A Consistency-Aware Hybrid Static–Dynamic Multivariate Network for Forecasting Industrial Key Performance Indicators

The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series d...

Full description

Saved in:
Bibliographic Details
Published inBig data and cognitive computing Vol. 9; no. 7; p. 163
Main Authors Long, Jiahui, Jia, Xiang, Li, Bingyi, Zhu, Lin, Wang, Miao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2025
Subjects
Online AccessGet full text
ISSN2504-2289
2504-2289
DOI10.3390/bdcc9070163

Cover

Abstract The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series data, particularly the consistency of measurements and the influence of external factors, which limits their effectiveness in real-world scenarios. In this work, a Consistency-aware Hybrid Static-Dynamic Multivariate forecasting Network (CHSDM-Net) is proposed, which first applies a consistency-aware, optimization-driven segmentation to ensure high internal consistency within each segment across multiple variables. Secondly, a hybrid forecasting model integrating a Static Representation Module and a Dynamic Temporal Disentanglement and Attention Module for static and dynamic data fusion is proposed. For the dynamic data, the trend and periodic components are disentangled and fed into Trend-wise Attention and Periodic-aware Attention blocks, respectively. Extensive experiments on both synthetic and real-world radar detection datasets demonstrated that CHSDM-Net achieved significant improvements compared with existing methods. Comprehensive ablation and sensitivity analyses further validated the effectiveness and robustness of each component. The proposed method offers a practical and generalizable solution for intelligent KPI forecasting and decision support in industrial engineering applications.
AbstractList The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series data, particularly the consistency of measurements and the influence of external factors, which limits their effectiveness in real-world scenarios. In this work, a Consistency-aware Hybrid Static-Dynamic Multivariate forecasting Network (CHSDM-Net) is proposed, which first applies a consistency-aware, optimization-driven segmentation to ensure high internal consistency within each segment across multiple variables. Secondly, a hybrid forecasting model integrating a Static Representation Module and a Dynamic Temporal Disentanglement and Attention Module for static and dynamic data fusion is proposed. For the dynamic data, the trend and periodic components are disentangled and fed into Trend-wise Attention and Periodic-aware Attention blocks, respectively. Extensive experiments on both synthetic and real-world radar detection datasets demonstrated that CHSDM-Net achieved significant improvements compared with existing methods. Comprehensive ablation and sensitivity analyses further validated the effectiveness and robustness of each component. The proposed method offers a practical and generalizable solution for intelligent KPI forecasting and decision support in industrial engineering applications.
Audience Academic
Author Zhu, Lin
Wang, Miao
Li, Bingyi
Long, Jiahui
Jia, Xiang
Author_xml – sequence: 1
  givenname: Jiahui
  orcidid: 0009-0006-4512-8069
  surname: Long
  fullname: Long, Jiahui
– sequence: 2
  givenname: Xiang
  surname: Jia
  fullname: Jia, Xiang
– sequence: 3
  givenname: Bingyi
  surname: Li
  fullname: Li, Bingyi
– sequence: 4
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
– sequence: 5
  givenname: Miao
  surname: Wang
  fullname: Wang, Miao
BookMark eNptkU1uFDEQhVsoSISQFRdoiSXqULb7z8vRQMiI8CMBa6vaLo88zNjB9iTqHXfghpwED4MgSMgLW89fPVXVe1yd-OCpqp4yuBBCwovJaC1hANaLB9Up76BtOB_lyb33o-o8pQ0AcN62PWOn1e2iXgafXMrk9dws7jBSfTVP0Zn6Y8bs9I9v31_OHndO12_32-xuMTrMVL-jfBfil9qGWF-GSBpTdn5dr7zZp1yYbf2G5voDxULs0Gs6fDmNOcT0pHpocZvo_Pd9Vn2-fPVpedVcv3-9Wi6uGy0ky00HnYbSp7RdESYrGSEIJkYgbZEM2h7QcJomKQ3wSYuJ92Y0fTfAaKwWZ9Xq6GsCbtRNdDuMswro1C8hxLXCWIbckmLQ25GNg5E0tNDzkXqGo2Uc2oEbgOL17Oh1E8PXPaWsNmEffWlfCS4EDLJjw19qjcXUeRtyRL1zSavF2AFIJsWBuvgPVY6hsuiSq3VF_6fg-bFAx5BSJPtnGAbqEL-6F7_4CaVbpHU
Cites_doi 10.1109/TIM.2024.3472806
10.2139/ssrn.4829142
10.1016/j.eswa.2022.117366
10.1109/TPWRS.2003.814848
10.3390/s24030800
10.1109/ACCESS.2021.3082627
10.2307/2288003
10.1109/TIM.2024.3484534
10.1016/j.aei.2024.102859
10.1016/j.rinp.2021.104070
10.1016/j.ins.2023.120003
10.1016/j.pdisas.2022.100221
10.1016/j.jiph.2025.102772
10.1016/j.neucom.2025.129641
10.1016/j.eswa.2025.126864
10.1177/003754978003400206
10.1016/j.jksuci.2023.101565
10.1162/neco.1989.1.4.541
10.1364/OE.530414
10.1016/j.knosys.2025.113147
10.1007/BF00994018
10.3390/bdcc9020021
10.3390/bdcc8090120
10.1007/s11269-024-03756-5
10.20944/preprints202404.1024.v1
10.1049/itr2.12595
10.1016/j.jksuci.2024.102252
10.1016/j.aei.2024.102438
10.1007/s11042-022-12551-6
10.1016/j.aei.2022.101810
10.1023/A:1010933404324
10.3390/app12073329
10.1073/pnas.79.8.2554
10.1016/j.clnu.2024.05.039
10.3390/s24020379
10.1016/j.fuel.2025.134294
10.1016/j.eswa.2025.128088
10.3390/bdcc7030137
10.1016/j.seppur.2024.129660
10.1016/j.asoc.2025.112921
10.1177/003754977803000404
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/bdcc9070163
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-2289
ExternalDocumentID oai_doaj_org_article_106f8187d9e740628e61a8f120472d00
A850091937
10_3390_bdcc9070163
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c391t-505c06119f5c39bf91ea031380ecfaedaf60ad2ebb99d02bc3b26d8d65708dfc3
IEDL.DBID 8FG
ISSN 2504-2289
IngestDate Wed Aug 27 01:23:44 EDT 2025
Fri Jul 25 18:37:52 EDT 2025
Wed Aug 06 19:15:40 EDT 2025
Tue Aug 05 03:50:39 EDT 2025
Wed Sep 10 04:49:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-505c06119f5c39bf91ea031380ecfaedaf60ad2ebb99d02bc3b26d8d65708dfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-4512-8069
OpenAccessLink https://www.proquest.com/docview/3233079517?pq-origsite=%requestingapplication%
PQID 3233079517
PQPubID 2061777
ParticipantIDs doaj_primary_oai_doaj_org_article_106f8187d9e740628e61a8f120472d00
proquest_journals_3233079517
gale_infotracmisc_A850091937
gale_infotracacademiconefile_A850091937
crossref_primary_10_3390_bdcc9070163
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Big data and cognitive computing
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_18) 2021; 9
ref_14
Cortes (ref_39) 1995; 20
ref_58
Bao (ref_16) 2024; 62
ref_55
ref_10
ref_54
Shi (ref_24) 2022; 54
ref_53
ref_52
ref_51
Qiu (ref_50) 2024; 17
Odufuwa (ref_1) 2025; 387
Breiman (ref_41) 2001; 45
Dioubi (ref_3) 2024; 36
Abido (ref_49) 2003; 18
Liu (ref_15) 2025; 314
ref_25
Wang (ref_20) 2024; 657
Yuan (ref_36) 2021; 24
Zeng (ref_56) 2023; 37
ref_29
Su (ref_8) 2024; 73
ref_28
ref_27
ref_26
Xie (ref_7) 2024; 43
Sun (ref_13) 2024; 60
Salazar (ref_45) 2025; 629
Wang (ref_57) 2025; 274
Machado (ref_19) 2025; 286
Guo (ref_23) 2025; 19
Heo (ref_21) 2022; 14
ref_35
ref_34
ref_33
Nigam (ref_44) 2025; 174
ref_32
ref_31
Kim (ref_12) 2022; 203
ref_30
Huang (ref_22) 2022; 30
Hopfield (ref_43) 1982; 79
Montgomery (ref_48) 1980; 34
Kheir (ref_47) 1978; 30
Azam (ref_9) 2025; 355
(ref_40) 1986; 81
Han (ref_11) 2024; 73
Wu (ref_17) 2024; 32
Elwahsh (ref_6) 2023; 35
LeCun (ref_42) 1989; 1
ref_46
Mulla (ref_38) 2024; 38
ref_2
Jang (ref_37) 2025; 18
ref_5
ref_4
References_xml – volume: 73
  start-page: 2532214
  year: 2024
  ident: ref_8
  article-title: A Transferable Ensemble Additive Network for Interpretable Prediction of Key Performance Indicators
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3472806
– ident: ref_32
– ident: ref_55
– ident: ref_26
– ident: ref_51
– ident: ref_52
  doi: 10.2139/ssrn.4829142
– volume: 203
  start-page: 117366
  year: 2022
  ident: ref_12
  article-title: Bagging ensemble-based novel data generation method for univariate time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117366
– volume: 18
  start-page: 1125
  year: 2003
  ident: ref_49
  article-title: Optimal multiobjective design of robust power system stabilizers using genetic algorithms
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.814848
– ident: ref_58
  doi: 10.3390/s24030800
– volume: 9
  start-page: 76592
  year: 2021
  ident: ref_18
  article-title: Device-Free Human Activity Recognition Based on GMM-HMM Using Channel State Information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3082627
– volume: 81
  start-page: 253
  year: 1986
  ident: ref_40
  article-title: Classification and Regression Trees (Book)
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2288003
– ident: ref_35
– volume: 73
  start-page: 3541112
  year: 2024
  ident: ref_11
  article-title: Cascaded LSTM-Based State Prediction of Equipment in Wastewater Treatment Process
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3484534
– volume: 62
  start-page: 102859
  year: 2024
  ident: ref_16
  article-title: SIMTSeg: A self-supervised multivariate time series segmentation method with periodic subspace projection and reverse diffusion for industrial process
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102859
– volume: 24
  start-page: 104070
  year: 2021
  ident: ref_36
  article-title: Epidemiological and clinical characteristics of influenza patients in respiratory department under the prediction of autoregressive integrated moving average model
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104070
– volume: 37
  start-page: 11121
  year: 2023
  ident: ref_56
  article-title: Are transformers effective for time series forecasting?
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_31
– volume: 657
  start-page: 120003
  year: 2024
  ident: ref_20
  article-title: Memetic segmentation based on variable lag aware for multivariate time series
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.120003
– ident: ref_27
– volume: 14
  start-page: 100221
  year: 2022
  ident: ref_21
  article-title: Greedy copula segmentation of multivariate non-stationary time series for climate change adaptation
  publication-title: Prog. Disaster Sci.
  doi: 10.1016/j.pdisas.2022.100221
– volume: 18
  start-page: 102772
  year: 2025
  ident: ref_37
  article-title: Analyzing the impact of COVID-19 on seasonal infectious disease outbreak detection using hybrid SARIMAX-LSTM model
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2025.102772
– volume: 629
  start-page: 129641
  year: 2025
  ident: ref_45
  article-title: A distance correlation-based approach to characterize the effectiveness of recurrent neural networks for time series forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2025.129641
– volume: 274
  start-page: 126864
  year: 2025
  ident: ref_57
  article-title: Decomposition combining averaging seasonal-trend with singular spectrum analysis and a marine predator algorithm embedding Adam for time series forecasting with strong volatility
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.126864
– volume: 34
  start-page: 63
  year: 1980
  ident: ref_48
  article-title: Comparison of simulation and flight-test data for missile systems
  publication-title: Simulation
  doi: 10.1177/003754978003400206
– volume: 35
  start-page: 101565
  year: 2023
  ident: ref_6
  article-title: A new approach for cancer prediction based on deep neural learning
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2023.101565
– volume: 1
  start-page: 541
  year: 1989
  ident: ref_42
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 32
  start-page: 29344
  year: 2024
  ident: ref_17
  article-title: Phase unwrapping error identification and suppression method in ϕ-OTDR systems based on PELT-VMD-ARIMA
  publication-title: Opt. Express
  doi: 10.1364/OE.530414
– volume: 314
  start-page: 113147
  year: 2025
  ident: ref_15
  article-title: TVC Former: A transformer-based long-term multivariate time series forecasting method using time-variable coupling correlation graph
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2025.113147
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_39
  article-title: Support-Vector Networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_5
  doi: 10.3390/bdcc9020021
– ident: ref_28
– ident: ref_53
– ident: ref_14
  doi: 10.3390/bdcc8090120
– ident: ref_30
– volume: 38
  start-page: 1825
  year: 2024
  ident: ref_38
  article-title: Times series forecasting of monthly rainfall using seasonal auto regressive integrated moving average with exogenous variables (SARIMAX) model
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-024-03756-5
– ident: ref_4
  doi: 10.20944/preprints202404.1024.v1
– volume: 19
  start-page: e12595
  year: 2025
  ident: ref_23
  article-title: A lightweight social cognitive risk potential field model for path planning with dedicated dynamic and static traffic factors
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/itr2.12595
– volume: 36
  start-page: 102252
  year: 2024
  ident: ref_3
  article-title: Enhancing stock market predictions via hybrid external trend and internal components analysis and long short term memory model
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2024.102252
– volume: 60
  start-page: 102438
  year: 2024
  ident: ref_13
  article-title: A process knowledge-based hybrid method for univariate time series prediction with uncertain inputs in process industry
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102438
– volume: 30
  start-page: 43063
  year: 2022
  ident: ref_22
  article-title: Single-channel EEG automatic sleep staging based on transition optimized HMM
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12551-6
– volume: 54
  start-page: 101810
  year: 2022
  ident: ref_24
  article-title: Multivariate time series prediction of complex systems based on graph neural networks with location embedding graph structure learning
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101810
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_41
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_10
  doi: 10.3390/app12073329
– ident: ref_25
– volume: 79
  start-page: 2554
  year: 1982
  ident: ref_43
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 43
  start-page: 1791
  year: 2024
  ident: ref_7
  article-title: Performance of anthropometry-based and bio-electrical impedance-based muscle-mass indicators in the Global Leadership Initiative on Malnutrition criteria for predicting prognosis in patients with cancer
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2024.05.039
– ident: ref_29
– ident: ref_33
– ident: ref_54
– ident: ref_34
  doi: 10.3390/s24020379
– ident: ref_46
– volume: 387
  start-page: 134294
  year: 2025
  ident: ref_1
  article-title: Artificial neural network modelling for predicting efficiency and emissions in mini-diesel engines: Key performance indicators and environmental impact analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134294
– volume: 286
  start-page: 128088
  year: 2025
  ident: ref_19
  article-title: Enhancing one-class classifiers performance in multivariate time series through dynamic clustering: A case study on hydraulic system fault detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.128088
– ident: ref_2
  doi: 10.3390/bdcc7030137
– volume: 17
  start-page: 2363
  year: 2024
  ident: ref_50
  article-title: TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods
  publication-title: Proc. Very Large Data Bases
– volume: 355
  start-page: 129660
  year: 2025
  ident: ref_9
  article-title: Development of performance indicator for metal-organic frameworks in atmospheric water harvesting
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.129660
– volume: 174
  start-page: 112921
  year: 2025
  ident: ref_44
  article-title: Forecasting time series using convolutional neural network with multiplicative neuron
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2025.112921
– volume: 30
  start-page: 117
  year: 1978
  ident: ref_47
  article-title: On validating simulation models of missile systems
  publication-title: Simulation
  doi: 10.1177/003754977803000404
SSID ssj0002244611
Score 2.2959473
Snippet The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 163
SubjectTerms Ablation
Accuracy
Aircraft
Analysis
Attention
Business metrics
Business performance management
consistency-aware dynamic segmentation
Data integration
Deep learning
Effectiveness
feature disentanglement
Forecasting
global–local correlation modeling
hybrid static–dynamic modeling
Indicators
Industrial engineering
industrial KPI forecasting
Machine learning
Modules
Multivariate analysis
Radar detection
Radar systems
Sensitivity analysis
Time series
Trends
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJQkIdKTBF2nLjxWL5UgagYQGKz_CnB0KK2FHXjP_AP-SXcOYG2A2JhyeB4sO5yvnfR3XuEdAKXFZO-zJxkNiuMFHAPIm1lxawK-EhaBLcD2X8orh_LxyWpL-wJq-mBa8NBVMsISaXrVegWOPAXJDdV5DnSHHqWqnWm2FIx9ZxIXaDM4bweyBNQ159a7xwUgoBwxEoKSkz9v93HKclcbZHNBh3SXn2qbbIWhjtk1qNJVnOC8Hae9d7MOND-HEetKGLFJ_f5_nFRK8vTNFA7gwIYMCQd1D3eFIApRQ1OZybY5UwXeh30Jszp3WJ4AF_hX7zReLJLHq4u78_7WSOXkDmh-DQDLOMgO3MVS1iwUfFgkJmxYsFFE7yJkhmfB2uV8iy3Tthc-spj80vloxN7ZH04GoZ9QktflJVUBVjWFGUeTORCSlgVMY8-iBbpfFtQv9SsGBqqCTS0XjJ0i5yhdX-2IJV1WgAH68bB-i8Ht8gJ-kZjwE3HxplmbgBOitRVuleVgBMBh3ZbpL2yEwLFrb7-9q5uAnWiRS7glgOY2T34j8Meko0cBYJTP2-brE_Hr-EIUMvUHqcP9AvPrOl0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Consistency-Aware Hybrid Static–Dynamic Multivariate Network for Forecasting Industrial Key Performance Indicators
URI https://www.proquest.com/docview/3233079517
https://doaj.org/article/106f8187d9e740628e61a8f120472d00
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBrQCxUFY-VOIU1Y_EsU9o-9iuQKwqRKXeIj8Rl902WYr21v_AP-SXMONku-wBLjnYjhTZnplvJjPzEXIcudJMharwirmitEqCHsS2lZo5E_GRuQg-z9Xsuvx4U90MAbduSKvc6MSsqMPSY4z8RArwvGvAA_WH27sCWaPw7-pAofGU7HOwNHjP9fTyMcYC5qlUnPdleRK8-xMXvAd3EHCO3DFEuV__v7RyNjXTA_J8wIh00h_qIXkSFy_I_YRmcs0OQe66mPy0baSzNRZcUUSM3_3vh1_nPb88zWW19-AGA5Kk8z7TmwI8pcjE6W2Huc50y9pBP8U1vdqWEOAUxvKWbfeSXE8vvp7NioE0ofDS8FUBiMaDjeYmVTDgkuHRYn9GzaJPNgabFLNBROeMCUw4L51QQQdMgdEhefmK7C2Wi_ia0CqUlVamFMzYshLRJi6VglGZRApRjsjxZgeb2743RgM-BW5089dGj8gp7u7jEmxonQeW7bdmkA94TyXADnUwsS6xrjMqbnXiArtZBsZG5D2eTYNit2qtt0P1AHwpNrBqJroCtAhotB6Ro52VIC5-d3pzus0grl2zvVxv_j_9ljwTSACc83WPyN6q_RHfASpZuXG-emOyf3oxv_oyzr79H3SG5UU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCASIhUJ9KOIU1bETJz4gtP3TlrarCrVSb8HxT8VltyRLq73xDrxHH6pPwkx-uuwBbr3kYDtWNB57vnFm5gPY8rHKuXJpZBUvo8Qoiecgla3Meak9PRougpOJGp8nXy7SizW47XNhKKyyPxObg9rNLN2Rb0uBnneGeCD7fPUjItYo-rvaU2i0anHkFzfostWfDvdwfT8IcbB_tjuOOlaByEodzyM0-RaNWKxDig1l0LE3VMAw594G450JihsnfFlq7bgorSyFcrmjGJHcBStx3kewnlBG6wDWd_Ynp1_vb3XQICY4d5sIKKXm26WzFh1QRFZyxfQ1DAH_sgONcTt4Bk87VMpGrRo9hzU_fQHXI9bQedYEqxfR6MZUno0XlOLFCKN-t3e_fu-1jPasSeS9RscbsSubtLHlDAExI-5Pa2qKrmZLnhCGQmSny6QF6qLbw1lVv4TzBxHoKxhMZ1P_GljqkjRXOhFcmyQV3oRYKoWtMojgvBzCVi_B4qqtxlGgF0OCLv4S9BB2SLr3Q6iEdtMwqy6LbkfieyogWsmc9llCmaRexSYPsaD6mY7zIXyktSloo88rY02Xr4BfSiWzilGeIj5F_JsNYWNlJG5Qu9rdr27RHRB1sVTnN__v3oTH47OT4-L4cHL0Fp4Ioh9uooU3YDCvfvp3iInm5ftOERl8e2jd_wOn-SKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXQlxQSBAFBbwYRGnqI6dOPEBoS7dqstCVSFW2ltw_IO4tEtSdtUb78Db8Dg8CTP52dID3PaSg-1Y0Xjs-caZmQ_g0Mcq58qlkVW8jBKjJJ6DVLYy56X29Gi4CD7M1ewseXeenu_Brz4XhsIq-zOxOajdytId-UgK9LwzxAPZKHRhEYvJ9M3Ft4gYpOhPa0-n0arIqd9coftWvz6Z4Fq_FGJ6_OntLOoYBiIrdbyO0PxbNGixDik2lEHH3lAxw5x7G4x3JihunPBlqbXjorSyFMrljuJFchesxHlvwX6GVjEZwP7R8Xzx8fqGB41jgnO3SYFSaj4qnbXojCLKkjtmsGEL-JdNaAzd9B7c7RAqG7cqdR_2_PIBXI5ZQ-1ZE8TeROMrU3k221C6FyO8-tX-_vFz0rLbsyap9xKdcMSxbN7GmTMEx4x4QK2pKdKabTlDGAqRLbYJDNRFN4mrqn4IZzci0EcwWK6W_jGw1CVprnQiuDZJKrwJsVQKW2UQwXk5hMNegsVFW5mjQI-GBF38JeghHJF0r4dQOe2mYVV9Kbrdie-pgMglc9rTWorcq9jkIRZUS9NxPoRXtDYFbfp1ZazpchfwS6l8VjHOU8SqiIWzIRzsjMTNane7-9UtusOiLraq_eT_3S_gNup88f5kfvoU7ghiIm4Chw9gsK6--2cIj9bl804PGXy-adX_A7LLJsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Consistency-Aware+Hybrid+Static%E2%80%93Dynamic+Multivariate+Network+for+Forecasting+Industrial+Key+Performance+Indicators&rft.jtitle=Big+data+and+cognitive+computing&rft.au=Long%2C+Jiahui&rft.au=Jia%2C+Xiang&rft.au=Li%2C+Bingyi&rft.au=Zhu%2C+Lin&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.issn=2504-2289&rft.eissn=2504-2289&rft.volume=9&rft.issue=7&rft_id=info:doi/10.3390%2Fbdcc9070163&rft.externalDocID=A850091937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-2289&client=summon