Flexible parylene-thread bioprobe and the sewing method for in vivo neuronal recordings

•We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was proposed to enable a stress-free “catch” and “release” of the needle.•EMG signals were recorded from the mouse’s MG muscle.•Both the LFP and the...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 316; p. 127835
Main Authors Yamashita, Koji, Sawahata, Hirohito, Yamagiwa, Shota, Morikawa, Yusuke, Numano, Rika, Koida, Kowa, Kawano, Takeshi
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.08.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was proposed to enable a stress-free “catch” and “release” of the needle.•EMG signals were recorded from the mouse’s MG muscle.•Both the LFP and the spike were recorded from the mouse’s visual cortex in in vivo chronic recording. Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of conventional rigid needle-electrodes causes physical-stress to the tissue and induces the tissue damage, making the stable recording impossible. The approach reported here involves the use of a flexible “thread-like” device with microelectrodes that enables precise penetration and placement inside the brain tissue, with the help of a guiding microneedle, similar to sewing mechanism. A device-holding protocol, which uses a dissolvable material, is proposed to enable a stress-free “catch” and “release” of the needle. The device is placed in the primary visual cortex (V1) of an in vivo mouse and both the local field potentials (LFP) and the action potentials (spike) are recorded. For over a period of two weeks after device implantation, no remarkable decrease in mouse’s weight is observed. Therefore, we conclude that the proposed sewing thread-device enhances the recording of neuronal signals while minimizing the device–induced stress.
AbstractList •We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was proposed to enable a stress-free “catch” and “release” of the needle.•EMG signals were recorded from the mouse’s MG muscle.•Both the LFP and the spike were recorded from the mouse’s visual cortex in in vivo chronic recording. Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of conventional rigid needle-electrodes causes physical-stress to the tissue and induces the tissue damage, making the stable recording impossible. The approach reported here involves the use of a flexible “thread-like” device with microelectrodes that enables precise penetration and placement inside the brain tissue, with the help of a guiding microneedle, similar to sewing mechanism. A device-holding protocol, which uses a dissolvable material, is proposed to enable a stress-free “catch” and “release” of the needle. The device is placed in the primary visual cortex (V1) of an in vivo mouse and both the local field potentials (LFP) and the action potentials (spike) are recorded. For over a period of two weeks after device implantation, no remarkable decrease in mouse’s weight is observed. Therefore, we conclude that the proposed sewing thread-device enhances the recording of neuronal signals while minimizing the device–induced stress.
Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of conventional rigid needle-electrodes causes physical-stress to the tissue and induces the tissue damage, making the stable recording impossible. The approach reported here involves the use of a flexible "thread-like" device with microelectrodes that enables precise penetration and placement inside the brain tissue, with the help of a guiding microneedle, similar to sewing mechanism. A device-holding protocol, which uses a dissolvable material, is proposed to enable a stress-free "catch" and "release" of the needle. The device is placed in the primary visual cortex (V1) of an in vivo mouse and both the local field potentials (LFP) and the action potentials (spike) are recorded. For over a period of two weeks after device implantation, no remarkable decrease in mouse's weight is observed. Therefore, we conclude that the proposed sewing thread-device enhances the recording of neuronal signals while minimizing the device–induced stress.
ArticleNumber 127835
Author Numano, Rika
Yamashita, Koji
Koida, Kowa
Yamagiwa, Shota
Sawahata, Hirohito
Morikawa, Yusuke
Kawano, Takeshi
Author_xml – sequence: 1
  givenname: Koji
  surname: Yamashita
  fullname: Yamashita, Koji
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
– sequence: 2
  givenname: Hirohito
  surname: Sawahata
  fullname: Sawahata, Hirohito
  organization: National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, 312-8508, Japan
– sequence: 3
  givenname: Shota
  surname: Yamagiwa
  fullname: Yamagiwa, Shota
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
– sequence: 4
  givenname: Yusuke
  surname: Morikawa
  fullname: Morikawa, Yusuke
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
– sequence: 5
  givenname: Rika
  surname: Numano
  fullname: Numano, Rika
  organization: Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
– sequence: 6
  givenname: Kowa
  surname: Koida
  fullname: Koida, Kowa
  organization: Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
– sequence: 7
  givenname: Takeshi
  surname: Kawano
  fullname: Kawano, Takeshi
  email: kawano@ee.tut.ac.jp
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
BookMark eNp9kE9LAzEQxYNUsK1-AG8Bz1uzye5mF09SrAoFL4rHkD8Tm2Wb1GRb9dubUs-ehhneG977zdDEBw8IXZdkUZKyue0XyasFJTTvlLesPkPTsuWsYITzCZqSjtZFRUh9gWYp9YSQijVkit5XA3w7NQDeyfgzgIdi3ESQBisXdjEowNIbPG4AJ_hy_gNvYdwEg22I2Hl8cIeAPexj8HLAEXSIJqvSJTq3ckhw9Tfn6G318Lp8KtYvj8_L-3WhWVeORa1kCyXVVHesk8x0xHDdUslVY7iV2hBtW67ynTHFuG5qay201lKtVc01m6Ob09-c9XMPaRR92MecJQlaVVXDq5Y3WVWeVDqGlCJYsYtumwuLkogjP9GLzE8c-YkTv-y5O3kgxz84iCJpB16DcbnmKExw_7h_ATiKe94
CitedBy_id crossref_primary_10_1088_1361_6439_ac0513
crossref_primary_10_1073_pnas_2008233118
crossref_primary_10_1016_j_bios_2023_115605
crossref_primary_10_1039_D1LC01031J
crossref_primary_10_1002_adma_202101874
crossref_primary_10_1088_2053_1591_abb857
Cites_doi 10.1016/j.jneumeth.2009.06.026
10.1002/adfm.201203716
10.1038/srep35806
10.1098/rsif.2008.0071
10.1016/j.jneumeth.2005.08.015
10.1016/j.bios.2010.10.014
10.1016/S0165-0270(99)00113-2
10.1016/j.neuron.2014.12.035
10.1038/nnano.2015.115
10.1109/TBME.2004.826680
10.1126/science.1232437
10.1016/j.expneurol.2005.04.020
10.1126/sciadv.1601966
10.1088/0960-1317/25/12/125003
10.1063/1.4929402
10.1016/j.biomaterials.2007.03.024
10.1002/adhm.201701100
10.3389/fneng.2014.00010
10.1038/srep04868
10.1016/S0006-8993(03)03023-3
10.1109/10.141202
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Aug 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Aug 1, 2020
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2020.127835
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2020_127835
S0925400520301829
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c391t-5ba8e12c2c939a3d90d7c82a7b6d7facd0cf87bd9033b37c65fffe8ff2ccb57c3
IEDL.DBID AIKHN
ISSN 0925-4005
IngestDate Thu Oct 10 16:57:01 EDT 2024
Fri Dec 06 02:29:49 EST 2024
Fri Feb 23 02:50:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microelectrode
Brain
Flexible device
Neural recording
Muscle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-5ba8e12c2c939a3d90d7c82a7b6d7facd0cf87bd9033b37c65fffe8ff2ccb57c3
PQID 2444674876
PQPubID 2047454
ParticipantIDs proquest_journals_2444674876
crossref_primary_10_1016_j_snb_2020_127835
elsevier_sciencedirect_doi_10_1016_j_snb_2020_127835
PublicationCentury 2000
PublicationDate 2020-08-01
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Sohal, Jackson, Jackson, Clowry, Vassilevski, O’Neill, Baker (bib0050) 2014; 7
Fujishiro, Kaneko, Kawashima, Ishida, Kawano (bib0100) 2014; 4
Morikawa, Yamagiwa, Sawahata, Numano, Koida, Ishida, Kawano (bib0085) 2018; 7
Seymour, Kipke (bib0025) 2007; 28
Edell, Van Toi, Mcneil, Clark (bib0115) 1992; 39
Yamagiwa, Ishida, Kawano (bib0080) 2015; 107
Sawahata, Yamagiwa, Moriya, Dong, Oi, Ando, Numano, Ishida, Koida, Kawano (bib0105) 2016; 6
Vetter, Williams, Hetke, Nunamaker, Member, Kipke (bib0035) 2004; 51
Luan, Wei, Zhao, Siegel, Potnis, Tuppen, Lin, Kazmi, Fowler, Holloway, Dunn, Chitwood, Xie (bib0060) 2017; 3
Felix, Shah, George, Tolosa, Tooker, Sheth, Delima, Pannu (bib0070) 2012
Harimoto, Takei, Kawano, Ishihara, Kawashima, Kaneko, Ishida, Usui (bib0110) 2011; 26
Kim, McCall, Jung, Huang, Siuda, Li, Song, Song, Pao, Kim (bib0045) 2013; 340
Liu, Fu, Cheng, Hong, Zhou, Jin, Duvvuri, Jiang, Kruskal, Xie, Suo, Fang, Lieber (bib0055) 2015; 10
Oka, Shimono, Ogawa, Sugihara, Taketani (bib0095) 1999; 93
Polikov, Tresco, Reichert (bib0010) 2005; 148
Yamagiwa, Ishida, Kawano (bib0090) 2013
Tien, Wu, Tang-Schomer, Yoon, Omenetto, Kaplan (bib0075) 2013; 23
Lecomte, Castagnola, Descamps, Dahan, Blatché, Dinis, Leclerc, Egles, Bergaud (bib0065) 2015; 25
Biran, Martin, Tresco (bib0005) 2005; 195
Purcell, Thompson, Ludwig, Kipke (bib0040) 2009; 183
Zhong, Bellamkonda (bib0020) 2008; 5
Jeong, Shin, Il Park, Yu, Xu, Rogers (bib0030) 2015; 86
Szarowski, Andersen, Retterer, Spence, Isaacson, Craighead, Turner, Shain (bib0015) 2003; 983
Tien (10.1016/j.snb.2020.127835_bib0075) 2013; 23
Polikov (10.1016/j.snb.2020.127835_bib0010) 2005; 148
Liu (10.1016/j.snb.2020.127835_bib0055) 2015; 10
Zhong (10.1016/j.snb.2020.127835_bib0020) 2008; 5
Fujishiro (10.1016/j.snb.2020.127835_bib0100) 2014; 4
Vetter (10.1016/j.snb.2020.127835_bib0035) 2004; 51
Harimoto (10.1016/j.snb.2020.127835_bib0110) 2011; 26
Seymour (10.1016/j.snb.2020.127835_bib0025) 2007; 28
Felix (10.1016/j.snb.2020.127835_bib0070) 2012
Yamagiwa (10.1016/j.snb.2020.127835_bib0080) 2015; 107
Szarowski (10.1016/j.snb.2020.127835_bib0015) 2003; 983
Lecomte (10.1016/j.snb.2020.127835_bib0065) 2015; 25
Sawahata (10.1016/j.snb.2020.127835_bib0105) 2016; 6
Sohal (10.1016/j.snb.2020.127835_bib0050) 2014; 7
Morikawa (10.1016/j.snb.2020.127835_bib0085) 2018; 7
Biran (10.1016/j.snb.2020.127835_bib0005) 2005; 195
Yamagiwa (10.1016/j.snb.2020.127835_bib0090) 2013
Purcell (10.1016/j.snb.2020.127835_bib0040) 2009; 183
Luan (10.1016/j.snb.2020.127835_bib0060) 2017; 3
Jeong (10.1016/j.snb.2020.127835_bib0030) 2015; 86
Kim (10.1016/j.snb.2020.127835_bib0045) 2013; 340
Oka (10.1016/j.snb.2020.127835_bib0095) 1999; 93
Edell (10.1016/j.snb.2020.127835_bib0115) 1992; 39
References_xml – volume: 25
  year: 2015
  ident: bib0065
  article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery
  publication-title: J. Micromechanics Microengineering
  contributor:
    fullname: Bergaud
– volume: 983
  start-page: 23
  year: 2003
  end-page: 35
  ident: bib0015
  article-title: Brain responses to micro-machined silicon devices
  publication-title: Brain Res.
  contributor:
    fullname: Shain
– volume: 340
  start-page: 211
  year: 2013
  end-page: 216
  ident: bib0045
  article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
  publication-title: Science.
  contributor:
    fullname: Kim
– start-page: 480
  year: 2013
  end-page: 483
  ident: bib0090
  article-title: Self-curling and-sticking flexible substrate for ECoG electrode array, in: micro electro mechanical systems (MEMS), 2013
  publication-title: IEEE 26th International Conference On, IEEE
  contributor:
    fullname: Kawano
– volume: 4
  start-page: 4868
  year: 2014
  ident: bib0100
  article-title: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays
  publication-title: Sci. Rep.
  contributor:
    fullname: Kawano
– volume: 93
  start-page: 61
  year: 1999
  end-page: 67
  ident: bib0095
  article-title: A new planar multielectrode array for extracellular recording : application to hippocampal acute slice
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Taketani
– volume: 3
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0060
  article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration
  publication-title: Sci. Adv.
  contributor:
    fullname: Xie
– volume: 26
  start-page: 2368
  year: 2011
  end-page: 2375
  ident: bib0110
  article-title: Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina
  publication-title: Biosens. Bioelectron.
  contributor:
    fullname: Usui
– volume: 195
  start-page: 115
  year: 2005
  end-page: 126
  ident: bib0005
  article-title: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays
  publication-title: Exp. Neurol.
  contributor:
    fullname: Tresco
– volume: 28
  start-page: 3594
  year: 2007
  end-page: 3607
  ident: bib0025
  article-title: Neural probe design for reduced tissue encapsulation in CNS
  publication-title: Biomaterials.
  contributor:
    fullname: Kipke
– volume: 10
  start-page: 629
  year: 2015
  end-page: 635
  ident: bib0055
  article-title: Syringe-injectable electronics
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Lieber
– volume: 23
  start-page: 3185
  year: 2013
  end-page: 3193
  ident: bib0075
  article-title: Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Kaplan
– volume: 6
  start-page: 35806
  year: 2016
  ident: bib0105
  article-title: Single 5 μm diameter needle electrode block modules for unit recordings in vivo
  publication-title: Sci. Rep.
  contributor:
    fullname: Kawano
– volume: 5
  start-page: 957
  year: 2008
  end-page: 975
  ident: bib0020
  article-title: Biomaterials for the central nervous system
  publication-title: J. R. Soc. Interface
  contributor:
    fullname: Bellamkonda
– volume: 7
  start-page: 10
  year: 2014
  ident: bib0050
  article-title: The sinusoidal probe: a new approach to improve electrode longevity
  publication-title: Front. Neuroeng.
  contributor:
    fullname: Baker
– volume: 51
  start-page: 896
  year: 2004
  end-page: 904
  ident: bib0035
  article-title: Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Kipke
– volume: 183
  start-page: 149
  year: 2009
  end-page: 157
  ident: bib0040
  article-title: Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Kipke
– start-page: 871
  year: 2012
  end-page: 874
  ident: bib0070
  article-title: Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  contributor:
    fullname: Pannu
– volume: 7
  year: 2018
  ident: bib0085
  article-title: Ultrastretchable kirigami bioprobes
  publication-title: Adv. Healthc. Mater.
  contributor:
    fullname: Kawano
– volume: 148
  start-page: 1
  year: 2005
  end-page: 18
  ident: bib0010
  article-title: Response of brain tissue to chronically implanted neural electrodes
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Reichert
– volume: 39
  start-page: 635
  year: 1992
  end-page: 643
  ident: bib0115
  article-title: Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Clark
– volume: 86
  start-page: 175
  year: 2015
  end-page: 186
  ident: bib0030
  article-title: Soft materials in neuroengineering for hard problems in neuroscience
  publication-title: Neuron.
  contributor:
    fullname: Rogers
– volume: 107
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib0080
  article-title: Flexible parylene-film optical waveguide arrays
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Kawano
– volume: 183
  start-page: 149
  year: 2009
  ident: 10.1016/j.snb.2020.127835_bib0040
  article-title: Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.06.026
  contributor:
    fullname: Purcell
– volume: 23
  start-page: 3185
  year: 2013
  ident: 10.1016/j.snb.2020.127835_bib0075
  article-title: Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203716
  contributor:
    fullname: Tien
– volume: 6
  start-page: 35806
  year: 2016
  ident: 10.1016/j.snb.2020.127835_bib0105
  article-title: Single 5 μm diameter needle electrode block modules for unit recordings in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/srep35806
  contributor:
    fullname: Sawahata
– volume: 5
  start-page: 957
  year: 2008
  ident: 10.1016/j.snb.2020.127835_bib0020
  article-title: Biomaterials for the central nervous system
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2008.0071
  contributor:
    fullname: Zhong
– volume: 148
  start-page: 1
  year: 2005
  ident: 10.1016/j.snb.2020.127835_bib0010
  article-title: Response of brain tissue to chronically implanted neural electrodes
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.08.015
  contributor:
    fullname: Polikov
– start-page: 480
  year: 2013
  ident: 10.1016/j.snb.2020.127835_bib0090
  article-title: Self-curling and-sticking flexible substrate for ECoG electrode array, in: micro electro mechanical systems (MEMS), 2013
  publication-title: IEEE 26th International Conference On, IEEE
  contributor:
    fullname: Yamagiwa
– volume: 26
  start-page: 2368
  year: 2011
  ident: 10.1016/j.snb.2020.127835_bib0110
  article-title: Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.10.014
  contributor:
    fullname: Harimoto
– volume: 93
  start-page: 61
  year: 1999
  ident: 10.1016/j.snb.2020.127835_bib0095
  article-title: A new planar multielectrode array for extracellular recording : application to hippocampal acute slice
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(99)00113-2
  contributor:
    fullname: Oka
– volume: 86
  start-page: 175
  year: 2015
  ident: 10.1016/j.snb.2020.127835_bib0030
  article-title: Soft materials in neuroengineering for hard problems in neuroscience
  publication-title: Neuron.
  doi: 10.1016/j.neuron.2014.12.035
  contributor:
    fullname: Jeong
– volume: 10
  start-page: 629
  year: 2015
  ident: 10.1016/j.snb.2020.127835_bib0055
  article-title: Syringe-injectable electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.115
  contributor:
    fullname: Liu
– volume: 51
  start-page: 896
  year: 2004
  ident: 10.1016/j.snb.2020.127835_bib0035
  article-title: Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826680
  contributor:
    fullname: Vetter
– start-page: 871
  year: 2012
  ident: 10.1016/j.snb.2020.127835_bib0070
  article-title: Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  contributor:
    fullname: Felix
– volume: 340
  start-page: 211
  year: 2013
  ident: 10.1016/j.snb.2020.127835_bib0045
  article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
  publication-title: Science.
  doi: 10.1126/science.1232437
  contributor:
    fullname: Kim
– volume: 195
  start-page: 115
  year: 2005
  ident: 10.1016/j.snb.2020.127835_bib0005
  article-title: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2005.04.020
  contributor:
    fullname: Biran
– volume: 3
  start-page: 1
  year: 2017
  ident: 10.1016/j.snb.2020.127835_bib0060
  article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601966
  contributor:
    fullname: Luan
– volume: 25
  year: 2015
  ident: 10.1016/j.snb.2020.127835_bib0065
  article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/0960-1317/25/12/125003
  contributor:
    fullname: Lecomte
– volume: 107
  start-page: 1
  year: 2015
  ident: 10.1016/j.snb.2020.127835_bib0080
  article-title: Flexible parylene-film optical waveguide arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4929402
  contributor:
    fullname: Yamagiwa
– volume: 28
  start-page: 3594
  year: 2007
  ident: 10.1016/j.snb.2020.127835_bib0025
  article-title: Neural probe design for reduced tissue encapsulation in CNS
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2007.03.024
  contributor:
    fullname: Seymour
– volume: 7
  year: 2018
  ident: 10.1016/j.snb.2020.127835_bib0085
  article-title: Ultrastretchable kirigami bioprobes
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701100
  contributor:
    fullname: Morikawa
– volume: 7
  start-page: 10
  year: 2014
  ident: 10.1016/j.snb.2020.127835_bib0050
  article-title: The sinusoidal probe: a new approach to improve electrode longevity
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00010
  contributor:
    fullname: Sohal
– volume: 4
  start-page: 4868
  year: 2014
  ident: 10.1016/j.snb.2020.127835_bib0100
  article-title: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays
  publication-title: Sci. Rep.
  doi: 10.1038/srep04868
  contributor:
    fullname: Fujishiro
– volume: 983
  start-page: 23
  year: 2003
  ident: 10.1016/j.snb.2020.127835_bib0015
  article-title: Brain responses to micro-machined silicon devices
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(03)03023-3
  contributor:
    fullname: Szarowski
– volume: 39
  start-page: 635
  year: 1992
  ident: 10.1016/j.snb.2020.127835_bib0115
  article-title: Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.141202
  contributor:
    fullname: Edell
SSID ssj0004360
Score 2.4062393
Snippet •We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was...
Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 127835
SubjectTerms Brain
Electrophysiology
Flexible device
Implantation
In vivo methods and tests
Microelectrode
Microelectrodes
Muscle
Needles
Neural recording
Penetration
Recording
Sewing
Surgical implants
Tissues
Title Flexible parylene-thread bioprobe and the sewing method for in vivo neuronal recordings
URI https://dx.doi.org/10.1016/j.snb.2020.127835
https://www.proquest.com/docview/2444674876
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZ6LDAgTlEolQcmJNM0juN4rCqqAqILVHSzfEpBKK3aUMTCb8fOIQ4JBsZYcRJ9dt773vM7ADgfYCEIUwGSkSQooiJB0hlCyBIdaIYTIplPTr6bxpNZdDMn8wYY1bkwPqyykv2lTC-kdTXSr9DsL9O0fx8wZ9wUcRxukyYha4K2U0f-rLY9vL6dTD_TI3GRLOzvR35CfbhZhHmtM-msxNCXWfBOkN_U0w9BXWif8S7YqWgjHJZftgcaJtsH21-KCR6Ax7GvbSmfDVyK1ZtTJgblbqGEhjJd-L4xBopMQ0f44Nq8uimw7B4NHW2FaQY36WYBi_KW_k2l88a70Q_BbHz1MJqgqm0CUpgNckSkSMwgVKFimAmsWaCpSkJBZaypFUoHyiZUunGMJaYqJtZak1gbKiUJVfgItLJFZo4B9NZhSAyRSpCIGua4FPXJtRhHRhBCO-CiRosvy-oYvA4be-IOWu6h5SW0HRDVePJvS8yd9P5rWrfGnlf_15o7UlK0SaHxyf-eegq2_FUZytcFrXz1Ys4cvchlDzQv3we9ahN9AD_wztc
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh6YkEzTOI7jEVVUBdoutKKbZTuOFITSqi1FLPx2znmIhwQDq2Mn0efL-bvLPRC6aFOlmDAe0YFmJOAqIhoMIZKw2IsFjZgWLjl5MAx74-BuwiY11KlyYVxYZan7C52ea-typFWi2ZqlaevBE2Dc5HEcIKSRL9bQesCA_YJQX71_xnkENE8VdrOJm1792syDvBaZBhvRd0UWnAvkt8Pph5rOz57uDtouSSO-Lt5rF9Vstoe2vpQS3EePXVfZUj9bPFPzNzhKLFnCNqkY63TqusZYrLIYA93DC_sKS3DROxoDacVphlfpaorz4pbuSYXrxjnRD9C4ezPq9EjZNIEYKtpLwrSKbNs3vhFUKBoLL-Ym8hXXYcwTZWLPJBHXME6pptyELEkSGyWJb4xm3NBDVM-mmT1C2NmGPrNMG8UCbgUwKe5SaykNrGKMN9BlhZacFbUxZBU09iQBWumglQW0DRRUeMpvGyxBd_-1rFlhL8uvayGBkuRNUnh4_L-7nqON3mjQl_3b4f0J2nRXiqC-Jqov5y_2FIjGUp_lgvQBGy_PsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+parylene-thread+bioprobe+and+the+sewing+method+for+in+vivo+neuronal+recordings&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Yamashita%2C+Koji&rft.au=Sawahata%2C+Hirohito&rft.au=Yamagiwa%2C+Shota&rft.au=Morikawa%2C+Yusuke&rft.date=2020-08-01&rft.issn=0925-4005&rft.volume=316&rft.spage=127835&rft_id=info:doi/10.1016%2Fj.snb.2020.127835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2020_127835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon