Soil microbiota as game-changers in restoration of degraded lands

Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 375; no. 6584; p. abe0725
Main Authors Coban, Oksana, De Deyn, Gerlinde B., van der Ploeg, Martine
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 04.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices. Soils worldwide have become increasingly degraded by human activities, especially in drylands. Land degradation negatively affects soil hydrological functioning and thereby the ecosystem services that soil provides. Soil microbes may play an important part in the restoration of degraded soils, positively influencing moisture content and other physical features of soil. Coban et al . reviewed recent work on soil hydraulic properties, potential groups of microorganisms for hydrological soil restoration based on their resilience in dry soils, and future strategies for long-term restoration of degraded lands. —AMS A review suggests that soil microorganisms may be the key to the restoration of hydraulic function in soils degraded by human activities.
AbstractList Microbes repairing degraded soilsSoils worldwide have become increasingly degraded by human activities, especially in drylands. Land degradation negatively affects soil hydrological functioning and thereby the ecosystem services that soil provides. Soil microbes may play an important part in the restoration of degraded soils, positively influencing moisture content and other physical features of soil. Coban et al. reviewed recent work on soil hydraulic properties, potential groups of microorganisms for hydrological soil restoration based on their resilience in dry soils, and future strategies for long-term restoration of degraded lands. —AMSBACKGROUNDSoil, the living skin of Earth, provides ecosystem services critical for life: Soil acts as a filter and store of water, provides a growing medium that supplies plants and heterotrophs with water and nutrients, offers habitat for a large diversity of organisms, and is the source of most of our antibiotics. Humanity is increasingly challenged by the combination of climate change, population growth, and land degradation, including carbon loss, biodiversity decline, and erosion. In particular, land degradation reduces soil hydrological functioning and thereby several other ecosystem services. Such impacts occur through alterations of hydraulic functioning, infiltration and soil moisture storage, carbon cycling, biological activity, transport of nutrients and contaminants, and plant growth. Impacts of global environmental change and associated soil degradation need to be understood and reversed as biodiversity, food production, climate regulation, and people’s livelihoods are increasingly affected by soil ecosystem degradation. The interplay between soil biota and soil hydrological functioning plays an essential role in many biogeochemical cycles, including the water and carbon cycles. Microorganisms dominate soil life and perform an array of vital soil functions by regulating nutrient cycling, decomposing organic matter, defining soil structure, suppressing plant diseases, and supporting plant productivity. The presence of microorganisms and their activity can affect soil structure and hydraulic properties in multiple ways. Case studies indicate the potential of microorganisms as game-changers toward the restoration of soil functioning. However, the role of soil microbiota in forming and sustaining soils has historically been overlooked. ADVANCESIt has been proposed that microbial communities not only are an indicator of ecosystem health and restoration level but also can be manipulated to enhance the recovery of degraded ecosystems. In the past decade, there have been an increasing number of studies suggesting the use of microorganisms as ecosystem mediators, particularly to enhance crop production and to engineer microorganisms for dryland restoration. Most current experimental approaches focus on monitoring changes in the microbial community that can be correlated with land restoration; however, microorganisms are also facilitators of ecosystem change, not just followers. We review how microorganisms can help address different types of land degradation, with a focus on physical soil loss and transformation, loss of soil chemical properties, and contamination. We discuss potentially the most valuable groups of microorganisms for soil restoration (namely, plant growth–promoting rhizobacteria, nitrogen-fixing bacteria, and mycorrhizal fungi), emphasizing drylands and advances in plant-microbe interaction studies. We review known effects of microorganisms on soil physical and, specifically, hydraulic properties at pore scale and discuss future strategies for the long-term restoration of degraded lands. We also identify the methodological challenges that have so far hampered progress in understanding soil biophysical processes. OUTLOOKMicroorganisms can play the leading role in restoring degraded lands, improving soil hydraulic properties such as infiltration and water retention and reducing soil hydrophobicity, which together can facilitate ecosystem restoration. We advocate for research on mechanisms to restore degraded soils with the use of microorganisms. Given the critical role of freshwater availability to terrestrial life and the paucity of studies on hydrological restoration, we especially advocate for research on the hydrological restoration of degraded soil using microorganisms. We propose that microorganisms can improve soil hydraulic properties such as infiltration and water retention and reduce soil hydrophobicity. Along with new organic matter derived from microbes, this will promote plant growth and facilitate further ecosystem restoration. Such a restoration strategy requires collaboration across the research fields of microbiology and soil hydrology, of which there has been very little to date. Understanding the dynamics of soil microbes and connected hydrological processes would create the foundation for restoration practices that can return resilience to the soil ecosystem.
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices. Soils worldwide have become increasingly degraded by human activities, especially in drylands. Land degradation negatively affects soil hydrological functioning and thereby the ecosystem services that soil provides. Soil microbes may play an important part in the restoration of degraded soils, positively influencing moisture content and other physical features of soil. Coban et al . reviewed recent work on soil hydraulic properties, potential groups of microorganisms for hydrological soil restoration based on their resilience in dry soils, and future strategies for long-term restoration of degraded lands. —AMS A review suggests that soil microorganisms may be the key to the restoration of hydraulic function in soils degraded by human activities.
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Author Coban, Oksana
van der Ploeg, Martine
De Deyn, Gerlinde B.
Author_xml – sequence: 1
  givenname: Oksana
  orcidid: 0000-0001-5822-5841
  surname: Coban
  fullname: Coban, Oksana
  organization: Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
– sequence: 2
  givenname: Gerlinde B.
  orcidid: 0000-0003-4823-6912
  surname: De Deyn
  fullname: De Deyn, Gerlinde B.
  organization: Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
– sequence: 3
  givenname: Martine
  orcidid: 0000-0002-3172-7339
  surname: van der Ploeg
  fullname: van der Ploeg, Martine
  organization: Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35239372$$D View this record in MEDLINE/PubMed
BookMark eNp1kD1PwzAQhi1URD9gZkORWFjSnu0macaq4kuqxADM0cW-FFdJXOxk4N_j0sJQiemGe967V8-YDVrbEmPXHKaci3TmlaFW0RRLgkwkZ2zEIU_iXIAcsBGATOMFZMmQjb3fAoRdLi_YUCZC5jITI7Z8taaOGqOcLY3tMEIfbbChWH1guyHnI9NGjnxnHXbGtpGtIk0bh5p0VGOr_SU7r7D2dHWcE_b-cP-2eorXL4_Pq-U6VjLnXZzINBSuEsyq8BorrAA5SKBKz4XiqVIcUfNynmpCnZYCRAYKSOhFmWsFcsLuDnd3zn72oVHRGK-oDiXI9r4Qafgwn4ssDejtCbq1vWtDuz21gAWXIAJ1c6T6siFd7Jxp0H0Vv3ICMDsAQY73jqo_hEOx118c9RdH_SGRnCSU6X68dQ5N_W_uG1sNi8c
CitedBy_id crossref_primary_10_1007_s11356_023_29744_7
crossref_primary_10_1016_j_jhydrol_2023_129337
crossref_primary_10_1007_s11756_024_01659_9
crossref_primary_10_1016_j_scitotenv_2024_172654
crossref_primary_10_1111_1365_2435_14614
crossref_primary_10_1038_s41467_024_45101_9
crossref_primary_10_1007_s10980_024_01941_w
crossref_primary_10_1002_adma_202201326
crossref_primary_10_1002_ajb2_16228
crossref_primary_10_1002_ldr_4947
crossref_primary_10_1016_j_cej_2024_155476
crossref_primary_10_1002_ecy_4534
crossref_primary_10_1016_j_jia_2024_07_038
crossref_primary_10_1016_j_soilbio_2024_109347
crossref_primary_10_1016_j_catena_2024_108629
crossref_primary_10_1016_j_chmed_2023_11_003
crossref_primary_10_3390_f13121987
crossref_primary_10_1111_rec_14298
crossref_primary_10_2139_ssrn_4106099
crossref_primary_10_1007_s11427_024_2692_5
crossref_primary_10_1016_j_pedsph_2023_03_013
crossref_primary_10_1093_jpe_rtad032
crossref_primary_10_1007_s11104_024_06489_x
crossref_primary_10_1016_j_envres_2024_120030
crossref_primary_10_1016_j_agrformet_2024_110244
crossref_primary_10_1016_j_jhydrol_2024_131946
crossref_primary_10_1002_eap_2981
crossref_primary_10_1016_j_landusepol_2023_106959
crossref_primary_10_1111_gcbb_13110
crossref_primary_10_1007_s42832_024_0278_7
crossref_primary_10_1038_s41396_023_01505_x
crossref_primary_10_1111_1365_2664_14180
crossref_primary_10_1007_s11104_022_05835_1
crossref_primary_10_1016_j_agee_2024_109189
crossref_primary_10_1016_j_soilbio_2022_108925
crossref_primary_10_1016_j_soilbio_2024_109699
crossref_primary_10_3389_fenvs_2024_1535193
crossref_primary_10_1007_s41742_022_00470_1
crossref_primary_10_1038_s41564_023_01382_2
crossref_primary_10_1093_femsml_uqae017
crossref_primary_10_1002_ldr_5588
crossref_primary_10_1016_j_foreco_2024_121745
crossref_primary_10_1007_s11356_023_27588_9
crossref_primary_10_1038_s41396_023_01470_5
crossref_primary_10_1016_j_catena_2023_107026
crossref_primary_10_1016_j_heliyon_2022_e11674
crossref_primary_10_1186_s40168_024_01770_8
crossref_primary_10_3389_fmicb_2022_970529
crossref_primary_10_1007_s11368_024_03951_2
crossref_primary_10_1016_j_eti_2024_103712
crossref_primary_10_1038_s41467_024_52450_y
crossref_primary_10_1016_j_scitotenv_2024_177882
crossref_primary_10_1016_j_agrformet_2023_109631
crossref_primary_10_1002_ldr_4926
crossref_primary_10_1016_j_scitotenv_2023_164969
crossref_primary_10_2139_ssrn_4088204
crossref_primary_10_1016_j_jenvman_2024_122925
crossref_primary_10_2139_ssrn_4088205
crossref_primary_10_3390_agronomy14071348
crossref_primary_10_1016_j_soilbio_2024_109365
crossref_primary_10_1016_j_scitotenv_2023_162553
crossref_primary_10_3390_agronomy14122890
crossref_primary_10_1016_j_scitotenv_2024_171418
crossref_primary_10_3389_fmicb_2023_1213834
crossref_primary_10_1016_j_gecco_2023_e02679
crossref_primary_10_1038_s42003_024_06741_1
crossref_primary_10_1016_j_apsoil_2024_105592
crossref_primary_10_1029_2024RG000836
crossref_primary_10_3390_ijerph191912212
crossref_primary_10_1016_j_jenvman_2022_116571
crossref_primary_10_3390_microorganisms11122950
crossref_primary_10_3390_agriculture14122327
crossref_primary_10_1111_1365_2664_14717
crossref_primary_10_1016_j_envres_2023_117931
crossref_primary_10_1016_j_catena_2024_108195
crossref_primary_10_1146_annurev_phyto_121423_042021
crossref_primary_10_1016_j_micres_2025_128078
crossref_primary_10_1016_j_catena_2024_108637
crossref_primary_10_1016_j_oneear_2024_06_002
crossref_primary_10_1016_j_scitotenv_2022_157854
crossref_primary_10_3389_fmicb_2023_1136851
crossref_primary_10_1016_j_scitotenv_2024_174935
crossref_primary_10_1021_acsestengg_3c00205
crossref_primary_10_1016_j_scitotenv_2024_175725
crossref_primary_10_1111_1365_2664_14809
crossref_primary_10_1128_spectrum_03572_22
crossref_primary_10_3390_f14101980
crossref_primary_10_1111_1751_7915_14482
crossref_primary_10_3390_agriculture14071018
crossref_primary_10_1007_s11104_024_07083_x
crossref_primary_10_1016_j_envres_2024_118395
crossref_primary_10_1016_j_jhazmat_2023_132043
crossref_primary_10_1016_j_jclepro_2023_139806
crossref_primary_10_1111_1365_2664_14360
crossref_primary_10_1016_j_apsoil_2023_104919
crossref_primary_10_1016_j_jenvman_2025_124731
crossref_primary_10_1016_j_ecolind_2025_113144
crossref_primary_10_1016_j_scitotenv_2024_170826
crossref_primary_10_3390_rs14184601
crossref_primary_10_1016_j_ejsobi_2024_103706
crossref_primary_10_1007_s11104_024_06988_x
crossref_primary_10_1016_j_tree_2023_09_002
crossref_primary_10_1016_j_cej_2023_146542
crossref_primary_10_1177_03091333221114732
crossref_primary_10_1007_s11104_024_06927_w
crossref_primary_10_1016_j_jia_2023_04_018
crossref_primary_10_1007_s11157_023_09674_z
crossref_primary_10_1016_j_eti_2024_103703
crossref_primary_10_1111_nph_20304
crossref_primary_10_3389_fmicb_2022_967565
crossref_primary_10_1016_j_aac_2022_08_005
crossref_primary_10_1016_j_scitotenv_2024_170281
crossref_primary_10_3390_agronomy14040740
crossref_primary_10_1111_1541_4337_13135
crossref_primary_10_1128_aem_01581_24
crossref_primary_10_1016_j_geoderma_2024_116967
crossref_primary_10_3389_fevo_2023_1184582
crossref_primary_10_3389_fpls_2025_1539336
crossref_primary_10_1016_j_jenvman_2024_120880
crossref_primary_10_1016_j_biocon_2023_110437
crossref_primary_10_1016_j_micres_2024_127829
crossref_primary_10_1128_spectrum_03683_23
crossref_primary_10_1016_j_catena_2024_107909
crossref_primary_10_1016_j_agee_2025_109539
crossref_primary_10_1371_journal_pone_0292425
crossref_primary_10_3389_fpls_2022_985864
crossref_primary_10_1111_gcb_17217
crossref_primary_10_1016_j_envres_2024_118179
crossref_primary_10_3390_su16156381
crossref_primary_10_1021_acs_est_4c00375
crossref_primary_10_1094_PHYTO_09_22_0324_KD
crossref_primary_10_1111_sum_13051
crossref_primary_10_1007_s11104_024_07021_x
crossref_primary_10_1016_j_scitotenv_2023_161934
crossref_primary_10_1111_emr_12597
crossref_primary_10_1186_s12866_024_03708_4
crossref_primary_10_1016_j_catena_2025_108723
crossref_primary_10_1007_s00572_024_01170_8
crossref_primary_10_1016_j_gloplacha_2023_104323
crossref_primary_10_1016_j_cej_2022_139008
crossref_primary_10_1128_spectrum_01732_23
crossref_primary_10_1007_s44246_024_00127_y
crossref_primary_10_1016_j_jhazmat_2023_133118
crossref_primary_10_1016_j_talanta_2023_124671
crossref_primary_10_1111_gcb_70057
crossref_primary_10_3390_plants12051048
crossref_primary_10_3390_plants12162945
crossref_primary_10_1016_j_ecolind_2024_112563
crossref_primary_10_1016_j_xinn_2023_100375
crossref_primary_10_1016_j_cscee_2024_100833
crossref_primary_10_3389_fmicb_2023_1327056
crossref_primary_10_3390_ijms23179665
crossref_primary_10_3390_f14101954
crossref_primary_10_1186_s12870_024_05648_7
crossref_primary_10_1016_j_stress_2023_100283
crossref_primary_10_3390_agronomy13112817
crossref_primary_10_1109_JSTARS_2023_3267102
crossref_primary_10_48130_SSE_2023_0005
crossref_primary_10_1016_j_cej_2024_155521
crossref_primary_10_1002_ldr_5402
crossref_primary_10_3390_resources12060067
crossref_primary_10_1007_s42729_024_01762_5
crossref_primary_10_3390_d16030178
crossref_primary_10_3390_plants13060780
crossref_primary_10_1016_j_scitotenv_2023_165056
crossref_primary_10_1111_jipb_13863
crossref_primary_10_1016_j_envres_2024_120361
crossref_primary_10_1016_j_pedsph_2023_01_012
crossref_primary_10_1016_j_catena_2025_108732
crossref_primary_10_1021_acsomega_4c05602
crossref_primary_10_1111_gcbb_13087
crossref_primary_10_5194_soil_9_261_2023
crossref_primary_10_1016_j_agee_2024_109356
crossref_primary_10_1002_imt2_172
crossref_primary_10_1021_acs_est_4c07470
crossref_primary_10_1016_j_jenvman_2025_124523
crossref_primary_10_1016_j_apsoil_2022_104555
crossref_primary_10_1016_j_jenvman_2023_119052
crossref_primary_10_3389_fmicb_2022_994918
crossref_primary_10_1016_j_scitotenv_2024_170194
crossref_primary_10_1016_j_envres_2025_120836
crossref_primary_10_1111_1751_7915_14325
crossref_primary_10_1016_j_catena_2024_108106
crossref_primary_10_1186_s12866_024_03662_1
crossref_primary_10_1016_j_cub_2024_02_035
crossref_primary_10_1093_ismejo_wrae073
crossref_primary_10_1002_saj2_20780
crossref_primary_10_1038_s41467_024_50685_3
crossref_primary_10_1002_ldr_5197
crossref_primary_10_1002_saj2_20554
crossref_primary_10_1016_j_scitotenv_2024_173357
crossref_primary_10_3390_agronomy13010007
crossref_primary_10_1093_nar_gkad407
crossref_primary_10_1360_TB_2024_0442
crossref_primary_10_1002_imo2_9
crossref_primary_10_1016_j_scitotenv_2024_173354
crossref_primary_10_1016_j_apsoil_2024_105774
crossref_primary_10_1016_j_ijbiomac_2024_139151
crossref_primary_10_1007_s11104_024_07015_9
crossref_primary_10_1007_s11104_024_07092_w
crossref_primary_10_1111_sum_70014
crossref_primary_10_1007_s11104_024_06522_z
crossref_primary_10_1007_s11104_024_06860_y
crossref_primary_10_1016_j_apsoil_2024_105535
crossref_primary_10_1007_s12325_024_02972_0
crossref_primary_10_1111_rec_13924
crossref_primary_10_1016_j_envpol_2022_119754
crossref_primary_10_1111_1751_7915_14216
crossref_primary_10_3390_agronomy13123052
crossref_primary_10_3390_plants13202885
crossref_primary_10_1016_j_scitotenv_2023_168818
crossref_primary_10_5194_soil_9_545_2023
crossref_primary_10_1016_j_catena_2024_107803
crossref_primary_10_1002_vzj2_20274
crossref_primary_10_1016_j_scitotenv_2023_163492
crossref_primary_10_3389_fmicb_2024_1380953
crossref_primary_10_3389_frmbi_2025_1537069
crossref_primary_10_1016_j_catena_2023_107785
crossref_primary_10_1016_j_tree_2022_10_005
crossref_primary_10_1093_jxb_erad448
crossref_primary_10_3390_plants13040473
crossref_primary_10_1080_15226514_2024_2379610
crossref_primary_10_1016_j_pedsph_2024_06_009
crossref_primary_10_1126_sciadv_adg2059
crossref_primary_10_1007_s11104_023_06261_7
crossref_primary_10_1016_j_apsoil_2023_104813
crossref_primary_10_1038_s43247_024_01562_w
crossref_primary_10_3390_microorganisms11020270
crossref_primary_10_1002_ldr_4883
crossref_primary_10_1111_sum_13130
crossref_primary_10_3389_fmicb_2024_1341251
crossref_primary_10_3390_su142215423
crossref_primary_10_1016_j_cej_2024_154649
crossref_primary_10_1016_j_chemosphere_2024_141319
crossref_primary_10_1038_s41559_024_02520_7
crossref_primary_10_1016_j_colsurfa_2023_132706
crossref_primary_10_1016_j_scitotenv_2024_171018
crossref_primary_10_1016_j_fcr_2022_108770
crossref_primary_10_3390_agronomy14122810
crossref_primary_10_1007_s00468_023_02470_w
crossref_primary_10_3389_fsoil_2024_1495941
crossref_primary_10_1038_s41579_023_01007_9
crossref_primary_10_2139_ssrn_4126799
crossref_primary_10_1016_j_ecolind_2022_109793
crossref_primary_10_1071_WF23095
crossref_primary_10_1007_s11104_024_06482_4
crossref_primary_10_1016_j_scitotenv_2022_161029
crossref_primary_10_1016_j_apsoil_2023_104924
crossref_primary_10_1039_D2VA00158F
crossref_primary_10_3390_pr12081639
crossref_primary_10_1111_nph_70064
crossref_primary_10_3389_fmicb_2023_1330149
crossref_primary_10_3390_pr13030916
crossref_primary_10_1016_j_pedsph_2024_06_011
crossref_primary_10_1093_treephys_tpad030
crossref_primary_10_24072_pcjournal_481
crossref_primary_10_1016_j_jes_2023_12_031
crossref_primary_10_1007_s11104_024_06554_5
crossref_primary_10_1016_j_chemosphere_2023_138549
crossref_primary_10_1016_j_ejsobi_2023_103533
crossref_primary_10_1007_s11104_025_07371_0
crossref_primary_10_3389_fpls_2024_1366821
crossref_primary_10_1038_s41477_024_01749_1
crossref_primary_10_22207_JPAM_18_1_58
crossref_primary_10_1016_j_jhazmat_2024_134838
crossref_primary_10_3390_agronomy12092221
crossref_primary_10_1016_j_tree_2023_07_009
crossref_primary_10_1007_s10482_024_01966_w
crossref_primary_10_1016_j_xinn_2022_100265
crossref_primary_10_1016_j_jenvman_2024_122668
crossref_primary_10_3390_microorganisms11010055
crossref_primary_10_1016_j_scitotenv_2024_173266
crossref_primary_10_1016_j_scitotenv_2023_168994
crossref_primary_10_1007_s00248_022_02048_y
crossref_primary_10_1007_s42729_023_01526_7
crossref_primary_10_1007_s00374_022_01679_0
crossref_primary_10_3389_fevo_2024_1343672
crossref_primary_10_1038_s41598_024_61883_w
crossref_primary_10_3390_agronomy15040797
crossref_primary_10_1016_j_jclepro_2024_143085
crossref_primary_10_1016_j_scitotenv_2023_165486
crossref_primary_10_1098_rsos_230702
crossref_primary_10_1007_s12275_023_00089_7
crossref_primary_10_1016_j_catena_2023_107335
crossref_primary_10_1021_acs_jafc_4c09059
crossref_primary_10_1093_femsec_fiad007
crossref_primary_10_1016_j_apsoil_2023_105032
crossref_primary_10_1007_s11104_023_06464_y
crossref_primary_10_1016_j_ecoenv_2023_115215
crossref_primary_10_1016_j_scitotenv_2024_171892
crossref_primary_10_1016_j_apsoil_2023_104860
crossref_primary_10_3390_plants14050679
crossref_primary_10_3390_plants12213743
crossref_primary_10_1002_ldr_4734
crossref_primary_10_3390_plants13202839
crossref_primary_10_1002_ldr_4615
crossref_primary_10_1016_j_apsoil_2024_105458
crossref_primary_10_1016_j_agee_2023_108470
crossref_primary_10_3390_plants12030629
crossref_primary_10_1002_ldr_5266
crossref_primary_10_1007_s11104_023_06113_4
crossref_primary_10_1016_j_catena_2023_107341
crossref_primary_10_1080_09593330_2023_2238928
crossref_primary_10_1016_j_gecco_2023_e02641
crossref_primary_10_1002_ldr_5029
crossref_primary_10_3390_f14071284
crossref_primary_10_1016_j_apsoil_2024_105783
crossref_primary_10_1016_j_envres_2023_117720
crossref_primary_10_1007_s11771_024_5570_2
crossref_primary_10_1016_j_apsoil_2023_104972
crossref_primary_10_3390_w16162219
crossref_primary_10_3389_frmbi_2024_1331341
crossref_primary_10_1016_j_ecolind_2024_112270
crossref_primary_10_1007_s42729_022_00972_z
crossref_primary_10_1016_j_rser_2025_115632
crossref_primary_10_1016_j_ecoenv_2023_115918
crossref_primary_10_1111_rec_13940
crossref_primary_10_1016_j_atmosenv_2023_120135
crossref_primary_10_1111_rec_13942
crossref_primary_10_1016_j_pmpp_2023_102059
crossref_primary_10_1016_j_rhisph_2024_100974
crossref_primary_10_3390_land12112024
crossref_primary_10_3389_fmicb_2024_1458777
crossref_primary_10_1016_j_heliyon_2023_e18778
crossref_primary_10_3390_biology12050693
crossref_primary_10_3389_fenvs_2022_1047317
crossref_primary_10_1016_j_still_2024_106073
crossref_primary_10_1007_s11356_022_23962_1
crossref_primary_10_1021_acs_est_1c08832
crossref_primary_10_1002_ece3_11360
crossref_primary_10_1002_imt2_187
crossref_primary_10_1016_j_scitotenv_2024_173494
crossref_primary_10_3389_fpls_2023_1109077
crossref_primary_10_1093_bib_bbac396
crossref_primary_10_1111_rec_13824
crossref_primary_10_1186_s13021_024_00269_x
crossref_primary_10_1002_eap_70007
crossref_primary_10_1007_s10668_024_05116_0
crossref_primary_10_3390_microorganisms12102075
crossref_primary_10_1007_s11104_023_05962_3
crossref_primary_10_1017_aaq_2023_44
crossref_primary_10_3390_plants11233200
crossref_primary_10_3389_fmicb_2024_1408622
crossref_primary_10_3390_agriculture12060782
crossref_primary_10_1002_ldr_4710
crossref_primary_10_3389_fevo_2022_950605
crossref_primary_10_1016_j_catena_2023_107329
crossref_primary_10_1016_j_fmre_2025_02_008
crossref_primary_10_1111_1365_2664_14636
crossref_primary_10_1111_brv_13124
crossref_primary_10_1002_ldr_5362
Cites_doi 10.1038/ismej.2008.127
10.1002/hyp.6325
10.3389/fmicb.2018.00959
10.1016/j.geoderma.2016.03.029
10.1038/nplants.2016.107
10.1007/978-3-319-49724-2_5
10.1038/nclimate1368
10.3389/fpls.2015.00507
10.1038/ismej.2013.104
10.1038/ismej.2013.102
10.1016/0016-7061(93)90106-U
10.3389/fmicb.2016.01488
10.1038/ncomms13630
10.1007/s10295-016-1809-8
10.1371/journal.pgen.1009524
10.1111/1751-7915.12804
10.3389/fpls.2016.01110
10.1007/978-3-319-48257-6_5
10.1038/s41477-020-00826-5
10.1007/s11157-007-9126-3
10.1111/1751-7915.12832
10.1016/j.ecolind.2016.03.016
10.4067/S0718-95162010000100009
10.1016/j.geoderma.2018.09.027
10.1038/srep20018
10.1128/AEM.67.2.495-498.2001
10.1007/BF00193683
10.1016/j.ecoenv.2020.110869
10.1016/j.soilbio.2011.10.002
10.1038/s41564-018-0129-3
10.1002/hyp.6746
10.1071/WF05094
10.1046/j.1365-2389.1998.00152.x
10.1016/j.geomorph.2007.12.010
10.1016/j.soilbio.2014.03.009
10.7717/peerj.6169
10.1128/aem.58.4.1284-1291.1992
10.1016/j.cub.2009.04.001
10.1016/B0-12-348530-4/00380-5
10.1186/s40168-018-0445-0
10.1016/S0929-1393(03)00073-8
10.1111/j.1574-6968.2004.tb09643.x
10.1016/j.soilbio.2011.06.013
10.1038/s41586-018-0848-x
10.1007/978-81-322-1575-2_14
10.1038/s41564-018-0201-z
10.1016/j.soilbio.2020.108102
10.3389/fmicb.2020.01666
10.1126/science.1185383
10.1146/annurev.arplant.59.032607.092911
10.1007/s13199-012-0196-9
10.1016/0167-7012(96)00843-3
10.1007/978-1-4615-8306-6_3
10.3389/fpls.2015.00466
10.1016/j.soilbio.2013.09.017
10.3389/fmicb.2018.01191
10.1038/s41558-018-0187-9
10.1016/j.cpb.2020.100173
10.1016/j.msec.2009.06.001
10.1007/s10811-018-1597-9
10.1098/rsif.2010.0270
10.3390/en13184664
10.4314/as.v2i2.1484
10.1111/gcb.14781
10.1126/science.1225244
10.1038/nature12350
10.1139/cjm-2014-0668
10.1042/BST20180342
10.1023/A:1004347701584
10.5772/57086
10.4141/S04-003
10.1038/d41586-019-00669-x
10.2136/sssaspecpub9
10.1016/j.jenvman.2015.02.007
10.1038/srep41564
10.1007/s13205-018-1179-1
10.1016/j.jare.2020.07.003
10.1038/ncomms15472
10.1111/j.1365-2389.2008.01016.x
10.1016/j.scitotenv.2017.09.144
10.1146/annurev-ecolsys-110617-062614
10.1061/(ASCE)1090-0241(1998)124:2(120)
10.1080/15324989709381465
10.1002/15-0973
10.1016/S0022-1694(00)00194-3
10.1186/s40538-016-0085-1
10.1002/ldr.2820
10.1016/j.advwatres.2006.05.025
10.3389/fmicb.2016.01577
10.1007/s00572-014-0582-7
10.1016/j.tree.2017.10.002
10.1016%2FB978-0-12-407686-0.00005-1
10.1126/sciadv.aaw0759
10.1007/BF02931466
10.1016/j.molp.2019.05.006
10.1038/nrmicro2910
10.1016/j.micres.2015.11.007
10.1371/journal.pone.0231348
10.3389/fmicb.2017.00785
10.3389/fpls.2019.00845
10.1128/MMBR.64.3.548-572.2000
10.3390/soilsystems4030048
10.1111/1365-2745.12054
10.1002/2016WR018866
10.1046/j.1472-765X.2002.01136.x
10.1073/pnas.1215210110
10.3934/bioeng.2016.2.211
10.1038/s41564-021-00929-5
10.1111/1462-2920.14535
10.1016/j.apgeog.2014.11.024
10.2478/s11756-006-0189-3
10.1111/j.1469-8137.2011.03790.x
10.1128/JB.00727-07
10.1146/annurev.es.04.110173.000245
10.1016/j.catena.2012.02.016
10.1016/S0048-9697(03)00095-0
10.1016/j.jenvman.2019.02.115
10.1098/rstb.2019.0112
10.1002/eco.1719
10.1080/01490450701436505
10.1007/s40011-017-0914-4
10.1016/j.catena.2008.12.013
10.1007/s13593-011-0029-x
10.3389/fpls.2014.00216
10.1007/978-3-642-56475-8_22
10.1016/j.soilbio.2018.01.030
10.1186/s12915-019-0710-0
10.3389/fmicb.2018.00148
10.1111/gcb.14626
10.1093/molbev/msn247
10.1007/978-3-319-08575-3_28
10.1016/j.foreco.2010.07.004
10.1007/s11104-009-9991-3
10.1126/science.aau6389
10.1016/B978-0-12-818095-2.00001-1
10.1104/pp.103.024380
10.1016/j.still.2004.03.008
10.1038/srep45735
10.1126/science.1172975
10.1007/s40011-012-0098-x
10.1073/pnas.1516684112
10.1029/2018WR022656
10.1007/s11104-016-2860-y
10.1103/PhysRevA.44.4866
10.1002/ldr.2330
10.2136/vzj2006.0080
10.1016/j.soilbio.2011.10.007
10.1080/15324980301588
10.1111/1462-2920.13038
10.1007/978-3-642-56475-8_24
10.1016/j.soilbio.2020.108111
10.3389/fenvs.2018.00093
10.1016/j.earscirev.2010.02.004
10.1016/j.agee.2015.01.026
10.1007/978-981-32-9860-6
10.1016/j.geoderma.2016.07.025
10.1007/s00442-004-1788-8
10.1007/978-3-642-56475-8_2
10.1126/science.aba0196
10.1007/s00284-020-02169-y
10.1146/annurev.micro.091208.073504
10.1128/mSystems.00929-20
10.1071/SR03153
10.1155/2019/3075153
10.1071/SR05061
10.1038/nature16192
10.1371/journal.pone.0021943
10.1002/2016WR019862
10.1017/S0953756201005196
10.1016/j.soilbio.2012.02.017
10.1093/jxb/ery438
10.1126/science.1208473
10.2136/sssaj2002.4400
10.1007/s11104-008-9833-8
10.1126/science.1155365
10.1016/j.agee.2011.01.017
10.3389/fpls.2018.01473
10.1016/j.pbi.2010.08.003
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abe0725
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 35239372
10_1126_science_abe0725
Genre Journal Article
Review
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
CGR
CUY
CVF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-536126f5a7f393afaf0a1030efd42c16cc1aad1b46dead6b20270c0e2d8b9dc03
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 17:49:01 EDT 2025
Fri Jul 25 19:19:06 EDT 2025
Wed Feb 19 02:26:48 EST 2025
Tue Jul 01 02:24:10 EDT 2025
Thu Apr 24 22:55:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6584
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-536126f5a7f393afaf0a1030efd42c16cc1aad1b46dead6b20270c0e2d8b9dc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5822-5841
0000-0003-4823-6912
0000-0002-3172-7339
PMID 35239372
PQID 2638081302
PQPubID 1256
ParticipantIDs proquest_miscellaneous_2636144276
proquest_journals_2638081302
pubmed_primary_35239372
crossref_primary_10_1126_science_abe0725
crossref_citationtrail_10_1126_science_abe0725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-04
2022-Mar-04
20220304
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_1_118_2
e_1_3_1_81_2
e_1_3_1_137_2
e_1_3_1_114_2
e_1_3_1_133_2
e_1_3_1_182_2
e_1_3_1_110_2
e_1_3_1_163_2
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_175_2
e_1_3_1_140_2
e_1_3_1_24_2
e_1_3_1_156_2
e_1_3_1_62_2
e_1_3_1_85_2
e_1_3_1_179_2
e_1_3_1_20_2
e_1_3_1_6_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_106_2
e_1_3_1_129_2
e_1_3_1_70_2
e_1_3_1_93_2
e_1_3_1_102_2
e_1_3_1_148_2
e_1_3_1_125_2
e_1_3_1_170_2
e_1_3_1_144_2
e_1_3_1_121_2
e_1_3_1_174_2
e_1_3_1_32_2
e_1_3_1_55_2
e_1_3_1_78_2
e_1_3_1_151_2
e_1_3_1_186_2
e_1_3_1_167_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_74_2
e_1_3_1_97_2
e_1_3_1_17_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_119_2
e_1_3_1_115_2
e_1_3_1_138_2
e_1_3_1_80_2
e_1_3_1_111_2
e_1_3_1_134_2
e_1_3_1_160_2
e_1_3_1_183_2
e_1_3_1_141_2
e_1_3_1_153_2
e_1_3_1_65_2
e_1_3_1_176_2
e_1_3_1_23_2
e_1_3_1_46_2
e_1_3_1_88_2
e_1_3_1_157_2
e_1_3_1_7_2
e_1_3_1_61_2
e_1_3_1_42_2
e_1_3_1_84_2
e_1_3_1_3_2
e_1_3_1_69_2
e_1_3_1_27_2
e_1_3_1_107_2
e_1_3_1_103_2
e_1_3_1_126_2
e_1_3_1_149_2
e_1_3_1_190_2
e_1_3_1_92_2
e_1_3_1_122_2
e_1_3_1_145_2
e_1_3_1_171_2
e_1_3_1_152_2
e_1_3_1_164_2
e_1_3_1_187_2
e_1_3_1_54_2
e_1_3_1_35_2
e_1_3_1_77_2
e_1_3_1_168_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_96_2
e_1_3_1_31_2
e_1_3_1_73_2
e_1_3_1_16_2
e_1_3_1_58_2
e_1_3_1_39_2
e_1_3_1_139_2
e_1_3_1_116_2
e_1_3_1_60_2
e_1_3_1_135_2
e_1_3_1_180_2
e_1_3_1_112_2
e_1_3_1_161_2
e_1_3_1_131_2
e_1_3_1_22_2
e_1_3_1_154_2
e_1_3_1_45_2
e_1_3_1_68_2
e_1_3_1_87_2
e_1_3_1_177_2
e_1_3_1_8_2
e_1_3_1_158_2
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_83_2
e_1_3_1_4_2
e_1_3_1_26_2
e_1_3_1_49_2
e_1_3_1_108_2
e_1_3_1_127_2
e_1_3_1_91_2
e_1_3_1_104_2
e_1_3_1_146_2
e_1_3_1_123_2
e_1_3_1_172_2
e_1_3_1_100_2
e_1_3_1_142_2
e_1_3_1_130_2
e_1_3_1_165_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_99_2
e_1_3_1_188_2
e_1_3_1_169_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_53_2
e_1_3_1_72_2
e_1_3_1_95_2
e_1_3_1_15_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_117_2
e_1_3_1_82_2
e_1_3_1_113_2
e_1_3_1_136_2
e_1_3_1_181_2
e_1_3_1_132_2
e_1_3_1_162_2
e_1_3_1_185_2
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_155_2
e_1_3_1_67_2
e_1_3_1_178_2
e_1_3_1_40_2
e_1_3_1_86_2
e_1_3_1_159_2
e_1_3_1_9_2
e_1_3_1_63_2
e_1_3_1_29_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_109_2
e_1_3_1_128_2
e_1_3_1_71_2
e_1_3_1_105_2
e_1_3_1_124_2
e_1_3_1_147_2
e_1_3_1_90_2
Dec D. (e_1_3_1_184_2) 2008; 8
e_1_3_1_101_2
e_1_3_1_120_2
e_1_3_1_143_2
e_1_3_1_173_2
e_1_3_1_33_2
e_1_3_1_79_2
e_1_3_1_150_2
e_1_3_1_166_2
e_1_3_1_189_2
e_1_3_1_56_2
e_1_3_1_98_2
e_1_3_1_75_2
e_1_3_1_10_2
e_1_3_1_52_2
e_1_3_1_94_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_18_2
References_xml – ident: e_1_3_1_85_2
– ident: e_1_3_1_78_2
  doi: 10.1038/ismej.2008.127
– ident: e_1_3_1_165_2
  doi: 10.1002/hyp.6325
– ident: e_1_3_1_133_2
  doi: 10.3389/fmicb.2018.00959
– ident: e_1_3_1_183_2
  doi: 10.1016/j.geoderma.2016.03.029
– ident: e_1_3_1_27_2
  doi: 10.1038/nplants.2016.107
– ident: e_1_3_1_110_2
  doi: 10.1007/978-3-319-49724-2_5
– ident: e_1_3_1_67_2
  doi: 10.1038/nclimate1368
– ident: e_1_3_1_32_2
  doi: 10.3389/fpls.2015.00507
– ident: e_1_3_1_64_2
  doi: 10.1038/ismej.2013.104
– ident: e_1_3_1_79_2
  doi: 10.1038/ismej.2013.102
– ident: e_1_3_1_145_2
  doi: 10.1016/0016-7061(93)90106-U
– ident: e_1_3_1_53_2
  doi: 10.3389/fmicb.2016.01488
– ident: e_1_3_1_137_2
  doi: 10.1038/ncomms13630
– ident: e_1_3_1_135_2
  doi: 10.1007/s10295-016-1809-8
– ident: e_1_3_1_154_2
  doi: 10.1371/journal.pgen.1009524
– ident: e_1_3_1_24_2
  doi: 10.1111/1751-7915.12804
– ident: e_1_3_1_49_2
  doi: 10.3389/fpls.2016.01110
– ident: e_1_3_1_117_2
  doi: 10.1007/978-3-319-48257-6_5
– ident: e_1_3_1_61_2
  doi: 10.1038/s41477-020-00826-5
– ident: e_1_3_1_144_2
  doi: 10.1007/s11157-007-9126-3
– ident: e_1_3_1_26_2
  doi: 10.1111/1751-7915.12832
– ident: e_1_3_1_3_2
  doi: 10.1016/j.ecolind.2016.03.016
– ident: e_1_3_1_141_2
  doi: 10.4067/S0718-95162010000100009
– ident: e_1_3_1_176_2
  doi: 10.1016/j.geoderma.2018.09.027
– ident: e_1_3_1_84_2
– ident: e_1_3_1_8_2
  doi: 10.1038/srep20018
– ident: e_1_3_1_140_2
  doi: 10.1128/AEM.67.2.495-498.2001
– ident: e_1_3_1_65_2
  doi: 10.1007/BF00193683
– ident: e_1_3_1_131_2
  doi: 10.1016/j.ecoenv.2020.110869
– ident: e_1_3_1_157_2
  doi: 10.1016/j.soilbio.2011.10.002
– ident: e_1_3_1_59_2
  doi: 10.1038/s41564-018-0129-3
– ident: e_1_3_1_80_2
  doi: 10.1002/hyp.6746
– ident: e_1_3_1_86_2
– ident: e_1_3_1_96_2
  doi: 10.1071/WF05094
– ident: e_1_3_1_189_2
  doi: 10.1046/j.1365-2389.1998.00152.x
– ident: e_1_3_1_98_2
  doi: 10.1016/j.geomorph.2007.12.010
– ident: e_1_3_1_155_2
  doi: 10.1016/j.soilbio.2014.03.009
– ident: e_1_3_1_172_2
  doi: 10.7717/peerj.6169
– ident: e_1_3_1_146_2
  doi: 10.1128/aem.58.4.1284-1291.1992
– ident: e_1_3_1_2_2
  doi: 10.1016/j.cub.2009.04.001
– ident: e_1_3_1_12_2
  doi: 10.1016/B0-12-348530-4/00380-5
– ident: e_1_3_1_45_2
  doi: 10.1186/s40168-018-0445-0
– ident: e_1_3_1_186_2
  doi: 10.1016/S0929-1393(03)00073-8
– ident: e_1_3_1_142_2
  doi: 10.1111/j.1574-6968.2004.tb09643.x
– ident: e_1_3_1_102_2
  doi: 10.1016/j.soilbio.2011.06.013
– ident: e_1_3_1_6_2
  doi: 10.1038/s41586-018-0848-x
– ident: e_1_3_1_51_2
  doi: 10.1007/978-81-322-1575-2_14
– ident: e_1_3_1_23_2
  doi: 10.1038/s41564-018-0201-z
– ident: e_1_3_1_132_2
  doi: 10.1016/j.soilbio.2020.108102
– ident: e_1_3_1_90_2
  doi: 10.3389/fmicb.2020.01666
– ident: e_1_3_1_108_2
  doi: 10.1126/science.1185383
– ident: e_1_3_1_113_2
  doi: 10.1146/annurev.arplant.59.032607.092911
– ident: e_1_3_1_114_2
  doi: 10.1007/s13199-012-0196-9
– ident: e_1_3_1_185_2
  doi: 10.1016/0167-7012(96)00843-3
– ident: e_1_3_1_73_2
  doi: 10.1007/978-1-4615-8306-6_3
– ident: e_1_3_1_119_2
  doi: 10.3389/fpls.2015.00466
– ident: e_1_3_1_190_2
  doi: 10.1016/j.soilbio.2013.09.017
– ident: e_1_3_1_134_2
  doi: 10.3389/fmicb.2018.01191
– ident: e_1_3_1_10_2
  doi: 10.1038/s41558-018-0187-9
– ident: e_1_3_1_179_2
– ident: e_1_3_1_88_2
  doi: 10.1016/j.cpb.2020.100173
– ident: e_1_3_1_148_2
  doi: 10.1016/j.msec.2009.06.001
– ident: e_1_3_1_30_2
  doi: 10.1007/s10811-018-1597-9
– ident: e_1_3_1_177_2
  doi: 10.1098/rsif.2010.0270
– ident: e_1_3_1_103_2
  doi: 10.3390/en13184664
– ident: e_1_3_1_87_2
  doi: 10.4314/as.v2i2.1484
– ident: e_1_3_1_136_2
  doi: 10.1111/gcb.14781
– ident: e_1_3_1_17_2
  doi: 10.1126/science.1225244
– ident: e_1_3_1_14_2
  doi: 10.1038/nature12350
– ident: e_1_3_1_118_2
  doi: 10.1139/cjm-2014-0668
– ident: e_1_3_1_39_2
  doi: 10.1042/BST20180342
– ident: e_1_3_1_156_2
  doi: 10.1023/A:1004347701584
– ident: e_1_3_1_124_2
  doi: 10.5772/57086
– ident: e_1_3_1_139_2
  doi: 10.4141/S04-003
– ident: e_1_3_1_5_2
– ident: e_1_3_1_125_2
  doi: 10.1038/d41586-019-00669-x
– ident: e_1_3_1_68_2
  doi: 10.2136/sssaspecpub9
– ident: e_1_3_1_104_2
  doi: 10.1016/j.jenvman.2015.02.007
– ident: e_1_3_1_91_2
  doi: 10.1038/srep41564
– ident: e_1_3_1_101_2
  doi: 10.1007/s13205-018-1179-1
– ident: e_1_3_1_115_2
  doi: 10.1016/j.jare.2020.07.003
– ident: e_1_3_1_83_2
  doi: 10.1038/ncomms15472
– ident: e_1_3_1_187_2
  doi: 10.1111/j.1365-2389.2008.01016.x
– ident: e_1_3_1_94_2
  doi: 10.1016/j.scitotenv.2017.09.144
– ident: e_1_3_1_21_2
  doi: 10.1146/annurev-ecolsys-110617-062614
– ident: e_1_3_1_44_2
– ident: e_1_3_1_143_2
  doi: 10.1061/(ASCE)1090-0241(1998)124:2(120)
– ident: e_1_3_1_163_2
  doi: 10.1080/15324989709381465
– ident: e_1_3_1_93_2
  doi: 10.1002/15-0973
– ident: e_1_3_1_97_2
  doi: 10.1016/S0022-1694(00)00194-3
– ident: e_1_3_1_35_2
  doi: 10.1186/s40538-016-0085-1
– ident: e_1_3_1_11_2
  doi: 10.1002/ldr.2820
– ident: e_1_3_1_151_2
  doi: 10.1016/j.advwatres.2006.05.025
– ident: e_1_3_1_92_2
  doi: 10.3389/fmicb.2016.01577
– ident: e_1_3_1_116_2
  doi: 10.1007/s00572-014-0582-7
– ident: e_1_3_1_13_2
  doi: 10.1016/j.tree.2017.10.002
– volume: 8
  start-page: 1
  year: 2008
  ident: e_1_3_1_184_2
  article-title: Effect of bulk density on hydraulic properties of homogenized and structured soils
  publication-title: Rev. Cienc. Suelo Nutr. Veg.
– ident: e_1_3_1_175_2
  doi: 10.1016%2FB978-0-12-407686-0.00005-1
– ident: e_1_3_1_62_2
  doi: 10.1126/sciadv.aaw0759
– ident: e_1_3_1_69_2
  doi: 10.1007/BF02931466
– ident: e_1_3_1_121_2
  doi: 10.1016/j.molp.2019.05.006
– ident: e_1_3_1_52_2
  doi: 10.1038/nrmicro2910
– ident: e_1_3_1_111_2
  doi: 10.1016/j.micres.2015.11.007
– ident: e_1_3_1_120_2
  doi: 10.1371/journal.pone.0231348
– ident: e_1_3_1_75_2
  doi: 10.3389/fmicb.2017.00785
– ident: e_1_3_1_50_2
  doi: 10.3389/fpls.2019.00845
– ident: e_1_3_1_77_2
  doi: 10.1128/MMBR.64.3.548-572.2000
– ident: e_1_3_1_174_2
  doi: 10.3390/soilsystems4030048
– ident: e_1_3_1_29_2
  doi: 10.1111/1365-2745.12054
– ident: e_1_3_1_182_2
  doi: 10.1002/2016WR018866
– ident: e_1_3_1_82_2
  doi: 10.1046/j.1472-765X.2002.01136.x
– ident: e_1_3_1_70_2
  doi: 10.1073/pnas.1215210110
– ident: e_1_3_1_128_2
  doi: 10.3934/bioeng.2016.2.211
– ident: e_1_3_1_57_2
  doi: 10.1038/s41564-021-00929-5
– ident: e_1_3_1_74_2
  doi: 10.1111/1462-2920.14535
– ident: e_1_3_1_178_2
  doi: 10.1016/j.apgeog.2014.11.024
– ident: e_1_3_1_106_2
  doi: 10.2478/s11756-006-0189-3
– ident: e_1_3_1_28_2
  doi: 10.1111/j.1469-8137.2011.03790.x
– ident: e_1_3_1_149_2
  doi: 10.1128/JB.00727-07
– ident: e_1_3_1_15_2
  doi: 10.1146/annurev.es.04.110173.000245
– ident: e_1_3_1_66_2
  doi: 10.1016/j.catena.2012.02.016
– ident: e_1_3_1_99_2
  doi: 10.1016/S0048-9697(03)00095-0
– ident: e_1_3_1_105_2
  doi: 10.1016/j.jenvman.2019.02.115
– ident: e_1_3_1_18_2
  doi: 10.1098/rstb.2019.0112
– ident: e_1_3_1_162_2
  doi: 10.1002/eco.1719
– ident: e_1_3_1_170_2
  doi: 10.1080/01490450701436505
– ident: e_1_3_1_130_2
  doi: 10.1007/s40011-017-0914-4
– ident: e_1_3_1_160_2
  doi: 10.1016/j.catena.2008.12.013
– ident: e_1_3_1_168_2
– ident: e_1_3_1_123_2
  doi: 10.1007/s13593-011-0029-x
– ident: e_1_3_1_54_2
  doi: 10.3389/fpls.2014.00216
– ident: e_1_3_1_161_2
  doi: 10.1007/978-3-642-56475-8_22
– ident: e_1_3_1_19_2
  doi: 10.1016/j.soilbio.2018.01.030
– ident: e_1_3_1_34_2
  doi: 10.1186/s12915-019-0710-0
– ident: e_1_3_1_112_2
  doi: 10.3389/fmicb.2018.00148
– ident: e_1_3_1_9_2
  doi: 10.1111/gcb.14626
– ident: e_1_3_1_76_2
  doi: 10.1093/molbev/msn247
– ident: e_1_3_1_89_2
  doi: 10.1007/978-3-319-08575-3_28
– ident: e_1_3_1_169_2
  doi: 10.1016/j.foreco.2010.07.004
– ident: e_1_3_1_48_2
  doi: 10.1007/s11104-009-9991-3
– ident: e_1_3_1_58_2
  doi: 10.1126/science.aau6389
– ident: e_1_3_1_127_2
  doi: 10.1016/B978-0-12-818095-2.00001-1
– ident: e_1_3_1_42_2
  doi: 10.1104/pp.103.024380
– ident: e_1_3_1_4_2
– ident: e_1_3_1_138_2
  doi: 10.1016/j.still.2004.03.008
– ident: e_1_3_1_71_2
  doi: 10.1038/srep45735
– ident: e_1_3_1_22_2
  doi: 10.1126/science.1172975
– ident: e_1_3_1_129_2
  doi: 10.1007/s40011-012-0098-x
– ident: e_1_3_1_63_2
  doi: 10.1073/pnas.1516684112
– ident: e_1_3_1_180_2
– ident: e_1_3_1_181_2
  doi: 10.1029/2018WR022656
– ident: e_1_3_1_40_2
  doi: 10.1007/s11104-016-2860-y
– ident: e_1_3_1_16_2
  doi: 10.1103/PhysRevA.44.4866
– ident: e_1_3_1_109_2
  doi: 10.1002/ldr.2330
– ident: e_1_3_1_147_2
  doi: 10.2136/vzj2006.0080
– ident: e_1_3_1_158_2
  doi: 10.1016/j.soilbio.2011.10.007
– ident: e_1_3_1_153_2
  doi: 10.1080/15324980301588
– ident: e_1_3_1_60_2
  doi: 10.1111/1462-2920.13038
– ident: e_1_3_1_164_2
  doi: 10.1007/978-3-642-56475-8_24
– ident: e_1_3_1_20_2
  doi: 10.1016/j.soilbio.2020.108111
– ident: e_1_3_1_150_2
  doi: 10.3389/fenvs.2018.00093
– ident: e_1_3_1_7_2
  doi: 10.1016/j.earscirev.2010.02.004
– ident: e_1_3_1_171_2
  doi: 10.1016/j.agee.2015.01.026
– ident: e_1_3_1_122_2
  doi: 10.1007/978-981-32-9860-6
– ident: e_1_3_1_159_2
  doi: 10.1016/j.geoderma.2016.07.025
– ident: e_1_3_1_95_2
  doi: 10.1007/s00442-004-1788-8
– ident: e_1_3_1_166_2
  doi: 10.1007/978-3-642-56475-8_2
– ident: e_1_3_1_38_2
  doi: 10.1126/science.aba0196
– ident: e_1_3_1_25_2
  doi: 10.1007/s00284-020-02169-y
– ident: e_1_3_1_43_2
  doi: 10.1146/annurev.micro.091208.073504
– ident: e_1_3_1_46_2
  doi: 10.1128/mSystems.00929-20
– ident: e_1_3_1_81_2
  doi: 10.1071/SR03153
– ident: e_1_3_1_100_2
  doi: 10.1155/2019/3075153
– ident: e_1_3_1_107_2
  doi: 10.1071/SR05061
– ident: e_1_3_1_56_2
  doi: 10.1038/nature16192
– ident: e_1_3_1_173_2
  doi: 10.1371/journal.pone.0021943
– ident: e_1_3_1_126_2
– ident: e_1_3_1_152_2
  doi: 10.1002/2016WR019862
– ident: e_1_3_1_41_2
  doi: 10.1017/S0953756201005196
– ident: e_1_3_1_72_2
  doi: 10.1016/j.soilbio.2012.02.017
– ident: e_1_3_1_55_2
  doi: 10.1093/jxb/ery438
– ident: e_1_3_1_47_2
  doi: 10.1126/science.1208473
– ident: e_1_3_1_188_2
  doi: 10.2136/sssaj2002.4400
– ident: e_1_3_1_36_2
  doi: 10.1007/s11104-008-9833-8
– ident: e_1_3_1_167_2
  doi: 10.1126/science.1155365
– ident: e_1_3_1_31_2
  doi: 10.1016/j.agee.2011.01.017
– ident: e_1_3_1_33_2
  doi: 10.3389/fpls.2018.01473
– ident: e_1_3_1_37_2
  doi: 10.1016/j.pbi.2010.08.003
SSID ssj0009593
Score 2.7281773
SecondaryResourceType review_article
Snippet Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil...
Microbes repairing degraded soilsSoils worldwide have become increasingly degraded by human activities, especially in drylands. Land degradation negatively...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage abe0725
SubjectTerms Agricultural Production
Antibiotics
Arid lands
Arid zones
Bacteria
Bacterial Physiological Phenomena
Biodegradation
Biodiversity
Biological activity
Biota
Carbon
Carbon cycle
Case Studies
Chemical properties
Climate change
Contaminants
Crop production
Ecosystem recovery
Ecosystems
Environmental changes
Environmental restoration
Environmental Restoration and Remediation
Food contamination
Food production
Freshwater microorganisms
Heterotrophs
Host Microbial Interactions
Hydraulic properties
Hydraulics
Hydrology
Hydrophobicity
Infiltration
Land degradation
Microbial activity
Microbiology
Microbiota
Microorganisms
Moisture content
Mycorrhizae - physiology
Nitrogen fixation
Nitrogen-fixing bacteria
Nitrogenation
Nutrient cycles
Nutrients
Organic matter
Plant diseases
Plant growth
Plants - microbiology
Population growth
Resilience
Soil
Soil chemistry
Soil erosion
Soil hydrology
Soil Microbiology
Soil microorganisms
Soil moisture
Soil pollution
Water
Title Soil microbiota as game-changers in restoration of degraded lands
URI https://www.ncbi.nlm.nih.gov/pubmed/35239372
https://www.proquest.com/docview/2638081302
https://www.proquest.com/docview/2636144276
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZymAvY-1u6bqhwR46RoIs-fqYNgvZrSs0hb4Z2ZJLWGqP2nnofsZ-8c6x5EuhGetejLHlCzpHR-f6HULehUy7SeAosE1CbGEW6bHkEnOmuHJ0hJhw6Br4duIvzt3PF97FYPC7l7W0qZJJ-uvOupL_oSpcA7pilew9KNu-FC7AOdAXjkBhOP4Tjc-K1frD1cpgKVUSe8Zcyis9ttW8pSlWwfzHVjFUCA6hQMtsa3wb1bRZ5aBytmGcHvHafMSpyRpokgjsYz2PwjGIiFqWff9RyrwV-zPMULrJjSMeMbaU7lo-YxUVolqcrgt9aWuIqibkb50SYM9iVlbnlFx2VTH3-dW-oLY4yWabMrKZYVtJzkRfeAs7xHApqlN37wu9TpZ6IhPNAu51W2AT9l9Mz-LT2Tz--unkywOyw8H04EOyMz2aHc23QjlbwKheKVbzgdu6zhYDplZklk_IY2uB0Klhp10y0PkeeWh6kt7skV07SyU9tJDk75_C5gucRjtOo7KktziNrnLa4zRaZLThNFpz2jNyPv-4PF6MbfONcSoipxp7AnRfP_NkkIlIyExmTGJLOp0pl6eOn6aOlMpJXF-BMPITdKKxlGmuwiRSKRPPyTAvcv2S0AhD4SAsIi9EC12E3PUFT4NEua6fSTYik2aa4tQi02ODlHVcW6jcj-28xnZeR-SwfeCnAWXZPvSgmffYrtwy5rDpgCosGB-Rt-1tkKsYLJO5Ljb1GPSV8MAfkReGXu23wGhBHEm-__eXvyKPurVxQIbV9Ua_BhW2St5YnvoD4zmf4A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+microbiota+as+game-changers+in+restoration+of+degraded+lands&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Coban%2C+Oksana&rft.au=De+Deyn%2C+Gerlinde+B&rft.au=van+der+Ploeg%2C+Martine&rft.date=2022-03-04&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=375&rft.issue=6584&rft_id=info:doi/10.1126%2Fscience.abe0725&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon