Flexible parylene-thread bioprobe and the sewing method for in vivo neuronal recordings
•We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was proposed to enable a stress-free “catch” and “release” of the needle.•EMG signals were recorded from the mouse’s MG muscle.•Both the LFP and the...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 316; p. 127835 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.08.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was proposed to enable a stress-free “catch” and “release” of the needle.•EMG signals were recorded from the mouse’s MG muscle.•Both the LFP and the spike were recorded from the mouse’s visual cortex in in vivo chronic recording.
Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of conventional rigid needle-electrodes causes physical-stress to the tissue and induces the tissue damage, making the stable recording impossible. The approach reported here involves the use of a flexible “thread-like” device with microelectrodes that enables precise penetration and placement inside the brain tissue, with the help of a guiding microneedle, similar to sewing mechanism. A device-holding protocol, which uses a dissolvable material, is proposed to enable a stress-free “catch” and “release” of the needle. The device is placed in the primary visual cortex (V1) of an in vivo mouse and both the local field potentials (LFP) and the action potentials (spike) are recorded. For over a period of two weeks after device implantation, no remarkable decrease in mouse’s weight is observed. Therefore, we conclude that the proposed sewing thread-device enhances the recording of neuronal signals while minimizing the device–induced stress. |
---|---|
AbstractList | •We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was proposed to enable a stress-free “catch” and “release” of the needle.•EMG signals were recorded from the mouse’s MG muscle.•Both the LFP and the spike were recorded from the mouse’s visual cortex in in vivo chronic recording.
Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of conventional rigid needle-electrodes causes physical-stress to the tissue and induces the tissue damage, making the stable recording impossible. The approach reported here involves the use of a flexible “thread-like” device with microelectrodes that enables precise penetration and placement inside the brain tissue, with the help of a guiding microneedle, similar to sewing mechanism. A device-holding protocol, which uses a dissolvable material, is proposed to enable a stress-free “catch” and “release” of the needle. The device is placed in the primary visual cortex (V1) of an in vivo mouse and both the local field potentials (LFP) and the action potentials (spike) are recorded. For over a period of two weeks after device implantation, no remarkable decrease in mouse’s weight is observed. Therefore, we conclude that the proposed sewing thread-device enhances the recording of neuronal signals while minimizing the device–induced stress. Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of conventional rigid needle-electrodes causes physical-stress to the tissue and induces the tissue damage, making the stable recording impossible. The approach reported here involves the use of a flexible "thread-like" device with microelectrodes that enables precise penetration and placement inside the brain tissue, with the help of a guiding microneedle, similar to sewing mechanism. A device-holding protocol, which uses a dissolvable material, is proposed to enable a stress-free "catch" and "release" of the needle. The device is placed in the primary visual cortex (V1) of an in vivo mouse and both the local field potentials (LFP) and the action potentials (spike) are recorded. For over a period of two weeks after device implantation, no remarkable decrease in mouse's weight is observed. Therefore, we conclude that the proposed sewing thread-device enhances the recording of neuronal signals while minimizing the device–induced stress. |
ArticleNumber | 127835 |
Author | Numano, Rika Yamashita, Koji Koida, Kowa Yamagiwa, Shota Sawahata, Hirohito Morikawa, Yusuke Kawano, Takeshi |
Author_xml | – sequence: 1 givenname: Koji surname: Yamashita fullname: Yamashita, Koji organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan – sequence: 2 givenname: Hirohito surname: Sawahata fullname: Sawahata, Hirohito organization: National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, 312-8508, Japan – sequence: 3 givenname: Shota surname: Yamagiwa fullname: Yamagiwa, Shota organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan – sequence: 4 givenname: Yusuke surname: Morikawa fullname: Morikawa, Yusuke organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan – sequence: 5 givenname: Rika surname: Numano fullname: Numano, Rika organization: Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan – sequence: 6 givenname: Kowa surname: Koida fullname: Koida, Kowa organization: Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan – sequence: 7 givenname: Takeshi surname: Kawano fullname: Kawano, Takeshi email: kawano@ee.tut.ac.jp organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan |
BookMark | eNp9kE9LAzEQxYNUsK1-AG8Bz1uzye5mF09SrAoFL4rHkD8Tm2Wb1GRb9dubUs-ehhneG977zdDEBw8IXZdkUZKyue0XyasFJTTvlLesPkPTsuWsYITzCZqSjtZFRUh9gWYp9YSQijVkit5XA3w7NQDeyfgzgIdi3ESQBisXdjEowNIbPG4AJ_hy_gNvYdwEg22I2Hl8cIeAPexj8HLAEXSIJqvSJTq3ckhw9Tfn6G318Lp8KtYvj8_L-3WhWVeORa1kCyXVVHesk8x0xHDdUslVY7iV2hBtW67ynTHFuG5qay201lKtVc01m6Ob09-c9XMPaRR92MecJQlaVVXDq5Y3WVWeVDqGlCJYsYtumwuLkogjP9GLzE8c-YkTv-y5O3kgxz84iCJpB16DcbnmKExw_7h_ATiKe94 |
CitedBy_id | crossref_primary_10_1088_1361_6439_ac0513 crossref_primary_10_1073_pnas_2008233118 crossref_primary_10_1016_j_bios_2023_115605 crossref_primary_10_1039_D1LC01031J crossref_primary_10_1002_adma_202101874 crossref_primary_10_1088_2053_1591_abb857 |
Cites_doi | 10.1016/j.jneumeth.2009.06.026 10.1002/adfm.201203716 10.1038/srep35806 10.1098/rsif.2008.0071 10.1016/j.jneumeth.2005.08.015 10.1016/j.bios.2010.10.014 10.1016/S0165-0270(99)00113-2 10.1016/j.neuron.2014.12.035 10.1038/nnano.2015.115 10.1109/TBME.2004.826680 10.1126/science.1232437 10.1016/j.expneurol.2005.04.020 10.1126/sciadv.1601966 10.1088/0960-1317/25/12/125003 10.1063/1.4929402 10.1016/j.biomaterials.2007.03.024 10.1002/adhm.201701100 10.3389/fneng.2014.00010 10.1038/srep04868 10.1016/S0006-8993(03)03023-3 10.1109/10.141202 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Aug 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Aug 1, 2020 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2020.127835 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2020_127835 S0925400520301829 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AAXKI AAYXX ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AJQLL ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW WUQ 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
ID | FETCH-LOGICAL-c391t-5ba8e12c2c939a3d90d7c82a7b6d7facd0cf87bd9033b37c65fffe8ff2ccb57c3 |
IEDL.DBID | AIKHN |
ISSN | 0925-4005 |
IngestDate | Thu Oct 10 16:57:01 EDT 2024 Fri Dec 06 02:29:49 EST 2024 Fri Feb 23 02:50:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microelectrode Brain Flexible device Neural recording Muscle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-5ba8e12c2c939a3d90d7c82a7b6d7facd0cf87bd9033b37c65fffe8ff2ccb57c3 |
PQID | 2444674876 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2444674876 crossref_primary_10_1016_j_snb_2020_127835 elsevier_sciencedirect_doi_10_1016_j_snb_2020_127835 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Sohal, Jackson, Jackson, Clowry, Vassilevski, O’Neill, Baker (bib0050) 2014; 7 Fujishiro, Kaneko, Kawashima, Ishida, Kawano (bib0100) 2014; 4 Morikawa, Yamagiwa, Sawahata, Numano, Koida, Ishida, Kawano (bib0085) 2018; 7 Seymour, Kipke (bib0025) 2007; 28 Edell, Van Toi, Mcneil, Clark (bib0115) 1992; 39 Yamagiwa, Ishida, Kawano (bib0080) 2015; 107 Sawahata, Yamagiwa, Moriya, Dong, Oi, Ando, Numano, Ishida, Koida, Kawano (bib0105) 2016; 6 Vetter, Williams, Hetke, Nunamaker, Member, Kipke (bib0035) 2004; 51 Luan, Wei, Zhao, Siegel, Potnis, Tuppen, Lin, Kazmi, Fowler, Holloway, Dunn, Chitwood, Xie (bib0060) 2017; 3 Felix, Shah, George, Tolosa, Tooker, Sheth, Delima, Pannu (bib0070) 2012 Harimoto, Takei, Kawano, Ishihara, Kawashima, Kaneko, Ishida, Usui (bib0110) 2011; 26 Kim, McCall, Jung, Huang, Siuda, Li, Song, Song, Pao, Kim (bib0045) 2013; 340 Liu, Fu, Cheng, Hong, Zhou, Jin, Duvvuri, Jiang, Kruskal, Xie, Suo, Fang, Lieber (bib0055) 2015; 10 Oka, Shimono, Ogawa, Sugihara, Taketani (bib0095) 1999; 93 Polikov, Tresco, Reichert (bib0010) 2005; 148 Yamagiwa, Ishida, Kawano (bib0090) 2013 Tien, Wu, Tang-Schomer, Yoon, Omenetto, Kaplan (bib0075) 2013; 23 Lecomte, Castagnola, Descamps, Dahan, Blatché, Dinis, Leclerc, Egles, Bergaud (bib0065) 2015; 25 Biran, Martin, Tresco (bib0005) 2005; 195 Purcell, Thompson, Ludwig, Kipke (bib0040) 2009; 183 Zhong, Bellamkonda (bib0020) 2008; 5 Jeong, Shin, Il Park, Yu, Xu, Rogers (bib0030) 2015; 86 Szarowski, Andersen, Retterer, Spence, Isaacson, Craighead, Turner, Shain (bib0015) 2003; 983 Tien (10.1016/j.snb.2020.127835_bib0075) 2013; 23 Polikov (10.1016/j.snb.2020.127835_bib0010) 2005; 148 Liu (10.1016/j.snb.2020.127835_bib0055) 2015; 10 Zhong (10.1016/j.snb.2020.127835_bib0020) 2008; 5 Fujishiro (10.1016/j.snb.2020.127835_bib0100) 2014; 4 Vetter (10.1016/j.snb.2020.127835_bib0035) 2004; 51 Harimoto (10.1016/j.snb.2020.127835_bib0110) 2011; 26 Seymour (10.1016/j.snb.2020.127835_bib0025) 2007; 28 Felix (10.1016/j.snb.2020.127835_bib0070) 2012 Yamagiwa (10.1016/j.snb.2020.127835_bib0080) 2015; 107 Szarowski (10.1016/j.snb.2020.127835_bib0015) 2003; 983 Lecomte (10.1016/j.snb.2020.127835_bib0065) 2015; 25 Sawahata (10.1016/j.snb.2020.127835_bib0105) 2016; 6 Sohal (10.1016/j.snb.2020.127835_bib0050) 2014; 7 Morikawa (10.1016/j.snb.2020.127835_bib0085) 2018; 7 Biran (10.1016/j.snb.2020.127835_bib0005) 2005; 195 Yamagiwa (10.1016/j.snb.2020.127835_bib0090) 2013 Purcell (10.1016/j.snb.2020.127835_bib0040) 2009; 183 Luan (10.1016/j.snb.2020.127835_bib0060) 2017; 3 Jeong (10.1016/j.snb.2020.127835_bib0030) 2015; 86 Kim (10.1016/j.snb.2020.127835_bib0045) 2013; 340 Oka (10.1016/j.snb.2020.127835_bib0095) 1999; 93 Edell (10.1016/j.snb.2020.127835_bib0115) 1992; 39 |
References_xml | – volume: 25 year: 2015 ident: bib0065 article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery publication-title: J. Micromechanics Microengineering contributor: fullname: Bergaud – volume: 983 start-page: 23 year: 2003 end-page: 35 ident: bib0015 article-title: Brain responses to micro-machined silicon devices publication-title: Brain Res. contributor: fullname: Shain – volume: 340 start-page: 211 year: 2013 end-page: 216 ident: bib0045 article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics publication-title: Science. contributor: fullname: Kim – start-page: 480 year: 2013 end-page: 483 ident: bib0090 article-title: Self-curling and-sticking flexible substrate for ECoG electrode array, in: micro electro mechanical systems (MEMS), 2013 publication-title: IEEE 26th International Conference On, IEEE contributor: fullname: Kawano – volume: 4 start-page: 4868 year: 2014 ident: bib0100 article-title: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays publication-title: Sci. Rep. contributor: fullname: Kawano – volume: 93 start-page: 61 year: 1999 end-page: 67 ident: bib0095 article-title: A new planar multielectrode array for extracellular recording : application to hippocampal acute slice publication-title: J. Neurosci. Methods contributor: fullname: Taketani – volume: 3 start-page: 1 year: 2017 end-page: 10 ident: bib0060 article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration publication-title: Sci. Adv. contributor: fullname: Xie – volume: 26 start-page: 2368 year: 2011 end-page: 2375 ident: bib0110 article-title: Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina publication-title: Biosens. Bioelectron. contributor: fullname: Usui – volume: 195 start-page: 115 year: 2005 end-page: 126 ident: bib0005 article-title: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays publication-title: Exp. Neurol. contributor: fullname: Tresco – volume: 28 start-page: 3594 year: 2007 end-page: 3607 ident: bib0025 article-title: Neural probe design for reduced tissue encapsulation in CNS publication-title: Biomaterials. contributor: fullname: Kipke – volume: 10 start-page: 629 year: 2015 end-page: 635 ident: bib0055 article-title: Syringe-injectable electronics publication-title: Nat. Nanotechnol. contributor: fullname: Lieber – volume: 23 start-page: 3185 year: 2013 end-page: 3193 ident: bib0075 article-title: Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes publication-title: Adv. Funct. Mater. contributor: fullname: Kaplan – volume: 6 start-page: 35806 year: 2016 ident: bib0105 article-title: Single 5 μm diameter needle electrode block modules for unit recordings in vivo publication-title: Sci. Rep. contributor: fullname: Kawano – volume: 5 start-page: 957 year: 2008 end-page: 975 ident: bib0020 article-title: Biomaterials for the central nervous system publication-title: J. R. Soc. Interface contributor: fullname: Bellamkonda – volume: 7 start-page: 10 year: 2014 ident: bib0050 article-title: The sinusoidal probe: a new approach to improve electrode longevity publication-title: Front. Neuroeng. contributor: fullname: Baker – volume: 51 start-page: 896 year: 2004 end-page: 904 ident: bib0035 article-title: Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex publication-title: IEEE Trans. Biomed. Eng. contributor: fullname: Kipke – volume: 183 start-page: 149 year: 2009 end-page: 157 ident: bib0040 article-title: Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality publication-title: J. Neurosci. Methods contributor: fullname: Kipke – start-page: 871 year: 2012 end-page: 874 ident: bib0070 article-title: Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. contributor: fullname: Pannu – volume: 7 year: 2018 ident: bib0085 article-title: Ultrastretchable kirigami bioprobes publication-title: Adv. Healthc. Mater. contributor: fullname: Kawano – volume: 148 start-page: 1 year: 2005 end-page: 18 ident: bib0010 article-title: Response of brain tissue to chronically implanted neural electrodes publication-title: J. Neurosci. Methods contributor: fullname: Reichert – volume: 39 start-page: 635 year: 1992 end-page: 643 ident: bib0115 article-title: Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex publication-title: IEEE Trans. Biomed. Eng. contributor: fullname: Clark – volume: 86 start-page: 175 year: 2015 end-page: 186 ident: bib0030 article-title: Soft materials in neuroengineering for hard problems in neuroscience publication-title: Neuron. contributor: fullname: Rogers – volume: 107 start-page: 1 year: 2015 end-page: 6 ident: bib0080 article-title: Flexible parylene-film optical waveguide arrays publication-title: Appl. Phys. Lett. contributor: fullname: Kawano – volume: 183 start-page: 149 year: 2009 ident: 10.1016/j.snb.2020.127835_bib0040 article-title: Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.06.026 contributor: fullname: Purcell – volume: 23 start-page: 3185 year: 2013 ident: 10.1016/j.snb.2020.127835_bib0075 article-title: Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203716 contributor: fullname: Tien – volume: 6 start-page: 35806 year: 2016 ident: 10.1016/j.snb.2020.127835_bib0105 article-title: Single 5 μm diameter needle electrode block modules for unit recordings in vivo publication-title: Sci. Rep. doi: 10.1038/srep35806 contributor: fullname: Sawahata – volume: 5 start-page: 957 year: 2008 ident: 10.1016/j.snb.2020.127835_bib0020 article-title: Biomaterials for the central nervous system publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2008.0071 contributor: fullname: Zhong – volume: 148 start-page: 1 year: 2005 ident: 10.1016/j.snb.2020.127835_bib0010 article-title: Response of brain tissue to chronically implanted neural electrodes publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.08.015 contributor: fullname: Polikov – start-page: 480 year: 2013 ident: 10.1016/j.snb.2020.127835_bib0090 article-title: Self-curling and-sticking flexible substrate for ECoG electrode array, in: micro electro mechanical systems (MEMS), 2013 publication-title: IEEE 26th International Conference On, IEEE contributor: fullname: Yamagiwa – volume: 26 start-page: 2368 year: 2011 ident: 10.1016/j.snb.2020.127835_bib0110 article-title: Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.10.014 contributor: fullname: Harimoto – volume: 93 start-page: 61 year: 1999 ident: 10.1016/j.snb.2020.127835_bib0095 article-title: A new planar multielectrode array for extracellular recording : application to hippocampal acute slice publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(99)00113-2 contributor: fullname: Oka – volume: 86 start-page: 175 year: 2015 ident: 10.1016/j.snb.2020.127835_bib0030 article-title: Soft materials in neuroengineering for hard problems in neuroscience publication-title: Neuron. doi: 10.1016/j.neuron.2014.12.035 contributor: fullname: Jeong – volume: 10 start-page: 629 year: 2015 ident: 10.1016/j.snb.2020.127835_bib0055 article-title: Syringe-injectable electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.115 contributor: fullname: Liu – volume: 51 start-page: 896 year: 2004 ident: 10.1016/j.snb.2020.127835_bib0035 article-title: Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826680 contributor: fullname: Vetter – start-page: 871 year: 2012 ident: 10.1016/j.snb.2020.127835_bib0070 article-title: Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. contributor: fullname: Felix – volume: 340 start-page: 211 year: 2013 ident: 10.1016/j.snb.2020.127835_bib0045 article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics publication-title: Science. doi: 10.1126/science.1232437 contributor: fullname: Kim – volume: 195 start-page: 115 year: 2005 ident: 10.1016/j.snb.2020.127835_bib0005 article-title: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.04.020 contributor: fullname: Biran – volume: 3 start-page: 1 year: 2017 ident: 10.1016/j.snb.2020.127835_bib0060 article-title: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration publication-title: Sci. Adv. doi: 10.1126/sciadv.1601966 contributor: fullname: Luan – volume: 25 year: 2015 ident: 10.1016/j.snb.2020.127835_bib0065 article-title: Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery publication-title: J. Micromechanics Microengineering doi: 10.1088/0960-1317/25/12/125003 contributor: fullname: Lecomte – volume: 107 start-page: 1 year: 2015 ident: 10.1016/j.snb.2020.127835_bib0080 article-title: Flexible parylene-film optical waveguide arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.4929402 contributor: fullname: Yamagiwa – volume: 28 start-page: 3594 year: 2007 ident: 10.1016/j.snb.2020.127835_bib0025 article-title: Neural probe design for reduced tissue encapsulation in CNS publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2007.03.024 contributor: fullname: Seymour – volume: 7 year: 2018 ident: 10.1016/j.snb.2020.127835_bib0085 article-title: Ultrastretchable kirigami bioprobes publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201701100 contributor: fullname: Morikawa – volume: 7 start-page: 10 year: 2014 ident: 10.1016/j.snb.2020.127835_bib0050 article-title: The sinusoidal probe: a new approach to improve electrode longevity publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00010 contributor: fullname: Sohal – volume: 4 start-page: 4868 year: 2014 ident: 10.1016/j.snb.2020.127835_bib0100 article-title: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays publication-title: Sci. Rep. doi: 10.1038/srep04868 contributor: fullname: Fujishiro – volume: 983 start-page: 23 year: 2003 ident: 10.1016/j.snb.2020.127835_bib0015 article-title: Brain responses to micro-machined silicon devices publication-title: Brain Res. doi: 10.1016/S0006-8993(03)03023-3 contributor: fullname: Szarowski – volume: 39 start-page: 635 year: 1992 ident: 10.1016/j.snb.2020.127835_bib0115 article-title: Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.141202 contributor: fullname: Edell |
SSID | ssj0004360 |
Score | 2.4062393 |
Snippet | •We fabricated a flexible parylene-thread bioprobe and proposed the implantation method based on conventional sewing method.•A device-holding protocol was... Multichannel recording of the electrical signals from soft biological tissue of brain is an important technique in electrophysiology. However, penetration of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 127835 |
SubjectTerms | Brain Electrophysiology Flexible device Implantation In vivo methods and tests Microelectrode Microelectrodes Muscle Needles Neural recording Penetration Recording Sewing Surgical implants Tissues |
Title | Flexible parylene-thread bioprobe and the sewing method for in vivo neuronal recordings |
URI | https://dx.doi.org/10.1016/j.snb.2020.127835 https://www.proquest.com/docview/2444674876 |
Volume | 316 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZ6LDAgTlEolQcmJNM0juN4rCqqAqILVHSzfEpBKK3aUMTCb8fOIQ4JBsZYcRJ9dt773vM7ADgfYCEIUwGSkSQooiJB0hlCyBIdaIYTIplPTr6bxpNZdDMn8wYY1bkwPqyykv2lTC-kdTXSr9DsL9O0fx8wZ9wUcRxukyYha4K2U0f-rLY9vL6dTD_TI3GRLOzvR35CfbhZhHmtM-msxNCXWfBOkN_U0w9BXWif8S7YqWgjHJZftgcaJtsH21-KCR6Ax7GvbSmfDVyK1ZtTJgblbqGEhjJd-L4xBopMQ0f44Nq8uimw7B4NHW2FaQY36WYBi_KW_k2l88a70Q_BbHz1MJqgqm0CUpgNckSkSMwgVKFimAmsWaCpSkJBZaypFUoHyiZUunGMJaYqJtZak1gbKiUJVfgItLJFZo4B9NZhSAyRSpCIGua4FPXJtRhHRhBCO-CiRosvy-oYvA4be-IOWu6h5SW0HRDVePJvS8yd9P5rWrfGnlf_15o7UlK0SaHxyf-eegq2_FUZytcFrXz1Ys4cvchlDzQv3we9ahN9AD_wztc |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh6YkEzTOI7jEVVUBdoutKKbZTuOFITSqi1FLPx2znmIhwQDq2Mn0efL-bvLPRC6aFOlmDAe0YFmJOAqIhoMIZKw2IsFjZgWLjl5MAx74-BuwiY11KlyYVxYZan7C52ea-typFWi2ZqlaevBE2Dc5HEcIKSRL9bQesCA_YJQX71_xnkENE8VdrOJm1792syDvBaZBhvRd0UWnAvkt8Pph5rOz57uDtouSSO-Lt5rF9Vstoe2vpQS3EePXVfZUj9bPFPzNzhKLFnCNqkY63TqusZYrLIYA93DC_sKS3DROxoDacVphlfpaorz4pbuSYXrxjnRD9C4ezPq9EjZNIEYKtpLwrSKbNs3vhFUKBoLL-Ym8hXXYcwTZWLPJBHXME6pptyELEkSGyWJb4xm3NBDVM-mmT1C2NmGPrNMG8UCbgUwKe5SaykNrGKMN9BlhZacFbUxZBU09iQBWumglQW0DRRUeMpvGyxBd_-1rFlhL8uvayGBkuRNUnh4_L-7nqON3mjQl_3b4f0J2nRXiqC-Jqov5y_2FIjGUp_lgvQBGy_PsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+parylene-thread+bioprobe+and+the+sewing+method+for+in+vivo+neuronal+recordings&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Yamashita%2C+Koji&rft.au=Sawahata%2C+Hirohito&rft.au=Yamagiwa%2C+Shota&rft.au=Morikawa%2C+Yusuke&rft.date=2020-08-01&rft.issn=0925-4005&rft.volume=316&rft.spage=127835&rft_id=info:doi/10.1016%2Fj.snb.2020.127835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2020_127835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |