Adaptive Augmented Reality Architecture for Optimising Assistance and Safety in Industry 4.0
The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as th...
Saved in:
Published in | Big data and cognitive computing Vol. 9; no. 5; p. 133 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-2289 2504-2289 |
DOI | 10.3390/bdcc9050133 |
Cover
Abstract | The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as the need for dynamic personalisation of instructions based on operator profiles and the mitigation of technical and cognitive barriers. Architecture integrates theoretical modelling, modular design, and real-time adaptability to match instruction complexity with user expertise and environmental conditions. A working prototype was implemented using Microsoft HoloLens 2, Unity 3D, and Vuforia and validated in a controlled industrial scenario involving predictive maintenance and assembly tasks. The experimental results demonstrated statistically significant enhancements in task completion time, error rates, perceived cognitive load, operational efficiency, and safety indicators in comparison with conventional methods. The findings underscore the system’s capacity to enhance both performance and consistency while concomitantly bolstering risk mitigation in intricate operational settings. This study proposes a scalable and modular AR framework with built-in safety and adaptability mechanisms, demonstrating practical benefits for human–machine interaction in Industry 4.0. The present study is subject to certain limitations, including validation in a simulated environment, which limits the direct extrapolation of the results to real industrial scenarios; further evaluation in various operational contexts is required to verify the overall scalability and applicability of the proposed system. It is recommended that future research studies explore the long-term ergonomics, scalability, and integration of emerging technologies in decision support within adaptive AR systems. |
---|---|
AbstractList | The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as the need for dynamic personalisation of instructions based on operator profiles and the mitigation of technical and cognitive barriers. Architecture integrates theoretical modelling, modular design, and real-time adaptability to match instruction complexity with user expertise and environmental conditions. A working prototype was implemented using Microsoft HoloLens 2, Unity 3D, and Vuforia and validated in a controlled industrial scenario involving predictive maintenance and assembly tasks. The experimental results demonstrated statistically significant enhancements in task completion time, error rates, perceived cognitive load, operational efficiency, and safety indicators in comparison with conventional methods. The findings underscore the system’s capacity to enhance both performance and consistency while concomitantly bolstering risk mitigation in intricate operational settings. This study proposes a scalable and modular AR framework with built-in safety and adaptability mechanisms, demonstrating practical benefits for human–machine interaction in Industry 4.0. The present study is subject to certain limitations, including validation in a simulated environment, which limits the direct extrapolation of the results to real industrial scenarios; further evaluation in various operational contexts is required to verify the overall scalability and applicability of the proposed system. It is recommended that future research studies explore the long-term ergonomics, scalability, and integration of emerging technologies in decision support within adaptive AR systems. |
Audience | Academic |
Author | del Cerro Velázquez, Francisco Morales Méndez, Ginés |
Author_xml | – sequence: 1 givenname: Ginés orcidid: 0000-0002-4384-6837 surname: Morales Méndez fullname: Morales Méndez, Ginés – sequence: 2 givenname: Francisco orcidid: 0000-0002-3961-1963 surname: del Cerro Velázquez fullname: del Cerro Velázquez, Francisco |
BookMark | eNptUU2LFDEQbWQF13VP_oGAR5nZfHV3cmwWXQcWFvy4CSFdqYwZZpIxSQvz742OrCtIHap4vPeoqveyu4gpYte9ZnQthKY3swPQtKdMiGfdJe-pXHGu9MWT-UV3XcqOUsq5lANjl93XydljDT-QTMv2gLGiIx_R7kM9kSnDt1AR6pKR-JTJQ2MeQglxS6ZSQqk2AhIbHflkPTZFiGQT3VJqPhG5pq-6597uC17_6Vfdl_fvPt9-WN0_3G1up_sVCM3qapDS6V5TGP0o54EziwgoQWpwfNBKohz8OFCBTIm5d9wqr5kGP4yznOUgrrrN2dcluzPHHA42n0yywfwGUt4am2uAPRpUMI4KnWwPkJ4phbwXwKRXavQoafN6c_Y65vR9wVLNLi05tvWN4IypXjXlX9bWNtMQfarZQvsNmElJwRXttWqs9X9YrRweArT0fGj4P4K3ZwHkVEpG_3gMo-ZXyOZJyOInoKmYoQ |
Cites_doi | 10.1016/j.eswa.2022.118983 10.1145/3359997.3365689 10.1108/IR-09-2021-0204 10.1145/3334480.3382889 10.1016/j.compind.2022.103661 10.1016/j.eswa.2022.118002 10.3390/app10124259 10.1016/j.procir.2015.12.113 10.47738/jads.v5i3.267 10.1007/s11042-021-10971-4 10.3390/app13052766 10.1016/j.promfg.2019.03.014 10.3390/bdcc8100136 10.3390/app13169120 10.1109/ACCESS.2020.3042874 10.3390/jcp1030026 10.3390/app12115349 10.3390/s23073682 10.1080/10494820.2013.815221 10.3390/electronics10080900 10.1016/j.rcim.2018.10.001 10.1007/s10922-020-09545-w 10.3390/bdcc4040026 10.3390/electronics13061147 10.3390/s24206740 10.3390/bdcc7020112 10.1080/00207543.2018.1443229 10.1016/j.compind.2021.103412 10.1016/j.cie.2024.110522 10.1109/TII.2022.3216009 10.1007/s00170-019-03941-6 10.1016/j.compind.2019.07.002 10.1007/s40436-015-0131-4 10.1016/j.procir.2018.03.061 10.3390/jmse9020209 10.3390/asi3040055 10.3390/app14114564 10.1016/j.jmsy.2020.10.017 10.1016/j.cie.2024.110478 10.1016/j.procir.2021.05.038 10.1016/j.rcim.2022.102357 10.1016/j.ejor.2022.09.028 10.3390/joitmc7020142 10.3390/s23187698 10.3390/app9234983 10.1080/21577323.2016.1214635 10.1007/978-981-16-1361-6 10.3390/technologies9020033 10.1016/j.autcon.2024.105582 10.1177/00187208221105135 10.1002/sys.21682 10.3390/app11062656 10.3390/bdcc7040163 10.1016/j.procir.2021.11.068 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/bdcc9050133 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture |
EISSN | 2504-2289 |
ExternalDocumentID | oai_doaj_org_article_e8c778ed42444f188e253c14f887fe40 A843280598 10_3390_bdcc9050133 |
GeographicLocations | United States Switzerland Arkansas |
GeographicLocations_xml | – name: Switzerland – name: Arkansas – name: United States |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC ABUWG AZQEC COVID DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c391t-644d9590c7f74b621aeece4c49cd26984e46f7603e183b5d2a8f919cf67b4b463 |
IEDL.DBID | 8FG |
ISSN | 2504-2289 |
IngestDate | Wed Aug 27 01:14:09 EDT 2025 Fri Jul 25 09:38:28 EDT 2025 Wed Jun 18 17:00:56 EDT 2025 Tue Jun 17 03:40:46 EDT 2025 Tue Jul 01 04:57:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-644d9590c7f74b621aeece4c49cd26984e46f7603e183b5d2a8f919cf67b4b463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3961-1963 0000-0002-4384-6837 |
OpenAccessLink | https://www.proquest.com/docview/3211858244?pq-origsite=%requestingapplication% |
PQID | 3211858244 |
PQPubID | 2061777 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8c778ed42444f188e253c14f887fe40 proquest_journals_3211858244 gale_infotracmisc_A843280598 gale_infotracacademiconefile_A843280598 crossref_primary_10_3390_bdcc9050133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Big data and cognitive computing |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Marino (ref_30) 2021; 127 ref_58 ref_13 ref_57 ref_12 Kim (ref_37) 2016; 4 ref_56 ref_11 ref_55 Tao (ref_20) 2019; 57 ref_54 ref_53 ref_52 Gualtieri (ref_63) 2024; 196 Eswaran (ref_10) 2023; 213 Akhmetov (ref_66) 2022; 19 Liu (ref_18) 2022; 77 Ghasemi (ref_15) 2022; 139 ref_19 Gattullo (ref_28) 2019; 56 Mourtzis (ref_50) 2019; 105 ref_59 Barata (ref_47) 2023; 26 ref_61 ref_60 Peres (ref_5) 2020; 8 Dietz (ref_46) 2021; 1 Liaskos (ref_68) 2020; 28 Rupprecht (ref_51) 2021; 104 Eswaran (ref_34) 2024; 196 Martins (ref_71) 2022; 81 ref_25 ref_23 Quandt (ref_45) 2018; 72 ref_67 ref_65 Sorko (ref_40) 2019; 31 ref_64 Wu (ref_16) 2024; 165 Masood (ref_29) 2020; 115 ref_27 ref_26 Alghamdi (ref_69) 2024; 5 Daling (ref_62) 2024; 66 Pujiono (ref_22) 2024; 4 Holm (ref_36) 2017; 34 ref_33 ref_32 ref_31 Sharma (ref_7) 2022; 49 Danielsson (ref_38) 2020; 20 ref_39 Gavish (ref_21) 2015; 23 Frigo (ref_43) 2016; 4 Fukuyama (ref_1) 2023; 307 ref_44 ref_42 ref_41 ref_3 ref_2 ref_49 Scheffer (ref_70) 2021; 100 Syberfeldt (ref_35) 2016; 41 ref_48 ref_9 Wang (ref_8) 2016; 4 ref_4 Devagiri (ref_24) 2022; 207 ref_6 Baroroh (ref_17) 2021; 61 |
References_xml | – volume: 213 start-page: 118983 year: 2023 ident: ref_10 article-title: Augmented reality-based guidance in product assembly and maintenance/repair perspective: A state of the art review on challenges and opportunities publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118983 – ident: ref_64 doi: 10.1145/3359997.3365689 – volume: 49 start-page: 428 year: 2022 ident: ref_7 article-title: Augmented reality—An important aspect of Industry 4.0 publication-title: Ind. Robot doi: 10.1108/IR-09-2021-0204 – ident: ref_55 – ident: ref_25 doi: 10.1145/3334480.3382889 – volume: 139 start-page: 103661 year: 2022 ident: ref_15 article-title: Deep learning-based object detection in augmented reality: A systematic review publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103661 – volume: 4 start-page: 125 year: 2016 ident: ref_43 article-title: Augmented reality in aerospace manufacturing: A review publication-title: J. Ind. Intell. Inf. – volume: 207 start-page: 118002 year: 2022 ident: ref_24 article-title: Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges publication-title: Exper. Syst. Appl. doi: 10.1016/j.eswa.2022.118002 – ident: ref_27 doi: 10.3390/app10124259 – volume: 41 start-page: 346 year: 2016 ident: ref_35 article-title: Dynamic operator instructions based on augmented reality and rule-based expert systems publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.12.113 – volume: 5 start-page: 1026 year: 2024 ident: ref_69 article-title: Synchronization Patterns for Digital Twin Systems publication-title: J. Appl. Data Sci. doi: 10.47738/jads.v5i3.267 – volume: 81 start-page: 14749 year: 2022 ident: ref_71 article-title: Augmented reality situated visualization in decision-making publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10971-4 – ident: ref_4 doi: 10.3390/app13052766 – volume: 31 start-page: 85 year: 2019 ident: ref_40 article-title: Potentials of augmented reality in training publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.03.014 – ident: ref_61 – ident: ref_19 doi: 10.3390/bdcc8100136 – ident: ref_67 doi: 10.3390/app13169120 – volume: 8 start-page: 220121 year: 2020 ident: ref_5 article-title: Industrial artificial intelligence in industry 4.0—Systematic review, challenges and outlook publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3042874 – ident: ref_58 – volume: 1 start-page: 519 year: 2021 ident: ref_46 article-title: Augmented reality and the digital twin: State-of-the-art and perspectives for cybersecurity publication-title: J. Cybersecur. Priv. doi: 10.3390/jcp1030026 – ident: ref_48 doi: 10.3390/app12115349 – ident: ref_23 doi: 10.3390/s23073682 – ident: ref_31 – ident: ref_56 – ident: ref_52 – volume: 23 start-page: 778 year: 2015 ident: ref_21 article-title: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks publication-title: Interact. Learn. Environ. doi: 10.1080/10494820.2013.815221 – ident: ref_26 doi: 10.3390/electronics10080900 – volume: 56 start-page: 276 year: 2019 ident: ref_28 article-title: Towards augmented reality manuals for industry 4.0: A methodology publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2018.10.001 – volume: 28 start-page: 796 year: 2020 ident: ref_68 article-title: Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-020-09545-w – ident: ref_2 doi: 10.3390/bdcc4040026 – ident: ref_12 doi: 10.3390/electronics13061147 – ident: ref_39 doi: 10.3390/s24206740 – ident: ref_41 doi: 10.3390/bdcc7020112 – ident: ref_59 – volume: 57 start-page: 3935 year: 2019 ident: ref_20 article-title: Digital twin-driven product design framework publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1443229 – volume: 4 start-page: 1679 year: 2024 ident: ref_22 article-title: Augmented Reality (AR) and Virtual Reality (VR): Recent Developments and Applications in Various Industries publication-title: Innov. J. Soc. Sci. Res. – ident: ref_53 – volume: 127 start-page: 103412 year: 2021 ident: ref_30 article-title: An augmented reality inspection tool to support workers in Industry 4.0 environments publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103412 – volume: 196 start-page: 110522 year: 2024 ident: ref_34 article-title: AR/VR assisted integrated framework of autonomous disassembly system for industrial products publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110522 – volume: 19 start-page: 7966 year: 2022 ident: ref_66 article-title: An augmented reality-based warning system for enhanced safety in industrial settings publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3216009 – volume: 105 start-page: 3899 year: 2019 ident: ref_50 article-title: Augmented reality application to support the assembly of highly customized products and to adapt to production re-scheduling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-03941-6 – volume: 115 start-page: 103112 year: 2020 ident: ref_29 article-title: Adopting augmented reality in the age of industrial digitalisation publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.07.002 – volume: 4 start-page: 1 year: 2016 ident: ref_8 article-title: A comprehensive survey of augmented reality assembly research publication-title: Adv. Manuf. doi: 10.1007/s40436-015-0131-4 – volume: 72 start-page: 1130 year: 2018 ident: ref_45 article-title: General requirements for industrial augmented reality applications publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.061 – ident: ref_3 doi: 10.3390/jmse9020209 – ident: ref_14 doi: 10.3390/asi3040055 – ident: ref_32 doi: 10.3390/app14114564 – volume: 61 start-page: 696 year: 2021 ident: ref_17 article-title: Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.10.017 – volume: 196 start-page: 110478 year: 2024 ident: ref_63 article-title: A visual management and augmented-reality-based training module for the enhancement of short and long-term procedural knowledge retention in complex machinery setup publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110478 – volume: 100 start-page: 816 year: 2021 ident: ref_70 article-title: Augmented reality for IT/OT failures in maintenance operations of digitized trains: Current status, research challenges and future directions publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.05.038 – ident: ref_44 – volume: 77 start-page: 102357 year: 2022 ident: ref_18 article-title: Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in IoT-enabled manufacturing publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102357 – volume: 34 start-page: 362 year: 2017 ident: ref_36 article-title: Adaptive instructions to novice shop-floor operators using augmented reality publication-title: J. Ind. Prod. Eng. – volume: 307 start-page: 1360 year: 2023 ident: ref_1 article-title: Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2022.09.028 – ident: ref_42 doi: 10.3390/joitmc7020142 – ident: ref_6 – ident: ref_11 doi: 10.3390/s23187698 – ident: ref_54 – volume: 20 start-page: 100175 year: 2020 ident: ref_38 article-title: Augmented reality smart glasses in industrial assembly: Current status and future challenges publication-title: J. Ind. Inf. Integr. – ident: ref_65 doi: 10.3390/app9234983 – volume: 4 start-page: 253 year: 2016 ident: ref_37 article-title: Augmented reality “smart glasses” in the workplace: Industry perspectives and challenges for worker safety and health publication-title: IIE Trans. Occup. Ergon. Hum. Factors doi: 10.1080/21577323.2016.1214635 – ident: ref_33 doi: 10.1007/978-981-16-1361-6 – ident: ref_9 doi: 10.3390/technologies9020033 – volume: 165 start-page: 105582 year: 2024 ident: ref_16 article-title: Using eye-tracking to measure worker situation awareness in augmented reality publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105582 – volume: 66 start-page: 589 year: 2024 ident: ref_62 article-title: Effects of augmented reality-, virtual reality-, and mixed reality-based training on objective performance measures and subjective evaluations in manual assembly tasks: A scoping review publication-title: Hum. Factors doi: 10.1177/00187208221105135 – volume: 26 start-page: 715 year: 2023 ident: ref_47 article-title: Mass customization and mass personalization meet at the crossroads of Industry 4.0: A case of augmented digital engineering publication-title: Syst. Eng. doi: 10.1002/sys.21682 – ident: ref_60 – ident: ref_57 – ident: ref_49 doi: 10.3390/app11062656 – ident: ref_13 doi: 10.3390/bdcc7040163 – volume: 104 start-page: 405 year: 2021 ident: ref_51 article-title: Adaptive spatial augmented reality for industrial site assembly publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.11.068 |
SSID | ssj0002244611 |
Score | 2.2965178 |
Snippet | The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 133 |
SubjectTerms | adaptive architecture Adaptive systems Analysis Architecture assistance Augmented Reality Cognitive load Completion time Customization Digital twins Efficiency Ergonomics Industrial applications Industrial safety industry Industry 4.0 Modular design Occupational safety Predictive maintenance Preventive maintenance Productivity Real time Safety and security measures security training User experience Virtual reality Work environment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxUxFA3SlRtRqvi0liwKrsYmk5uv5SiWIqigFroQQj5uRBdjaV8X_ntvMlN5byFu3M5kmHDO3OTcSXIuYydo_YimiMGLJAaQUQ1eeTNYr3U1BVJM7dfA-w_m_ALeXerLnVJfbU_YYg-8AHeKLlvrsLQDWVClczhqlSVUio6K0LN14cVOMvWjm7pQmiPlciBPUV5_mkrOXmhSPGpvCupO_X8bj_skc_aQPVjVIZ-WXj1i93A-ZF-nEq_aqMSn22_dQ7PwT9j1M5921gE46U_-kVoSdTQhcUK-iUNilce58M-xIj3xfeZruY5fHF6Jx-zi7O2XN-fDWhRhyMrL7UD6pXjtRbbVQjKjjIgZIYPPZTTeAYKp1giFFKxJlzG66qXP1dgECYx6wg7mnzM-ZVynhM5l3yzXIWEiKQcpe5tltanGuGEndziFq8X7IlDO0OAMO3Bu2OuG4Z8mzbC6XyAaw0pj-BeNG_ayMRBaWG2vY47r6QDqaTOoCpMDNTrSgm7DjvZaEqZ5__Ydh2ENx5ugKM112tG7n_2Pzj5n98dWBrjvezxiB9vrW3xB2mSbjvtn-BsabeA- priority: 102 providerName: Directory of Open Access Journals |
Title | Adaptive Augmented Reality Architecture for Optimising Assistance and Safety in Industry 4.0 |
URI | https://www.proquest.com/docview/3211858244 https://doaj.org/article/e8c778ed42444f188e253c14f887fe40 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEG40uYggPnE1Ln0IeBozPf0-yUSyBsEo0UAOQtOP6uBldt1sDvn3qe6djbsHvU7XwFDPr2q6qgg5BG07UKltbBvaRjDPG8utarSVMqskgg-lNPD1TJ1eiC-X8nIsuF2P1yo3PrE66jSPpUZ-xDFTMdJgNPq4-NOUrVHl7-q4QuMh2WcYaYqem9nn-xoLhiehGFu35XHM7o9CitG2EnEP3wlEdV7_v7xyDTWzp-TJiBFpvxbqM_IAhufkcb9V8n9BfvXJL4qrov3NVR2smeg5VFBNtykpglL6DSlRnhilKIqjIEYUNfVDoj98Bnzj90DHHR63VHxoX5KL2cnPT6fNuCmhidyyVYOgJllp26izFkF1zANEEFHYmDpljQChslYtB7TgIFPnTbbMxqx0EEEo_orsDfMBXhMqQwBjoi1z2EWAgPhOhGh1ZFmH7P2EHG7Y5hbrgRgOE4nCXbfF3Qk5Liy9JylTrOuD-fLKjUbhwEStDaTSbCcyMwY6ySMTGT1fBtFOyPsiEFdsbbX00Y8tA_ilZWqV643gnUGAaCbkYIcSeRp3jzcidaONXru_GvXm_8dvyaOubP2t1xwPyN5qeQPvEIqswrTq25TsH5-cfT-f1oT-Dh3037k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9ABCQjxFSoE9FHEytb3rfRwQcqFVStuASiv1gLTss-LipGkq1D_Fb2TWsUtygFuv3rFlzXw78-1jZgC2glBl4D7PVG7zjBWGZooqnglVVZF7Zo1NWwNHYz46ZZ_PqrM1-N3nwqRrlb1PbB21n7i0R75NcaUiK4nR6MP0Iktdo9Lpat9CYwGLg3D9C5dsl-_3P6F935Tl3u7Jx1HWdRXIHFXFPEMC4FWlcieiYJaXhQnBBeaYcr7kSrLAeBQ8pwHRbitfGhlVoVzkwjLLOMXv3oF1ljJaB7C-szv-enyzq4MBkfGiWCQCUqrybeudU3mFTIuuhL62Q8C_4kAb3PYewoOOlZJ6AaNHsBaax3C_XjpkeALfa2-myTmS-uq8LeXpyXFoaTxZliRIg8kXlEQEYVwkCIDEURFcxDSefDMx4Bs_G9J1Dbkm7F3-FE5vRYvPYNBMmvAcSGVtkNKpVPmd2WCRUTLrlHBFFDYaM4StXm16uijBoXHpkrSrl7Q7hJ2k0huRVDe7fTCZnetuGuognRAy-JTex2IhZSgr6goW0dfGwPIhvE0G0Wl2z2fGmS5JAf801cnStWS0lEhJ5RA2VyRRp251uDep7rzCpf6L4Y3_D7-Gu6OTo0N9uD8-eAH3ytRzuL1kuQmD-ewqvEQiNLevOvQR-HHbgP8DBAobOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiGEhHiKhQI-FHEKm9iOHweEAmVpKRQEVOqhkvGz4pJdtluh_jV-HeNsUnYPcOs1nkTR-PPMN7ZnBmA7Sk2jCGWhS1cWvLKs0EyLQuq6TiJwZ13eGvh4IHYP-fuj-mgDfg-5MPla5WATO0Mdpj7vkY8ZRiqqVuiNxqm_FvF5Z_Jq9rPIHaTySevQTmMJkf14_gvDt9OXezs4188onbz99ma36DsMFJ7palEgGQi61qWXSXInaGVj9JF7rn2gQiseuUhSlCwi8l0dqFVJV9onIR13XDD87hW4KpnUOfBTk3cX-zvoGrmoqmVKIGO6HLvgvS5r5FxszQl2vQL-5RE6Nze5BTd7fkqaJaBuw0Zs78CNZuW44S4cN8HOspkkzdlJV9QzkC-xI_RkVZIgISafUBKxhB6SIBQyW0WYEdsG8tWmiG_8aEnfP-Sc8BflPTi8FB3eh8122sYHQGrnolJe5xrw3EWH3JI7r6WvknTJ2hFsD2ozs2UxDoNBTNauWdHuCF5nlV6I5Ara3YPp_MT0C9JE5aVUMeREP54qpSKtma94QqubIi9H8DxPiMnrfDG33vbpCvinuWKWaRRnVCE5VSPYWpNEnfr14WFKTW8fTs1fND_8__BTuIYwNx_2DvYfwXWamw93ty23YHMxP4uPkREt3JMOegS-XzbW_wAi0R4I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Augmented+Reality+Architecture+for+Optimising+Assistance+and+Safety+in+Industry+4.0&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Morales+M%C3%A9ndez+Gin%C3%A9s&rft.au=del+Cerro+Vel%C3%A1zquez+Francisco&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2504-2289&rft.volume=9&rft.issue=5&rft.spage=133&rft_id=info:doi/10.3390%2Fbdcc9050133&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |