10_1002_aenm_202404251 crossref_primary_10_1002_ange_202401758 crossref_primary_10_1126_science_ado4077 crossref_primary_10_1002_advs_202409735 crossref_primary_10_1021_jacs_4c09943 crossref_primary_10_1002_smll_202408794 crossref_primary_10_1002_adfm_202401735 crossref_primary_10_1007_s40843_024_2893_4 crossref_primary_10_1002_smll_202409524 crossref_primary_10_1039_D4EE00433G crossref_primary_10_1039_D4CS00038B crossref_primary_10_1093_nsr_nwae329 crossref_primary_10_1093_nsr_nwae448 crossref_primary_10_1021_acsami_3c15741 crossref_primary_10_1038_s41467_024_53599_2 crossref_primary_10_1016_j_gee_2024_11_010 crossref_primary_10_1021_acsami_4c18795 crossref_primary_10_1126_science_ado1133 crossref_primary_10_1002_bkcs_12821 crossref_primary_10_1021_acs_chemmater_4c02294 crossref_primary_10_1039_D3EE03818A crossref_primary_10_1002_smll_202408545 crossref_primary_10_1016_j_cej_2025_160515 crossref_primary_10_1039_D4TA00552J crossref_primary_10_1002_advs_202401218 crossref_primary_10_1002_anie_202408908 crossref_primary_10_1002_smsc_202300245 crossref_primary_10_1002_adma_202407982 crossref_primary_10_1016_j_surfin_2024_104437 crossref_primary_10_1360_TB_2024_0771 crossref_primary_10_1016_j_joule_2024_05_006 crossref_primary_10_1002_adfm_202403498 crossref_primary_10_1016_j_jmrt_2023_11_191 crossref_primary_10_1016_j_jpowsour_2024_236102 crossref_primary_10_54227_mlab_20230029 crossref_primary_10_1002_adfm_202421449 crossref_primary_10_1021_acs_nanolett_4c01008 crossref_primary_10_1016_j_jmat_2024_02_010 crossref_primary_10_1021_jacs_4c10286 crossref_primary_10_4150_KPMI_2023_30_4_318 crossref_primary_10_1002_adfm_202315707 crossref_primary_10_1021_acsami_3c14754 crossref_primary_10_54227_mlab_20230032 crossref_primary_10_1364_OE_523383 crossref_primary_10_1016_j_mtener_2025_101843 crossref_primary_10_1126_sciadv_adn9959 crossref_primary_10_1016_j_jmst_2024_12_090 crossref_primary_10_1016_j_jmat_2023_09_005 crossref_primary_10_1016_j_actamat_2024_120694 crossref_primary_10_1016_j_jeurceramsoc_2024_03_067 crossref_primary_10_1016_j_nanoen_2024_109651 crossref_primary_10_1016_j_nxener_2024_100147 crossref_primary_10_1039_D3EE02370B crossref_primary_10_1016_j_jmst_2024_08_009 crossref_primary_10_1016_j_actamat_2024_120699 crossref_primary_10_1016_j_ceramint_2024_08_085 crossref_primary_10_1039_D4TC04461D crossref_primary_10_1039_D4TA03278K crossref_primary_10_1002_smll_202405182 crossref_primary_10_1021_acsenergylett_4c03369 crossref_primary_10_1002_adfm_202411304 crossref_primary_10_1360_TB_2024_0796 crossref_primary_10_1360_TB_2024_0795 crossref_primary_10_1360_TB_2024_0793 crossref_primary_10_1038_s41586_024_07724_2 crossref_primary_10_1002_smll_202400866 crossref_primary_10_1016_j_jallcom_2024_178050 crossref_primary_10_1016_j_mtchem_2024_102183 crossref_primary_10_1002_aenm_202402399 crossref_primary_10_1002_aenm_202400411 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125063 crossref_primary_10_1002_adfm_202307864 crossref_primary_10_1016_j_joule_2025_101854 crossref_primary_10_1088_1361_6463_ad76be crossref_primary_10_1016_j_cej_2024_158104 crossref_primary_10_1002_aenm_202302551 crossref_primary_10_1021_jacs_3c09655 crossref_primary_10_1002_smsc_202300299 crossref_primary_10_54227_mlab_20240005 crossref_primary_10_1016_j_xinn_2025_100864 crossref_primary_10_1021_acsnano_4c11732 crossref_primary_10_1063_5_0220462 crossref_primary_10_1002_admt_202301958 crossref_primary_10_1021_acsaem_4c00487 crossref_primary_10_1063_5_0226327 crossref_primary_10_1002_smll_202401723 crossref_primary_10_1039_D4EE04620J crossref_primary_10_1016_j_jechem_2024_08_035 crossref_primary_10_1007_s12598_024_02774_x crossref_primary_10_1016_j_ceramint_2025_02_361 crossref_primary_10_1021_acsaem_4c02549 crossref_primary_10_1002_crat_202400057 crossref_primary_10_1016_j_mtphys_2024_101366 crossref_primary_10_1063_5_0199416 crossref_primary_10_1021_acs_jpcc_4c07834 crossref_primary_10_1016_j_mtphys_2025_101660 crossref_primary_10_1039_D4EE02008A crossref_primary_10_1021_jacs_3c09643 crossref_primary_10_1016_j_jallcom_2025_179320 crossref_primary_10_3390_met13111795 crossref_primary_10_1002_adfm_202315591 crossref_primary_10_1016_j_jmat_2023_08_001 crossref_primary_10_1021_acsaelm_4c02095 crossref_primary_10_1002_adfm_202401716 crossref_primary_10_1063_5_0248680 crossref_primary_10_1039_D4TA01820F crossref_primary_10_1038_s41467_024_46862_z crossref_primary_10_1016_j_mtphys_2024_101353 crossref_primary_10_1002_asia_202400130 crossref_primary_10_1021_acs_accounts_3c00490 crossref_primary_10_1093_nsr_nwae386 crossref_primary_10_1016_j_jmat_2024_03_018 crossref_primary_10_1016_j_actamat_2023_119412 crossref_primary_10_1016_j_jallcom_2024_174272 crossref_primary_10_1016_j_rinp_2024_107864 crossref_primary_10_1002_smtd_202301619 crossref_primary_10_1063_5_0163786 crossref_primary_10_1016_j_heliyon_2023_e21117 crossref_primary_10_1360_TB_2024_0343 crossref_primary_10_1016_j_joule_2024_08_008 crossref_primary_10_1039_D5TC00170F crossref_primary_10_1002_adma_202412069 crossref_primary_10_1126_science_adp2444 crossref_primary_10_1021_acsami_4c17920 crossref_primary_10_1021_acsomega_3c07284 crossref_primary_10_1016_j_mser_2024_100889 crossref_primary_10_1021_acsami_4c15502 crossref_primary_10_1002_adfm_202313719 crossref_primary_10_1016_j_vacuum_2025_114249 crossref_primary_10_1039_D3TA07585K crossref_primary_10_1002_cmt2_11 crossref_primary_10_1039_D4TA02197E crossref_primary_10_1016_j_joule_2024_08_002 crossref_primary_10_1140_epjb_s10051_024_00716_1 crossref_primary_10_1016_j_cej_2023_147005 crossref_primary_10_1002_anie_202308515 crossref_primary_10_1021_accountsmr_4c00243 crossref_primary_10_1016_j_cplett_2025_141879 crossref_primary_10_1016_j_actamat_2024_120268 crossref_primary_10_1021_acsaem_3c01830 crossref_primary_10_1039_D4EE00866A crossref_primary_10_1021_acsnano_3c09926 crossref_primary_10_1002_aenm_202404653 crossref_primary_10_1016_j_jcis_2024_10_035 crossref_primary_10_1126_science_adk9589 crossref_primary_10_1002_adfm_202414881 crossref_primary_10_1002_adma_202401828 crossref_primary_10_1002_aenm_202405859 crossref_primary_10_3390_coatings14040431 crossref_primary_10_1016_j_mtphys_2023_101292 crossref_primary_10_1016_j_nanoen_2024_109845 crossref_primary_10_26599_NR_2025_94907308 crossref_primary_10_1016_j_carbon_2024_119052 crossref_primary_10_1039_D4EE00691G crossref_primary_10_1039_D4TC00881B crossref_primary_10_3390_en17051016 crossref_primary_10_1002_adma_202412967 crossref_primary_10_1021_acs_chemrev_4c00786 crossref_primary_10_1016_j_cej_2024_156111 crossref_primary_10_1016_j_nxmate_2023_100048 crossref_primary_10_1063_5_0161757 crossref_primary_10_1016_j_joule_2024_02_013 crossref_primary_10_1016_j_mtener_2024_101598 crossref_primary_10_1016_j_jmat_2025_101044 crossref_primary_10_1002_slct_202402366 crossref_primary_10_1021_acsami_4c19212 crossref_primary_10_1002_ange_202501667 crossref_primary_10_1039_D3NR04584F crossref_primary_10_1002_admi_202400566 crossref_primary_10_1039_D4EE03521F crossref_primary_10_1002_aenm_202400623 crossref_primary_10_1002_smll_202407529 crossref_primary_10_1039_D4SC06615D crossref_primary_10_1021_jacs_4c01161 crossref_primary_10_1002_adfm_202401240 crossref_primary_10_1016_j_mssp_2024_108728 crossref_primary_10_1016_j_jallcom_2025_179125 crossref_primary_10_1016_j_jallcom_2025_179124 crossref_primary_10_1002_anie_202501667 crossref_primary_10_1016_j_scriptamat_2024_116003 crossref_primary_10_1002_adfm_202402317 crossref_primary_10_1002_smtd_202301256 crossref_primary_10_1002_adfm_202309418 crossref_primary_10_1002_aenm_202304442 crossref_primary_10_1002_adfm_202315652 crossref_primary_10_1007_s40195_024_01810_0 crossref_primary_10_1088_2752_5724_ad0ca9 crossref_primary_10_1002_adma_202418482 |
Cites_doi | 10.1126/science.aax7792 10.1038/nature11439 10.1039/D1EE02253A 10.1016/j.nanoen.2017.04.004 10.1002/adma.202001537 10.1016/j.jallcom.2014.06.020 10.1016/j.matdes.2018.08.035 10.1126/science.abn8997 10.1103/PhysRevB.54.11169 10.1126/science.1159725 10.1038/s41467-022-33774-z 10.1126/science.aad3749 10.13538/j.1001-8042/nst.26.20101 10.1103/PhysRevLett.108.166601 10.1039/C6EE02017H 10.1021/jacs.8b12450 10.1002/adma.201605884 10.1126/science.ade9645 10.1038/s41467-023-37114-7 10.1038/s41467-022-28798-4 10.1038/nphys3492 10.1002/aenm.201601191 10.1021/jacs.0c01726 10.1038/nature13184 10.1103/PhysRevB.50.17953 10.1126/science.aaq1479 10.1107/S0108768102003269 10.1021/acs.chemrev.0c00026 10.1139/v66-183 10.1038/nature09996 10.1103/PhysRevB.97.245202 10.54227/mlab.20220053 10.1126/science.abi8668 10.1038/s41535-018-0127-y 10.1126/science.abb3517 10.1063/1.3212668 10.1038/s41467-017-02566-1 10.1016/j.jallcom.2021.162716 10.1002/idm2.12009 10.1126/science.aax5123 10.1126/science.abq5815 10.1038/s41563-020-00852-w 10.1016/j.commatsci.2004.02.024 10.1039/D2EE02408J 10.1126/science.1156446 10.1021/acs.chemrev.6b00255 10.1126/science.abe1292 10.1126/sciadv.abf2738 10.1039/D0EE01349H 10.1038/s41563-021-01064-6 10.1016/j.joule.2021.11.008 10.1126/sciadv.aar5606 10.1126/science.aaw9905 10.1038/s41563-021-01109-w 10.1038/nature23667 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.adg7196 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 846 |
ExternalDocumentID | 37228203 10_1126_science_adg7196 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ YJ6 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-65cb5b45ef7e34e1586b155d467a2ad60c017cabdb73943e47872e3b41b2a4e63 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 11:26:13 EDT 2025 Fri Jul 25 19:23:10 EDT 2025 Thu Apr 03 07:08:42 EDT 2025 Tue Jul 01 03:13:56 EDT 2025 Thu Apr 24 22:55:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6647 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-65cb5b45ef7e34e1586b155d467a2ad60c017cabdb73943e47872e3b41b2a4e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1699-1369 0000-0002-3313-0886 0000-0001-8349-7793 0000-0001-8149-7394 0000-0003-2624-4997 0000-0002-7496-158X 0000-0003-1247-4345 0000-0002-2632-2337 0000-0001-8080-7338 0000-0003-2720-5922 0000-0003-4577-6526 0000-0001-8810-5103 |
PMID | 37228203 |
PQID | 2818862560 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2820028708 proquest_journals_2818862560 pubmed_primary_37228203 crossref_citationtrail_10_1126_science_adg7196 crossref_primary_10_1126_science_adg7196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-26 2023-May-26 20230526 |
PublicationDateYYYYMMDD | 2023-05-26 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2023 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_48_2 doi: 10.1126/science.aax7792 – ident: e_1_3_2_13_2 doi: 10.1038/nature11439 – ident: e_1_3_2_37_2 doi: 10.1039/D1EE02253A – ident: e_1_3_2_27_2 doi: 10.1016/j.nanoen.2017.04.004 – ident: e_1_3_2_40_2 doi: 10.1002/adma.202001537 – ident: e_1_3_2_45_2 doi: 10.1016/j.jallcom.2014.06.020 – ident: e_1_3_2_35_2 doi: 10.1016/j.matdes.2018.08.035 – ident: e_1_3_2_16_2 doi: 10.1126/science.abn8997 – ident: e_1_3_2_53_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_11_2 doi: 10.1126/science.1159725 – ident: e_1_3_2_15_2 doi: 10.1038/s41467-022-33774-z – ident: e_1_3_2_21_2 doi: 10.1126/science.aad3749 – ident: e_1_3_2_52_2 doi: 10.13538/j.1001-8042/nst.26.20101 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevLett.108.166601 – ident: e_1_3_2_34_2 doi: 10.1039/C6EE02017H – ident: e_1_3_2_24_2 doi: 10.1021/jacs.8b12450 – ident: e_1_3_2_6_2 doi: 10.1002/adma.201605884 – ident: e_1_3_2_3_2 doi: 10.1126/science.ade9645 – ident: e_1_3_2_26_2 doi: 10.1038/s41467-023-37114-7 – ident: e_1_3_2_49_2 doi: 10.1038/s41467-022-28798-4 – ident: e_1_3_2_20_2 doi: 10.1038/nphys3492 – ident: e_1_3_2_57_2 doi: 10.1002/aenm.201601191 – ident: e_1_3_2_25_2 doi: 10.1021/jacs.0c01726 – ident: e_1_3_2_19_2 doi: 10.1038/nature13184 – ident: e_1_3_2_41_2 – ident: e_1_3_2_54_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_2_23_2 doi: 10.1126/science.aaq1479 – ident: e_1_3_2_42_2 doi: 10.1107/S0108768102003269 – ident: e_1_3_2_5_2 doi: 10.1021/acs.chemrev.0c00026 – ident: e_1_3_2_43_2 doi: 10.1139/v66-183 – ident: e_1_3_2_10_2 doi: 10.1038/nature09996 – ident: e_1_3_2_56_2 doi: 10.1103/PhysRevB.97.245202 – ident: e_1_3_2_50_2 doi: 10.54227/mlab.20220053 – ident: e_1_3_2_22_2 doi: 10.1126/science.abi8668 – ident: e_1_3_2_9_2 doi: 10.1038/s41535-018-0127-y – ident: e_1_3_2_17_2 doi: 10.1126/science.abb3517 – ident: e_1_3_2_33_2 doi: 10.1063/1.3212668 – ident: e_1_3_2_28_2 doi: 10.1038/s41467-017-02566-1 – ident: e_1_3_2_46_2 doi: 10.1016/j.jallcom.2021.162716 – ident: e_1_3_2_8_2 doi: 10.1002/idm2.12009 – ident: e_1_3_2_30_2 doi: 10.1126/science.aax5123 – ident: e_1_3_2_31_2 doi: 10.1126/science.abq5815 – ident: e_1_3_2_4_2 doi: 10.1038/s41563-020-00852-w – ident: e_1_3_2_55_2 doi: 10.1016/j.commatsci.2004.02.024 – ident: e_1_3_2_51_2 doi: 10.1039/D2EE02408J – ident: e_1_3_2_47_2 doi: 10.1126/science.1156446 – ident: e_1_3_2_7_2 doi: 10.1021/acs.chemrev.6b00255 – ident: e_1_3_2_14_2 doi: 10.1126/science.abe1292 – ident: e_1_3_2_32_2 doi: 10.1126/sciadv.abf2738 – ident: e_1_3_2_36_2 doi: 10.1039/D0EE01349H – ident: e_1_3_2_44_2 doi: 10.1038/s41563-021-01064-6 – ident: e_1_3_2_38_2 doi: 10.1016/j.joule.2021.11.008 – ident: e_1_3_2_39_2 doi: 10.1126/sciadv.aar5606 – ident: e_1_3_2_29_2 doi: 10.1126/science.aaw9905 – ident: e_1_3_2_2_2 doi: 10.1038/s41563-021-01109-w – ident: e_1_3_2_18_2 doi: 10.1038/nature23667 |
SSID | ssj0009593 |
Score | 2.722704 |
Snippet | Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals... Editor’s summaryThermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al. added copper to tin selenide,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 841 |
SubjectTerms | Carrier mobility Copper Crystal defects Lattice vacancies Mechanical properties Room temperature Selenide Thermoelectric materials Tin Tin selenide |
Title | Lattice plainification advances highly effective SnSe crystalline thermoelectrics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37228203 https://www.proquest.com/docview/2818862560 https://www.proquest.com/docview/2820028708 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdby2CXsXZf2bqhwQ4dxSGWbVk-pltDGVnHaAJhFyPJSglkzkjsg_fX78l6dtwshW4XE2QpMno_Pf0kvQ9CPhigxCIx0kuAzXuhr3xPKKE9KVmgoySLYm19h79e8ctp-GUWzbanSrV3SaH6-vdev5L_kSqUgVytl-w_SLb9UyiA3yBfeIKE4XkvGY9lYW3XbCroRW5tfpw08V5_c2ZjES8rtNmwJkLX-bU50-sKKOGy5peW_v1cuVw4jd07UtVm1gMFba91OsJs7ROHrrfGqACbdU4YxovSUfX8Zl0utif4TsvY4kri-lnb8bryiVztVv2xqEoEM55TsNoq0DnDo2od2KyQbODUmdlThvo4cKmdEHicu4icqGCFC5P1t-LvpKo0fZndxH6yJ8T21bd0NB2P08nFbPKQHDLYW4ByPByefz4f7cZqbj8OI0J1fK2aDm6TmTt2KDVTmTwlT3CLQYcOL0fkgcmPySOXdLQ6JkcooQ09xZjjH5-R7wglehtKtIESdVCiLZSohRLtQInuQOk5mY4uJp8uPcy24ekg8QuPR1pFKozMPDZBaPxIcAVkM4OVVDKZ8YEG5a2lylQcJGFgbFQnZgIF85vJ0PDgBTnIV7l5RagQghut5jZLYhhnSqh5xgUsLslcMSZVj_SbYUs1hqK3GVGWab0lZTzFcU5xnHvktG3wy0VhubvqSSOHFKfqJrUhz2DrDuy-R963r0GR2tsxmZtVaetYeyVYvkSPvHTya_sKYmZfB6_v0foNebyF_wk5KNaleQvEtVDvEGh_ADAPn3E |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice+plainification+advances+highly+effective+SnSe+crystalline+thermoelectrics&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liu%2C+Dongrui&rft.au=Wang%2C+Dongyang&rft.au=Hong%2C+Tao&rft.au=Wang%2C+Ziyuan&rft.date=2023-05-26&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=380&rft.issue=6647&rft.spage=841&rft_id=info:doi/10.1126%2Fscience.adg7196&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |