Adaptive Augmented Reality Architecture for Optimising Assistance and Safety in Industry 4.0

The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as th...

Full description

Saved in:
Bibliographic Details
Published inBig data and cognitive computing Vol. 9; no. 5; p. 133
Main Authors Morales Méndez, Ginés, del Cerro Velázquez, Francisco
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2025
Subjects
Online AccessGet full text
ISSN2504-2289
2504-2289
DOI10.3390/bdcc9050133

Cover

Abstract The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as the need for dynamic personalisation of instructions based on operator profiles and the mitigation of technical and cognitive barriers. Architecture integrates theoretical modelling, modular design, and real-time adaptability to match instruction complexity with user expertise and environmental conditions. A working prototype was implemented using Microsoft HoloLens 2, Unity 3D, and Vuforia and validated in a controlled industrial scenario involving predictive maintenance and assembly tasks. The experimental results demonstrated statistically significant enhancements in task completion time, error rates, perceived cognitive load, operational efficiency, and safety indicators in comparison with conventional methods. The findings underscore the system’s capacity to enhance both performance and consistency while concomitantly bolstering risk mitigation in intricate operational settings. This study proposes a scalable and modular AR framework with built-in safety and adaptability mechanisms, demonstrating practical benefits for human–machine interaction in Industry 4.0. The present study is subject to certain limitations, including validation in a simulated environment, which limits the direct extrapolation of the results to real industrial scenarios; further evaluation in various operational contexts is required to verify the overall scalability and applicability of the proposed system. It is recommended that future research studies explore the long-term ergonomics, scalability, and integration of emerging technologies in decision support within adaptive AR systems.
AbstractList The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as the need for dynamic personalisation of instructions based on operator profiles and the mitigation of technical and cognitive barriers. Architecture integrates theoretical modelling, modular design, and real-time adaptability to match instruction complexity with user expertise and environmental conditions. A working prototype was implemented using Microsoft HoloLens 2, Unity 3D, and Vuforia and validated in a controlled industrial scenario involving predictive maintenance and assembly tasks. The experimental results demonstrated statistically significant enhancements in task completion time, error rates, perceived cognitive load, operational efficiency, and safety indicators in comparison with conventional methods. The findings underscore the system’s capacity to enhance both performance and consistency while concomitantly bolstering risk mitigation in intricate operational settings. This study proposes a scalable and modular AR framework with built-in safety and adaptability mechanisms, demonstrating practical benefits for human–machine interaction in Industry 4.0. The present study is subject to certain limitations, including validation in a simulated environment, which limits the direct extrapolation of the results to real industrial scenarios; further evaluation in various operational contexts is required to verify the overall scalability and applicability of the proposed system. It is recommended that future research studies explore the long-term ergonomics, scalability, and integration of emerging technologies in decision support within adaptive AR systems.
Audience Academic
Author del Cerro Velázquez, Francisco
Morales Méndez, Ginés
Author_xml – sequence: 1
  givenname: Ginés
  orcidid: 0000-0002-4384-6837
  surname: Morales Méndez
  fullname: Morales Méndez, Ginés
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0002-3961-1963
  surname: del Cerro Velázquez
  fullname: del Cerro Velázquez, Francisco
BookMark eNptUU2LFDEQbWQF13VP_oGAR5nZfHV3cmwWXQcWFvy4CSFdqYwZZpIxSQvz742OrCtIHap4vPeoqveyu4gpYte9ZnQthKY3swPQtKdMiGfdJe-pXHGu9MWT-UV3XcqOUsq5lANjl93XydljDT-QTMv2gLGiIx_R7kM9kSnDt1AR6pKR-JTJQ2MeQglxS6ZSQqk2AhIbHflkPTZFiGQT3VJqPhG5pq-6597uC17_6Vfdl_fvPt9-WN0_3G1up_sVCM3qapDS6V5TGP0o54EziwgoQWpwfNBKohz8OFCBTIm5d9wqr5kGP4yznOUgrrrN2dcluzPHHA42n0yywfwGUt4am2uAPRpUMI4KnWwPkJ4phbwXwKRXavQoafN6c_Y65vR9wVLNLi05tvWN4IypXjXlX9bWNtMQfarZQvsNmElJwRXttWqs9X9YrRweArT0fGj4P4K3ZwHkVEpG_3gMo-ZXyOZJyOInoKmYoQ
Cites_doi 10.1016/j.eswa.2022.118983
10.1145/3359997.3365689
10.1108/IR-09-2021-0204
10.1145/3334480.3382889
10.1016/j.compind.2022.103661
10.1016/j.eswa.2022.118002
10.3390/app10124259
10.1016/j.procir.2015.12.113
10.47738/jads.v5i3.267
10.1007/s11042-021-10971-4
10.3390/app13052766
10.1016/j.promfg.2019.03.014
10.3390/bdcc8100136
10.3390/app13169120
10.1109/ACCESS.2020.3042874
10.3390/jcp1030026
10.3390/app12115349
10.3390/s23073682
10.1080/10494820.2013.815221
10.3390/electronics10080900
10.1016/j.rcim.2018.10.001
10.1007/s10922-020-09545-w
10.3390/bdcc4040026
10.3390/electronics13061147
10.3390/s24206740
10.3390/bdcc7020112
10.1080/00207543.2018.1443229
10.1016/j.compind.2021.103412
10.1016/j.cie.2024.110522
10.1109/TII.2022.3216009
10.1007/s00170-019-03941-6
10.1016/j.compind.2019.07.002
10.1007/s40436-015-0131-4
10.1016/j.procir.2018.03.061
10.3390/jmse9020209
10.3390/asi3040055
10.3390/app14114564
10.1016/j.jmsy.2020.10.017
10.1016/j.cie.2024.110478
10.1016/j.procir.2021.05.038
10.1016/j.rcim.2022.102357
10.1016/j.ejor.2022.09.028
10.3390/joitmc7020142
10.3390/s23187698
10.3390/app9234983
10.1080/21577323.2016.1214635
10.1007/978-981-16-1361-6
10.3390/technologies9020033
10.1016/j.autcon.2024.105582
10.1177/00187208221105135
10.1002/sys.21682
10.3390/app11062656
10.3390/bdcc7040163
10.1016/j.procir.2021.11.068
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/bdcc9050133
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2504-2289
ExternalDocumentID oai_doaj_org_article_e8c778ed42444f188e253c14f887fe40
A843280598
10_3390_bdcc9050133
GeographicLocations United States
Switzerland
Arkansas
GeographicLocations_xml – name: Switzerland
– name: Arkansas
– name: United States
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c391t-644d9590c7f74b621aeece4c49cd26984e46f7603e183b5d2a8f919cf67b4b463
IEDL.DBID 8FG
ISSN 2504-2289
IngestDate Wed Aug 27 01:14:09 EDT 2025
Fri Jul 25 09:38:28 EDT 2025
Wed Jun 18 17:00:56 EDT 2025
Tue Jun 17 03:40:46 EDT 2025
Tue Jul 01 04:57:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-644d9590c7f74b621aeece4c49cd26984e46f7603e183b5d2a8f919cf67b4b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3961-1963
0000-0002-4384-6837
OpenAccessLink https://www.proquest.com/docview/3211858244?pq-origsite=%requestingapplication%
PQID 3211858244
PQPubID 2061777
ParticipantIDs doaj_primary_oai_doaj_org_article_e8c778ed42444f188e253c14f887fe40
proquest_journals_3211858244
gale_infotracmisc_A843280598
gale_infotracacademiconefile_A843280598
crossref_primary_10_3390_bdcc9050133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Big data and cognitive computing
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Marino (ref_30) 2021; 127
ref_58
ref_13
ref_57
ref_12
Kim (ref_37) 2016; 4
ref_56
ref_11
ref_55
Tao (ref_20) 2019; 57
ref_54
ref_53
ref_52
Gualtieri (ref_63) 2024; 196
Eswaran (ref_10) 2023; 213
Akhmetov (ref_66) 2022; 19
Liu (ref_18) 2022; 77
Ghasemi (ref_15) 2022; 139
ref_19
Gattullo (ref_28) 2019; 56
Mourtzis (ref_50) 2019; 105
ref_59
Barata (ref_47) 2023; 26
ref_61
ref_60
Peres (ref_5) 2020; 8
Dietz (ref_46) 2021; 1
Liaskos (ref_68) 2020; 28
Rupprecht (ref_51) 2021; 104
Eswaran (ref_34) 2024; 196
Martins (ref_71) 2022; 81
ref_25
ref_23
Quandt (ref_45) 2018; 72
ref_67
ref_65
Sorko (ref_40) 2019; 31
ref_64
Wu (ref_16) 2024; 165
Masood (ref_29) 2020; 115
ref_27
ref_26
Alghamdi (ref_69) 2024; 5
Daling (ref_62) 2024; 66
Pujiono (ref_22) 2024; 4
Holm (ref_36) 2017; 34
ref_33
ref_32
ref_31
Sharma (ref_7) 2022; 49
Danielsson (ref_38) 2020; 20
ref_39
Gavish (ref_21) 2015; 23
Frigo (ref_43) 2016; 4
Fukuyama (ref_1) 2023; 307
ref_44
ref_42
ref_41
ref_3
ref_2
ref_49
Scheffer (ref_70) 2021; 100
Syberfeldt (ref_35) 2016; 41
ref_48
ref_9
Wang (ref_8) 2016; 4
ref_4
Devagiri (ref_24) 2022; 207
ref_6
Baroroh (ref_17) 2021; 61
References_xml – volume: 213
  start-page: 118983
  year: 2023
  ident: ref_10
  article-title: Augmented reality-based guidance in product assembly and maintenance/repair perspective: A state of the art review on challenges and opportunities
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118983
– ident: ref_64
  doi: 10.1145/3359997.3365689
– volume: 49
  start-page: 428
  year: 2022
  ident: ref_7
  article-title: Augmented reality—An important aspect of Industry 4.0
  publication-title: Ind. Robot
  doi: 10.1108/IR-09-2021-0204
– ident: ref_55
– ident: ref_25
  doi: 10.1145/3334480.3382889
– volume: 139
  start-page: 103661
  year: 2022
  ident: ref_15
  article-title: Deep learning-based object detection in augmented reality: A systematic review
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103661
– volume: 4
  start-page: 125
  year: 2016
  ident: ref_43
  article-title: Augmented reality in aerospace manufacturing: A review
  publication-title: J. Ind. Intell. Inf.
– volume: 207
  start-page: 118002
  year: 2022
  ident: ref_24
  article-title: Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges
  publication-title: Exper. Syst. Appl.
  doi: 10.1016/j.eswa.2022.118002
– ident: ref_27
  doi: 10.3390/app10124259
– volume: 41
  start-page: 346
  year: 2016
  ident: ref_35
  article-title: Dynamic operator instructions based on augmented reality and rule-based expert systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.12.113
– volume: 5
  start-page: 1026
  year: 2024
  ident: ref_69
  article-title: Synchronization Patterns for Digital Twin Systems
  publication-title: J. Appl. Data Sci.
  doi: 10.47738/jads.v5i3.267
– volume: 81
  start-page: 14749
  year: 2022
  ident: ref_71
  article-title: Augmented reality situated visualization in decision-making
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10971-4
– ident: ref_4
  doi: 10.3390/app13052766
– volume: 31
  start-page: 85
  year: 2019
  ident: ref_40
  article-title: Potentials of augmented reality in training
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2019.03.014
– ident: ref_61
– ident: ref_19
  doi: 10.3390/bdcc8100136
– ident: ref_67
  doi: 10.3390/app13169120
– volume: 8
  start-page: 220121
  year: 2020
  ident: ref_5
  article-title: Industrial artificial intelligence in industry 4.0—Systematic review, challenges and outlook
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3042874
– ident: ref_58
– volume: 1
  start-page: 519
  year: 2021
  ident: ref_46
  article-title: Augmented reality and the digital twin: State-of-the-art and perspectives for cybersecurity
  publication-title: J. Cybersecur. Priv.
  doi: 10.3390/jcp1030026
– ident: ref_48
  doi: 10.3390/app12115349
– ident: ref_23
  doi: 10.3390/s23073682
– ident: ref_31
– ident: ref_56
– ident: ref_52
– volume: 23
  start-page: 778
  year: 2015
  ident: ref_21
  article-title: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks
  publication-title: Interact. Learn. Environ.
  doi: 10.1080/10494820.2013.815221
– ident: ref_26
  doi: 10.3390/electronics10080900
– volume: 56
  start-page: 276
  year: 2019
  ident: ref_28
  article-title: Towards augmented reality manuals for industry 4.0: A methodology
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2018.10.001
– volume: 28
  start-page: 796
  year: 2020
  ident: ref_68
  article-title: Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-020-09545-w
– ident: ref_2
  doi: 10.3390/bdcc4040026
– ident: ref_12
  doi: 10.3390/electronics13061147
– ident: ref_39
  doi: 10.3390/s24206740
– ident: ref_41
  doi: 10.3390/bdcc7020112
– ident: ref_59
– volume: 57
  start-page: 3935
  year: 2019
  ident: ref_20
  article-title: Digital twin-driven product design framework
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1443229
– volume: 4
  start-page: 1679
  year: 2024
  ident: ref_22
  article-title: Augmented Reality (AR) and Virtual Reality (VR): Recent Developments and Applications in Various Industries
  publication-title: Innov. J. Soc. Sci. Res.
– ident: ref_53
– volume: 127
  start-page: 103412
  year: 2021
  ident: ref_30
  article-title: An augmented reality inspection tool to support workers in Industry 4.0 environments
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103412
– volume: 196
  start-page: 110522
  year: 2024
  ident: ref_34
  article-title: AR/VR assisted integrated framework of autonomous disassembly system for industrial products
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110522
– volume: 19
  start-page: 7966
  year: 2022
  ident: ref_66
  article-title: An augmented reality-based warning system for enhanced safety in industrial settings
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3216009
– volume: 105
  start-page: 3899
  year: 2019
  ident: ref_50
  article-title: Augmented reality application to support the assembly of highly customized products and to adapt to production re-scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03941-6
– volume: 115
  start-page: 103112
  year: 2020
  ident: ref_29
  article-title: Adopting augmented reality in the age of industrial digitalisation
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.07.002
– volume: 4
  start-page: 1
  year: 2016
  ident: ref_8
  article-title: A comprehensive survey of augmented reality assembly research
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-015-0131-4
– volume: 72
  start-page: 1130
  year: 2018
  ident: ref_45
  article-title: General requirements for industrial augmented reality applications
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.061
– ident: ref_3
  doi: 10.3390/jmse9020209
– ident: ref_14
  doi: 10.3390/asi3040055
– ident: ref_32
  doi: 10.3390/app14114564
– volume: 61
  start-page: 696
  year: 2021
  ident: ref_17
  article-title: Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.10.017
– volume: 196
  start-page: 110478
  year: 2024
  ident: ref_63
  article-title: A visual management and augmented-reality-based training module for the enhancement of short and long-term procedural knowledge retention in complex machinery setup
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110478
– volume: 100
  start-page: 816
  year: 2021
  ident: ref_70
  article-title: Augmented reality for IT/OT failures in maintenance operations of digitized trains: Current status, research challenges and future directions
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.05.038
– ident: ref_44
– volume: 77
  start-page: 102357
  year: 2022
  ident: ref_18
  article-title: Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in IoT-enabled manufacturing
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102357
– volume: 34
  start-page: 362
  year: 2017
  ident: ref_36
  article-title: Adaptive instructions to novice shop-floor operators using augmented reality
  publication-title: J. Ind. Prod. Eng.
– volume: 307
  start-page: 1360
  year: 2023
  ident: ref_1
  article-title: Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2022.09.028
– ident: ref_42
  doi: 10.3390/joitmc7020142
– ident: ref_6
– ident: ref_11
  doi: 10.3390/s23187698
– ident: ref_54
– volume: 20
  start-page: 100175
  year: 2020
  ident: ref_38
  article-title: Augmented reality smart glasses in industrial assembly: Current status and future challenges
  publication-title: J. Ind. Inf. Integr.
– ident: ref_65
  doi: 10.3390/app9234983
– volume: 4
  start-page: 253
  year: 2016
  ident: ref_37
  article-title: Augmented reality “smart glasses” in the workplace: Industry perspectives and challenges for worker safety and health
  publication-title: IIE Trans. Occup. Ergon. Hum. Factors
  doi: 10.1080/21577323.2016.1214635
– ident: ref_33
  doi: 10.1007/978-981-16-1361-6
– ident: ref_9
  doi: 10.3390/technologies9020033
– volume: 165
  start-page: 105582
  year: 2024
  ident: ref_16
  article-title: Using eye-tracking to measure worker situation awareness in augmented reality
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105582
– volume: 66
  start-page: 589
  year: 2024
  ident: ref_62
  article-title: Effects of augmented reality-, virtual reality-, and mixed reality-based training on objective performance measures and subjective evaluations in manual assembly tasks: A scoping review
  publication-title: Hum. Factors
  doi: 10.1177/00187208221105135
– volume: 26
  start-page: 715
  year: 2023
  ident: ref_47
  article-title: Mass customization and mass personalization meet at the crossroads of Industry 4.0: A case of augmented digital engineering
  publication-title: Syst. Eng.
  doi: 10.1002/sys.21682
– ident: ref_60
– ident: ref_57
– ident: ref_49
  doi: 10.3390/app11062656
– ident: ref_13
  doi: 10.3390/bdcc7040163
– volume: 104
  start-page: 405
  year: 2021
  ident: ref_51
  article-title: Adaptive spatial augmented reality for industrial site assembly
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.068
SSID ssj0002244611
Score 2.2965178
Snippet The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 133
SubjectTerms adaptive architecture
Adaptive systems
Analysis
Architecture
assistance
Augmented Reality
Cognitive load
Completion time
Customization
Digital twins
Efficiency
Ergonomics
Industrial applications
Industrial safety
industry
Industry 4.0
Modular design
Occupational safety
Predictive maintenance
Preventive maintenance
Productivity
Real time
Safety and security measures
security
training
User experience
Virtual reality
Work environment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxUxFA3SlRtRqvi0liwKrsYmk5uv5SiWIqigFroQQj5uRBdjaV8X_ntvMlN5byFu3M5kmHDO3OTcSXIuYydo_YimiMGLJAaQUQ1eeTNYr3U1BVJM7dfA-w_m_ALeXerLnVJfbU_YYg-8AHeKLlvrsLQDWVClczhqlSVUio6K0LN14cVOMvWjm7pQmiPlciBPUV5_mkrOXmhSPGpvCupO_X8bj_skc_aQPVjVIZ-WXj1i93A-ZF-nEq_aqMSn22_dQ7PwT9j1M5921gE46U_-kVoSdTQhcUK-iUNilce58M-xIj3xfeZruY5fHF6Jx-zi7O2XN-fDWhRhyMrL7UD6pXjtRbbVQjKjjIgZIYPPZTTeAYKp1giFFKxJlzG66qXP1dgECYx6wg7mnzM-ZVynhM5l3yzXIWEiKQcpe5tltanGuGEndziFq8X7IlDO0OAMO3Bu2OuG4Z8mzbC6XyAaw0pj-BeNG_ayMRBaWG2vY47r6QDqaTOoCpMDNTrSgm7DjvZaEqZ5__Ydh2ENx5ugKM112tG7n_2Pzj5n98dWBrjvezxiB9vrW3xB2mSbjvtn-BsabeA-
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive Augmented Reality Architecture for Optimising Assistance and Safety in Industry 4.0
URI https://www.proquest.com/docview/3211858244
https://doaj.org/article/e8c778ed42444f188e253c14f887fe40
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEG40uYggPnE1Ln0IeBozPf0-yUSyBsEo0UAOQtOP6uBldt1sDvn3qe6djbsHvU7XwFDPr2q6qgg5BG07UKltbBvaRjDPG8utarSVMqskgg-lNPD1TJ1eiC-X8nIsuF2P1yo3PrE66jSPpUZ-xDFTMdJgNPq4-NOUrVHl7-q4QuMh2WcYaYqem9nn-xoLhiehGFu35XHM7o9CitG2EnEP3wlEdV7_v7xyDTWzp-TJiBFpvxbqM_IAhufkcb9V8n9BfvXJL4qrov3NVR2smeg5VFBNtykpglL6DSlRnhilKIqjIEYUNfVDoj98Bnzj90DHHR63VHxoX5KL2cnPT6fNuCmhidyyVYOgJllp26izFkF1zANEEFHYmDpljQChslYtB7TgIFPnTbbMxqx0EEEo_orsDfMBXhMqQwBjoi1z2EWAgPhOhGh1ZFmH7P2EHG7Y5hbrgRgOE4nCXbfF3Qk5Liy9JylTrOuD-fLKjUbhwEStDaTSbCcyMwY6ySMTGT1fBtFOyPsiEFdsbbX00Y8tA_ilZWqV643gnUGAaCbkYIcSeRp3jzcidaONXru_GvXm_8dvyaOubP2t1xwPyN5qeQPvEIqswrTq25TsH5-cfT-f1oT-Dh3037k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9ABCQjxFSoE9FHEytb3rfRwQcqFVStuASiv1gLTss-LipGkq1D_Fb2TWsUtygFuv3rFlzXw78-1jZgC2glBl4D7PVG7zjBWGZooqnglVVZF7Zo1NWwNHYz46ZZ_PqrM1-N3nwqRrlb1PbB21n7i0R75NcaUiK4nR6MP0Iktdo9Lpat9CYwGLg3D9C5dsl-_3P6F935Tl3u7Jx1HWdRXIHFXFPEMC4FWlcieiYJaXhQnBBeaYcr7kSrLAeBQ8pwHRbitfGhlVoVzkwjLLOMXv3oF1ljJaB7C-szv-enyzq4MBkfGiWCQCUqrybeudU3mFTIuuhL62Q8C_4kAb3PYewoOOlZJ6AaNHsBaax3C_XjpkeALfa2-myTmS-uq8LeXpyXFoaTxZliRIg8kXlEQEYVwkCIDEURFcxDSefDMx4Bs_G9J1Dbkm7F3-FE5vRYvPYNBMmvAcSGVtkNKpVPmd2WCRUTLrlHBFFDYaM4StXm16uijBoXHpkrSrl7Q7hJ2k0huRVDe7fTCZnetuGuognRAy-JTex2IhZSgr6goW0dfGwPIhvE0G0Wl2z2fGmS5JAf801cnStWS0lEhJ5RA2VyRRp251uDep7rzCpf6L4Y3_D7-Gu6OTo0N9uD8-eAH3ytRzuL1kuQmD-ewqvEQiNLevOvQR-HHbgP8DBAobOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiGEhHiKhQI-FHEKm9iOHweEAmVpKRQEVOqhkvGz4pJdtluh_jV-HeNsUnYPcOs1nkTR-PPMN7ZnBmA7Sk2jCGWhS1cWvLKs0EyLQuq6TiJwZ13eGvh4IHYP-fuj-mgDfg-5MPla5WATO0Mdpj7vkY8ZRiqqVuiNxqm_FvF5Z_Jq9rPIHaTySevQTmMJkf14_gvDt9OXezs4188onbz99ma36DsMFJ7palEgGQi61qWXSXInaGVj9JF7rn2gQiseuUhSlCwi8l0dqFVJV9onIR13XDD87hW4KpnUOfBTk3cX-zvoGrmoqmVKIGO6HLvgvS5r5FxszQl2vQL-5RE6Nze5BTd7fkqaJaBuw0Zs78CNZuW44S4cN8HOspkkzdlJV9QzkC-xI_RkVZIgISafUBKxhB6SIBQyW0WYEdsG8tWmiG_8aEnfP-Sc8BflPTi8FB3eh8122sYHQGrnolJe5xrw3EWH3JI7r6WvknTJ2hFsD2ozs2UxDoNBTNauWdHuCF5nlV6I5Ara3YPp_MT0C9JE5aVUMeREP54qpSKtma94QqubIi9H8DxPiMnrfDG33vbpCvinuWKWaRRnVCE5VSPYWpNEnfr14WFKTW8fTs1fND_8__BTuIYwNx_2DvYfwXWamw93ty23YHMxP4uPkREt3JMOegS-XzbW_wAi0R4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Augmented+Reality+Architecture+for+Optimising+Assistance+and+Safety+in+Industry+4.0&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Morales+M%C3%A9ndez+Gin%C3%A9s&rft.au=del+Cerro+Vel%C3%A1zquez+Francisco&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2504-2289&rft.volume=9&rft.issue=5&rft.spage=133&rft_id=info:doi/10.3390%2Fbdcc9050133&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon