A Consistency-Aware Hybrid Static–Dynamic Multivariate Network for Forecasting Industrial Key Performance Indicators
The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series d...
Saved in:
Published in | Big data and cognitive computing Vol. 9; no. 7; p. 163 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-2289 2504-2289 |
DOI | 10.3390/bdcc9070163 |
Cover
Abstract | The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series data, particularly the consistency of measurements and the influence of external factors, which limits their effectiveness in real-world scenarios. In this work, a Consistency-aware Hybrid Static-Dynamic Multivariate forecasting Network (CHSDM-Net) is proposed, which first applies a consistency-aware, optimization-driven segmentation to ensure high internal consistency within each segment across multiple variables. Secondly, a hybrid forecasting model integrating a Static Representation Module and a Dynamic Temporal Disentanglement and Attention Module for static and dynamic data fusion is proposed. For the dynamic data, the trend and periodic components are disentangled and fed into Trend-wise Attention and Periodic-aware Attention blocks, respectively. Extensive experiments on both synthetic and real-world radar detection datasets demonstrated that CHSDM-Net achieved significant improvements compared with existing methods. Comprehensive ablation and sensitivity analyses further validated the effectiveness and robustness of each component. The proposed method offers a practical and generalizable solution for intelligent KPI forecasting and decision support in industrial engineering applications. |
---|---|
AbstractList | The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series data, particularly the consistency of measurements and the influence of external factors, which limits their effectiveness in real-world scenarios. In this work, a Consistency-aware Hybrid Static-Dynamic Multivariate forecasting Network (CHSDM-Net) is proposed, which first applies a consistency-aware, optimization-driven segmentation to ensure high internal consistency within each segment across multiple variables. Secondly, a hybrid forecasting model integrating a Static Representation Module and a Dynamic Temporal Disentanglement and Attention Module for static and dynamic data fusion is proposed. For the dynamic data, the trend and periodic components are disentangled and fed into Trend-wise Attention and Periodic-aware Attention blocks, respectively. Extensive experiments on both synthetic and real-world radar detection datasets demonstrated that CHSDM-Net achieved significant improvements compared with existing methods. Comprehensive ablation and sensitivity analyses further validated the effectiveness and robustness of each component. The proposed method offers a practical and generalizable solution for intelligent KPI forecasting and decision support in industrial engineering applications. |
Audience | Academic |
Author | Zhu, Lin Wang, Miao Li, Bingyi Long, Jiahui Jia, Xiang |
Author_xml | – sequence: 1 givenname: Jiahui orcidid: 0009-0006-4512-8069 surname: Long fullname: Long, Jiahui – sequence: 2 givenname: Xiang surname: Jia fullname: Jia, Xiang – sequence: 3 givenname: Bingyi surname: Li fullname: Li, Bingyi – sequence: 4 givenname: Lin surname: Zhu fullname: Zhu, Lin – sequence: 5 givenname: Miao surname: Wang fullname: Wang, Miao |
BookMark | eNptkU1uFDEQhVsoSISQFRdoiSXqULb7z8vRQMiI8CMBa6vaLo88zNjB9iTqHXfghpwED4MgSMgLW89fPVXVe1yd-OCpqp4yuBBCwovJaC1hANaLB9Up76BtOB_lyb33o-o8pQ0AcN62PWOn1e2iXgafXMrk9dws7jBSfTVP0Zn6Y8bs9I9v31_OHndO12_32-xuMTrMVL-jfBfil9qGWF-GSBpTdn5dr7zZp1yYbf2G5voDxULs0Gs6fDmNOcT0pHpocZvo_Pd9Vn2-fPVpedVcv3-9Wi6uGy0ky00HnYbSp7RdESYrGSEIJkYgbZEM2h7QcJomKQ3wSYuJ92Y0fTfAaKwWZ9Xq6GsCbtRNdDuMswro1C8hxLXCWIbckmLQ25GNg5E0tNDzkXqGo2Uc2oEbgOL17Oh1E8PXPaWsNmEffWlfCS4EDLJjw19qjcXUeRtyRL1zSavF2AFIJsWBuvgPVY6hsuiSq3VF_6fg-bFAx5BSJPtnGAbqEL-6F7_4CaVbpHU |
Cites_doi | 10.1109/TIM.2024.3472806 10.2139/ssrn.4829142 10.1016/j.eswa.2022.117366 10.1109/TPWRS.2003.814848 10.3390/s24030800 10.1109/ACCESS.2021.3082627 10.2307/2288003 10.1109/TIM.2024.3484534 10.1016/j.aei.2024.102859 10.1016/j.rinp.2021.104070 10.1016/j.ins.2023.120003 10.1016/j.pdisas.2022.100221 10.1016/j.jiph.2025.102772 10.1016/j.neucom.2025.129641 10.1016/j.eswa.2025.126864 10.1177/003754978003400206 10.1016/j.jksuci.2023.101565 10.1162/neco.1989.1.4.541 10.1364/OE.530414 10.1016/j.knosys.2025.113147 10.1007/BF00994018 10.3390/bdcc9020021 10.3390/bdcc8090120 10.1007/s11269-024-03756-5 10.20944/preprints202404.1024.v1 10.1049/itr2.12595 10.1016/j.jksuci.2024.102252 10.1016/j.aei.2024.102438 10.1007/s11042-022-12551-6 10.1016/j.aei.2022.101810 10.1023/A:1010933404324 10.3390/app12073329 10.1073/pnas.79.8.2554 10.1016/j.clnu.2024.05.039 10.3390/s24020379 10.1016/j.fuel.2025.134294 10.1016/j.eswa.2025.128088 10.3390/bdcc7030137 10.1016/j.seppur.2024.129660 10.1016/j.asoc.2025.112921 10.1177/003754977803000404 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/bdcc9070163 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-2289 |
ExternalDocumentID | oai_doaj_org_article_106f8187d9e740628e61a8f120472d00 A850091937 10_3390_bdcc9070163 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c391t-505c06119f5c39bf91ea031380ecfaedaf60ad2ebb99d02bc3b26d8d65708dfc3 |
IEDL.DBID | 8FG |
ISSN | 2504-2289 |
IngestDate | Wed Aug 27 01:23:44 EDT 2025 Fri Jul 25 18:37:52 EDT 2025 Wed Aug 06 19:15:40 EDT 2025 Tue Aug 05 03:50:39 EDT 2025 Wed Sep 10 04:49:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-505c06119f5c39bf91ea031380ecfaedaf60ad2ebb99d02bc3b26d8d65708dfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-4512-8069 |
OpenAccessLink | https://www.proquest.com/docview/3233079517?pq-origsite=%requestingapplication% |
PQID | 3233079517 |
PQPubID | 2061777 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_106f8187d9e740628e61a8f120472d00 proquest_journals_3233079517 gale_infotracmisc_A850091937 gale_infotracacademiconefile_A850091937 crossref_primary_10_3390_bdcc9070163 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Big data and cognitive computing |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_18) 2021; 9 ref_14 Cortes (ref_39) 1995; 20 ref_58 Bao (ref_16) 2024; 62 ref_55 ref_10 ref_54 Shi (ref_24) 2022; 54 ref_53 ref_52 ref_51 Qiu (ref_50) 2024; 17 Odufuwa (ref_1) 2025; 387 Breiman (ref_41) 2001; 45 Dioubi (ref_3) 2024; 36 Abido (ref_49) 2003; 18 Liu (ref_15) 2025; 314 ref_25 Wang (ref_20) 2024; 657 Yuan (ref_36) 2021; 24 Zeng (ref_56) 2023; 37 ref_29 Su (ref_8) 2024; 73 ref_28 ref_27 ref_26 Xie (ref_7) 2024; 43 Sun (ref_13) 2024; 60 Salazar (ref_45) 2025; 629 Wang (ref_57) 2025; 274 Machado (ref_19) 2025; 286 Guo (ref_23) 2025; 19 Heo (ref_21) 2022; 14 ref_35 ref_34 ref_33 Nigam (ref_44) 2025; 174 ref_32 ref_31 Kim (ref_12) 2022; 203 ref_30 Huang (ref_22) 2022; 30 Hopfield (ref_43) 1982; 79 Montgomery (ref_48) 1980; 34 Kheir (ref_47) 1978; 30 Azam (ref_9) 2025; 355 (ref_40) 1986; 81 Han (ref_11) 2024; 73 Wu (ref_17) 2024; 32 Elwahsh (ref_6) 2023; 35 LeCun (ref_42) 1989; 1 ref_46 Mulla (ref_38) 2024; 38 ref_2 Jang (ref_37) 2025; 18 ref_5 ref_4 |
References_xml | – volume: 73 start-page: 2532214 year: 2024 ident: ref_8 article-title: A Transferable Ensemble Additive Network for Interpretable Prediction of Key Performance Indicators publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3472806 – ident: ref_32 – ident: ref_55 – ident: ref_26 – ident: ref_51 – ident: ref_52 doi: 10.2139/ssrn.4829142 – volume: 203 start-page: 117366 year: 2022 ident: ref_12 article-title: Bagging ensemble-based novel data generation method for univariate time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117366 – volume: 18 start-page: 1125 year: 2003 ident: ref_49 article-title: Optimal multiobjective design of robust power system stabilizers using genetic algorithms publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.814848 – ident: ref_58 doi: 10.3390/s24030800 – volume: 9 start-page: 76592 year: 2021 ident: ref_18 article-title: Device-Free Human Activity Recognition Based on GMM-HMM Using Channel State Information publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3082627 – volume: 81 start-page: 253 year: 1986 ident: ref_40 article-title: Classification and Regression Trees (Book) publication-title: J. Am. Stat. Assoc. doi: 10.2307/2288003 – ident: ref_35 – volume: 73 start-page: 3541112 year: 2024 ident: ref_11 article-title: Cascaded LSTM-Based State Prediction of Equipment in Wastewater Treatment Process publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3484534 – volume: 62 start-page: 102859 year: 2024 ident: ref_16 article-title: SIMTSeg: A self-supervised multivariate time series segmentation method with periodic subspace projection and reverse diffusion for industrial process publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102859 – volume: 24 start-page: 104070 year: 2021 ident: ref_36 article-title: Epidemiological and clinical characteristics of influenza patients in respiratory department under the prediction of autoregressive integrated moving average model publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104070 – volume: 37 start-page: 11121 year: 2023 ident: ref_56 article-title: Are transformers effective for time series forecasting? publication-title: Proc. AAAI Conf. Artif. Intell. – ident: ref_31 – volume: 657 start-page: 120003 year: 2024 ident: ref_20 article-title: Memetic segmentation based on variable lag aware for multivariate time series publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.120003 – ident: ref_27 – volume: 14 start-page: 100221 year: 2022 ident: ref_21 article-title: Greedy copula segmentation of multivariate non-stationary time series for climate change adaptation publication-title: Prog. Disaster Sci. doi: 10.1016/j.pdisas.2022.100221 – volume: 18 start-page: 102772 year: 2025 ident: ref_37 article-title: Analyzing the impact of COVID-19 on seasonal infectious disease outbreak detection using hybrid SARIMAX-LSTM model publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2025.102772 – volume: 629 start-page: 129641 year: 2025 ident: ref_45 article-title: A distance correlation-based approach to characterize the effectiveness of recurrent neural networks for time series forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2025.129641 – volume: 274 start-page: 126864 year: 2025 ident: ref_57 article-title: Decomposition combining averaging seasonal-trend with singular spectrum analysis and a marine predator algorithm embedding Adam for time series forecasting with strong volatility publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.126864 – volume: 34 start-page: 63 year: 1980 ident: ref_48 article-title: Comparison of simulation and flight-test data for missile systems publication-title: Simulation doi: 10.1177/003754978003400206 – volume: 35 start-page: 101565 year: 2023 ident: ref_6 article-title: A new approach for cancer prediction based on deep neural learning publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2023.101565 – volume: 1 start-page: 541 year: 1989 ident: ref_42 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 32 start-page: 29344 year: 2024 ident: ref_17 article-title: Phase unwrapping error identification and suppression method in ϕ-OTDR systems based on PELT-VMD-ARIMA publication-title: Opt. Express doi: 10.1364/OE.530414 – volume: 314 start-page: 113147 year: 2025 ident: ref_15 article-title: TVC Former: A transformer-based long-term multivariate time series forecasting method using time-variable coupling correlation graph publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2025.113147 – volume: 20 start-page: 273 year: 1995 ident: ref_39 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_5 doi: 10.3390/bdcc9020021 – ident: ref_28 – ident: ref_53 – ident: ref_14 doi: 10.3390/bdcc8090120 – ident: ref_30 – volume: 38 start-page: 1825 year: 2024 ident: ref_38 article-title: Times series forecasting of monthly rainfall using seasonal auto regressive integrated moving average with exogenous variables (SARIMAX) model publication-title: Water Resour. Manag. doi: 10.1007/s11269-024-03756-5 – ident: ref_4 doi: 10.20944/preprints202404.1024.v1 – volume: 19 start-page: e12595 year: 2025 ident: ref_23 article-title: A lightweight social cognitive risk potential field model for path planning with dedicated dynamic and static traffic factors publication-title: IET Intell. Transp. Syst. doi: 10.1049/itr2.12595 – volume: 36 start-page: 102252 year: 2024 ident: ref_3 article-title: Enhancing stock market predictions via hybrid external trend and internal components analysis and long short term memory model publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2024.102252 – volume: 60 start-page: 102438 year: 2024 ident: ref_13 article-title: A process knowledge-based hybrid method for univariate time series prediction with uncertain inputs in process industry publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102438 – volume: 30 start-page: 43063 year: 2022 ident: ref_22 article-title: Single-channel EEG automatic sleep staging based on transition optimized HMM publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12551-6 – volume: 54 start-page: 101810 year: 2022 ident: ref_24 article-title: Multivariate time series prediction of complex systems based on graph neural networks with location embedding graph structure learning publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101810 – volume: 45 start-page: 5 year: 2001 ident: ref_41 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_10 doi: 10.3390/app12073329 – ident: ref_25 – volume: 79 start-page: 2554 year: 1982 ident: ref_43 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 43 start-page: 1791 year: 2024 ident: ref_7 article-title: Performance of anthropometry-based and bio-electrical impedance-based muscle-mass indicators in the Global Leadership Initiative on Malnutrition criteria for predicting prognosis in patients with cancer publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2024.05.039 – ident: ref_29 – ident: ref_33 – ident: ref_54 – ident: ref_34 doi: 10.3390/s24020379 – ident: ref_46 – volume: 387 start-page: 134294 year: 2025 ident: ref_1 article-title: Artificial neural network modelling for predicting efficiency and emissions in mini-diesel engines: Key performance indicators and environmental impact analysis publication-title: Fuel doi: 10.1016/j.fuel.2025.134294 – volume: 286 start-page: 128088 year: 2025 ident: ref_19 article-title: Enhancing one-class classifiers performance in multivariate time series through dynamic clustering: A case study on hydraulic system fault detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.128088 – ident: ref_2 doi: 10.3390/bdcc7030137 – volume: 17 start-page: 2363 year: 2024 ident: ref_50 article-title: TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods publication-title: Proc. Very Large Data Bases – volume: 355 start-page: 129660 year: 2025 ident: ref_9 article-title: Development of performance indicator for metal-organic frameworks in atmospheric water harvesting publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.129660 – volume: 174 start-page: 112921 year: 2025 ident: ref_44 article-title: Forecasting time series using convolutional neural network with multiplicative neuron publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2025.112921 – volume: 30 start-page: 117 year: 1978 ident: ref_47 article-title: On validating simulation models of missile systems publication-title: Simulation doi: 10.1177/003754977803000404 |
SSID | ssj0002244611 |
Score | 2.2959473 |
Snippet | The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 163 |
SubjectTerms | Ablation Accuracy Aircraft Analysis Attention Business metrics Business performance management consistency-aware dynamic segmentation Data integration Deep learning Effectiveness feature disentanglement Forecasting global–local correlation modeling hybrid static–dynamic modeling Indicators Industrial engineering industrial KPI forecasting Machine learning Modules Multivariate analysis Radar detection Radar systems Sensitivity analysis Time series Trends Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJQkIdKTBF2nLjxWL5UgagYQGKz_CnB0KK2FHXjP_AP-SXcOYG2A2JhyeB4sO5yvnfR3XuEdAKXFZO-zJxkNiuMFHAPIm1lxawK-EhaBLcD2X8orh_LxyWpL-wJq-mBa8NBVMsISaXrVegWOPAXJDdV5DnSHHqWqnWm2FIx9ZxIXaDM4bweyBNQ159a7xwUgoBwxEoKSkz9v93HKclcbZHNBh3SXn2qbbIWhjtk1qNJVnOC8Hae9d7MOND-HEetKGLFJ_f5_nFRK8vTNFA7gwIYMCQd1D3eFIApRQ1OZybY5UwXeh30Jszp3WJ4AF_hX7zReLJLHq4u78_7WSOXkDmh-DQDLOMgO3MVS1iwUfFgkJmxYsFFE7yJkhmfB2uV8iy3Tthc-spj80vloxN7ZH04GoZ9QktflJVUBVjWFGUeTORCSlgVMY8-iBbpfFtQv9SsGBqqCTS0XjJ0i5yhdX-2IJV1WgAH68bB-i8Ht8gJ-kZjwE3HxplmbgBOitRVuleVgBMBh3ZbpL2yEwLFrb7-9q5uAnWiRS7glgOY2T34j8Meko0cBYJTP2-brE_Hr-EIUMvUHqcP9AvPrOl0 priority: 102 providerName: Directory of Open Access Journals |
Title | A Consistency-Aware Hybrid Static–Dynamic Multivariate Network for Forecasting Industrial Key Performance Indicators |
URI | https://www.proquest.com/docview/3233079517 https://doaj.org/article/106f8187d9e740628e61a8f120472d00 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBrQCxUFY-VOIU1Y_EsU9o-9iuQKwqRKXeIj8Rl902WYr21v_AP-SXMONku-wBLjnYjhTZnplvJjPzEXIcudJMharwirmitEqCHsS2lZo5E_GRuQg-z9Xsuvx4U90MAbduSKvc6MSsqMPSY4z8RArwvGvAA_WH27sCWaPw7-pAofGU7HOwNHjP9fTyMcYC5qlUnPdleRK8-xMXvAd3EHCO3DFEuV__v7RyNjXTA_J8wIh00h_qIXkSFy_I_YRmcs0OQe66mPy0baSzNRZcUUSM3_3vh1_nPb88zWW19-AGA5Kk8z7TmwI8pcjE6W2Huc50y9pBP8U1vdqWEOAUxvKWbfeSXE8vvp7NioE0ofDS8FUBiMaDjeYmVTDgkuHRYn9GzaJPNgabFLNBROeMCUw4L51QQQdMgdEhefmK7C2Wi_ia0CqUlVamFMzYshLRJi6VglGZRApRjsjxZgeb2743RgM-BW5089dGj8gp7u7jEmxonQeW7bdmkA94TyXADnUwsS6xrjMqbnXiArtZBsZG5D2eTYNit2qtt0P1AHwpNrBqJroCtAhotB6Ro52VIC5-d3pzus0grl2zvVxv_j_9ljwTSACc83WPyN6q_RHfASpZuXG-emOyf3oxv_oyzr79H3SG5UU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCASIhUJ9KOIU1bETJz4gtP3TlrarCrVSb8HxT8VltyRLq73xDrxHH6pPwkx-uuwBbr3kYDtWNB57vnFm5gPY8rHKuXJpZBUvo8Qoiecgla3Meak9PRougpOJGp8nXy7SizW47XNhKKyyPxObg9rNLN2Rb0uBnneGeCD7fPUjItYo-rvaU2i0anHkFzfostWfDvdwfT8IcbB_tjuOOlaByEodzyM0-RaNWKxDig1l0LE3VMAw594G450JihsnfFlq7bgorSyFcrmjGJHcBStx3kewnlBG6wDWd_Ynp1_vb3XQICY4d5sIKKXm26WzFh1QRFZyxfQ1DAH_sgONcTt4Bk87VMpGrRo9hzU_fQHXI9bQedYEqxfR6MZUno0XlOLFCKN-t3e_fu-1jPasSeS9RscbsSubtLHlDAExI-5Pa2qKrmZLnhCGQmSny6QF6qLbw1lVv4TzBxHoKxhMZ1P_GljqkjRXOhFcmyQV3oRYKoWtMojgvBzCVi_B4qqtxlGgF0OCLv4S9BB2SLr3Q6iEdtMwqy6LbkfieyogWsmc9llCmaRexSYPsaD6mY7zIXyktSloo88rY02Xr4BfSiWzilGeIj5F_JsNYWNlJG5Qu9rdr27RHRB1sVTnN__v3oTH47OT4-L4cHL0Fp4Ioh9uooU3YDCvfvp3iInm5ftOERl8e2jd_wOn-SKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXQlxQSBAFBbwYRGnqI6dOPEBoS7dqstCVSFW2ltw_IO4tEtSdtUb78Db8Dg8CTP52dID3PaSg-1Y0Xjs-caZmQ_g0Mcq58qlkVW8jBKjJJ6DVLYy56X29Gi4CD7M1ewseXeenu_Brz4XhsIq-zOxOajdytId-UgK9LwzxAPZKHRhEYvJ9M3Ft4gYpOhPa0-n0arIqd9coftWvz6Z4Fq_FGJ6_OntLOoYBiIrdbyO0PxbNGixDik2lEHH3lAxw5x7G4x3JihunPBlqbXjorSyFMrljuJFchesxHlvwX6GVjEZwP7R8Xzx8fqGB41jgnO3SYFSaj4qnbXojCLKkjtmsGEL-JdNaAzd9B7c7RAqG7cqdR_2_PIBXI5ZQ-1ZE8TeROMrU3k221C6FyO8-tX-_vFz0rLbsyap9xKdcMSxbN7GmTMEx4x4QK2pKdKabTlDGAqRLbYJDNRFN4mrqn4IZzci0EcwWK6W_jGw1CVprnQiuDZJKrwJsVQKW2UQwXk5hMNegsVFW5mjQI-GBF38JeghHJF0r4dQOe2mYVV9Kbrdie-pgMglc9rTWorcq9jkIRZUS9NxPoRXtDYFbfp1ZazpchfwS6l8VjHOU8SqiIWzIRzsjMTNane7-9UtusOiLraq_eT_3S_gNup88f5kfvoU7ghiIm4Chw9gsK6--2cIj9bl804PGXy-adX_A7LLJsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Consistency-Aware+Hybrid+Static%E2%80%93Dynamic+Multivariate+Network+for+Forecasting+Industrial+Key+Performance+Indicators&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Long%2C+Jiahui&rft.au=Jia%2C+Xiang&rft.au=Li%2C+Bingyi&rft.au=Zhu%2C+Lin&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=9&rft.issue=7&rft_id=info:doi/10.3390%2Fbdcc9070163&rft.externalDocID=A850091937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon |