Lattice plainification advances highly effective SnSe crystalline thermoelectrics

Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transp...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 380; no. 6647; pp. 841 - 846
Main Authors Liu, Dongrui, Wang, Dongyang, Hong, Tao, Wang, Ziyuan, Wang, Yuping, Qin, Yongxin, Su, Lizhong, Yang, Tianyu, Gao, Xiang, Ge, Zhenhua, Qin, Bingchao, Zhao, Li-Dong
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 26.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit ( ZT ) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (Δ T ) of ~300 kelvin and a seven-pair Peltier cooling Δ T max of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling. Thermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al . added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski Introducing copper to a sodium-doped tin selenide improves the room temperature thermoelectric properties.
AbstractList Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (ZT) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (ΔT) of ~300 kelvin and a seven-pair Peltier cooling ΔTmax of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling.Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (ZT) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (ΔT) of ~300 kelvin and a seven-pair Peltier cooling ΔTmax of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling.
Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit ( ZT ) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (Δ T ) of ~300 kelvin and a seven-pair Peltier cooling Δ T max of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling. Thermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al . added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski Introducing copper to a sodium-doped tin selenide improves the room temperature thermoelectric properties.
Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit ( ) of ~1.5 at 300 kelvin, with an average of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (Δ ) of ~300 kelvin and a seven-pair Peltier cooling Δ of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling.
Editor’s summaryThermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al. added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski
Author Hong, Tao
Ge, Zhenhua
Zhao, Li-Dong
Liu, Dongrui
Wang, Ziyuan
Qin, Bingchao
Gao, Xiang
Wang, Yuping
Qin, Yongxin
Su, Lizhong
Yang, Tianyu
Wang, Dongyang
Author_xml – sequence: 1
  givenname: Dongrui
  orcidid: 0000-0003-4577-6526
  surname: Liu
  fullname: Liu, Dongrui
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Dongyang
  orcidid: 0000-0001-8149-7394
  surname: Wang
  fullname: Wang, Dongyang
  organization: Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 3
  givenname: Tao
  orcidid: 0000-0001-8349-7793
  surname: Hong
  fullname: Hong, Tao
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Ziyuan
  orcidid: 0000-0002-2632-2337
  surname: Wang
  fullname: Wang, Ziyuan
  organization: Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 5
  givenname: Yuping
  orcidid: 0000-0001-8080-7338
  surname: Wang
  fullname: Wang, Yuping
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 6
  givenname: Yongxin
  orcidid: 0000-0002-1699-1369
  surname: Qin
  fullname: Qin, Yongxin
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 7
  givenname: Lizhong
  orcidid: 0000-0002-3313-0886
  surname: Su
  fullname: Su, Lizhong
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 8
  givenname: Tianyu
  orcidid: 0000-0003-2624-4997
  surname: Yang
  fullname: Yang, Tianyu
  organization: Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 9
  givenname: Xiang
  orcidid: 0000-0002-7496-158X
  surname: Gao
  fullname: Gao, Xiang
  organization: Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
– sequence: 10
  givenname: Zhenhua
  orcidid: 0000-0001-8810-5103
  surname: Ge
  fullname: Ge, Zhenhua
  organization: Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 11
  givenname: Bingchao
  orcidid: 0000-0003-2720-5922
  surname: Qin
  fullname: Qin, Bingchao
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 12
  givenname: Li-Dong
  orcidid: 0000-0003-1247-4345
  surname: Zhao
  fullname: Zhao, Li-Dong
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37228203$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYMoWqtnb7LgxcvafGyS3aMUv6Agop5DNjvbRtJsTVKh_71R20vB0xzm9x4z752iQz94QOiC4BtCqJhEY8EbuNHdXJJGHKARwQ0vG4rZIRphzERZY8lP0GmMHxjnXcOO0QmTlNaZGaGXmU7JGihWTltve2t0soMvdPels3EsFna-cJsC-h5Msl9QvPpXKEzYxKSdsx6KtICwHMDlfbAmnqGjXrsI59s5Ru_3d2_Tx3L2_PA0vZ2VhjUklYKblrcVh14Cq4DwWrSE864SUlPdCWwwkUa3XStZUzGoZC0psLYiLdUVCDZG13--qzB8riEmtbTRgHPaw7CO6udBTGuJ64xe7aEfwzr4fF2mSF0LygXO1OWWWrdL6NQq2KUOG7ULKwP8DzBhiDFAr4xNv3GloK1TBKufUtS2FLUtJesme7qd9X-Kb7wWkj4
CitedBy_id crossref_primary_10_1002_idm2_12134
crossref_primary_10_1016_j_jmat_2024_04_006
crossref_primary_10_1002_adfm_202406428
crossref_primary_10_20517_ss_2023_34
crossref_primary_10_1002_adfm_202419984
crossref_primary_10_1016_j_mtphys_2024_101534
crossref_primary_10_1002_aenm_202401345
crossref_primary_10_1002_aenm_202405024
crossref_primary_10_1063_5_0192731
crossref_primary_10_1007_s40843_024_3110_7
crossref_primary_10_1002_adfm_202304512
crossref_primary_10_1360_TB_2023_0553
crossref_primary_10_1002_adfm_202414288
crossref_primary_10_1016_j_jallcom_2024_175502
crossref_primary_10_1039_D3EE01047C
crossref_primary_10_1039_D4CP01491J
crossref_primary_10_1002_ange_202408908
crossref_primary_10_1007_s11665_025_10706_8
crossref_primary_10_1016_j_jeurceramsoc_2024_03_045
crossref_primary_10_1002_aenm_202403194
crossref_primary_10_1021_acsami_3c09823
crossref_primary_10_1016_j_jmat_2024_100938
crossref_primary_10_1016_j_vacuum_2024_113712
crossref_primary_10_1002_adfm_202415008
crossref_primary_10_1016_j_applthermaleng_2025_125457
crossref_primary_10_1126_science_adi2174
crossref_primary_10_1002_adma_202406009
crossref_primary_10_1002_anie_202401758
crossref_primary_10_1016_j_ceramint_2024_03_173
crossref_primary_10_1002_adfm_202500731
crossref_primary_10_1016_j_nantod_2024_102460
crossref_primary_10_1021_acsaem_4c00772
crossref_primary_10_1016_j_cej_2024_151405
crossref_primary_10_1016_j_mtphys_2024_101517
crossref_primary_10_1016_j_nanoen_2025_110690
crossref_primary_10_1063_5_0194378
crossref_primary_10_1002_smll_202405019
crossref_primary_10_1111_jace_19958
crossref_primary_10_1021_jacs_4c01525
crossref_primary_10_1039_D4EE04639K
crossref_primary_10_1002_smsc_202400284
crossref_primary_10_1002_adfm_202414194
crossref_primary_10_1002_adma_202313742
crossref_primary_10_1039_D4EE00019F
crossref_primary_10_1038_s41467_024_51772_1
crossref_primary_10_1002_ange_202308515
crossref_primary_10_1016_j_jallcom_2024_174672
crossref_primary_10_1002_smll_202411022
crossref_primary_10_1002_smll_202306701
crossref_primary_10_1002_adfm_202410816
crossref_primary_10_3390_en17051036
crossref_primary_10_1039_D4TA08632E
crossref_primary_10_1007_s12598_024_02880_w
crossref_primary_10_1088_2053_1591_ad9cf1
crossref_primary_10_1007_s42765_024_00441_5
crossref_primary_10_1016_j_device_2025_100748
crossref_primary_10_1063_5_0159347
crossref_primary_10_1002_adfm_202311814
crossref_primary_10_1002_adma_202417594
crossref_primary_10_1016_j_ceramint_2024_01_440
crossref_primary_10_1016_j_nanoen_2024_109615
crossref_primary_10_1063_5_0206545
crossref_primary_10_1038_s41467_024_55490_6
crossref_primary_10_1021_acsaem_4c02972
crossref_primary_10_1063_5_0220010
crossref_primary_10_1002_aenm_202404251
crossref_primary_10_1002_ange_202401758
crossref_primary_10_1126_science_ado4077
crossref_primary_10_1002_advs_202409735
crossref_primary_10_1021_jacs_4c09943
crossref_primary_10_1002_smll_202408794
crossref_primary_10_1002_adfm_202401735
crossref_primary_10_1007_s40843_024_2893_4
crossref_primary_10_1002_smll_202409524
crossref_primary_10_1039_D4EE00433G
crossref_primary_10_1039_D4CS00038B
crossref_primary_10_1093_nsr_nwae329
crossref_primary_10_1093_nsr_nwae448
crossref_primary_10_1021_acsami_3c15741
crossref_primary_10_1038_s41467_024_53599_2
crossref_primary_10_1016_j_gee_2024_11_010
crossref_primary_10_1021_acsami_4c18795
crossref_primary_10_1126_science_ado1133
crossref_primary_10_1002_bkcs_12821
crossref_primary_10_1021_acs_chemmater_4c02294
crossref_primary_10_1039_D3EE03818A
crossref_primary_10_1002_smll_202408545
crossref_primary_10_1016_j_cej_2025_160515
crossref_primary_10_1039_D4TA00552J
crossref_primary_10_1002_advs_202401218
crossref_primary_10_1002_anie_202408908
crossref_primary_10_1002_smsc_202300245
crossref_primary_10_1002_adma_202407982
crossref_primary_10_1016_j_surfin_2024_104437
crossref_primary_10_1360_TB_2024_0771
crossref_primary_10_1016_j_joule_2024_05_006
crossref_primary_10_1002_adfm_202403498
crossref_primary_10_1016_j_jmrt_2023_11_191
crossref_primary_10_1016_j_jpowsour_2024_236102
crossref_primary_10_54227_mlab_20230029
crossref_primary_10_1002_adfm_202421449
crossref_primary_10_1021_acs_nanolett_4c01008
crossref_primary_10_1016_j_jmat_2024_02_010
crossref_primary_10_1021_jacs_4c10286
crossref_primary_10_4150_KPMI_2023_30_4_318
crossref_primary_10_1002_adfm_202315707
crossref_primary_10_1021_acsami_3c14754
crossref_primary_10_54227_mlab_20230032
crossref_primary_10_1364_OE_523383
crossref_primary_10_1016_j_mtener_2025_101843
crossref_primary_10_1126_sciadv_adn9959
crossref_primary_10_1016_j_jmst_2024_12_090
crossref_primary_10_1016_j_jmat_2023_09_005
crossref_primary_10_1016_j_actamat_2024_120694
crossref_primary_10_1016_j_jeurceramsoc_2024_03_067
crossref_primary_10_1016_j_nanoen_2024_109651
crossref_primary_10_1016_j_nxener_2024_100147
crossref_primary_10_1039_D3EE02370B
crossref_primary_10_1016_j_jmst_2024_08_009
crossref_primary_10_1016_j_actamat_2024_120699
crossref_primary_10_1016_j_ceramint_2024_08_085
crossref_primary_10_1039_D4TC04461D
crossref_primary_10_1039_D4TA03278K
crossref_primary_10_1002_smll_202405182
crossref_primary_10_1021_acsenergylett_4c03369
crossref_primary_10_1002_adfm_202411304
crossref_primary_10_1360_TB_2024_0796
crossref_primary_10_1360_TB_2024_0795
crossref_primary_10_1360_TB_2024_0793
crossref_primary_10_1038_s41586_024_07724_2
crossref_primary_10_1002_smll_202400866
crossref_primary_10_1016_j_jallcom_2024_178050
crossref_primary_10_1016_j_mtchem_2024_102183
crossref_primary_10_1002_aenm_202402399
crossref_primary_10_1002_aenm_202400411
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125063
crossref_primary_10_1002_adfm_202307864
crossref_primary_10_1016_j_joule_2025_101854
crossref_primary_10_1088_1361_6463_ad76be
crossref_primary_10_1016_j_cej_2024_158104
crossref_primary_10_1002_aenm_202302551
crossref_primary_10_1021_jacs_3c09655
crossref_primary_10_1002_smsc_202300299
crossref_primary_10_54227_mlab_20240005
crossref_primary_10_1016_j_xinn_2025_100864
crossref_primary_10_1021_acsnano_4c11732
crossref_primary_10_1063_5_0220462
crossref_primary_10_1002_admt_202301958
crossref_primary_10_1021_acsaem_4c00487
crossref_primary_10_1063_5_0226327
crossref_primary_10_1002_smll_202401723
crossref_primary_10_1039_D4EE04620J
crossref_primary_10_1016_j_jechem_2024_08_035
crossref_primary_10_1007_s12598_024_02774_x
crossref_primary_10_1016_j_ceramint_2025_02_361
crossref_primary_10_1021_acsaem_4c02549
crossref_primary_10_1002_crat_202400057
crossref_primary_10_1016_j_mtphys_2024_101366
crossref_primary_10_1063_5_0199416
crossref_primary_10_1021_acs_jpcc_4c07834
crossref_primary_10_1016_j_mtphys_2025_101660
crossref_primary_10_1039_D4EE02008A
crossref_primary_10_1021_jacs_3c09643
crossref_primary_10_1016_j_jallcom_2025_179320
crossref_primary_10_3390_met13111795
crossref_primary_10_1002_adfm_202315591
crossref_primary_10_1016_j_jmat_2023_08_001
crossref_primary_10_1021_acsaelm_4c02095
crossref_primary_10_1002_adfm_202401716
crossref_primary_10_1063_5_0248680
crossref_primary_10_1039_D4TA01820F
crossref_primary_10_1038_s41467_024_46862_z
crossref_primary_10_1016_j_mtphys_2024_101353
crossref_primary_10_1002_asia_202400130
crossref_primary_10_1021_acs_accounts_3c00490
crossref_primary_10_1093_nsr_nwae386
crossref_primary_10_1016_j_jmat_2024_03_018
crossref_primary_10_1016_j_actamat_2023_119412
crossref_primary_10_1016_j_jallcom_2024_174272
crossref_primary_10_1016_j_rinp_2024_107864
crossref_primary_10_1002_smtd_202301619
crossref_primary_10_1063_5_0163786
crossref_primary_10_1016_j_heliyon_2023_e21117
crossref_primary_10_1360_TB_2024_0343
crossref_primary_10_1016_j_joule_2024_08_008
crossref_primary_10_1039_D5TC00170F
crossref_primary_10_1002_adma_202412069
crossref_primary_10_1126_science_adp2444
crossref_primary_10_1021_acsami_4c17920
crossref_primary_10_1021_acsomega_3c07284
crossref_primary_10_1016_j_mser_2024_100889
crossref_primary_10_1021_acsami_4c15502
crossref_primary_10_1002_adfm_202313719
crossref_primary_10_1016_j_vacuum_2025_114249
crossref_primary_10_1039_D3TA07585K
crossref_primary_10_1002_cmt2_11
crossref_primary_10_1039_D4TA02197E
crossref_primary_10_1016_j_joule_2024_08_002
crossref_primary_10_1140_epjb_s10051_024_00716_1
crossref_primary_10_1016_j_cej_2023_147005
crossref_primary_10_1002_anie_202308515
crossref_primary_10_1021_accountsmr_4c00243
crossref_primary_10_1016_j_cplett_2025_141879
crossref_primary_10_1016_j_actamat_2024_120268
crossref_primary_10_1021_acsaem_3c01830
crossref_primary_10_1039_D4EE00866A
crossref_primary_10_1021_acsnano_3c09926
crossref_primary_10_1002_aenm_202404653
crossref_primary_10_1016_j_jcis_2024_10_035
crossref_primary_10_1126_science_adk9589
crossref_primary_10_1002_adfm_202414881
crossref_primary_10_1002_adma_202401828
crossref_primary_10_1002_aenm_202405859
crossref_primary_10_3390_coatings14040431
crossref_primary_10_1016_j_mtphys_2023_101292
crossref_primary_10_1016_j_nanoen_2024_109845
crossref_primary_10_26599_NR_2025_94907308
crossref_primary_10_1016_j_carbon_2024_119052
crossref_primary_10_1039_D4EE00691G
crossref_primary_10_1039_D4TC00881B
crossref_primary_10_3390_en17051016
crossref_primary_10_1002_adma_202412967
crossref_primary_10_1021_acs_chemrev_4c00786
crossref_primary_10_1016_j_cej_2024_156111
crossref_primary_10_1016_j_nxmate_2023_100048
crossref_primary_10_1063_5_0161757
crossref_primary_10_1016_j_joule_2024_02_013
crossref_primary_10_1016_j_mtener_2024_101598
crossref_primary_10_1016_j_jmat_2025_101044
crossref_primary_10_1002_slct_202402366
crossref_primary_10_1021_acsami_4c19212
crossref_primary_10_1002_ange_202501667
crossref_primary_10_1039_D3NR04584F
crossref_primary_10_1002_admi_202400566
crossref_primary_10_1039_D4EE03521F
crossref_primary_10_1002_aenm_202400623
crossref_primary_10_1002_smll_202407529
crossref_primary_10_1039_D4SC06615D
crossref_primary_10_1021_jacs_4c01161
crossref_primary_10_1002_adfm_202401240
crossref_primary_10_1016_j_mssp_2024_108728
crossref_primary_10_1016_j_jallcom_2025_179125
crossref_primary_10_1016_j_jallcom_2025_179124
crossref_primary_10_1002_anie_202501667
crossref_primary_10_1016_j_scriptamat_2024_116003
crossref_primary_10_1002_adfm_202402317
crossref_primary_10_1002_smtd_202301256
crossref_primary_10_1002_adfm_202309418
crossref_primary_10_1002_aenm_202304442
crossref_primary_10_1002_adfm_202315652
crossref_primary_10_1007_s40195_024_01810_0
crossref_primary_10_1088_2752_5724_ad0ca9
crossref_primary_10_1002_adma_202418482
Cites_doi 10.1126/science.aax7792
10.1038/nature11439
10.1039/D1EE02253A
10.1016/j.nanoen.2017.04.004
10.1002/adma.202001537
10.1016/j.jallcom.2014.06.020
10.1016/j.matdes.2018.08.035
10.1126/science.abn8997
10.1103/PhysRevB.54.11169
10.1126/science.1159725
10.1038/s41467-022-33774-z
10.1126/science.aad3749
10.13538/j.1001-8042/nst.26.20101
10.1103/PhysRevLett.108.166601
10.1039/C6EE02017H
10.1021/jacs.8b12450
10.1002/adma.201605884
10.1126/science.ade9645
10.1038/s41467-023-37114-7
10.1038/s41467-022-28798-4
10.1038/nphys3492
10.1002/aenm.201601191
10.1021/jacs.0c01726
10.1038/nature13184
10.1103/PhysRevB.50.17953
10.1126/science.aaq1479
10.1107/S0108768102003269
10.1021/acs.chemrev.0c00026
10.1139/v66-183
10.1038/nature09996
10.1103/PhysRevB.97.245202
10.54227/mlab.20220053
10.1126/science.abi8668
10.1038/s41535-018-0127-y
10.1126/science.abb3517
10.1063/1.3212668
10.1038/s41467-017-02566-1
10.1016/j.jallcom.2021.162716
10.1002/idm2.12009
10.1126/science.aax5123
10.1126/science.abq5815
10.1038/s41563-020-00852-w
10.1016/j.commatsci.2004.02.024
10.1039/D2EE02408J
10.1126/science.1156446
10.1021/acs.chemrev.6b00255
10.1126/science.abe1292
10.1126/sciadv.abf2738
10.1039/D0EE01349H
10.1038/s41563-021-01064-6
10.1016/j.joule.2021.11.008
10.1126/sciadv.aar5606
10.1126/science.aaw9905
10.1038/s41563-021-01109-w
10.1038/nature23667
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.adg7196
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 846
ExternalDocumentID 37228203
10_1126_science_adg7196
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
YJ6
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-65cb5b45ef7e34e1586b155d467a2ad60c017cabdb73943e47872e3b41b2a4e63
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 11:26:13 EDT 2025
Fri Jul 25 19:23:10 EDT 2025
Thu Apr 03 07:08:42 EDT 2025
Tue Jul 01 03:13:56 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6647
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-65cb5b45ef7e34e1586b155d467a2ad60c017cabdb73943e47872e3b41b2a4e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1699-1369
0000-0002-3313-0886
0000-0001-8349-7793
0000-0001-8149-7394
0000-0003-2624-4997
0000-0002-7496-158X
0000-0003-1247-4345
0000-0002-2632-2337
0000-0001-8080-7338
0000-0003-2720-5922
0000-0003-4577-6526
0000-0001-8810-5103
PMID 37228203
PQID 2818862560
PQPubID 1256
PageCount 6
ParticipantIDs proquest_miscellaneous_2820028708
proquest_journals_2818862560
pubmed_primary_37228203
crossref_citationtrail_10_1126_science_adg7196
crossref_primary_10_1126_science_adg7196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-26
2023-May-26
20230526
PublicationDateYYYYMMDD 2023-05-26
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2023
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_48_2
  doi: 10.1126/science.aax7792
– ident: e_1_3_2_13_2
  doi: 10.1038/nature11439
– ident: e_1_3_2_37_2
  doi: 10.1039/D1EE02253A
– ident: e_1_3_2_27_2
  doi: 10.1016/j.nanoen.2017.04.004
– ident: e_1_3_2_40_2
  doi: 10.1002/adma.202001537
– ident: e_1_3_2_45_2
  doi: 10.1016/j.jallcom.2014.06.020
– ident: e_1_3_2_35_2
  doi: 10.1016/j.matdes.2018.08.035
– ident: e_1_3_2_16_2
  doi: 10.1126/science.abn8997
– ident: e_1_3_2_53_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1159725
– ident: e_1_3_2_15_2
  doi: 10.1038/s41467-022-33774-z
– ident: e_1_3_2_21_2
  doi: 10.1126/science.aad3749
– ident: e_1_3_2_52_2
  doi: 10.13538/j.1001-8042/nst.26.20101
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.108.166601
– ident: e_1_3_2_34_2
  doi: 10.1039/C6EE02017H
– ident: e_1_3_2_24_2
  doi: 10.1021/jacs.8b12450
– ident: e_1_3_2_6_2
  doi: 10.1002/adma.201605884
– ident: e_1_3_2_3_2
  doi: 10.1126/science.ade9645
– ident: e_1_3_2_26_2
  doi: 10.1038/s41467-023-37114-7
– ident: e_1_3_2_49_2
  doi: 10.1038/s41467-022-28798-4
– ident: e_1_3_2_20_2
  doi: 10.1038/nphys3492
– ident: e_1_3_2_57_2
  doi: 10.1002/aenm.201601191
– ident: e_1_3_2_25_2
  doi: 10.1021/jacs.0c01726
– ident: e_1_3_2_19_2
  doi: 10.1038/nature13184
– ident: e_1_3_2_41_2
– ident: e_1_3_2_54_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_2_23_2
  doi: 10.1126/science.aaq1479
– ident: e_1_3_2_42_2
  doi: 10.1107/S0108768102003269
– ident: e_1_3_2_5_2
  doi: 10.1021/acs.chemrev.0c00026
– ident: e_1_3_2_43_2
  doi: 10.1139/v66-183
– ident: e_1_3_2_10_2
  doi: 10.1038/nature09996
– ident: e_1_3_2_56_2
  doi: 10.1103/PhysRevB.97.245202
– ident: e_1_3_2_50_2
  doi: 10.54227/mlab.20220053
– ident: e_1_3_2_22_2
  doi: 10.1126/science.abi8668
– ident: e_1_3_2_9_2
  doi: 10.1038/s41535-018-0127-y
– ident: e_1_3_2_17_2
  doi: 10.1126/science.abb3517
– ident: e_1_3_2_33_2
  doi: 10.1063/1.3212668
– ident: e_1_3_2_28_2
  doi: 10.1038/s41467-017-02566-1
– ident: e_1_3_2_46_2
  doi: 10.1016/j.jallcom.2021.162716
– ident: e_1_3_2_8_2
  doi: 10.1002/idm2.12009
– ident: e_1_3_2_30_2
  doi: 10.1126/science.aax5123
– ident: e_1_3_2_31_2
  doi: 10.1126/science.abq5815
– ident: e_1_3_2_4_2
  doi: 10.1038/s41563-020-00852-w
– ident: e_1_3_2_55_2
  doi: 10.1016/j.commatsci.2004.02.024
– ident: e_1_3_2_51_2
  doi: 10.1039/D2EE02408J
– ident: e_1_3_2_47_2
  doi: 10.1126/science.1156446
– ident: e_1_3_2_7_2
  doi: 10.1021/acs.chemrev.6b00255
– ident: e_1_3_2_14_2
  doi: 10.1126/science.abe1292
– ident: e_1_3_2_32_2
  doi: 10.1126/sciadv.abf2738
– ident: e_1_3_2_36_2
  doi: 10.1039/D0EE01349H
– ident: e_1_3_2_44_2
  doi: 10.1038/s41563-021-01064-6
– ident: e_1_3_2_38_2
  doi: 10.1016/j.joule.2021.11.008
– ident: e_1_3_2_39_2
  doi: 10.1126/sciadv.aar5606
– ident: e_1_3_2_29_2
  doi: 10.1126/science.aaw9905
– ident: e_1_3_2_2_2
  doi: 10.1038/s41563-021-01109-w
– ident: e_1_3_2_18_2
  doi: 10.1038/nature23667
SSID ssj0009593
Score 2.722704
Snippet Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals...
Editor’s summaryThermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al. added copper to tin selenide,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 841
SubjectTerms Carrier mobility
Copper
Crystal defects
Lattice vacancies
Mechanical properties
Room temperature
Selenide
Thermoelectric materials
Tin
Tin selenide
Title Lattice plainification advances highly effective SnSe crystalline thermoelectrics
URI https://www.ncbi.nlm.nih.gov/pubmed/37228203
https://www.proquest.com/docview/2818862560
https://www.proquest.com/docview/2820028708
Volume 380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdby2CXsXZf2bqhwQ4dxSGWbVk-pltDGVnHaAJhFyPJSglkzkjsg_fX78l6dtwshW4XE2QpMno_Pf0kvQ9CPhigxCIx0kuAzXuhr3xPKKE9KVmgoySLYm19h79e8ctp-GUWzbanSrV3SaH6-vdev5L_kSqUgVytl-w_SLb9UyiA3yBfeIKE4XkvGY9lYW3XbCroRW5tfpw08V5_c2ZjES8rtNmwJkLX-bU50-sKKOGy5peW_v1cuVw4jd07UtVm1gMFba91OsJs7ROHrrfGqACbdU4YxovSUfX8Zl0utif4TsvY4kri-lnb8bryiVztVv2xqEoEM55TsNoq0DnDo2od2KyQbODUmdlThvo4cKmdEHicu4icqGCFC5P1t-LvpKo0fZndxH6yJ8T21bd0NB2P08nFbPKQHDLYW4ByPByefz4f7cZqbj8OI0J1fK2aDm6TmTt2KDVTmTwlT3CLQYcOL0fkgcmPySOXdLQ6JkcooQ09xZjjH5-R7wglehtKtIESdVCiLZSohRLtQInuQOk5mY4uJp8uPcy24ekg8QuPR1pFKozMPDZBaPxIcAVkM4OVVDKZ8YEG5a2lylQcJGFgbFQnZgIF85vJ0PDgBTnIV7l5RagQghut5jZLYhhnSqh5xgUsLslcMSZVj_SbYUs1hqK3GVGWab0lZTzFcU5xnHvktG3wy0VhubvqSSOHFKfqJrUhz2DrDuy-R963r0GR2tsxmZtVaetYeyVYvkSPvHTya_sKYmZfB6_v0foNebyF_wk5KNaleQvEtVDvEGh_ADAPn3E
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice+plainification+advances+highly+effective+SnSe+crystalline+thermoelectrics&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liu%2C+Dongrui&rft.au=Wang%2C+Dongyang&rft.au=Hong%2C+Tao&rft.au=Wang%2C+Ziyuan&rft.date=2023-05-26&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=380&rft.issue=6647&rft.spage=841&rft_id=info:doi/10.1126%2Fscience.adg7196&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon