Multi-Material Topology Optimization Using Neural Networks

The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically re...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 136; p. 103017
Main Authors Chandrasekhar, Aaditya, Suresh, Krishnan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically represented using an underlying mesh. While mesh-based MMTO ties in well with mesh-based finite element analysis, there are inherent challenges, namely the extraction of thin features, and the computation of the gradients of the density fields. The objective of this paper is to present a neural network (NN) based MMTO method where the density fields are represented in a mesh-independent manner, using the NN’s activation functions, with the weights and biases associated with the NN serving as the design variables. Then, by relying on the NN’s built-in optimization routines, and a conventional finite element solver, the MMTO problem is solved. The salient features of the proposed method include: (1) thin features can be extracted through a simple post-processing step, (2) gradients and sensitivities can be computed accurately through back-propagation, (3) the NN construction implicitly guarantees the partition of unity between constituent materials, (4) the NN designs often exhibit better performance than mesh-based designs, and (5) the number of design variables is relatively small. Finally, the proposed framework is simple to implement, and is illustrated through several examples. •A neural network (NN) based multi-material topology optimization (MMTO) method.•Spatial coordinates as NN inputs and material volumes as output.•The sensitivities are computed analytically using NN’s back-propagation.•Leads to a crisp and differentiable material interface.
AbstractList The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically represented using an underlying mesh. While mesh-based MMTO ties in well with mesh-based finite element analysis, there are inherent challenges, namely the extraction of thin features, and the computation of the gradients of the density fields. The objective of this paper is to present a neural network (NN) based MMTO method where the density fields are represented in a mesh-independent manner, using the NN’s activation functions, with the weights and biases associated with the NN serving as the design variables. Then, by relying on the NN’s built-in optimization routines, and a conventional finite element solver, the MMTO problem is solved. The salient features of the proposed method include: (1) thin features can be extracted through a simple post-processing step, (2) gradients and sensitivities can be computed accurately through back-propagation, (3) the NN construction implicitly guarantees the partition of unity between constituent materials, (4) the NN designs often exhibit better performance than mesh-based designs, and (5) the number of design variables is relatively small. Finally, the proposed framework is simple to implement, and is illustrated through several examples. •A neural network (NN) based multi-material topology optimization (MMTO) method.•Spatial coordinates as NN inputs and material volumes as output.•The sensitivities are computed analytically using NN’s back-propagation.•Leads to a crisp and differentiable material interface.
The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically represented using an underlying mesh. While mesh-based MMTO ties in well with mesh-based finite element analysis, there are inherent challenges, namely the extraction of thin features, and the computation of the gradients of the density fields. The objective of this paper is to present a neural network (NN) based MMTO method where the density fields are represented in a mesh-independent manner, using the NN's activation functions, with the weights and biases associated with the NN serving as the design variables. Then, by relying on the NN's built-in optimization routines, and a conventional finite element solver, the MMTO problem is solved. The salient features of the proposed method include: (1) thin features can be extracted through a simple post-processing step, (2) gradients and sensitivities can be computed accurately through back-propagation, (3) the NN construction implicitly guarantees the partition of unity between constituent materials, (4) the NN designs often exhibit better performance than mesh-based designs, and (5) the number of design variables is relatively small. Finally, the proposed framework is simple to implement, and is illustrated through several examples.
ArticleNumber 103017
Author Suresh, Krishnan
Chandrasekhar, Aaditya
Author_xml – sequence: 1
  givenname: Aaditya
  surname: Chandrasekhar
  fullname: Chandrasekhar, Aaditya
  email: achandrasek3@wisc.edu
– sequence: 2
  givenname: Krishnan
  orcidid: 0000-0002-9688-9697
  surname: Suresh
  fullname: Suresh, Krishnan
  email: ksuresh@wisc.edu
BookMark eNp9kMlOwzAQhi1UJNrCA3CLxDnFS1Y4oYpNou2lPVu2M6kc0jjYLqg8PS7hxKGn0Uj_N8s3QaPOdIDQNcEzgkl228yUqGYUUxJ6hkl-hsakyMuYZkU6QmOMCY6TpEgv0MS5BuOQZOUY3S32rdfxQniwWrTR2vSmNdtDtOq93ulv4bXpoo3T3TZawt6GyBL8l7Hv7hKd16J1cPVXp2jz9Liev8Rvq-fX-cNbrFhJfJwmqVQlrTCRMs8rJUBKRqEoRKLKnISSUQZVTRJJ0xJLVTEss6RgoqaKQcGm6GaY21vzsQfneWP2tgsrOU0ZS3CGszKk8iGlrHHOQs2V9r_Xeyt0ywnmR1G84UEUP4rig6hAkn9kb_VO2MNJ5n5gIDz-qcFypzR0CiptQXleGX2C_gFX94HC
CitedBy_id crossref_primary_10_1007_s00158_023_03698_3
crossref_primary_10_1016_j_cad_2023_103665
crossref_primary_10_1007_s00158_021_03025_8
crossref_primary_10_1016_j_jmapro_2025_03_012
crossref_primary_10_1016_j_procs_2022_01_232
crossref_primary_10_1115_1_4064131
crossref_primary_10_3390_aerospace10121025
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_1007_s00158_022_03460_1
crossref_primary_10_1007_s12008_024_01905_z
crossref_primary_10_1007_s00158_024_03908_6
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1007_s00366_023_01904_w
crossref_primary_10_2139_ssrn_4104219
crossref_primary_10_1007_s00158_022_03347_1
crossref_primary_10_1142_S0219876221420135
crossref_primary_10_1016_j_compbiomed_2022_106475
crossref_primary_10_1016_j_cad_2022_103449
crossref_primary_10_1016_j_engstruct_2024_119194
crossref_primary_10_1016_j_cma_2024_117698
crossref_primary_10_1016_j_ijmecsci_2024_109267
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_1016_j_cad_2022_103277
crossref_primary_10_1016_j_cma_2023_116401
crossref_primary_10_1016_j_mser_2023_100725
crossref_primary_10_1016_j_compstruct_2023_117838
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1080_17452759_2023_2181192
crossref_primary_10_1016_j_enganabound_2024_03_031
crossref_primary_10_1111_cgf_14700
crossref_primary_10_1115_1_4062663
crossref_primary_10_1007_s00366_023_01827_6
crossref_primary_10_3390_app14020657
crossref_primary_10_1007_s10338_025_00587_8
crossref_primary_10_1007_s00158_024_03888_7
crossref_primary_10_32604_cmes_2024_048118
crossref_primary_10_1007_s00158_024_03800_3
crossref_primary_10_1016_j_engappai_2023_107033
crossref_primary_10_1002_nme_7374
crossref_primary_10_1007_s11012_024_01916_w
crossref_primary_10_3390_ma16113946
crossref_primary_10_1016_j_procir_2022_05_317
crossref_primary_10_1016_j_advengsoft_2022_103359
crossref_primary_10_1016_j_compstruc_2023_107218
Cites_doi 10.1007/s00158-001-0165-z
10.1007/s00158-014-1188-6
10.1007/s10999-005-0221-8
10.1007/s00158-012-0807-3
10.1007/s001580050176
10.1051/cocv/2013076
10.1007/s00466-008-0312-0
10.1007/s00158-011-0648-5
10.1115/1.4028439
10.1006/jcph.2000.6581
10.1002/nme.1259
10.1016/j.cma.2014.04.014
10.1115/1.2901581
10.1115/1.4023168
10.1016/j.jcp.2018.10.045
10.1007/s00158-015-1277-1
10.1007/BF01744703
10.1016/S0022-5096(96)00114-7
10.1016/j.cma.2013.07.003
10.1007/s00158-006-0035-9
10.1016/j.advengsoft.2016.07.002
10.1002/nme.3197
10.1016/j.engstruct.2014.10.052
10.1016/S0045-7825(02)00559-5
10.1007/s00158-014-1074-2
10.1115/1.1909206
10.1038/323533a0
10.1016/0045-7949(93)90035-C
10.1007/s00158-011-0625-z
10.1002/nme.5303
10.1002/nme.1620240207
10.1007/BF01214002
10.1007/s00158-010-0594-7
10.1016/S0045-7825(01)00252-3
10.1007/s00158-016-1513-3
10.1016/j.cad.2018.04.023
10.1007/s00158-009-0455-4
10.1002/nme.5461
10.1115/1.4031088
10.1007/BF01743693
10.1145/2461912.2461993
10.1016/j.cma.2018.01.032
10.1016/j.cma.2016.05.016
10.1016/j.jcp.2003.09.032
10.1007/s00158-013-0978-6
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2021.103017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2021_103017
S0010448521000282
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-545bc92d01bb77dcaebb32e88a4c9718a4623edf14b2590bcd30b6483af2c3e83
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Sun Jul 13 05:26:18 EDT 2025
Tue Jul 01 03:34:36 EDT 2025
Thu Apr 24 23:05:18 EDT 2025
Fri Feb 23 02:44:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Thin features
Neural networks
Multi-material
SIMP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-545bc92d01bb77dcaebb32e88a4c9718a4623edf14b2590bcd30b6483af2c3e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9688-9697
PQID 2533406069
PQPubID 2045267
ParticipantIDs proquest_journals_2533406069
crossref_citationtrail_10_1016_j_cad_2021_103017
crossref_primary_10_1016_j_cad_2021_103017
elsevier_sciencedirect_doi_10_1016_j_cad_2021_103017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer aided design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (b66) 2019
Allaire, Dapogny, Delgado, Michailidis (b30) 2014; 20
Rojas-Labanda, Stolpe (b56) 2015; 52
Li, Khandelwal (b55) 2015; 85
Svanberg (b42) 1987; 24
Kingma, Ba (b47) 2015
Gibson, Rosen, Stucker (b14) 2010
Yin, Ananthasuresh (b25) 2001; 23
Chandrasekhar, Suresh (b18) 2020
Rumelhart, Hinton, Williams (b51) 1986; 323
Vatanabe, Lippi, Lima, Paulino, Silva (b63) 2016; 100
Vidimče, Wang, Ragan-Kelley, Matusik (b16) 2013; 32
Bendsoe, Sigmund (b54) 2013
Ramani (b40) 2010; 41
Bridle (b45) 1990
Raissi, Perdikaris, Karniadakis (b69) 2019; 378
Andreassen, Clausen, Schevenels, Lazarov, Sigmund (b50) 2011; 43
Sigmund, Maute (b12) 2013; 48
Baydin, Pearlmutter, Radul, Siskind (b52) 2017; 18
Vatanabe, Paulino, Silva (b23) 2013; 266
Vermaak, Michailidis, Parry, Estevez, Allaire, Bréchet (b41) 2014; 50
Novotny, Sokołowski (b9) 2012
Wang, Mei, Wang (b29) 2004; 1
Mirzendehdel, Suresh (b61) 2015; 10
Suresh (b60) 2013; 47
Bandyopadhyay, Heer (b17) 2018
Thomsen (b19) 1992; 5
Ramachandran, Zoph, Le (b44) 2017
Sigmund, Petersson (b57) 1998; 16
Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (b49) 2019
Sigmund (b2) 2001; 21
Zuo, Saitou (b26) 2017; 55
Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b46) 2019
Yang, Li (b34) 2018; 102
Sigmund (b22) 2001; 190
Bendsøe, Sigmund (b43) 1995
Vermaak, Michailidis, Parry, Estevez, Allaire, Bréchet (b31) 2014; 50
Qian (b64) 2017; 111
Díaz, Sigmund (b68) 1995; 10
Deng, Suresh (b8) 2015; 51
Taheri, Hassani (b24) 2014; 277
Allaire, Jouve, Toader (b5) 2004; 194
Márquez-Neila, Salzmann, Fua (b67) 2017
Bendsoe, Guedes, Haber, Pedersen, Taylor (b1) 2008; 61
Huang, Xie (b33) 2009; 43
Mirzendehdel, Suresh (b11) 2015; 137
Gao, Zhang (b39) 2011; 88
Wang, Mei, Wang (b27) 2004; 1
Xie, Steven (b6) 1993; 49
Pascanu, Mikolov, Bengio (b59) 2012
Yadav, Suresh (b62) 2013; 13
Liu, Luo, Kang (b65) 2016; 308
Wang, Wang, Guo (b3) 2003; 192
Mirzendehdel, Rankouhi, Suresh (b10) 2018; 19
Hvejsel, Lund (b35) 2011; 43
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56.
Sanders, Aguiló, Paulino (b38) 2018; 340
Gaynor, Meisel, Williams, Guest (b15) 2014; 136
Liu, Gaynor, Chen, Kang, Suresh, Takezawa (b13) 2018
Zhou, Wang (b32) 2007; 33
Ruder (b53) 2016
Wang, Chen, Wang, Mei (b28) 2005; 127
Sethian, Wiegmann (b4) 2000; 163
Hvejsel, Lund, Stolpe (b36) 2011; 44
Taheri, Suresh (b37) 2017; 109
Suresh (b7) 2013; 47
Nocedal, Wright (b48) 2006
Sigmund, Torquato (b20) 1997; 45
Stegmann, Lund (b21) 2005; 62
Allaire (10.1016/j.cad.2021.103017_b5) 2004; 194
Bandyopadhyay (10.1016/j.cad.2021.103017_b17) 2018
Ramachandran (10.1016/j.cad.2021.103017_b44) 2017
Bendsøe (10.1016/j.cad.2021.103017_b43) 1995
Gibson (10.1016/j.cad.2021.103017_b14) 2010
Stegmann (10.1016/j.cad.2021.103017_b21) 2005; 62
Paszke (10.1016/j.cad.2021.103017_b46) 2019
Liu (10.1016/j.cad.2021.103017_b65) 2016; 308
Hvejsel (10.1016/j.cad.2021.103017_b36) 2011; 44
Raissi (10.1016/j.cad.2021.103017_b69) 2019; 378
Suresh (10.1016/j.cad.2021.103017_b7) 2013; 47
Li (10.1016/j.cad.2021.103017_b55) 2015; 85
Thomsen (10.1016/j.cad.2021.103017_b19) 1992; 5
Nocedal (10.1016/j.cad.2021.103017_b48) 2006
Bendsoe (10.1016/j.cad.2021.103017_b1) 2008; 61
Wang (10.1016/j.cad.2021.103017_b3) 2003; 192
Kervadec (10.1016/j.cad.2021.103017_b49) 2019
Sigmund (10.1016/j.cad.2021.103017_b57) 1998; 16
Sigmund (10.1016/j.cad.2021.103017_b2) 2001; 21
Taheri (10.1016/j.cad.2021.103017_b37) 2017; 109
Vidimče (10.1016/j.cad.2021.103017_b16) 2013; 32
Vermaak (10.1016/j.cad.2021.103017_b41) 2014; 50
Rojas-Labanda (10.1016/j.cad.2021.103017_b56) 2015; 52
Taheri (10.1016/j.cad.2021.103017_b24) 2014; 277
Gao (10.1016/j.cad.2021.103017_b39) 2011; 88
Sethian (10.1016/j.cad.2021.103017_b4) 2000; 163
Márquez-Neila (10.1016/j.cad.2021.103017_b67) 2017
Wang (10.1016/j.cad.2021.103017_b29) 2004; 1
Qian (10.1016/j.cad.2021.103017_b64) 2017; 111
Suresh (10.1016/j.cad.2021.103017_b60) 2013; 47
Mirzendehdel (10.1016/j.cad.2021.103017_b61) 2015; 10
Yang (10.1016/j.cad.2021.103017_b34) 2018; 102
Chandrasekhar (10.1016/j.cad.2021.103017_b18) 2020
Gaynor (10.1016/j.cad.2021.103017_b15) 2014; 136
Allaire (10.1016/j.cad.2021.103017_b30) 2014; 20
Vermaak (10.1016/j.cad.2021.103017_b31) 2014; 50
Baydin (10.1016/j.cad.2021.103017_b52) 2017; 18
Pascanu (10.1016/j.cad.2021.103017_b59) 2012
Deng (10.1016/j.cad.2021.103017_b8) 2015; 51
Kervadec (10.1016/j.cad.2021.103017_b66) 2019
Liu (10.1016/j.cad.2021.103017_b13) 2018
Sigmund (10.1016/j.cad.2021.103017_b20) 1997; 45
Sigmund (10.1016/j.cad.2021.103017_b22) 2001; 190
Bendsoe (10.1016/j.cad.2021.103017_b54) 2013
Novotny (10.1016/j.cad.2021.103017_b9) 2012
Andreassen (10.1016/j.cad.2021.103017_b50) 2011; 43
Rumelhart (10.1016/j.cad.2021.103017_b51) 1986; 323
Svanberg (10.1016/j.cad.2021.103017_b42) 1987; 24
Wang (10.1016/j.cad.2021.103017_b28) 2005; 127
Vatanabe (10.1016/j.cad.2021.103017_b63) 2016; 100
Wang (10.1016/j.cad.2021.103017_b27) 2004; 1
Vatanabe (10.1016/j.cad.2021.103017_b23) 2013; 266
Sanders (10.1016/j.cad.2021.103017_b38) 2018; 340
Yin (10.1016/j.cad.2021.103017_b25) 2001; 23
Zuo (10.1016/j.cad.2021.103017_b26) 2017; 55
Xie (10.1016/j.cad.2021.103017_b6) 1993; 49
Ramani (10.1016/j.cad.2021.103017_b40) 2010; 41
Hvejsel (10.1016/j.cad.2021.103017_b35) 2011; 43
Kingma (10.1016/j.cad.2021.103017_b47) 2015
Ruder (10.1016/j.cad.2021.103017_b53) 2016
10.1016/j.cad.2021.103017_b58
Sigmund (10.1016/j.cad.2021.103017_b12) 2013; 48
Mirzendehdel (10.1016/j.cad.2021.103017_b10) 2018; 19
Huang (10.1016/j.cad.2021.103017_b33) 2009; 43
Yadav (10.1016/j.cad.2021.103017_b62) 2013; 13
Mirzendehdel (10.1016/j.cad.2021.103017_b11) 2015; 137
Zhou (10.1016/j.cad.2021.103017_b32) 2007; 33
Bridle (10.1016/j.cad.2021.103017_b45) 1990
Díaz (10.1016/j.cad.2021.103017_b68) 1995; 10
References_xml – reference: Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56.
– volume: 50
  start-page: 623
  year: 2014
  end-page: 644
  ident: b41
  article-title: Material interface effects on the topology optimization of multi-phase structures using a level set method
  publication-title: Struct Multidiscip Optim
– volume: 19
  start-page: 104
  year: 2018
  end-page: 113
  ident: b10
  article-title: Strength-based topology optimization for anisotropic parts
  publication-title: Addit Manuf
– volume: 55
  start-page: 477
  year: 2017
  end-page: 491
  ident: b26
  article-title: Multi-material topology optimization using ordered SIMP interpolation
  publication-title: Struct Multidiscip Optim
– volume: 127
  start-page: 941
  year: 2005
  end-page: 956
  ident: b28
  article-title: Design of multimaterial compliant mechanisms using level-set methods
  publication-title: J Mech Des
– start-page: 1
  year: 2020
  end-page: 15
  ident: b18
  article-title: Tounn: topology optimization using neural networks
  publication-title: Struct. Multidiscip. Optim.
– volume: 109
  start-page: 668
  year: 2017
  end-page: 696
  ident: b37
  article-title: An isogeometric approach to topology optimization of multi-material and functionally graded structures
  publication-title: Internat J Numer Methods Engrg
– year: 2016
  ident: b53
  article-title: An overview of gradient descent optimization algorithms
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: b3
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
– volume: 137
  year: 2015
  ident: b11
  article-title: A pareto-optimal approach to multimaterial topology optimization
  publication-title: J Mech Des
– volume: 1
  start-page: 213
  year: 2004
  end-page: 239
  ident: b29
  article-title: Level-set method for design of multi-phase elastic and thermoelastic materials
  publication-title: Int J Mech Mater Design
– volume: 16
  start-page: 68
  year: 1998
  end-page: 75
  ident: b57
  article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct Optim
– volume: 102
  start-page: 182
  year: 2018
  end-page: 192
  ident: b34
  article-title: Discrete multi-material topology optimization under total mass constraint
  publication-title: Comput Aided Des
– volume: 52
  start-page: 1205
  year: 2015
  end-page: 1221
  ident: b56
  article-title: Automatic penalty continuation in structural topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 20
  start-page: 576
  year: 2014
  end-page: 611
  ident: b30
  article-title: Multi-phase structural optimization via a level set method
  publication-title: ESAIM Control Optim Calc Var
– year: 2006
  ident: b48
  article-title: Numerical optimization
– volume: 277
  start-page: 46
  year: 2014
  end-page: 80
  ident: b24
  article-title: Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies
  publication-title: Comput Methods Appl Mech Engrg
– volume: 48
  start-page: 1031
  year: 2013
  end-page: 1055
  ident: b12
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
– volume: 43
  start-page: 1
  year: 2011
  end-page: 16
  ident: b50
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
– volume: 5
  start-page: 108
  year: 1992
  end-page: 115
  ident: b19
  article-title: Topology optimization of structures composed of one or two materials
  publication-title: Struct Optim
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: b46
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Advances in neural information processing systems 32
– volume: 62
  start-page: 2009
  year: 2005
  end-page: 2027
  ident: b21
  article-title: Discrete material optimization of general composite shell structures
  publication-title: Internat J Numer Methods Engrg
– volume: 47
  start-page: 49
  year: 2013
  end-page: 61
  ident: b7
  article-title: Efficient generation of large-scale pareto-optimal topologies
  publication-title: Struct Multidiscip Optim
– volume: 88
  start-page: 774
  year: 2011
  end-page: 796
  ident: b39
  article-title: A mass constraint formulation for structural topology optimization with multiphase materials
  publication-title: Internat J Numer Methods Engrg
– start-page: 1
  year: 2010
  end-page: 459
  ident: b14
  article-title: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing
  publication-title: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: b42
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Internat J Numer Methods Engrg
– volume: 85
  start-page: 144
  year: 2015
  end-page: 161
  ident: b55
  article-title: Volume preserving projection filters and continuation methods in topology optimization
  publication-title: Eng Struct
– volume: 50
  start-page: 623
  year: 2014
  end-page: 644
  ident: b31
  article-title: Material interface effects on the topology optimizationof multi-phase structures using a level set method
  publication-title: Struct Multidiscip Optim
– volume: 33
  start-page: 89
  year: 2007
  end-page: 111
  ident: b32
  article-title: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition
  publication-title: Struct Multidiscip Optim
– volume: 41
  start-page: 913
  year: 2010
  end-page: 934
  ident: b40
  article-title: A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials
  publication-title: Struct Multidiscip Optim
– volume: 18
  start-page: 5595
  year: 2017
  end-page: 5637
  ident: b52
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J Mach Learn Res
– volume: 163
  start-page: 489
  year: 2000
  end-page: 528
  ident: b4
  article-title: Structural boundary design via level set and immersed interface methods
  publication-title: J Comput Phys
– volume: 47
  start-page: 49
  year: 2013
  end-page: 61
  ident: b60
  article-title: Efficient generation of large-scale pareto-optimal topologies
  publication-title: Struct Multidiscip Optim
– volume: 308
  start-page: 113
  year: 2016
  end-page: 133
  ident: b65
  article-title: Multi-material topology optimization considering interface behavior via XFEM and level set method
  publication-title: Comput Methods Appl Mech Engrg
– start-page: 1
  year: 2018
  end-page: 27
  ident: b13
  article-title: Current and future trends in topology optimization for additive manufacturing
  publication-title: Struct Multidiscip Optim
– year: 2012
  ident: b9
  article-title: Topological derivatives in shape optimization
– year: 2015
  ident: b47
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd international conference on learning representations, ICLR 2015 - conference track proceedings
– volume: 100
  start-page: 97
  year: 2016
  end-page: 112
  ident: b63
  article-title: Topology optimization with manufacturing constraints: A unified projection-based approach
  publication-title: Adv Eng Softw
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b51
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 2013
  ident: b54
  article-title: Topology optimization: theory, methods, and applications
– year: 1995
  ident: b43
  article-title: Optimization of structural topology, shape, and material, vol. 414
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b69
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 10
  year: 2015
  ident: b61
  article-title: A deflated assembly free approach to large-scale implicit structural dynamics
  publication-title: J Comput Nonlinear Dyn
– volume: 111
  start-page: 247
  year: 2017
  end-page: 272
  ident: b64
  article-title: Undercut and overhang angle control in topology optimization: A density gradient based integral approach
  publication-title: Internat J Numer Methods Engrg
– year: 2019
  ident: b66
  article-title: Constrained deep networks: Lagrangian optimization via log-barrier extensions
– volume: 10
  start-page: 40
  year: 1995
  end-page: 45
  ident: b68
  article-title: Checkerboard patterns in layout optimization
  publication-title: Struct Optim
– volume: 190
  start-page: 6605
  year: 2001
  end-page: 6627
  ident: b22
  article-title: Design of multiphysics actuators using topology optimization - Part II: Two-material structures
  publication-title: Comput Methods Appl Mech Engrg
– volume: 13
  year: 2013
  ident: b62
  article-title: Assembly-free large-scale modal analysis on the graphics-programmable unit
  publication-title: J Comput Inf Sci Eng
– volume: 51
  start-page: 987
  year: 2015
  end-page: 1001
  ident: b8
  article-title: Multi-constrained topology optimization via the topological sensitivity
  publication-title: Struct Multidiscip Optim
– start-page: 4
  year: 2019
  ident: b49
  article-title: Constrained deep networks: Lagrangian optimization via log-barrier extensions
– volume: 136
  year: 2014
  ident: b15
  article-title: Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing
  publication-title: J Manuf Sci Eng
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  ident: b5
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
– volume: 45
  start-page: 1037
  year: 1997
  end-page: 1067
  ident: b20
  article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method
  publication-title: J Mech Phys Solids
– start-page: 1
  year: 2018
  end-page: 16
  ident: b17
  article-title: Additive manufacturing of multi-material structures
  publication-title: Materials science and engineering R: Reports, vol. 129
– volume: 44
  start-page: 149
  year: 2011
  end-page: 163
  ident: b36
  article-title: Optimization strategies for discrete multi-material stiffness optimization
  publication-title: Struct Multidiscip Optim
– volume: 49
  start-page: 885
  year: 1993
  end-page: 896
  ident: b6
  article-title: A simple evolutionary procedure for structural optimization
  publication-title: Comput Struct
– volume: 266
  start-page: 205
  year: 2013
  end-page: 218
  ident: b23
  article-title: Design of functionally graded piezocomposites using topology optimization and homogenization - Toward effective energy harvesting materials
  publication-title: Comput Methods Appl Mech Engrg
– start-page: 227
  year: 1990
  end-page: 236
  ident: b45
  article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
  publication-title: Neurocomputing
– volume: 21
  start-page: 120
  year: 2001
  end-page: 127
  ident: b2
  article-title: A 99 line topology optimization code written in Matlab
  publication-title: Struct Multidiscip Optim
– volume: 23
  start-page: 49
  year: 2001
  end-page: 62
  ident: b25
  article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme
  publication-title: Struct Multidiscip Optim
– year: 2017
  ident: b67
  article-title: Imposing hard constraints on deep networks: Promises and limitations
– volume: 43
  start-page: 393
  year: 2009
  end-page: 401
  ident: b33
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput Mech
– volume: 43
  start-page: 811
  year: 2011
  end-page: 825
  ident: b35
  article-title: Material interpolation schemes for unified topology and multi-material optimization
  publication-title: Struct Multidiscip Optim
– volume: 61
  start-page: 930
  year: 2008
  ident: b1
  article-title: An analytical model to predict optimal material properties in the context of optimal structural design
  publication-title: J Appl Mech
– volume: 32
  start-page: 1
  year: 2013
  end-page: 12
  ident: b16
  article-title: OpenFab: a programmable pipeline for multi-material fabrication
  publication-title: ACM Trans Graph
– volume: 340
  start-page: 798
  year: 2018
  end-page: 823
  ident: b38
  article-title: Multi-material continuum topology optimization with arbitrary volume and mass constraints
  publication-title: Comput Methods Appl Mech Engrg
– volume: 1
  start-page: 213
  year: 2004
  end-page: 239
  ident: b27
  article-title: Level-set method for design of multi-phase elastic and thermoelastic materials
  publication-title: Int J Mech Mater Design
– year: 2017
  ident: b44
  article-title: Searching for activation functions
– year: 2012
  ident: b59
  article-title: Understanding the exploding gradient problem
– volume: 23
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.cad.2021.103017_b25
  article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-001-0165-z
– start-page: 1
  year: 2010
  ident: 10.1016/j.cad.2021.103017_b14
  article-title: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing
– year: 2012
  ident: 10.1016/j.cad.2021.103017_b9
– volume: 51
  start-page: 987
  issue: 5
  year: 2015
  ident: 10.1016/j.cad.2021.103017_b8
  article-title: Multi-constrained topology optimization via the topological sensitivity
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1188-6
– volume: 1
  start-page: 213
  issue: 3
  year: 2004
  ident: 10.1016/j.cad.2021.103017_b27
  article-title: Level-set method for design of multi-phase elastic and thermoelastic materials
  publication-title: Int J Mech Mater Design
  doi: 10.1007/s10999-005-0221-8
– volume: 47
  start-page: 49
  issue: 1
  year: 2013
  ident: 10.1016/j.cad.2021.103017_b60
  article-title: Efficient generation of large-scale pareto-optimal topologies
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0807-3
– volume: 21
  start-page: 120
  issue: 2
  year: 2001
  ident: 10.1016/j.cad.2021.103017_b2
  article-title: A 99 line topology optimization code written in Matlab
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050176
– volume: 20
  start-page: 576
  issue: 2
  year: 2014
  ident: 10.1016/j.cad.2021.103017_b30
  article-title: Multi-phase structural optimization via a level set method
  publication-title: ESAIM Control Optim Calc Var
  doi: 10.1051/cocv/2013076
– start-page: 4
  year: 2019
  ident: 10.1016/j.cad.2021.103017_b49
– volume: 43
  start-page: 393
  issue: 3
  year: 2009
  ident: 10.1016/j.cad.2021.103017_b33
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0312-0
– volume: 44
  start-page: 149
  issue: 2
  year: 2011
  ident: 10.1016/j.cad.2021.103017_b36
  article-title: Optimization strategies for discrete multi-material stiffness optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0648-5
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.cad.2021.103017_b15
  article-title: Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4028439
– year: 2013
  ident: 10.1016/j.cad.2021.103017_b54
– volume: 163
  start-page: 489
  issue: 2
  year: 2000
  ident: 10.1016/j.cad.2021.103017_b4
  article-title: Structural boundary design via level set and immersed interface methods
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6581
– volume: 62
  start-page: 2009
  issue: 14
  year: 2005
  ident: 10.1016/j.cad.2021.103017_b21
  article-title: Discrete material optimization of general composite shell structures
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.1259
– volume: 277
  start-page: 46
  year: 2014
  ident: 10.1016/j.cad.2021.103017_b24
  article-title: Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2014.04.014
– volume: 61
  start-page: 930
  issue: 4
  year: 2008
  ident: 10.1016/j.cad.2021.103017_b1
  article-title: An analytical model to predict optimal material properties in the context of optimal structural design
  publication-title: J Appl Mech
  doi: 10.1115/1.2901581
– volume: 13
  issue: 1
  year: 2013
  ident: 10.1016/j.cad.2021.103017_b62
  article-title: Assembly-free large-scale modal analysis on the graphics-programmable unit
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4023168
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cad.2021.103017_b69
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– year: 2017
  ident: 10.1016/j.cad.2021.103017_b44
– volume: 52
  start-page: 1205
  issue: 6
  year: 2015
  ident: 10.1016/j.cad.2021.103017_b56
  article-title: Automatic penalty continuation in structural topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1277-1
– volume: 5
  start-page: 108
  issue: 1–2
  year: 1992
  ident: 10.1016/j.cad.2021.103017_b19
  article-title: Topology optimization of structures composed of one or two materials
  publication-title: Struct Optim
  doi: 10.1007/BF01744703
– volume: 45
  start-page: 1037
  issue: 6
  year: 1997
  ident: 10.1016/j.cad.2021.103017_b20
  article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(96)00114-7
– volume: 266
  start-page: 205
  year: 2013
  ident: 10.1016/j.cad.2021.103017_b23
  article-title: Design of functionally graded piezocomposites using topology optimization and homogenization - Toward effective energy harvesting materials
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2013.07.003
– volume: 33
  start-page: 89
  issue: 2
  year: 2007
  ident: 10.1016/j.cad.2021.103017_b32
  article-title: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-006-0035-9
– volume: 100
  start-page: 97
  year: 2016
  ident: 10.1016/j.cad.2021.103017_b63
  article-title: Topology optimization with manufacturing constraints: A unified projection-based approach
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.07.002
– volume: 1
  start-page: 213
  issue: 3
  year: 2004
  ident: 10.1016/j.cad.2021.103017_b29
  article-title: Level-set method for design of multi-phase elastic and thermoelastic materials
  publication-title: Int J Mech Mater Design
  doi: 10.1007/s10999-005-0221-8
– volume: 88
  start-page: 774
  issue: 8
  year: 2011
  ident: 10.1016/j.cad.2021.103017_b39
  article-title: A mass constraint formulation for structural topology optimization with multiphase materials
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.3197
– volume: 85
  start-page: 144
  year: 2015
  ident: 10.1016/j.cad.2021.103017_b55
  article-title: Volume preserving projection filters and continuation methods in topology optimization
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.10.052
– volume: 192
  start-page: 227
  issue: 1–2
  year: 2003
  ident: 10.1016/j.cad.2021.103017_b3
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(02)00559-5
– year: 2012
  ident: 10.1016/j.cad.2021.103017_b59
– year: 2019
  ident: 10.1016/j.cad.2021.103017_b66
– volume: 50
  start-page: 623
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2021.103017_b41
  article-title: Material interface effects on the topology optimization of multi-phase structures using a level set method
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1074-2
– volume: 127
  start-page: 941
  issue: 5
  year: 2005
  ident: 10.1016/j.cad.2021.103017_b28
  article-title: Design of multimaterial compliant mechanisms using level-set methods
  publication-title: J Mech Des
  doi: 10.1115/1.1909206
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.cad.2021.103017_b51
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 49
  start-page: 885
  issue: 5
  year: 1993
  ident: 10.1016/j.cad.2021.103017_b6
  article-title: A simple evolutionary procedure for structural optimization
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(93)90035-C
– start-page: 1
  year: 2018
  ident: 10.1016/j.cad.2021.103017_b13
  article-title: Current and future trends in topology optimization for additive manufacturing
  publication-title: Struct Multidiscip Optim
– volume: 43
  start-page: 811
  issue: 6
  year: 2011
  ident: 10.1016/j.cad.2021.103017_b35
  article-title: Material interpolation schemes for unified topology and multi-material optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0625-z
– start-page: 1
  year: 2020
  ident: 10.1016/j.cad.2021.103017_b18
  article-title: Tounn: topology optimization using neural networks
  publication-title: Struct. Multidiscip. Optim.
– volume: 109
  start-page: 668
  issue: 5
  year: 2017
  ident: 10.1016/j.cad.2021.103017_b37
  article-title: An isogeometric approach to topology optimization of multi-material and functionally graded structures
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5303
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: 10.1016/j.cad.2021.103017_b52
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J Mach Learn Res
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 10.1016/j.cad.2021.103017_b42
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.1620240207
– volume: 10
  issue: 6
  year: 2015
  ident: 10.1016/j.cad.2021.103017_b61
  article-title: A deflated assembly free approach to large-scale implicit structural dynamics
  publication-title: J Comput Nonlinear Dyn
– start-page: 1
  year: 2018
  ident: 10.1016/j.cad.2021.103017_b17
  article-title: Additive manufacturing of multi-material structures
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  ident: 10.1016/j.cad.2021.103017_b57
  article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct Optim
  doi: 10.1007/BF01214002
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.cad.2021.103017_b50
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– start-page: 8024
  year: 2019
  ident: 10.1016/j.cad.2021.103017_b46
  article-title: PyTorch: An imperative style, high-performance deep learning library
– volume: 190
  start-page: 6605
  issue: 49–50
  year: 2001
  ident: 10.1016/j.cad.2021.103017_b22
  article-title: Design of multiphysics actuators using topology optimization - Part II: Two-material structures
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(01)00252-3
– volume: 55
  start-page: 477
  issue: 2
  year: 2017
  ident: 10.1016/j.cad.2021.103017_b26
  article-title: Multi-material topology optimization using ordered SIMP interpolation
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1513-3
– volume: 102
  start-page: 182
  year: 2018
  ident: 10.1016/j.cad.2021.103017_b34
  article-title: Discrete multi-material topology optimization under total mass constraint
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2018.04.023
– volume: 41
  start-page: 913
  issue: 6
  year: 2010
  ident: 10.1016/j.cad.2021.103017_b40
  article-title: A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0455-4
– year: 1995
  ident: 10.1016/j.cad.2021.103017_b43
– year: 2006
  ident: 10.1016/j.cad.2021.103017_b48
– volume: 50
  start-page: 623
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2021.103017_b31
  article-title: Material interface effects on the topology optimizationof multi-phase structures using a level set method
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1074-2
– year: 2015
  ident: 10.1016/j.cad.2021.103017_b47
  article-title: Adam: A method for stochastic optimization
– volume: 111
  start-page: 247
  issue: 3
  year: 2017
  ident: 10.1016/j.cad.2021.103017_b64
  article-title: Undercut and overhang angle control in topology optimization: A density gradient based integral approach
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5461
– volume: 47
  start-page: 49
  issue: 1
  year: 2013
  ident: 10.1016/j.cad.2021.103017_b7
  article-title: Efficient generation of large-scale pareto-optimal topologies
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0807-3
– volume: 137
  issue: 10
  year: 2015
  ident: 10.1016/j.cad.2021.103017_b11
  article-title: A pareto-optimal approach to multimaterial topology optimization
  publication-title: J Mech Des
  doi: 10.1115/1.4031088
– volume: 10
  start-page: 40
  issue: 1
  year: 1995
  ident: 10.1016/j.cad.2021.103017_b68
  article-title: Checkerboard patterns in layout optimization
  publication-title: Struct Optim
  doi: 10.1007/BF01743693
– year: 2016
  ident: 10.1016/j.cad.2021.103017_b53
– volume: 32
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.cad.2021.103017_b16
  article-title: OpenFab: a programmable pipeline for multi-material fabrication
  publication-title: ACM Trans Graph
  doi: 10.1145/2461912.2461993
– volume: 340
  start-page: 798
  year: 2018
  ident: 10.1016/j.cad.2021.103017_b38
  article-title: Multi-material continuum topology optimization with arbitrary volume and mass constraints
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2018.01.032
– ident: 10.1016/j.cad.2021.103017_b58
– volume: 308
  start-page: 113
  year: 2016
  ident: 10.1016/j.cad.2021.103017_b65
  article-title: Multi-material topology optimization considering interface behavior via XFEM and level set method
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2016.05.016
– year: 2017
  ident: 10.1016/j.cad.2021.103017_b67
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  ident: 10.1016/j.cad.2021.103017_b5
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
– volume: 19
  start-page: 104
  year: 2018
  ident: 10.1016/j.cad.2021.103017_b10
  article-title: Strength-based topology optimization for anisotropic parts
  publication-title: Addit Manuf
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  ident: 10.1016/j.cad.2021.103017_b12
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0978-6
– start-page: 227
  year: 1990
  ident: 10.1016/j.cad.2021.103017_b45
  article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
SSID ssj0002139
Score 2.5742846
Snippet The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103017
SubjectTerms Back propagation
Back propagation networks
Density
Feature extraction
Finite element method
Multi-material
Network topologies
Neural networks
Optimization
Post-processing
SIMP
Thin features
Topology optimization
Title Multi-Material Topology Optimization Using Neural Networks
URI https://dx.doi.org/10.1016/j.cad.2021.103017
https://www.proquest.com/docview/2533406069
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTIwIZn6lSZhqyqqAqIsrdTNih1HKoJS0TCw8Ns5P8JLqANjIseKzs5338Xf3SF0lgtwQ6pIcEm0xqJXKJzqTGOuSgb8NI61dgLZcW80FTezeNZAgzoXxsoqA_Z7THdoHe50gzW7y_nc5vhCKCFS8D_uH5HFYSESu8sv3r9kHoxyT4EBb-zo-mTTabx0bouFMmpTz4nrWfanb_qF0s71DHfQduCMUd-_1i5qmMUe2vpWSXAfXbpEWnyXV25HRRPf--AtugdIeAq5lpHTB0S2HgcMGXsB-OoATYdXk8EIh7YIWPOMVhg4j9IZKwhVKkkKnRulODNpmgudgavJBVAaU5RUKIhtiNIFJ6onUp6XTHOT8kPUXDwvzBGKBOEmgVkzTY0QcayALcGszB7GQmBGW4jUBpE61Ay3rSseZS0Oe5BgQ2ltKL0NW-j885GlL5ixbrCorSx_rLoEQF_3WLteERk-uZVkNqmYQDyWHf9v1hO0aa-8FreNmtXLqzkFxlGpjttSHbTRv74djT8A2tTSaQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ikKBTLAghSa2E6bIDEgoGrpg6WVupnYcaUiKBUtQl34U_xBzo7DS6gDUtckPkWfL_eIv7sDOIoZuiGRVNy-J6XLyolwQxlJl4o-wfg0CKQ0BNl2udZlN72gl4P3rBZG0yqt7U9turHW9krJolkaDQa6xhdTCRai_zH_iIhlVjbU9BXztvF5_Qo3-ZiQ6nXnsuba0QKupJE_cTFuEDIiiecLUakkMlZCUKLCMGYyQnMdMwwLVNL3mcD8wBMyoZ4os5DGfSKpCinKXYBFhuZCj004ffvilRCfpjE3Gjj9etlRqiGVyVh3JyW-rnX3zJC0P53hL7dgfF11DVZtkOpcpDisQ04NN2DlW-vCTTgzlbtuK54YFXY66bCFqXOLNujRFnc6hpDg6AYg-Eg7ZZyPt6A7F7C2IT98GqodcJhHVQWlRtJXjAWBwPAMpRJ9-ouZoF8ALwOES9ukXM_KeOAZG-2eI4ZcY8hTDAtw8rlklHbomPUwy1DmP9SMoweZtayY7Qi33_iYE13F7GECGO3-T-ohLNU6rSZv1tuNPVjWd1IicBHyk-cXtY_hzkQcGPVy4G7e-vwBqpUO4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Material+Topology+Optimization+Using+Neural+Networks&rft.jtitle=Computer+aided+design&rft.au=Chandrasekhar%2C+Aaditya&rft.au=Suresh%2C+Krishnan&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=136&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cad.2021.103017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon