Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts
Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al . present kinetic theories for two competing sintering mechanisms, Ostwald ripening and pa...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6573; pp. 1360 - 1365 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
10.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu
et al
. present kinetic theories for two competing sintering mechanisms, Ostwald ripening and particle migration, which relate the rates of both processes to fundamental interaction energies in metal nanoparticle-support combinations. Using kinetic simulations for hundreds of such pairs, the authors show a universal volcano dependence of the sintering kinetics on the metal-support binding energy that can serve as a single descriptor to predict nanoparticle growth rates. The revealed scaling relations are a good start in the development of high-throughput screening computational approaches to drive discovery of sintering-resistant nanocatalysts. —YS
Scaling relations enable the high-throughput screening of supports to boost the stability of nanocatalysts against sintering.
The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts. |
---|---|
AbstractList | The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts. The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts. Rational design of stable nanocatalystsSintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al. present kinetic theories for two competing sintering mechanisms, Ostwald ripening and particle migration, which relate the rates of both processes to fundamental interaction energies in metal nanoparticle-support combinations. Using kinetic simulations for hundreds of such pairs, the authors show a universal volcano dependence of the sintering kinetics on the metal-support binding energy that can serve as a single descriptor to predict nanoparticle growth rates. The revealed scaling relations are a good start in the development of high-throughput screening computational approaches to drive discovery of sintering-resistant nanocatalysts. —YSThe stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts. Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al . present kinetic theories for two competing sintering mechanisms, Ostwald ripening and particle migration, which relate the rates of both processes to fundamental interaction energies in metal nanoparticle-support combinations. Using kinetic simulations for hundreds of such pairs, the authors show a universal volcano dependence of the sintering kinetics on the metal-support binding energy that can serve as a single descriptor to predict nanoparticle growth rates. The revealed scaling relations are a good start in the development of high-throughput screening computational approaches to drive discovery of sintering-resistant nanocatalysts. —YS Scaling relations enable the high-throughput screening of supports to boost the stability of nanocatalysts against sintering. The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts. |
Author | Hu, Sulei Li, Wei-Xue |
Author_xml | – sequence: 1 givenname: Sulei orcidid: 0000-0002-5350-9447 surname: Hu fullname: Hu, Sulei organization: Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Wei-Xue orcidid: 0000-0002-5043-3088 surname: Li fullname: Li, Wei-Xue organization: Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34735220$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kTtPwzAURi1URB8ws6FILCyhfsRpPKKKl1SJARhR5DjXyFVqB9sZ-u9xaWGoxGRL93yW7_mmaGSdBYQuCb4lhJbzoAxYBbeyMaKi1QmaECx4LihmIzTBmJV5hRd8jKYhrDFOM8HO0JgVC8YpxRP08SobGQ34rPfGKtN3kDmdbSDKLg9D3zsfM2MjeKmicTbTzmctBPNpd9zQRS9DlE2K_WQyK61TMt22IYZzdKplF-DicM7Q-8P92_IpX708Pi_vVrligsS8ULwULbQaBGsXTaMZh7ZUhdZtGuCqWvCi0aJlkmAlmZAc0i6YF6VSAgiwGbrZv9t79zVAiPXGBAVdJy24IdSUi4IKIjhN6PURunaDt-l3NS1ZklUKUSTq6kANzQbaOsnZSL-tf8UlYL4HlHcheNB_CMH1rpr6UE19qCYl-FFCmSh3TpNC0_2b-waqqJe3 |
CitedBy_id | crossref_primary_10_1038_s41560_022_01098_3 crossref_primary_10_1002_slct_202404724 crossref_primary_10_1039_D3QM00586K crossref_primary_10_1038_s41467_024_50629_x crossref_primary_10_1039_D4NJ04418E crossref_primary_10_1021_acs_jpclett_3c00669 crossref_primary_10_1039_D4TA01240B crossref_primary_10_1016_j_jcat_2023_115110 crossref_primary_10_1039_D3NH00140G crossref_primary_10_1016_j_apsusc_2025_162321 crossref_primary_10_1007_s12274_022_4713_8 crossref_primary_10_1016_j_jcat_2024_115638 crossref_primary_10_1016_j_apcatb_2024_124720 crossref_primary_10_1039_D4TA02693D crossref_primary_10_1007_s10562_023_04486_w crossref_primary_10_1021_acscatal_4c05879 crossref_primary_10_1002_smll_202409155 crossref_primary_10_1063_5_0207891 crossref_primary_10_1002_adfm_202412895 crossref_primary_10_1038_s43246_025_00735_0 crossref_primary_10_1002_anie_202419630 crossref_primary_10_1016_j_apcatb_2023_123120 crossref_primary_10_1021_acsnano_4c14279 crossref_primary_10_1016_j_carbon_2024_119669 crossref_primary_10_1002_anie_202414149 crossref_primary_10_1039_D3CY00060E crossref_primary_10_1021_acssuschemeng_4c10346 crossref_primary_10_1016_j_jcis_2024_01_169 crossref_primary_10_1039_D3GC05118H crossref_primary_10_1002_aenm_202203963 crossref_primary_10_1039_D2CY01895K crossref_primary_10_1016_j_jre_2024_03_024 crossref_primary_10_1021_acs_iecr_3c02877 crossref_primary_10_1016_j_est_2024_113545 crossref_primary_10_3390_catal14010048 crossref_primary_10_1063_5_0137101 crossref_primary_10_1016_j_checat_2024_101231 crossref_primary_10_1002_ange_202303503 crossref_primary_10_1016_j_fuel_2023_127409 crossref_primary_10_1021_acsnano_3c09159 crossref_primary_10_1002_ange_202404766 crossref_primary_10_1016_j_jcis_2025_02_014 crossref_primary_10_1016_j_jcis_2023_07_076 crossref_primary_10_1021_jacs_4c18645 crossref_primary_10_1002_cphc_202400521 crossref_primary_10_1016_j_cclet_2024_110137 crossref_primary_10_1002_ange_202300110 crossref_primary_10_1021_acscatal_3c00611 crossref_primary_10_1007_s12274_022_4373_8 crossref_primary_10_1016_j_cej_2023_142527 crossref_primary_10_1021_acs_iecr_4c03386 crossref_primary_10_1021_acs_jpcc_4c03420 crossref_primary_10_1016_j_seppur_2025_132109 crossref_primary_10_1002_anie_202303503 crossref_primary_10_1016_j_nanoen_2024_109975 crossref_primary_10_1002_anie_202300110 crossref_primary_10_1016_j_apcatb_2024_123762 crossref_primary_10_1016_j_nanoen_2023_108353 crossref_primary_10_1021_acscatal_4c07729 crossref_primary_10_1016_j_cej_2024_150896 crossref_primary_10_1016_j_apsusc_2024_160299 crossref_primary_10_1021_acs_jpcc_4c01128 crossref_primary_10_1039_D4CS00527A crossref_primary_10_1016_j_jcis_2024_01_108 crossref_primary_10_1038_s44160_024_00585_7 crossref_primary_10_1021_acs_jpcc_4c04874 crossref_primary_10_1002_smll_202300547 crossref_primary_10_1038_s41467_024_52698_4 crossref_primary_10_3390_nano14110921 crossref_primary_10_1002_ange_202414149 crossref_primary_10_1016_j_cej_2023_147086 crossref_primary_10_1016_j_jmrt_2024_11_137 crossref_primary_10_1021_acscatal_3c04811 crossref_primary_10_1038_s41524_022_00959_5 crossref_primary_10_1016_j_mcat_2023_113672 crossref_primary_10_1007_s11051_024_06053_9 crossref_primary_10_1021_acs_iecr_4c01029 crossref_primary_10_1039_D2CY01214F crossref_primary_10_1002_asia_202200319 crossref_primary_10_1021_acsnano_4c09637 crossref_primary_10_1016_j_apcata_2022_118769 crossref_primary_10_1016_j_ijhydene_2024_11_475 crossref_primary_10_1016_j_apcatb_2022_122294 crossref_primary_10_1021_acsaelm_4c00867 crossref_primary_10_1021_acs_nanolett_3c03796 crossref_primary_10_1016_j_fuproc_2023_107695 crossref_primary_10_1093_nsr_nwae314 crossref_primary_10_1016_j_checat_2023_100824 crossref_primary_10_1039_D4TA05822D crossref_primary_10_1021_acsami_4c22469 crossref_primary_10_1016_j_jcis_2023_06_066 crossref_primary_10_1039_D4CS00517A crossref_primary_10_1039_D4TA05062B crossref_primary_10_1021_jacs_3c13302 crossref_primary_10_1021_acs_chemrev_1c00971 crossref_primary_10_1016_j_apsusc_2022_156205 crossref_primary_10_1016_j_apcatb_2023_122684 crossref_primary_10_1088_2043_6262_ace432 crossref_primary_10_1021_acs_jpcc_3c00757 crossref_primary_10_1039_D2TA08442B crossref_primary_10_1021_acs_accounts_2c00727 crossref_primary_10_1002_cplu_202300514 crossref_primary_10_1021_acscatal_2c05453 crossref_primary_10_1093_nsr_nwae455 crossref_primary_10_1016_j_apcatb_2023_123668 crossref_primary_10_1039_D3EY00020F crossref_primary_10_1016_j_jcis_2024_02_144 crossref_primary_10_1016_j_jcat_2024_115923 crossref_primary_10_1021_acssuschemeng_4c06063 crossref_primary_10_1021_acscatal_3c02846 crossref_primary_10_1002_eem2_12703 crossref_primary_10_1039_D2CY00014H crossref_primary_10_1007_s44246_024_00113_4 crossref_primary_10_1039_D3CY01289A crossref_primary_10_1002_advs_202308040 crossref_primary_10_1016_j_jece_2024_113140 crossref_primary_10_1126_sciadv_adr4145 crossref_primary_10_1016_j_carbon_2023_118311 crossref_primary_10_1002_smll_202405759 crossref_primary_10_1002_anie_202202561 crossref_primary_10_1002_cctc_202401226 crossref_primary_10_1039_D2NR06184H crossref_primary_10_1016_j_ijhydene_2022_02_227 crossref_primary_10_1002_anie_202215631 crossref_primary_10_1021_acsami_5c01564 crossref_primary_10_1039_D3QI01131C crossref_primary_10_1002_cctc_202301613 crossref_primary_10_1007_s11426_021_1166_0 crossref_primary_10_1016_j_apcatb_2025_125020 crossref_primary_10_1016_j_jallcom_2025_178583 crossref_primary_10_1021_acscatal_3c04298 crossref_primary_10_1002_adma_202418504 crossref_primary_10_1002_ntls_20240033 crossref_primary_10_1021_acs_nanolett_4c01036 crossref_primary_10_1016_j_chemosphere_2022_137608 crossref_primary_10_1039_D4CP01406E crossref_primary_10_1039_D3RA08053F crossref_primary_10_1016_j_jcat_2024_115465 crossref_primary_10_1016_j_apcatb_2023_123647 crossref_primary_10_1002_aenm_202303893 crossref_primary_10_1016_j_coche_2023_100942 crossref_primary_10_1039_D2CC04485D crossref_primary_10_1016_j_apcatb_2022_122017 crossref_primary_10_1016_j_apcatb_2023_122672 crossref_primary_10_1021_acscatal_4c04157 crossref_primary_10_1002_adma_202307337 crossref_primary_10_3390_catal14030176 crossref_primary_10_1016_j_cej_2023_143348 crossref_primary_10_1016_j_jmst_2025_01_047 crossref_primary_10_1021_acscatal_2c06351 crossref_primary_10_1093_nsr_nwae272 crossref_primary_10_1016_j_jallcom_2024_173739 crossref_primary_10_1021_jacs_3c01834 crossref_primary_10_1016_j_surfin_2023_103827 crossref_primary_10_1039_D3EE00987D crossref_primary_10_1021_acscatal_4c06661 crossref_primary_10_1021_acscatal_4c05338 crossref_primary_10_1021_acscatal_3c05367 crossref_primary_10_1021_acs_jpcc_2c07874 crossref_primary_10_1002_ange_202419630 crossref_primary_10_1002_smll_202206052 crossref_primary_10_1039_D3CC00507K crossref_primary_10_1021_jacs_2c06288 crossref_primary_10_1002_anie_202416852 crossref_primary_10_1016_j_electacta_2024_145198 crossref_primary_10_1039_D3QI01276J crossref_primary_10_1002_chem_202401718 crossref_primary_10_1021_acs_nanolett_4c03478 crossref_primary_10_1016_j_cej_2024_152570 crossref_primary_10_1016_j_jcat_2025_115980 crossref_primary_10_1021_acscatal_4c05341 crossref_primary_10_1016_j_enchem_2024_100139 crossref_primary_10_1002_anie_202404766 crossref_primary_10_1021_jacs_3c05184 crossref_primary_10_1016_j_fuel_2023_127918 crossref_primary_10_1002_cctc_202300733 crossref_primary_10_1002_adfm_202302818 crossref_primary_10_1016_j_cej_2025_159350 crossref_primary_10_3390_catal15010036 crossref_primary_10_1002_ange_202310062 crossref_primary_10_1021_acs_chemrev_4c00553 crossref_primary_10_1002_anie_202319896 crossref_primary_10_1016_j_surfrep_2023_100597 crossref_primary_10_1002_qua_70036 crossref_primary_10_1021_acscatal_1c06015 crossref_primary_10_1021_acsenvironau_4c00063 crossref_primary_10_1038_s41929_023_01040_0 crossref_primary_10_1016_j_cej_2023_145612 crossref_primary_10_1016_j_ces_2025_121373 crossref_primary_10_1007_s11426_022_1356_3 crossref_primary_10_1016_j_ccr_2025_216445 crossref_primary_10_1360_SSC_2023_0078 crossref_primary_10_1360_SSC_2023_0199 crossref_primary_10_1016_j_esci_2024_100270 crossref_primary_10_1016_j_aei_2022_101593 crossref_primary_10_1021_jacs_4c00618 crossref_primary_10_1016_j_jallcom_2024_173514 crossref_primary_10_1039_D3CC00590A crossref_primary_10_1021_jacs_4c00630 crossref_primary_10_1016_j_apsusc_2023_156698 crossref_primary_10_1038_s41467_024_44705_5 crossref_primary_10_1021_jacs_3c00786 crossref_primary_10_1002_anie_202421277 crossref_primary_10_1039_D4TA03760J crossref_primary_10_1002_ange_202218282 crossref_primary_10_1039_D2CS00257D crossref_primary_10_1002_ange_202421860 crossref_primary_10_1002_cssc_202202186 crossref_primary_10_1021_acscatal_4c05372 crossref_primary_10_1016_j_jcat_2024_115779 crossref_primary_10_1002_adfm_202202141 crossref_primary_10_1021_acscatal_4c04049 crossref_primary_10_1002_adfm_202416605 crossref_primary_10_1038_s41467_023_42221_6 crossref_primary_10_1002_anie_202413788 crossref_primary_10_1002_anie_202414516 crossref_primary_10_1016_j_cej_2023_146804 crossref_primary_10_1021_acsnano_3c10451 crossref_primary_10_1002_adfm_202307002 crossref_primary_10_1038_s41467_024_47397_z crossref_primary_10_1002_anie_202212278 crossref_primary_10_1016_j_jcis_2024_10_006 crossref_primary_10_1021_acsnano_4c18155 crossref_primary_10_1002_aenm_202303352 crossref_primary_10_1016_j_cej_2025_161302 crossref_primary_10_1002_anie_202404968 crossref_primary_10_1039_D3TA04792J crossref_primary_10_1016_j_cjche_2024_03_011 crossref_primary_10_1021_acsami_4c05746 crossref_primary_10_1016_j_electacta_2024_145389 crossref_primary_10_1002_anie_202218630 crossref_primary_10_1021_acsami_4c19956 crossref_primary_10_1007_s10562_024_04683_1 crossref_primary_10_1002_ange_202407025 crossref_primary_10_1039_D4TA04816D crossref_primary_10_1016_S1872_2067_24_60013_6 crossref_primary_10_1016_j_jcat_2022_12_005 crossref_primary_10_1002_ange_202212278 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1021_acscatal_3c05527 crossref_primary_10_1016_j_cej_2023_145379 crossref_primary_10_1039_D4SC03284E crossref_primary_10_1002_ange_202421554 crossref_primary_10_1039_D4EE04660A crossref_primary_10_1021_acscatal_3c03366 crossref_primary_10_1016_j_ccr_2023_215437 crossref_primary_10_1016_j_mcat_2022_112888 crossref_primary_10_1002_smll_202405008 crossref_primary_10_1016_j_trechm_2022_07_007 crossref_primary_10_1002_cctc_202301681 crossref_primary_10_1002_adma_202412363 crossref_primary_10_1016_j_fuel_2024_131730 crossref_primary_10_1016_j_apcatb_2022_121202 crossref_primary_10_1002_ange_202305371 crossref_primary_10_1007_s40820_024_01337_0 crossref_primary_10_1016_j_apsusc_2024_159325 crossref_primary_10_1016_j_actamat_2024_120644 crossref_primary_10_1002_ange_202319896 crossref_primary_10_1021_acs_jpcc_3c01259 crossref_primary_10_1021_jacs_4c01524 crossref_primary_10_1002_inf2_12357 crossref_primary_10_1016_j_cej_2024_158725 crossref_primary_10_1002_adfm_202410941 crossref_primary_10_3390_catal13010187 crossref_primary_10_1002_anie_202305371 crossref_primary_10_1002_ange_202202561 crossref_primary_10_1016_S1872_5813_22_60065_3 crossref_primary_10_1002_anie_202414719 crossref_primary_10_1021_acs_nanolett_3c00827 crossref_primary_10_1002_ange_202215631 crossref_primary_10_1016_j_cej_2024_155204 crossref_primary_10_1038_s41467_024_47628_3 crossref_primary_10_1016_j_mcat_2024_114053 crossref_primary_10_1021_acs_jpcc_2c07247 crossref_primary_10_1016_j_seppur_2023_125864 crossref_primary_10_1039_D3TA05845J crossref_primary_10_1016_j_fuel_2024_131994 crossref_primary_10_1002_ange_202419103 crossref_primary_10_1016_j_nxnano_2024_100065 crossref_primary_10_1021_acssuschemeng_3c06096 crossref_primary_10_1007_s11426_023_1760_x crossref_primary_10_1021_acs_langmuir_2c00176 crossref_primary_10_1016_j_mtcomm_2023_106353 crossref_primary_10_1002_adma_202412670 crossref_primary_10_1002_ange_202305661 crossref_primary_10_1002_adfm_202313420 crossref_primary_10_1007_s12274_022_4903_4 crossref_primary_10_1016_j_enmf_2022_11_002 crossref_primary_10_1002_anie_202407025 crossref_primary_10_1002_anie_202412637 crossref_primary_10_1016_j_cattod_2022_08_020 crossref_primary_10_1002_ange_202414719 crossref_primary_10_1039_D3TA08021H crossref_primary_10_1016_j_jclepro_2024_141849 crossref_primary_10_1016_j_jechem_2024_07_035 crossref_primary_10_1016_j_xinn_2024_100659 crossref_primary_10_1016_j_xcrp_2024_102090 crossref_primary_10_3390_nano12203593 crossref_primary_10_1016_j_solidstatesciences_2023_107343 crossref_primary_10_1016_j_gce_2022_08_003 crossref_primary_10_1016_j_apsusc_2024_159642 crossref_primary_10_1002_anie_202421554 crossref_primary_10_1002_adma_202209876 crossref_primary_10_1016_j_pmatsci_2022_101042 crossref_primary_10_1002_smll_202408578 crossref_primary_10_1038_s41467_024_49981_9 crossref_primary_10_1126_science_adp6034 crossref_primary_10_1021_acscatal_4c08002 crossref_primary_10_54227_elab_20220021 crossref_primary_10_1016_j_jcis_2022_10_041 crossref_primary_10_1360_SSC_2023_0219 crossref_primary_10_1021_jacs_4c12220 crossref_primary_10_1016_j_apcatb_2022_121874 crossref_primary_10_1016_j_nanoen_2022_107440 crossref_primary_10_1002_aenm_202303987 crossref_primary_10_1016_j_jechem_2024_08_050 crossref_primary_10_1021_acscatal_3c02057 crossref_primary_10_1016_j_ensm_2024_103622 crossref_primary_10_1016_j_jmat_2024_100959 crossref_primary_10_1021_acscatal_1c05589 crossref_primary_10_1002_adma_202205262 crossref_primary_10_1039_D1QI01646F crossref_primary_10_1016_j_apcata_2024_119997 crossref_primary_10_1016_j_apmate_2025_100280 crossref_primary_10_1021_acsnano_3c09504 crossref_primary_10_1002_ange_202412637 crossref_primary_10_1002_smll_202207170 crossref_primary_10_3390_ma17010199 crossref_primary_10_1002_smll_202410407 crossref_primary_10_1007_s12598_024_03126_5 crossref_primary_10_1016_j_apcatb_2022_121625 crossref_primary_10_1021_acscatal_3c05673 crossref_primary_10_1002_adma_202419050 crossref_primary_10_1002_aic_17874 crossref_primary_10_1002_cctc_202301623 crossref_primary_10_1016_j_jallcom_2023_170240 crossref_primary_10_1021_acscatal_4c02517 crossref_primary_10_1021_jacs_4c02792 crossref_primary_10_1039_D2TA00709F crossref_primary_10_1002_adfm_202401814 crossref_primary_10_1002_tcr_202300216 crossref_primary_10_1016_j_coche_2022_100797 crossref_primary_10_1016_j_apsusc_2023_156825 crossref_primary_10_1002_anie_202419103 crossref_primary_10_1016_j_jallcom_2024_176313 crossref_primary_10_1016_j_mcat_2024_114668 crossref_primary_10_1021_acscatal_3c02552 crossref_primary_10_1002_adfm_202406259 crossref_primary_10_1016_j_jechem_2022_01_023 crossref_primary_10_1002_ange_202421277 crossref_primary_10_1021_acssensors_4c00663 crossref_primary_10_1016_j_jcis_2023_09_079 crossref_primary_10_1016_j_apcatb_2024_124559 crossref_primary_10_1002_ange_202414516 crossref_primary_10_1002_ange_202413788 crossref_primary_10_1126_sciadv_adh1330 crossref_primary_10_1002_cey2_528 crossref_primary_10_1021_acscatal_4c02979 crossref_primary_10_1002_anie_202305661 crossref_primary_10_1021_jacs_3c02487 crossref_primary_10_1002_adma_202409689 crossref_primary_10_3390_ijms241310487 crossref_primary_10_1021_acssensors_3c01659 crossref_primary_10_1002_smll_202407167 crossref_primary_10_1016_j_joule_2023_07_010 crossref_primary_10_1021_acs_jpcc_4c00770 crossref_primary_10_1002_aenm_202201395 crossref_primary_10_1016_j_cej_2023_142808 crossref_primary_10_1016_j_est_2024_115202 crossref_primary_10_1016_j_sctalk_2022_100019 crossref_primary_10_1002_ange_202218630 crossref_primary_10_1016_j_susc_2024_122581 crossref_primary_10_1021_acs_nanolett_2c01538 crossref_primary_10_1016_j_apcatb_2024_124586 crossref_primary_10_1016_j_jcis_2025_02_085 crossref_primary_10_1016_j_matre_2023_100198 crossref_primary_10_1021_acsanm_4c05994 crossref_primary_10_1021_acsenergylett_4c01946 crossref_primary_10_1016_j_cej_2022_137551 crossref_primary_10_1039_D3QI00799E crossref_primary_10_1021_acs_jpcc_2c07086 crossref_primary_10_1016_j_checat_2024_101067 crossref_primary_10_1016_j_cej_2022_138885 crossref_primary_10_1016_j_ijhydene_2023_09_259 crossref_primary_10_1021_acscatal_4c02874 crossref_primary_10_1021_acs_nanolett_3c02960 crossref_primary_10_1039_D4CC04342A crossref_primary_10_1016_j_apcatb_2024_124334 crossref_primary_10_1016_S1872_2067_22_64165_2 crossref_primary_10_1002_smll_202204611 crossref_primary_10_1002_smll_202408391 crossref_primary_10_1002_smll_202409240 crossref_primary_10_1016_j_apsusc_2022_153002 crossref_primary_10_1016_j_jre_2025_03_007 crossref_primary_10_1021_acscatal_4c02559 crossref_primary_10_1021_acsanm_3c03652 crossref_primary_10_1016_j_microc_2024_112000 crossref_primary_10_1016_j_comptc_2023_114225 crossref_primary_10_1063_1674_0068_cjcp2207111 crossref_primary_10_1002_adfm_202206163 crossref_primary_10_1002_anie_202218282 crossref_primary_10_1021_jacs_2c06785 crossref_primary_10_1016_j_mcat_2024_113898 crossref_primary_10_1039_D3TA06580D crossref_primary_10_1007_s11705_024_2434_0 crossref_primary_10_1002_anie_202421860 crossref_primary_10_1021_acscatal_2c04780 crossref_primary_10_1038_s41563_025_02134_9 crossref_primary_10_1007_s42765_022_00177_0 crossref_primary_10_1021_acs_inorgchem_3c01572 crossref_primary_10_1039_D2IM00063F crossref_primary_10_1038_s44160_025_00758_y crossref_primary_10_1002_adfm_202304303 crossref_primary_10_1016_j_seppur_2025_131639 crossref_primary_10_1016_j_jcis_2024_01_174 crossref_primary_10_1039_D4SC04001E crossref_primary_10_1002_ange_202416852 crossref_primary_10_1021_acs_chemrev_3c00081 crossref_primary_10_1002_adma_202305758 crossref_primary_10_1039_D3CC02529B crossref_primary_10_1016_j_mcat_2023_113485 crossref_primary_10_1021_acscatal_3c02560 crossref_primary_10_1038_s41467_024_52997_w crossref_primary_10_1021_acs_nanolett_4c03945 crossref_primary_10_1007_s40242_025_4259_x crossref_primary_10_1021_acs_jpcc_4c01300 crossref_primary_10_1126_science_adj1962 crossref_primary_10_1002_anie_202310062 crossref_primary_10_1021_acs_nanolett_3c03960 crossref_primary_10_1002_ange_202404968 crossref_primary_10_1016_j_apcatb_2024_124660 crossref_primary_10_1016_j_apcatb_2024_124787 crossref_primary_10_1016_j_mtnano_2022_100249 crossref_primary_10_1016_j_nanoen_2023_108895 crossref_primary_10_1039_D4TA08797F crossref_primary_10_1021_acs_inorgchem_2c02897 crossref_primary_10_1016_j_cej_2024_154030 crossref_primary_10_1016_j_cej_2024_157783 crossref_primary_10_1016_j_apsusc_2023_158081 crossref_primary_10_1002_celc_202400034 crossref_primary_10_1016_j_jcis_2022_06_052 crossref_primary_10_3390_catal14100671 crossref_primary_10_1021_acs_jpclett_5c00020 crossref_primary_10_1021_acsami_3c19119 crossref_primary_10_1016_j_fuel_2023_130600 crossref_primary_10_1002_smll_202308756 crossref_primary_10_2139_ssrn_4097874 |
Cites_doi | 10.1038/s41929-019-0364-x 10.1038/s41929-019-0303-x 10.1126/science.1188267 10.1038/s41929-020-0427-z 10.1088/0953-8984/22/2/022201 10.1021/acscatal.8b03199 10.1016/j.jechem.2018.03.023 10.1103/PhysRevLett.98.206103 10.1021/acs.chemrev.8b00582 10.1103/PhysRevLett.77.3865 10.1039/C7CS00650K 10.1016/S0926-860X(00)00842-5 10.1021/acsnano.6b07502 10.1126/science.aaf8800 10.1007/s11431-018-9407-3 10.1038/ncomms3481 10.1016/0927-0256(96)00008-0 10.1126/sciadv.1700231 10.1002/cctc.201300250 10.1063/1.1708962 10.1002/anie.201601823 10.1021/acs.chemrev.9b00417 10.1038/s41563-020-00805-3 10.1038/s41467-019-09662-4 10.1038/s41467-021-25116-2 10.1038/s41929-020-0446-9 10.1021/acs.jpcc.8b09303 10.1021/acscatal.7b03090 10.1063/1.5126187 10.1002/cnma.201800052 10.1039/C8NR06232C 10.1016/j.surfrep.2016.02.001 10.1021/acs.jpcc.0c02142 10.1021/acscentsci.0c00822 10.1021/jp209898q 10.1126/science.1075094 10.1021/ja3087054 10.1103/PhysRevB.75.035430 10.1016/j.susc.2012.01.022 10.1038/s41929-019-0328-1 10.1002/cctc.201800331 10.1021/acs.jpcc.9b06952 10.1021/nl4029973 10.1063/1.1329672 10.1103/PhysRevB.54.11169 10.1126/science.abe5757 10.1016/0001-6160(76)90034-1 10.1038/s41929-018-0098-1 10.1002/wcms.1415 10.1126/science.1191778 10.1021/la902263s |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abi9828 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1365 |
ExternalDocumentID | 34735220 10_1126_science_abi9828 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-4c569dedfe93d7bbf35ed6c4ffd569088754bf9d3a10ca39a5e0000546cc9e1e3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Tue Aug 05 09:59:53 EDT 2025 Fri Jul 25 19:25:36 EDT 2025 Thu Apr 03 06:53:20 EDT 2025 Tue Jul 01 02:24:08 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6573 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-4c569dedfe93d7bbf35ed6c4ffd569088754bf9d3a10ca39a5e0000546cc9e1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5350-9447 0000-0002-5043-3088 |
PMID | 34735220 |
PQID | 2638076994 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2594291952 proquest_journals_2638076994 pubmed_primary_34735220 crossref_primary_10_1126_science_abi9828 crossref_citationtrail_10_1126_science_abi9828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-10 2021-Dec-10 20211210 |
PublicationDateYYYYMMDD | 2021-12-10 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 Smoluchowski M. V. (e_1_3_2_36_2) 1916; 17 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_13_2 doi: 10.1038/s41929-019-0364-x – ident: e_1_3_2_29_2 doi: 10.1038/s41929-019-0303-x – volume: 17 start-page: 557 year: 1916 ident: e_1_3_2_36_2 article-title: Drei Vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen publication-title: Physik. Zeit. – ident: e_1_3_2_15_2 doi: 10.1126/science.1188267 – ident: e_1_3_2_18_2 doi: 10.1038/s41929-020-0427-z – ident: e_1_3_2_41_2 doi: 10.1088/0953-8984/22/2/022201 – ident: e_1_3_2_6_2 doi: 10.1021/acscatal.8b03199 – ident: e_1_3_2_35_2 doi: 10.1016/j.jechem.2018.03.023 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.98.206103 – ident: e_1_3_2_38_2 doi: 10.1021/acs.chemrev.8b00582 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_3_2 doi: 10.1039/C7CS00650K – ident: e_1_3_2_49_2 doi: 10.1016/S0926-860X(00)00842-5 – ident: e_1_3_2_22_2 doi: 10.1021/acsnano.6b07502 – ident: e_1_3_2_53_2 doi: 10.1126/science.aaf8800 – ident: e_1_3_2_20_2 doi: 10.1007/s11431-018-9407-3 – ident: e_1_3_2_51_2 doi: 10.1038/ncomms3481 – ident: e_1_3_2_43_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_2_30_2 – ident: e_1_3_2_12_2 doi: 10.1126/sciadv.1700231 – ident: e_1_3_2_27_2 doi: 10.1002/cctc.201300250 – ident: e_1_3_2_39_2 doi: 10.1063/1.1708962 – ident: e_1_3_2_52_2 doi: 10.1002/anie.201601823 – ident: e_1_3_2_5_2 doi: 10.1021/acs.chemrev.9b00417 – ident: e_1_3_2_4_2 doi: 10.1038/s41563-020-00805-3 – ident: e_1_3_2_10_2 doi: 10.1038/s41467-019-09662-4 – ident: e_1_3_2_21_2 doi: 10.1038/s41467-021-25116-2 – ident: e_1_3_2_14_2 doi: 10.1038/s41929-020-0446-9 – ident: e_1_3_2_9_2 doi: 10.1021/acs.jpcc.8b09303 – ident: e_1_3_2_24_2 doi: 10.1021/acscatal.7b03090 – ident: e_1_3_2_45_2 doi: 10.1063/1.5126187 – ident: e_1_3_2_19_2 doi: 10.1002/cnma.201800052 – ident: e_1_3_2_8_2 doi: 10.1039/C8NR06232C – ident: e_1_3_2_26_2 doi: 10.1016/j.surfrep.2016.02.001 – ident: e_1_3_2_47_2 doi: 10.1021/acs.jpcc.0c02142 – ident: e_1_3_2_2_2 doi: 10.1021/acscentsci.0c00822 – ident: e_1_3_2_50_2 doi: 10.1021/jp209898q – ident: e_1_3_2_46_2 doi: 10.1126/science.1075094 – ident: e_1_3_2_7_2 doi: 10.1021/ja3087054 – ident: e_1_3_2_31_2 doi: 10.1103/PhysRevB.75.035430 – ident: e_1_3_2_37_2 doi: 10.1016/j.susc.2012.01.022 – ident: e_1_3_2_54_2 doi: 10.1038/s41929-019-0328-1 – ident: e_1_3_2_34_2 doi: 10.1002/cctc.201800331 – ident: e_1_3_2_48_2 doi: 10.1021/acs.jpcc.9b06952 – ident: e_1_3_2_28_2 doi: 10.1021/nl4029973 – ident: e_1_3_2_42_2 doi: 10.1063/1.1329672 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_16_2 doi: 10.1126/science.abe5757 – ident: e_1_3_2_32_2 doi: 10.1016/0001-6160(76)90034-1 – ident: e_1_3_2_11_2 doi: 10.1038/s41929-018-0098-1 – ident: e_1_3_2_17_2 doi: 10.1002/wcms.1415 – ident: e_1_3_2_25_2 doi: 10.1126/science.1191778 – ident: e_1_3_2_33_2 doi: 10.1021/la902263s |
SSID | ssj0009593 |
Score | 2.7277157 |
Snippet | Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a... The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve... Rational design of stable nanocatalystsSintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1360 |
SubjectTerms | Catalysis Coalescence Coalescing Computer applications Deactivation Design Experimentation First principles Growth rate High-throughput screening Kinetics Metals Molecular dynamics Nanocatalysis Nanoparticles Neural networks Ostwald ripening Screening Simulation Sintering Volcanoes |
Title | Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34735220 https://www.proquest.com/docview/2638076994 https://www.proquest.com/docview/2594291952 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZy2CXsXYfzdoNDXboKA62vlId024lDLbLWpbLMLIkQyA4IbEP3XX_eJ8s2VNKA90uxtiSbPx-fnpP-r33EPpIdGoM4TqhUrCEMU0TWWqZCEu1UiSzYuyCk799F9Mb9nXGZ4PBn4i11NTFSP9-MK7kf6QK10CuLkr2HyTbDwoX4BzkC0eQMBwfJeMfqnBpUddnq27J3G-Xg0GdbJqVM63bfBDrUBDcUQpNS9lw7ZpFvVZgHLrYqbbPWaWqZbuec7vxCZ46s7XTAGCO9ls8kWB7ruLEMwo6gkHoFq02TBtPBVrYeU8FavkEP-08mTU2XoQgmSN0BDpqUKwhr7GfVrwuTV0ZSJLSWNlSX5MnoErwMY20Z0Z9bYEwEzsG3sNaPqpLaUeqmMvzEGG-lU_73jzXsw9bv4eIPAyQhwGeoH0CvgYoy_3JxeeLq525m0OGqCj2qnuHbeNmh8fSWi7XL9Dz4HLgicfPARrY6hA99UVIbw_RQZDSBp-GHOSfXqJfHbRwDy28LPEWtHAELQwIwB5arl0ELd8Hb0HrFbq5-nJ9OU1CJY5EU5nVCdNcSGNNaSU146IoKbdGaFaWBm64iYqzopSGqizVikrFbdp6A0JraTNLX6O9alnZI4QVHYNHYkBFFIxRaApf99yFg7NSZ5liQzTqPmGuQ5p6Vy1lke8Q2xCd9h1WPkPL7qYnnUzy8BtvciJczQUhJTz6Q38blKzbOVOVXTbQhkuw2zLJyRC98bLsn0Vd8W5C0rePf49j9OzvT3SC9up1Y9-BbVsX7wP27gCcu6uA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sabatier+principle+of+metal-support+interaction+for+design+of+ultrastable+metal+nanocatalysts&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hu%2C+Sulei&rft.au=Li%2C+Wei-Xue&rft.date=2021-12-10&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6573&rft.spage=1360&rft.epage=1365&rft_id=info:doi/10.1126%2Fscience.abi9828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abi9828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |