Multi-Material Topology Optimization Using Neural Networks
The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically re...
Saved in:
Published in | Computer aided design Vol. 136; p. 103017 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically represented using an underlying mesh. While mesh-based MMTO ties in well with mesh-based finite element analysis, there are inherent challenges, namely the extraction of thin features, and the computation of the gradients of the density fields.
The objective of this paper is to present a neural network (NN) based MMTO method where the density fields are represented in a mesh-independent manner, using the NN’s activation functions, with the weights and biases associated with the NN serving as the design variables. Then, by relying on the NN’s built-in optimization routines, and a conventional finite element solver, the MMTO problem is solved.
The salient features of the proposed method include: (1) thin features can be extracted through a simple post-processing step, (2) gradients and sensitivities can be computed accurately through back-propagation, (3) the NN construction implicitly guarantees the partition of unity between constituent materials, (4) the NN designs often exhibit better performance than mesh-based designs, and (5) the number of design variables is relatively small. Finally, the proposed framework is simple to implement, and is illustrated through several examples.
•A neural network (NN) based multi-material topology optimization (MMTO) method.•Spatial coordinates as NN inputs and material volumes as output.•The sensitivities are computed analytically using NN’s back-propagation.•Leads to a crisp and differentiable material interface. |
---|---|
AbstractList | The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically represented using an underlying mesh. While mesh-based MMTO ties in well with mesh-based finite element analysis, there are inherent challenges, namely the extraction of thin features, and the computation of the gradients of the density fields.
The objective of this paper is to present a neural network (NN) based MMTO method where the density fields are represented in a mesh-independent manner, using the NN’s activation functions, with the weights and biases associated with the NN serving as the design variables. Then, by relying on the NN’s built-in optimization routines, and a conventional finite element solver, the MMTO problem is solved.
The salient features of the proposed method include: (1) thin features can be extracted through a simple post-processing step, (2) gradients and sensitivities can be computed accurately through back-propagation, (3) the NN construction implicitly guarantees the partition of unity between constituent materials, (4) the NN designs often exhibit better performance than mesh-based designs, and (5) the number of design variables is relatively small. Finally, the proposed framework is simple to implement, and is illustrated through several examples.
•A neural network (NN) based multi-material topology optimization (MMTO) method.•Spatial coordinates as NN inputs and material volumes as output.•The sensitivities are computed analytically using NN’s back-propagation.•Leads to a crisp and differentiable material interface. The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the distribution of two or more materials within the topology. In the popular density-based MMTO, the underlying pseudo-density fields are typically represented using an underlying mesh. While mesh-based MMTO ties in well with mesh-based finite element analysis, there are inherent challenges, namely the extraction of thin features, and the computation of the gradients of the density fields. The objective of this paper is to present a neural network (NN) based MMTO method where the density fields are represented in a mesh-independent manner, using the NN's activation functions, with the weights and biases associated with the NN serving as the design variables. Then, by relying on the NN's built-in optimization routines, and a conventional finite element solver, the MMTO problem is solved. The salient features of the proposed method include: (1) thin features can be extracted through a simple post-processing step, (2) gradients and sensitivities can be computed accurately through back-propagation, (3) the NN construction implicitly guarantees the partition of unity between constituent materials, (4) the NN designs often exhibit better performance than mesh-based designs, and (5) the number of design variables is relatively small. Finally, the proposed framework is simple to implement, and is illustrated through several examples. |
ArticleNumber | 103017 |
Author | Suresh, Krishnan Chandrasekhar, Aaditya |
Author_xml | – sequence: 1 givenname: Aaditya surname: Chandrasekhar fullname: Chandrasekhar, Aaditya email: achandrasek3@wisc.edu – sequence: 2 givenname: Krishnan orcidid: 0000-0002-9688-9697 surname: Suresh fullname: Suresh, Krishnan email: ksuresh@wisc.edu |
BookMark | eNp9kMlOwzAQhi1UJNrCA3CLxDnFS1Y4oYpNou2lPVu2M6kc0jjYLqg8PS7hxKGn0Uj_N8s3QaPOdIDQNcEzgkl228yUqGYUUxJ6hkl-hsakyMuYZkU6QmOMCY6TpEgv0MS5BuOQZOUY3S32rdfxQniwWrTR2vSmNdtDtOq93ulv4bXpoo3T3TZawt6GyBL8l7Hv7hKd16J1cPVXp2jz9Liev8Rvq-fX-cNbrFhJfJwmqVQlrTCRMs8rJUBKRqEoRKLKnISSUQZVTRJJ0xJLVTEss6RgoqaKQcGm6GaY21vzsQfneWP2tgsrOU0ZS3CGszKk8iGlrHHOQs2V9r_Xeyt0ywnmR1G84UEUP4rig6hAkn9kb_VO2MNJ5n5gIDz-qcFypzR0CiptQXleGX2C_gFX94HC |
CitedBy_id | crossref_primary_10_1007_s00158_023_03698_3 crossref_primary_10_1016_j_cad_2023_103665 crossref_primary_10_1007_s00158_021_03025_8 crossref_primary_10_1016_j_jmapro_2025_03_012 crossref_primary_10_1016_j_procs_2022_01_232 crossref_primary_10_1115_1_4064131 crossref_primary_10_3390_aerospace10121025 crossref_primary_10_1016_j_cma_2024_117004 crossref_primary_10_1007_s00158_022_03460_1 crossref_primary_10_1007_s12008_024_01905_z crossref_primary_10_1007_s00158_024_03908_6 crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1007_s00366_023_01904_w crossref_primary_10_2139_ssrn_4104219 crossref_primary_10_1007_s00158_022_03347_1 crossref_primary_10_1142_S0219876221420135 crossref_primary_10_1016_j_compbiomed_2022_106475 crossref_primary_10_1016_j_cad_2022_103449 crossref_primary_10_1016_j_engstruct_2024_119194 crossref_primary_10_1016_j_cma_2024_117698 crossref_primary_10_1016_j_ijmecsci_2024_109267 crossref_primary_10_1093_jcde_qwad072 crossref_primary_10_1016_j_cad_2022_103277 crossref_primary_10_1016_j_cma_2023_116401 crossref_primary_10_1016_j_mser_2023_100725 crossref_primary_10_1016_j_compstruct_2023_117838 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1080_17452759_2023_2181192 crossref_primary_10_1016_j_enganabound_2024_03_031 crossref_primary_10_1111_cgf_14700 crossref_primary_10_1115_1_4062663 crossref_primary_10_1007_s00366_023_01827_6 crossref_primary_10_3390_app14020657 crossref_primary_10_1007_s10338_025_00587_8 crossref_primary_10_1007_s00158_024_03888_7 crossref_primary_10_32604_cmes_2024_048118 crossref_primary_10_1007_s00158_024_03800_3 crossref_primary_10_1016_j_engappai_2023_107033 crossref_primary_10_1002_nme_7374 crossref_primary_10_1007_s11012_024_01916_w crossref_primary_10_3390_ma16113946 crossref_primary_10_1016_j_procir_2022_05_317 crossref_primary_10_1016_j_advengsoft_2022_103359 crossref_primary_10_1016_j_compstruc_2023_107218 |
Cites_doi | 10.1007/s00158-001-0165-z 10.1007/s00158-014-1188-6 10.1007/s10999-005-0221-8 10.1007/s00158-012-0807-3 10.1007/s001580050176 10.1051/cocv/2013076 10.1007/s00466-008-0312-0 10.1007/s00158-011-0648-5 10.1115/1.4028439 10.1006/jcph.2000.6581 10.1002/nme.1259 10.1016/j.cma.2014.04.014 10.1115/1.2901581 10.1115/1.4023168 10.1016/j.jcp.2018.10.045 10.1007/s00158-015-1277-1 10.1007/BF01744703 10.1016/S0022-5096(96)00114-7 10.1016/j.cma.2013.07.003 10.1007/s00158-006-0035-9 10.1016/j.advengsoft.2016.07.002 10.1002/nme.3197 10.1016/j.engstruct.2014.10.052 10.1016/S0045-7825(02)00559-5 10.1007/s00158-014-1074-2 10.1115/1.1909206 10.1038/323533a0 10.1016/0045-7949(93)90035-C 10.1007/s00158-011-0625-z 10.1002/nme.5303 10.1002/nme.1620240207 10.1007/BF01214002 10.1007/s00158-010-0594-7 10.1016/S0045-7825(01)00252-3 10.1007/s00158-016-1513-3 10.1016/j.cad.2018.04.023 10.1007/s00158-009-0455-4 10.1002/nme.5461 10.1115/1.4031088 10.1007/BF01743693 10.1145/2461912.2461993 10.1016/j.cma.2018.01.032 10.1016/j.cma.2016.05.016 10.1016/j.jcp.2003.09.032 10.1007/s00158-013-0978-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2021 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2021.103017 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2021_103017 S0010448521000282 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-545bc92d01bb77dcaebb32e88a4c9718a4623edf14b2590bcd30b6483af2c3e83 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Sun Jul 13 05:26:18 EDT 2025 Tue Jul 01 03:34:36 EDT 2025 Thu Apr 24 23:05:18 EDT 2025 Fri Feb 23 02:44:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Thin features Neural networks Multi-material SIMP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-545bc92d01bb77dcaebb32e88a4c9718a4623edf14b2590bcd30b6483af2c3e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9688-9697 |
PQID | 2533406069 |
PQPubID | 2045267 |
ParticipantIDs | proquest_journals_2533406069 crossref_citationtrail_10_1016_j_cad_2021_103017 crossref_primary_10_1016_j_cad_2021_103017 elsevier_sciencedirect_doi_10_1016_j_cad_2021_103017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (b66) 2019 Allaire, Dapogny, Delgado, Michailidis (b30) 2014; 20 Rojas-Labanda, Stolpe (b56) 2015; 52 Li, Khandelwal (b55) 2015; 85 Svanberg (b42) 1987; 24 Kingma, Ba (b47) 2015 Gibson, Rosen, Stucker (b14) 2010 Yin, Ananthasuresh (b25) 2001; 23 Chandrasekhar, Suresh (b18) 2020 Rumelhart, Hinton, Williams (b51) 1986; 323 Vatanabe, Lippi, Lima, Paulino, Silva (b63) 2016; 100 Vidimče, Wang, Ragan-Kelley, Matusik (b16) 2013; 32 Bendsoe, Sigmund (b54) 2013 Ramani (b40) 2010; 41 Bridle (b45) 1990 Raissi, Perdikaris, Karniadakis (b69) 2019; 378 Andreassen, Clausen, Schevenels, Lazarov, Sigmund (b50) 2011; 43 Sigmund, Maute (b12) 2013; 48 Baydin, Pearlmutter, Radul, Siskind (b52) 2017; 18 Vatanabe, Paulino, Silva (b23) 2013; 266 Vermaak, Michailidis, Parry, Estevez, Allaire, Bréchet (b41) 2014; 50 Novotny, Sokołowski (b9) 2012 Wang, Mei, Wang (b29) 2004; 1 Mirzendehdel, Suresh (b61) 2015; 10 Suresh (b60) 2013; 47 Bandyopadhyay, Heer (b17) 2018 Thomsen (b19) 1992; 5 Ramachandran, Zoph, Le (b44) 2017 Sigmund, Petersson (b57) 1998; 16 Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (b49) 2019 Sigmund (b2) 2001; 21 Zuo, Saitou (b26) 2017; 55 Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b46) 2019 Yang, Li (b34) 2018; 102 Sigmund (b22) 2001; 190 Bendsøe, Sigmund (b43) 1995 Vermaak, Michailidis, Parry, Estevez, Allaire, Bréchet (b31) 2014; 50 Qian (b64) 2017; 111 Díaz, Sigmund (b68) 1995; 10 Deng, Suresh (b8) 2015; 51 Taheri, Hassani (b24) 2014; 277 Allaire, Jouve, Toader (b5) 2004; 194 Márquez-Neila, Salzmann, Fua (b67) 2017 Bendsoe, Guedes, Haber, Pedersen, Taylor (b1) 2008; 61 Huang, Xie (b33) 2009; 43 Mirzendehdel, Suresh (b11) 2015; 137 Gao, Zhang (b39) 2011; 88 Wang, Mei, Wang (b27) 2004; 1 Xie, Steven (b6) 1993; 49 Pascanu, Mikolov, Bengio (b59) 2012 Yadav, Suresh (b62) 2013; 13 Liu, Luo, Kang (b65) 2016; 308 Wang, Wang, Guo (b3) 2003; 192 Mirzendehdel, Rankouhi, Suresh (b10) 2018; 19 Hvejsel, Lund (b35) 2011; 43 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56. Sanders, Aguiló, Paulino (b38) 2018; 340 Gaynor, Meisel, Williams, Guest (b15) 2014; 136 Liu, Gaynor, Chen, Kang, Suresh, Takezawa (b13) 2018 Zhou, Wang (b32) 2007; 33 Ruder (b53) 2016 Wang, Chen, Wang, Mei (b28) 2005; 127 Sethian, Wiegmann (b4) 2000; 163 Hvejsel, Lund, Stolpe (b36) 2011; 44 Taheri, Suresh (b37) 2017; 109 Suresh (b7) 2013; 47 Nocedal, Wright (b48) 2006 Sigmund, Torquato (b20) 1997; 45 Stegmann, Lund (b21) 2005; 62 Allaire (10.1016/j.cad.2021.103017_b5) 2004; 194 Bandyopadhyay (10.1016/j.cad.2021.103017_b17) 2018 Ramachandran (10.1016/j.cad.2021.103017_b44) 2017 Bendsøe (10.1016/j.cad.2021.103017_b43) 1995 Gibson (10.1016/j.cad.2021.103017_b14) 2010 Stegmann (10.1016/j.cad.2021.103017_b21) 2005; 62 Paszke (10.1016/j.cad.2021.103017_b46) 2019 Liu (10.1016/j.cad.2021.103017_b65) 2016; 308 Hvejsel (10.1016/j.cad.2021.103017_b36) 2011; 44 Raissi (10.1016/j.cad.2021.103017_b69) 2019; 378 Suresh (10.1016/j.cad.2021.103017_b7) 2013; 47 Li (10.1016/j.cad.2021.103017_b55) 2015; 85 Thomsen (10.1016/j.cad.2021.103017_b19) 1992; 5 Nocedal (10.1016/j.cad.2021.103017_b48) 2006 Bendsoe (10.1016/j.cad.2021.103017_b1) 2008; 61 Wang (10.1016/j.cad.2021.103017_b3) 2003; 192 Kervadec (10.1016/j.cad.2021.103017_b49) 2019 Sigmund (10.1016/j.cad.2021.103017_b57) 1998; 16 Sigmund (10.1016/j.cad.2021.103017_b2) 2001; 21 Taheri (10.1016/j.cad.2021.103017_b37) 2017; 109 Vidimče (10.1016/j.cad.2021.103017_b16) 2013; 32 Vermaak (10.1016/j.cad.2021.103017_b41) 2014; 50 Rojas-Labanda (10.1016/j.cad.2021.103017_b56) 2015; 52 Taheri (10.1016/j.cad.2021.103017_b24) 2014; 277 Gao (10.1016/j.cad.2021.103017_b39) 2011; 88 Sethian (10.1016/j.cad.2021.103017_b4) 2000; 163 Márquez-Neila (10.1016/j.cad.2021.103017_b67) 2017 Wang (10.1016/j.cad.2021.103017_b29) 2004; 1 Qian (10.1016/j.cad.2021.103017_b64) 2017; 111 Suresh (10.1016/j.cad.2021.103017_b60) 2013; 47 Mirzendehdel (10.1016/j.cad.2021.103017_b61) 2015; 10 Yang (10.1016/j.cad.2021.103017_b34) 2018; 102 Chandrasekhar (10.1016/j.cad.2021.103017_b18) 2020 Gaynor (10.1016/j.cad.2021.103017_b15) 2014; 136 Allaire (10.1016/j.cad.2021.103017_b30) 2014; 20 Vermaak (10.1016/j.cad.2021.103017_b31) 2014; 50 Baydin (10.1016/j.cad.2021.103017_b52) 2017; 18 Pascanu (10.1016/j.cad.2021.103017_b59) 2012 Deng (10.1016/j.cad.2021.103017_b8) 2015; 51 Kervadec (10.1016/j.cad.2021.103017_b66) 2019 Liu (10.1016/j.cad.2021.103017_b13) 2018 Sigmund (10.1016/j.cad.2021.103017_b20) 1997; 45 Sigmund (10.1016/j.cad.2021.103017_b22) 2001; 190 Bendsoe (10.1016/j.cad.2021.103017_b54) 2013 Novotny (10.1016/j.cad.2021.103017_b9) 2012 Andreassen (10.1016/j.cad.2021.103017_b50) 2011; 43 Rumelhart (10.1016/j.cad.2021.103017_b51) 1986; 323 Svanberg (10.1016/j.cad.2021.103017_b42) 1987; 24 Wang (10.1016/j.cad.2021.103017_b28) 2005; 127 Vatanabe (10.1016/j.cad.2021.103017_b63) 2016; 100 Wang (10.1016/j.cad.2021.103017_b27) 2004; 1 Vatanabe (10.1016/j.cad.2021.103017_b23) 2013; 266 Sanders (10.1016/j.cad.2021.103017_b38) 2018; 340 Yin (10.1016/j.cad.2021.103017_b25) 2001; 23 Zuo (10.1016/j.cad.2021.103017_b26) 2017; 55 Xie (10.1016/j.cad.2021.103017_b6) 1993; 49 Ramani (10.1016/j.cad.2021.103017_b40) 2010; 41 Hvejsel (10.1016/j.cad.2021.103017_b35) 2011; 43 Kingma (10.1016/j.cad.2021.103017_b47) 2015 Ruder (10.1016/j.cad.2021.103017_b53) 2016 10.1016/j.cad.2021.103017_b58 Sigmund (10.1016/j.cad.2021.103017_b12) 2013; 48 Mirzendehdel (10.1016/j.cad.2021.103017_b10) 2018; 19 Huang (10.1016/j.cad.2021.103017_b33) 2009; 43 Yadav (10.1016/j.cad.2021.103017_b62) 2013; 13 Mirzendehdel (10.1016/j.cad.2021.103017_b11) 2015; 137 Zhou (10.1016/j.cad.2021.103017_b32) 2007; 33 Bridle (10.1016/j.cad.2021.103017_b45) 1990 Díaz (10.1016/j.cad.2021.103017_b68) 1995; 10 |
References_xml | – reference: Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56. – volume: 50 start-page: 623 year: 2014 end-page: 644 ident: b41 article-title: Material interface effects on the topology optimization of multi-phase structures using a level set method publication-title: Struct Multidiscip Optim – volume: 19 start-page: 104 year: 2018 end-page: 113 ident: b10 article-title: Strength-based topology optimization for anisotropic parts publication-title: Addit Manuf – volume: 55 start-page: 477 year: 2017 end-page: 491 ident: b26 article-title: Multi-material topology optimization using ordered SIMP interpolation publication-title: Struct Multidiscip Optim – volume: 127 start-page: 941 year: 2005 end-page: 956 ident: b28 article-title: Design of multimaterial compliant mechanisms using level-set methods publication-title: J Mech Des – start-page: 1 year: 2020 end-page: 15 ident: b18 article-title: Tounn: topology optimization using neural networks publication-title: Struct. Multidiscip. Optim. – volume: 109 start-page: 668 year: 2017 end-page: 696 ident: b37 article-title: An isogeometric approach to topology optimization of multi-material and functionally graded structures publication-title: Internat J Numer Methods Engrg – year: 2016 ident: b53 article-title: An overview of gradient descent optimization algorithms – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: b3 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg – volume: 137 year: 2015 ident: b11 article-title: A pareto-optimal approach to multimaterial topology optimization publication-title: J Mech Des – volume: 1 start-page: 213 year: 2004 end-page: 239 ident: b29 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: Int J Mech Mater Design – volume: 16 start-page: 68 year: 1998 end-page: 75 ident: b57 article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct Optim – volume: 102 start-page: 182 year: 2018 end-page: 192 ident: b34 article-title: Discrete multi-material topology optimization under total mass constraint publication-title: Comput Aided Des – volume: 52 start-page: 1205 year: 2015 end-page: 1221 ident: b56 article-title: Automatic penalty continuation in structural topology optimization publication-title: Struct Multidiscip Optim – volume: 20 start-page: 576 year: 2014 end-page: 611 ident: b30 article-title: Multi-phase structural optimization via a level set method publication-title: ESAIM Control Optim Calc Var – year: 2006 ident: b48 article-title: Numerical optimization – volume: 277 start-page: 46 year: 2014 end-page: 80 ident: b24 article-title: Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies publication-title: Comput Methods Appl Mech Engrg – volume: 48 start-page: 1031 year: 2013 end-page: 1055 ident: b12 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim – volume: 43 start-page: 1 year: 2011 end-page: 16 ident: b50 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim – volume: 5 start-page: 108 year: 1992 end-page: 115 ident: b19 article-title: Topology optimization of structures composed of one or two materials publication-title: Struct Optim – start-page: 8024 year: 2019 end-page: 8035 ident: b46 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Advances in neural information processing systems 32 – volume: 62 start-page: 2009 year: 2005 end-page: 2027 ident: b21 article-title: Discrete material optimization of general composite shell structures publication-title: Internat J Numer Methods Engrg – volume: 47 start-page: 49 year: 2013 end-page: 61 ident: b7 article-title: Efficient generation of large-scale pareto-optimal topologies publication-title: Struct Multidiscip Optim – volume: 88 start-page: 774 year: 2011 end-page: 796 ident: b39 article-title: A mass constraint formulation for structural topology optimization with multiphase materials publication-title: Internat J Numer Methods Engrg – start-page: 1 year: 2010 end-page: 459 ident: b14 article-title: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing publication-title: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing – volume: 24 start-page: 359 year: 1987 end-page: 373 ident: b42 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Internat J Numer Methods Engrg – volume: 85 start-page: 144 year: 2015 end-page: 161 ident: b55 article-title: Volume preserving projection filters and continuation methods in topology optimization publication-title: Eng Struct – volume: 50 start-page: 623 year: 2014 end-page: 644 ident: b31 article-title: Material interface effects on the topology optimizationof multi-phase structures using a level set method publication-title: Struct Multidiscip Optim – volume: 33 start-page: 89 year: 2007 end-page: 111 ident: b32 article-title: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition publication-title: Struct Multidiscip Optim – volume: 41 start-page: 913 year: 2010 end-page: 934 ident: b40 article-title: A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials publication-title: Struct Multidiscip Optim – volume: 18 start-page: 5595 year: 2017 end-page: 5637 ident: b52 article-title: Automatic differentiation in machine learning: a survey publication-title: J Mach Learn Res – volume: 163 start-page: 489 year: 2000 end-page: 528 ident: b4 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys – volume: 47 start-page: 49 year: 2013 end-page: 61 ident: b60 article-title: Efficient generation of large-scale pareto-optimal topologies publication-title: Struct Multidiscip Optim – volume: 308 start-page: 113 year: 2016 end-page: 133 ident: b65 article-title: Multi-material topology optimization considering interface behavior via XFEM and level set method publication-title: Comput Methods Appl Mech Engrg – start-page: 1 year: 2018 end-page: 27 ident: b13 article-title: Current and future trends in topology optimization for additive manufacturing publication-title: Struct Multidiscip Optim – year: 2012 ident: b9 article-title: Topological derivatives in shape optimization – year: 2015 ident: b47 article-title: Adam: A method for stochastic optimization publication-title: 3rd international conference on learning representations, ICLR 2015 - conference track proceedings – volume: 100 start-page: 97 year: 2016 end-page: 112 ident: b63 article-title: Topology optimization with manufacturing constraints: A unified projection-based approach publication-title: Adv Eng Softw – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b51 article-title: Learning representations by back-propagating errors publication-title: Nature – year: 2013 ident: b54 article-title: Topology optimization: theory, methods, and applications – year: 1995 ident: b43 article-title: Optimization of structural topology, shape, and material, vol. 414 – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b69 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys – volume: 10 year: 2015 ident: b61 article-title: A deflated assembly free approach to large-scale implicit structural dynamics publication-title: J Comput Nonlinear Dyn – volume: 111 start-page: 247 year: 2017 end-page: 272 ident: b64 article-title: Undercut and overhang angle control in topology optimization: A density gradient based integral approach publication-title: Internat J Numer Methods Engrg – year: 2019 ident: b66 article-title: Constrained deep networks: Lagrangian optimization via log-barrier extensions – volume: 10 start-page: 40 year: 1995 end-page: 45 ident: b68 article-title: Checkerboard patterns in layout optimization publication-title: Struct Optim – volume: 190 start-page: 6605 year: 2001 end-page: 6627 ident: b22 article-title: Design of multiphysics actuators using topology optimization - Part II: Two-material structures publication-title: Comput Methods Appl Mech Engrg – volume: 13 year: 2013 ident: b62 article-title: Assembly-free large-scale modal analysis on the graphics-programmable unit publication-title: J Comput Inf Sci Eng – volume: 51 start-page: 987 year: 2015 end-page: 1001 ident: b8 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct Multidiscip Optim – start-page: 4 year: 2019 ident: b49 article-title: Constrained deep networks: Lagrangian optimization via log-barrier extensions – volume: 136 year: 2014 ident: b15 article-title: Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing publication-title: J Manuf Sci Eng – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: b5 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys – volume: 45 start-page: 1037 year: 1997 end-page: 1067 ident: b20 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: J Mech Phys Solids – start-page: 1 year: 2018 end-page: 16 ident: b17 article-title: Additive manufacturing of multi-material structures publication-title: Materials science and engineering R: Reports, vol. 129 – volume: 44 start-page: 149 year: 2011 end-page: 163 ident: b36 article-title: Optimization strategies for discrete multi-material stiffness optimization publication-title: Struct Multidiscip Optim – volume: 49 start-page: 885 year: 1993 end-page: 896 ident: b6 article-title: A simple evolutionary procedure for structural optimization publication-title: Comput Struct – volume: 266 start-page: 205 year: 2013 end-page: 218 ident: b23 article-title: Design of functionally graded piezocomposites using topology optimization and homogenization - Toward effective energy harvesting materials publication-title: Comput Methods Appl Mech Engrg – start-page: 227 year: 1990 end-page: 236 ident: b45 article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition publication-title: Neurocomputing – volume: 21 start-page: 120 year: 2001 end-page: 127 ident: b2 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidiscip Optim – volume: 23 start-page: 49 year: 2001 end-page: 62 ident: b25 article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme publication-title: Struct Multidiscip Optim – year: 2017 ident: b67 article-title: Imposing hard constraints on deep networks: Promises and limitations – volume: 43 start-page: 393 year: 2009 end-page: 401 ident: b33 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput Mech – volume: 43 start-page: 811 year: 2011 end-page: 825 ident: b35 article-title: Material interpolation schemes for unified topology and multi-material optimization publication-title: Struct Multidiscip Optim – volume: 61 start-page: 930 year: 2008 ident: b1 article-title: An analytical model to predict optimal material properties in the context of optimal structural design publication-title: J Appl Mech – volume: 32 start-page: 1 year: 2013 end-page: 12 ident: b16 article-title: OpenFab: a programmable pipeline for multi-material fabrication publication-title: ACM Trans Graph – volume: 340 start-page: 798 year: 2018 end-page: 823 ident: b38 article-title: Multi-material continuum topology optimization with arbitrary volume and mass constraints publication-title: Comput Methods Appl Mech Engrg – volume: 1 start-page: 213 year: 2004 end-page: 239 ident: b27 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: Int J Mech Mater Design – year: 2017 ident: b44 article-title: Searching for activation functions – year: 2012 ident: b59 article-title: Understanding the exploding gradient problem – volume: 23 start-page: 49 issue: 1 year: 2001 ident: 10.1016/j.cad.2021.103017_b25 article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-001-0165-z – start-page: 1 year: 2010 ident: 10.1016/j.cad.2021.103017_b14 article-title: Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing – year: 2012 ident: 10.1016/j.cad.2021.103017_b9 – volume: 51 start-page: 987 issue: 5 year: 2015 ident: 10.1016/j.cad.2021.103017_b8 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1188-6 – volume: 1 start-page: 213 issue: 3 year: 2004 ident: 10.1016/j.cad.2021.103017_b27 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: Int J Mech Mater Design doi: 10.1007/s10999-005-0221-8 – volume: 47 start-page: 49 issue: 1 year: 2013 ident: 10.1016/j.cad.2021.103017_b60 article-title: Efficient generation of large-scale pareto-optimal topologies publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0807-3 – volume: 21 start-page: 120 issue: 2 year: 2001 ident: 10.1016/j.cad.2021.103017_b2 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050176 – volume: 20 start-page: 576 issue: 2 year: 2014 ident: 10.1016/j.cad.2021.103017_b30 article-title: Multi-phase structural optimization via a level set method publication-title: ESAIM Control Optim Calc Var doi: 10.1051/cocv/2013076 – start-page: 4 year: 2019 ident: 10.1016/j.cad.2021.103017_b49 – volume: 43 start-page: 393 issue: 3 year: 2009 ident: 10.1016/j.cad.2021.103017_b33 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput Mech doi: 10.1007/s00466-008-0312-0 – volume: 44 start-page: 149 issue: 2 year: 2011 ident: 10.1016/j.cad.2021.103017_b36 article-title: Optimization strategies for discrete multi-material stiffness optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0648-5 – volume: 136 issue: 6 year: 2014 ident: 10.1016/j.cad.2021.103017_b15 article-title: Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing publication-title: J Manuf Sci Eng doi: 10.1115/1.4028439 – year: 2013 ident: 10.1016/j.cad.2021.103017_b54 – volume: 163 start-page: 489 issue: 2 year: 2000 ident: 10.1016/j.cad.2021.103017_b4 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys doi: 10.1006/jcph.2000.6581 – volume: 62 start-page: 2009 issue: 14 year: 2005 ident: 10.1016/j.cad.2021.103017_b21 article-title: Discrete material optimization of general composite shell structures publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.1259 – volume: 277 start-page: 46 year: 2014 ident: 10.1016/j.cad.2021.103017_b24 article-title: Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2014.04.014 – volume: 61 start-page: 930 issue: 4 year: 2008 ident: 10.1016/j.cad.2021.103017_b1 article-title: An analytical model to predict optimal material properties in the context of optimal structural design publication-title: J Appl Mech doi: 10.1115/1.2901581 – volume: 13 issue: 1 year: 2013 ident: 10.1016/j.cad.2021.103017_b62 article-title: Assembly-free large-scale modal analysis on the graphics-programmable unit publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4023168 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cad.2021.103017_b69 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.10.045 – year: 2017 ident: 10.1016/j.cad.2021.103017_b44 – volume: 52 start-page: 1205 issue: 6 year: 2015 ident: 10.1016/j.cad.2021.103017_b56 article-title: Automatic penalty continuation in structural topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1277-1 – volume: 5 start-page: 108 issue: 1–2 year: 1992 ident: 10.1016/j.cad.2021.103017_b19 article-title: Topology optimization of structures composed of one or two materials publication-title: Struct Optim doi: 10.1007/BF01744703 – volume: 45 start-page: 1037 issue: 6 year: 1997 ident: 10.1016/j.cad.2021.103017_b20 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(96)00114-7 – volume: 266 start-page: 205 year: 2013 ident: 10.1016/j.cad.2021.103017_b23 article-title: Design of functionally graded piezocomposites using topology optimization and homogenization - Toward effective energy harvesting materials publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2013.07.003 – volume: 33 start-page: 89 issue: 2 year: 2007 ident: 10.1016/j.cad.2021.103017_b32 article-title: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-006-0035-9 – volume: 100 start-page: 97 year: 2016 ident: 10.1016/j.cad.2021.103017_b63 article-title: Topology optimization with manufacturing constraints: A unified projection-based approach publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.07.002 – volume: 1 start-page: 213 issue: 3 year: 2004 ident: 10.1016/j.cad.2021.103017_b29 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: Int J Mech Mater Design doi: 10.1007/s10999-005-0221-8 – volume: 88 start-page: 774 issue: 8 year: 2011 ident: 10.1016/j.cad.2021.103017_b39 article-title: A mass constraint formulation for structural topology optimization with multiphase materials publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.3197 – volume: 85 start-page: 144 year: 2015 ident: 10.1016/j.cad.2021.103017_b55 article-title: Volume preserving projection filters and continuation methods in topology optimization publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.10.052 – volume: 192 start-page: 227 issue: 1–2 year: 2003 ident: 10.1016/j.cad.2021.103017_b3 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(02)00559-5 – year: 2012 ident: 10.1016/j.cad.2021.103017_b59 – year: 2019 ident: 10.1016/j.cad.2021.103017_b66 – volume: 50 start-page: 623 issue: 4 year: 2014 ident: 10.1016/j.cad.2021.103017_b41 article-title: Material interface effects on the topology optimization of multi-phase structures using a level set method publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1074-2 – volume: 127 start-page: 941 issue: 5 year: 2005 ident: 10.1016/j.cad.2021.103017_b28 article-title: Design of multimaterial compliant mechanisms using level-set methods publication-title: J Mech Des doi: 10.1115/1.1909206 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.cad.2021.103017_b51 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 49 start-page: 885 issue: 5 year: 1993 ident: 10.1016/j.cad.2021.103017_b6 article-title: A simple evolutionary procedure for structural optimization publication-title: Comput Struct doi: 10.1016/0045-7949(93)90035-C – start-page: 1 year: 2018 ident: 10.1016/j.cad.2021.103017_b13 article-title: Current and future trends in topology optimization for additive manufacturing publication-title: Struct Multidiscip Optim – volume: 43 start-page: 811 issue: 6 year: 2011 ident: 10.1016/j.cad.2021.103017_b35 article-title: Material interpolation schemes for unified topology and multi-material optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0625-z – start-page: 1 year: 2020 ident: 10.1016/j.cad.2021.103017_b18 article-title: Tounn: topology optimization using neural networks publication-title: Struct. Multidiscip. Optim. – volume: 109 start-page: 668 issue: 5 year: 2017 ident: 10.1016/j.cad.2021.103017_b37 article-title: An isogeometric approach to topology optimization of multi-material and functionally graded structures publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5303 – volume: 18 start-page: 5595 issue: 1 year: 2017 ident: 10.1016/j.cad.2021.103017_b52 article-title: Automatic differentiation in machine learning: a survey publication-title: J Mach Learn Res – volume: 24 start-page: 359 issue: 2 year: 1987 ident: 10.1016/j.cad.2021.103017_b42 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.1620240207 – volume: 10 issue: 6 year: 2015 ident: 10.1016/j.cad.2021.103017_b61 article-title: A deflated assembly free approach to large-scale implicit structural dynamics publication-title: J Comput Nonlinear Dyn – start-page: 1 year: 2018 ident: 10.1016/j.cad.2021.103017_b17 article-title: Additive manufacturing of multi-material structures – volume: 16 start-page: 68 issue: 1 year: 1998 ident: 10.1016/j.cad.2021.103017_b57 article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct Optim doi: 10.1007/BF01214002 – volume: 43 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.cad.2021.103017_b50 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0594-7 – start-page: 8024 year: 2019 ident: 10.1016/j.cad.2021.103017_b46 article-title: PyTorch: An imperative style, high-performance deep learning library – volume: 190 start-page: 6605 issue: 49–50 year: 2001 ident: 10.1016/j.cad.2021.103017_b22 article-title: Design of multiphysics actuators using topology optimization - Part II: Two-material structures publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(01)00252-3 – volume: 55 start-page: 477 issue: 2 year: 2017 ident: 10.1016/j.cad.2021.103017_b26 article-title: Multi-material topology optimization using ordered SIMP interpolation publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1513-3 – volume: 102 start-page: 182 year: 2018 ident: 10.1016/j.cad.2021.103017_b34 article-title: Discrete multi-material topology optimization under total mass constraint publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.04.023 – volume: 41 start-page: 913 issue: 6 year: 2010 ident: 10.1016/j.cad.2021.103017_b40 article-title: A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-009-0455-4 – year: 1995 ident: 10.1016/j.cad.2021.103017_b43 – year: 2006 ident: 10.1016/j.cad.2021.103017_b48 – volume: 50 start-page: 623 issue: 4 year: 2014 ident: 10.1016/j.cad.2021.103017_b31 article-title: Material interface effects on the topology optimizationof multi-phase structures using a level set method publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1074-2 – year: 2015 ident: 10.1016/j.cad.2021.103017_b47 article-title: Adam: A method for stochastic optimization – volume: 111 start-page: 247 issue: 3 year: 2017 ident: 10.1016/j.cad.2021.103017_b64 article-title: Undercut and overhang angle control in topology optimization: A density gradient based integral approach publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5461 – volume: 47 start-page: 49 issue: 1 year: 2013 ident: 10.1016/j.cad.2021.103017_b7 article-title: Efficient generation of large-scale pareto-optimal topologies publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0807-3 – volume: 137 issue: 10 year: 2015 ident: 10.1016/j.cad.2021.103017_b11 article-title: A pareto-optimal approach to multimaterial topology optimization publication-title: J Mech Des doi: 10.1115/1.4031088 – volume: 10 start-page: 40 issue: 1 year: 1995 ident: 10.1016/j.cad.2021.103017_b68 article-title: Checkerboard patterns in layout optimization publication-title: Struct Optim doi: 10.1007/BF01743693 – year: 2016 ident: 10.1016/j.cad.2021.103017_b53 – volume: 32 start-page: 1 issue: 4 year: 2013 ident: 10.1016/j.cad.2021.103017_b16 article-title: OpenFab: a programmable pipeline for multi-material fabrication publication-title: ACM Trans Graph doi: 10.1145/2461912.2461993 – volume: 340 start-page: 798 year: 2018 ident: 10.1016/j.cad.2021.103017_b38 article-title: Multi-material continuum topology optimization with arbitrary volume and mass constraints publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.01.032 – ident: 10.1016/j.cad.2021.103017_b58 – volume: 308 start-page: 113 year: 2016 ident: 10.1016/j.cad.2021.103017_b65 article-title: Multi-material topology optimization considering interface behavior via XFEM and level set method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.05.016 – year: 2017 ident: 10.1016/j.cad.2021.103017_b67 – volume: 194 start-page: 363 issue: 1 year: 2004 ident: 10.1016/j.cad.2021.103017_b5 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 – volume: 19 start-page: 104 year: 2018 ident: 10.1016/j.cad.2021.103017_b10 article-title: Strength-based topology optimization for anisotropic parts publication-title: Addit Manuf – volume: 48 start-page: 1031 issue: 6 year: 2013 ident: 10.1016/j.cad.2021.103017_b12 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0978-6 – start-page: 227 year: 1990 ident: 10.1016/j.cad.2021.103017_b45 article-title: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition |
SSID | ssj0002139 |
Score | 2.5742846 |
Snippet | The focus of this paper is on multi-material topology optimization (MMTO), where the objective is to not only compute the optimal topology, but also the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103017 |
SubjectTerms | Back propagation Back propagation networks Density Feature extraction Finite element method Multi-material Network topologies Neural networks Optimization Post-processing SIMP Thin features Topology optimization |
Title | Multi-Material Topology Optimization Using Neural Networks |
URI | https://dx.doi.org/10.1016/j.cad.2021.103017 https://www.proquest.com/docview/2533406069 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTIwIZn6lSZhqyqqAqIsrdTNih1HKoJS0TCw8Ns5P8JLqANjIseKzs5338Xf3SF0lgtwQ6pIcEm0xqJXKJzqTGOuSgb8NI61dgLZcW80FTezeNZAgzoXxsoqA_Z7THdoHe50gzW7y_nc5vhCKCFS8D_uH5HFYSESu8sv3r9kHoxyT4EBb-zo-mTTabx0bouFMmpTz4nrWfanb_qF0s71DHfQduCMUd-_1i5qmMUe2vpWSXAfXbpEWnyXV25HRRPf--AtugdIeAq5lpHTB0S2HgcMGXsB-OoATYdXk8EIh7YIWPOMVhg4j9IZKwhVKkkKnRulODNpmgudgavJBVAaU5RUKIhtiNIFJ6onUp6XTHOT8kPUXDwvzBGKBOEmgVkzTY0QcayALcGszB7GQmBGW4jUBpE61Ay3rSseZS0Oe5BgQ2ltKL0NW-j885GlL5ixbrCorSx_rLoEQF_3WLteERk-uZVkNqmYQDyWHf9v1hO0aa-8FreNmtXLqzkFxlGpjttSHbTRv74djT8A2tTSaQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ikKBTLAghSa2E6bIDEgoGrpg6WVupnYcaUiKBUtQl34U_xBzo7DS6gDUtckPkWfL_eIv7sDOIoZuiGRVNy-J6XLyolwQxlJl4o-wfg0CKQ0BNl2udZlN72gl4P3rBZG0yqt7U9turHW9krJolkaDQa6xhdTCRai_zH_iIhlVjbU9BXztvF5_Qo3-ZiQ6nXnsuba0QKupJE_cTFuEDIiiecLUakkMlZCUKLCMGYyQnMdMwwLVNL3mcD8wBMyoZ4os5DGfSKpCinKXYBFhuZCj004ffvilRCfpjE3Gjj9etlRqiGVyVh3JyW-rnX3zJC0P53hL7dgfF11DVZtkOpcpDisQ04NN2DlW-vCTTgzlbtuK54YFXY66bCFqXOLNujRFnc6hpDg6AYg-Eg7ZZyPt6A7F7C2IT98GqodcJhHVQWlRtJXjAWBwPAMpRJ9-ouZoF8ALwOES9ukXM_KeOAZG-2eI4ZcY8hTDAtw8rlklHbomPUwy1DmP9SMoweZtayY7Qi33_iYE13F7GECGO3-T-ohLNU6rSZv1tuNPVjWd1IicBHyk-cXtY_hzkQcGPVy4G7e-vwBqpUO4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Material+Topology+Optimization+Using+Neural+Networks&rft.jtitle=Computer+aided+design&rft.au=Chandrasekhar%2C+Aaditya&rft.au=Suresh%2C+Krishnan&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=136&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cad.2021.103017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |