Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts

Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al . present kinetic theories for two competing sintering mechanisms, Ostwald ripening and pa...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 374; no. 6573; pp. 1360 - 1365
Main Authors Hu, Sulei, Li, Wei-Xue
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 10.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al . present kinetic theories for two competing sintering mechanisms, Ostwald ripening and particle migration, which relate the rates of both processes to fundamental interaction energies in metal nanoparticle-support combinations. Using kinetic simulations for hundreds of such pairs, the authors show a universal volcano dependence of the sintering kinetics on the metal-support binding energy that can serve as a single descriptor to predict nanoparticle growth rates. The revealed scaling relations are a good start in the development of high-throughput screening computational approaches to drive discovery of sintering-resistant nanocatalysts. —YS Scaling relations enable the high-throughput screening of supports to boost the stability of nanocatalysts against sintering. The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.
AbstractList The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.
The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.
Rational design of stable nanocatalystsSintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al. present kinetic theories for two competing sintering mechanisms, Ostwald ripening and particle migration, which relate the rates of both processes to fundamental interaction energies in metal nanoparticle-support combinations. Using kinetic simulations for hundreds of such pairs, the authors show a universal volcano dependence of the sintering kinetics on the metal-support binding energy that can serve as a single descriptor to predict nanoparticle growth rates. The revealed scaling relations are a good start in the development of high-throughput screening computational approaches to drive discovery of sintering-resistant nanocatalysts. —YSThe stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.
Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a grand challenge in heterogenous catalysis. Hu et al . present kinetic theories for two competing sintering mechanisms, Ostwald ripening and particle migration, which relate the rates of both processes to fundamental interaction energies in metal nanoparticle-support combinations. Using kinetic simulations for hundreds of such pairs, the authors show a universal volcano dependence of the sintering kinetics on the metal-support binding energy that can serve as a single descriptor to predict nanoparticle growth rates. The revealed scaling relations are a good start in the development of high-throughput screening computational approaches to drive discovery of sintering-resistant nanocatalysts. —YS Scaling relations enable the high-throughput screening of supports to boost the stability of nanocatalysts against sintering. The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.
Author Hu, Sulei
Li, Wei-Xue
Author_xml – sequence: 1
  givenname: Sulei
  orcidid: 0000-0002-5350-9447
  surname: Hu
  fullname: Hu, Sulei
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Wei-Xue
  orcidid: 0000-0002-5043-3088
  surname: Li
  fullname: Li, Wei-Xue
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34735220$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtPwzAURi1URB8ws6FILCyhfsRpPKKKl1SJARhR5DjXyFVqB9sZ-u9xaWGoxGRL93yW7_mmaGSdBYQuCb4lhJbzoAxYBbeyMaKi1QmaECx4LihmIzTBmJV5hRd8jKYhrDFOM8HO0JgVC8YpxRP08SobGQ34rPfGKtN3kDmdbSDKLg9D3zsfM2MjeKmicTbTzmctBPNpd9zQRS9DlE2K_WQyK61TMt22IYZzdKplF-DicM7Q-8P92_IpX708Pi_vVrligsS8ULwULbQaBGsXTaMZh7ZUhdZtGuCqWvCi0aJlkmAlmZAc0i6YF6VSAgiwGbrZv9t79zVAiPXGBAVdJy24IdSUi4IKIjhN6PURunaDt-l3NS1ZklUKUSTq6kANzQbaOsnZSL-tf8UlYL4HlHcheNB_CMH1rpr6UE19qCYl-FFCmSh3TpNC0_2b-waqqJe3
CitedBy_id crossref_primary_10_1038_s41560_022_01098_3
crossref_primary_10_1002_slct_202404724
crossref_primary_10_1039_D3QM00586K
crossref_primary_10_1038_s41467_024_50629_x
crossref_primary_10_1039_D4NJ04418E
crossref_primary_10_1021_acs_jpclett_3c00669
crossref_primary_10_1039_D4TA01240B
crossref_primary_10_1016_j_jcat_2023_115110
crossref_primary_10_1039_D3NH00140G
crossref_primary_10_1016_j_apsusc_2025_162321
crossref_primary_10_1007_s12274_022_4713_8
crossref_primary_10_1016_j_jcat_2024_115638
crossref_primary_10_1016_j_apcatb_2024_124720
crossref_primary_10_1039_D4TA02693D
crossref_primary_10_1007_s10562_023_04486_w
crossref_primary_10_1021_acscatal_4c05879
crossref_primary_10_1002_smll_202409155
crossref_primary_10_1063_5_0207891
crossref_primary_10_1002_adfm_202412895
crossref_primary_10_1038_s43246_025_00735_0
crossref_primary_10_1002_anie_202419630
crossref_primary_10_1016_j_apcatb_2023_123120
crossref_primary_10_1021_acsnano_4c14279
crossref_primary_10_1016_j_carbon_2024_119669
crossref_primary_10_1002_anie_202414149
crossref_primary_10_1039_D3CY00060E
crossref_primary_10_1021_acssuschemeng_4c10346
crossref_primary_10_1016_j_jcis_2024_01_169
crossref_primary_10_1039_D3GC05118H
crossref_primary_10_1002_aenm_202203963
crossref_primary_10_1039_D2CY01895K
crossref_primary_10_1016_j_jre_2024_03_024
crossref_primary_10_1021_acs_iecr_3c02877
crossref_primary_10_1016_j_est_2024_113545
crossref_primary_10_3390_catal14010048
crossref_primary_10_1063_5_0137101
crossref_primary_10_1016_j_checat_2024_101231
crossref_primary_10_1002_ange_202303503
crossref_primary_10_1016_j_fuel_2023_127409
crossref_primary_10_1021_acsnano_3c09159
crossref_primary_10_1002_ange_202404766
crossref_primary_10_1016_j_jcis_2025_02_014
crossref_primary_10_1016_j_jcis_2023_07_076
crossref_primary_10_1021_jacs_4c18645
crossref_primary_10_1002_cphc_202400521
crossref_primary_10_1016_j_cclet_2024_110137
crossref_primary_10_1002_ange_202300110
crossref_primary_10_1021_acscatal_3c00611
crossref_primary_10_1007_s12274_022_4373_8
crossref_primary_10_1016_j_cej_2023_142527
crossref_primary_10_1021_acs_iecr_4c03386
crossref_primary_10_1021_acs_jpcc_4c03420
crossref_primary_10_1016_j_seppur_2025_132109
crossref_primary_10_1002_anie_202303503
crossref_primary_10_1016_j_nanoen_2024_109975
crossref_primary_10_1002_anie_202300110
crossref_primary_10_1016_j_apcatb_2024_123762
crossref_primary_10_1016_j_nanoen_2023_108353
crossref_primary_10_1021_acscatal_4c07729
crossref_primary_10_1016_j_cej_2024_150896
crossref_primary_10_1016_j_apsusc_2024_160299
crossref_primary_10_1021_acs_jpcc_4c01128
crossref_primary_10_1039_D4CS00527A
crossref_primary_10_1016_j_jcis_2024_01_108
crossref_primary_10_1038_s44160_024_00585_7
crossref_primary_10_1021_acs_jpcc_4c04874
crossref_primary_10_1002_smll_202300547
crossref_primary_10_1038_s41467_024_52698_4
crossref_primary_10_3390_nano14110921
crossref_primary_10_1002_ange_202414149
crossref_primary_10_1016_j_cej_2023_147086
crossref_primary_10_1016_j_jmrt_2024_11_137
crossref_primary_10_1021_acscatal_3c04811
crossref_primary_10_1038_s41524_022_00959_5
crossref_primary_10_1016_j_mcat_2023_113672
crossref_primary_10_1007_s11051_024_06053_9
crossref_primary_10_1021_acs_iecr_4c01029
crossref_primary_10_1039_D2CY01214F
crossref_primary_10_1002_asia_202200319
crossref_primary_10_1021_acsnano_4c09637
crossref_primary_10_1016_j_apcata_2022_118769
crossref_primary_10_1016_j_ijhydene_2024_11_475
crossref_primary_10_1016_j_apcatb_2022_122294
crossref_primary_10_1021_acsaelm_4c00867
crossref_primary_10_1021_acs_nanolett_3c03796
crossref_primary_10_1016_j_fuproc_2023_107695
crossref_primary_10_1093_nsr_nwae314
crossref_primary_10_1016_j_checat_2023_100824
crossref_primary_10_1039_D4TA05822D
crossref_primary_10_1021_acsami_4c22469
crossref_primary_10_1016_j_jcis_2023_06_066
crossref_primary_10_1039_D4CS00517A
crossref_primary_10_1039_D4TA05062B
crossref_primary_10_1021_jacs_3c13302
crossref_primary_10_1021_acs_chemrev_1c00971
crossref_primary_10_1016_j_apsusc_2022_156205
crossref_primary_10_1016_j_apcatb_2023_122684
crossref_primary_10_1088_2043_6262_ace432
crossref_primary_10_1021_acs_jpcc_3c00757
crossref_primary_10_1039_D2TA08442B
crossref_primary_10_1021_acs_accounts_2c00727
crossref_primary_10_1002_cplu_202300514
crossref_primary_10_1021_acscatal_2c05453
crossref_primary_10_1093_nsr_nwae455
crossref_primary_10_1016_j_apcatb_2023_123668
crossref_primary_10_1039_D3EY00020F
crossref_primary_10_1016_j_jcis_2024_02_144
crossref_primary_10_1016_j_jcat_2024_115923
crossref_primary_10_1021_acssuschemeng_4c06063
crossref_primary_10_1021_acscatal_3c02846
crossref_primary_10_1002_eem2_12703
crossref_primary_10_1039_D2CY00014H
crossref_primary_10_1007_s44246_024_00113_4
crossref_primary_10_1039_D3CY01289A
crossref_primary_10_1002_advs_202308040
crossref_primary_10_1016_j_jece_2024_113140
crossref_primary_10_1126_sciadv_adr4145
crossref_primary_10_1016_j_carbon_2023_118311
crossref_primary_10_1002_smll_202405759
crossref_primary_10_1002_anie_202202561
crossref_primary_10_1002_cctc_202401226
crossref_primary_10_1039_D2NR06184H
crossref_primary_10_1016_j_ijhydene_2022_02_227
crossref_primary_10_1002_anie_202215631
crossref_primary_10_1021_acsami_5c01564
crossref_primary_10_1039_D3QI01131C
crossref_primary_10_1002_cctc_202301613
crossref_primary_10_1007_s11426_021_1166_0
crossref_primary_10_1016_j_apcatb_2025_125020
crossref_primary_10_1016_j_jallcom_2025_178583
crossref_primary_10_1021_acscatal_3c04298
crossref_primary_10_1002_adma_202418504
crossref_primary_10_1002_ntls_20240033
crossref_primary_10_1021_acs_nanolett_4c01036
crossref_primary_10_1016_j_chemosphere_2022_137608
crossref_primary_10_1039_D4CP01406E
crossref_primary_10_1039_D3RA08053F
crossref_primary_10_1016_j_jcat_2024_115465
crossref_primary_10_1016_j_apcatb_2023_123647
crossref_primary_10_1002_aenm_202303893
crossref_primary_10_1016_j_coche_2023_100942
crossref_primary_10_1039_D2CC04485D
crossref_primary_10_1016_j_apcatb_2022_122017
crossref_primary_10_1016_j_apcatb_2023_122672
crossref_primary_10_1021_acscatal_4c04157
crossref_primary_10_1002_adma_202307337
crossref_primary_10_3390_catal14030176
crossref_primary_10_1016_j_cej_2023_143348
crossref_primary_10_1016_j_jmst_2025_01_047
crossref_primary_10_1021_acscatal_2c06351
crossref_primary_10_1093_nsr_nwae272
crossref_primary_10_1016_j_jallcom_2024_173739
crossref_primary_10_1021_jacs_3c01834
crossref_primary_10_1016_j_surfin_2023_103827
crossref_primary_10_1039_D3EE00987D
crossref_primary_10_1021_acscatal_4c06661
crossref_primary_10_1021_acscatal_4c05338
crossref_primary_10_1021_acscatal_3c05367
crossref_primary_10_1021_acs_jpcc_2c07874
crossref_primary_10_1002_ange_202419630
crossref_primary_10_1002_smll_202206052
crossref_primary_10_1039_D3CC00507K
crossref_primary_10_1021_jacs_2c06288
crossref_primary_10_1002_anie_202416852
crossref_primary_10_1016_j_electacta_2024_145198
crossref_primary_10_1039_D3QI01276J
crossref_primary_10_1002_chem_202401718
crossref_primary_10_1021_acs_nanolett_4c03478
crossref_primary_10_1016_j_cej_2024_152570
crossref_primary_10_1016_j_jcat_2025_115980
crossref_primary_10_1021_acscatal_4c05341
crossref_primary_10_1016_j_enchem_2024_100139
crossref_primary_10_1002_anie_202404766
crossref_primary_10_1021_jacs_3c05184
crossref_primary_10_1016_j_fuel_2023_127918
crossref_primary_10_1002_cctc_202300733
crossref_primary_10_1002_adfm_202302818
crossref_primary_10_1016_j_cej_2025_159350
crossref_primary_10_3390_catal15010036
crossref_primary_10_1002_ange_202310062
crossref_primary_10_1021_acs_chemrev_4c00553
crossref_primary_10_1002_anie_202319896
crossref_primary_10_1016_j_surfrep_2023_100597
crossref_primary_10_1002_qua_70036
crossref_primary_10_1021_acscatal_1c06015
crossref_primary_10_1021_acsenvironau_4c00063
crossref_primary_10_1038_s41929_023_01040_0
crossref_primary_10_1016_j_cej_2023_145612
crossref_primary_10_1016_j_ces_2025_121373
crossref_primary_10_1007_s11426_022_1356_3
crossref_primary_10_1016_j_ccr_2025_216445
crossref_primary_10_1360_SSC_2023_0078
crossref_primary_10_1360_SSC_2023_0199
crossref_primary_10_1016_j_esci_2024_100270
crossref_primary_10_1016_j_aei_2022_101593
crossref_primary_10_1021_jacs_4c00618
crossref_primary_10_1016_j_jallcom_2024_173514
crossref_primary_10_1039_D3CC00590A
crossref_primary_10_1021_jacs_4c00630
crossref_primary_10_1016_j_apsusc_2023_156698
crossref_primary_10_1038_s41467_024_44705_5
crossref_primary_10_1021_jacs_3c00786
crossref_primary_10_1002_anie_202421277
crossref_primary_10_1039_D4TA03760J
crossref_primary_10_1002_ange_202218282
crossref_primary_10_1039_D2CS00257D
crossref_primary_10_1002_ange_202421860
crossref_primary_10_1002_cssc_202202186
crossref_primary_10_1021_acscatal_4c05372
crossref_primary_10_1016_j_jcat_2024_115779
crossref_primary_10_1002_adfm_202202141
crossref_primary_10_1021_acscatal_4c04049
crossref_primary_10_1002_adfm_202416605
crossref_primary_10_1038_s41467_023_42221_6
crossref_primary_10_1002_anie_202413788
crossref_primary_10_1002_anie_202414516
crossref_primary_10_1016_j_cej_2023_146804
crossref_primary_10_1021_acsnano_3c10451
crossref_primary_10_1002_adfm_202307002
crossref_primary_10_1038_s41467_024_47397_z
crossref_primary_10_1002_anie_202212278
crossref_primary_10_1016_j_jcis_2024_10_006
crossref_primary_10_1021_acsnano_4c18155
crossref_primary_10_1002_aenm_202303352
crossref_primary_10_1016_j_cej_2025_161302
crossref_primary_10_1002_anie_202404968
crossref_primary_10_1039_D3TA04792J
crossref_primary_10_1016_j_cjche_2024_03_011
crossref_primary_10_1021_acsami_4c05746
crossref_primary_10_1016_j_electacta_2024_145389
crossref_primary_10_1002_anie_202218630
crossref_primary_10_1021_acsami_4c19956
crossref_primary_10_1007_s10562_024_04683_1
crossref_primary_10_1002_ange_202407025
crossref_primary_10_1039_D4TA04816D
crossref_primary_10_1016_S1872_2067_24_60013_6
crossref_primary_10_1016_j_jcat_2022_12_005
crossref_primary_10_1002_ange_202212278
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1021_acscatal_3c05527
crossref_primary_10_1016_j_cej_2023_145379
crossref_primary_10_1039_D4SC03284E
crossref_primary_10_1002_ange_202421554
crossref_primary_10_1039_D4EE04660A
crossref_primary_10_1021_acscatal_3c03366
crossref_primary_10_1016_j_ccr_2023_215437
crossref_primary_10_1016_j_mcat_2022_112888
crossref_primary_10_1002_smll_202405008
crossref_primary_10_1016_j_trechm_2022_07_007
crossref_primary_10_1002_cctc_202301681
crossref_primary_10_1002_adma_202412363
crossref_primary_10_1016_j_fuel_2024_131730
crossref_primary_10_1016_j_apcatb_2022_121202
crossref_primary_10_1002_ange_202305371
crossref_primary_10_1007_s40820_024_01337_0
crossref_primary_10_1016_j_apsusc_2024_159325
crossref_primary_10_1016_j_actamat_2024_120644
crossref_primary_10_1002_ange_202319896
crossref_primary_10_1021_acs_jpcc_3c01259
crossref_primary_10_1021_jacs_4c01524
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1016_j_cej_2024_158725
crossref_primary_10_1002_adfm_202410941
crossref_primary_10_3390_catal13010187
crossref_primary_10_1002_anie_202305371
crossref_primary_10_1002_ange_202202561
crossref_primary_10_1016_S1872_5813_22_60065_3
crossref_primary_10_1002_anie_202414719
crossref_primary_10_1021_acs_nanolett_3c00827
crossref_primary_10_1002_ange_202215631
crossref_primary_10_1016_j_cej_2024_155204
crossref_primary_10_1038_s41467_024_47628_3
crossref_primary_10_1016_j_mcat_2024_114053
crossref_primary_10_1021_acs_jpcc_2c07247
crossref_primary_10_1016_j_seppur_2023_125864
crossref_primary_10_1039_D3TA05845J
crossref_primary_10_1016_j_fuel_2024_131994
crossref_primary_10_1002_ange_202419103
crossref_primary_10_1016_j_nxnano_2024_100065
crossref_primary_10_1021_acssuschemeng_3c06096
crossref_primary_10_1007_s11426_023_1760_x
crossref_primary_10_1021_acs_langmuir_2c00176
crossref_primary_10_1016_j_mtcomm_2023_106353
crossref_primary_10_1002_adma_202412670
crossref_primary_10_1002_ange_202305661
crossref_primary_10_1002_adfm_202313420
crossref_primary_10_1007_s12274_022_4903_4
crossref_primary_10_1016_j_enmf_2022_11_002
crossref_primary_10_1002_anie_202407025
crossref_primary_10_1002_anie_202412637
crossref_primary_10_1016_j_cattod_2022_08_020
crossref_primary_10_1002_ange_202414719
crossref_primary_10_1039_D3TA08021H
crossref_primary_10_1016_j_jclepro_2024_141849
crossref_primary_10_1016_j_jechem_2024_07_035
crossref_primary_10_1016_j_xinn_2024_100659
crossref_primary_10_1016_j_xcrp_2024_102090
crossref_primary_10_3390_nano12203593
crossref_primary_10_1016_j_solidstatesciences_2023_107343
crossref_primary_10_1016_j_gce_2022_08_003
crossref_primary_10_1016_j_apsusc_2024_159642
crossref_primary_10_1002_anie_202421554
crossref_primary_10_1002_adma_202209876
crossref_primary_10_1016_j_pmatsci_2022_101042
crossref_primary_10_1002_smll_202408578
crossref_primary_10_1038_s41467_024_49981_9
crossref_primary_10_1126_science_adp6034
crossref_primary_10_1021_acscatal_4c08002
crossref_primary_10_54227_elab_20220021
crossref_primary_10_1016_j_jcis_2022_10_041
crossref_primary_10_1360_SSC_2023_0219
crossref_primary_10_1021_jacs_4c12220
crossref_primary_10_1016_j_apcatb_2022_121874
crossref_primary_10_1016_j_nanoen_2022_107440
crossref_primary_10_1002_aenm_202303987
crossref_primary_10_1016_j_jechem_2024_08_050
crossref_primary_10_1021_acscatal_3c02057
crossref_primary_10_1016_j_ensm_2024_103622
crossref_primary_10_1016_j_jmat_2024_100959
crossref_primary_10_1021_acscatal_1c05589
crossref_primary_10_1002_adma_202205262
crossref_primary_10_1039_D1QI01646F
crossref_primary_10_1016_j_apcata_2024_119997
crossref_primary_10_1016_j_apmate_2025_100280
crossref_primary_10_1021_acsnano_3c09504
crossref_primary_10_1002_ange_202412637
crossref_primary_10_1002_smll_202207170
crossref_primary_10_3390_ma17010199
crossref_primary_10_1002_smll_202410407
crossref_primary_10_1007_s12598_024_03126_5
crossref_primary_10_1016_j_apcatb_2022_121625
crossref_primary_10_1021_acscatal_3c05673
crossref_primary_10_1002_adma_202419050
crossref_primary_10_1002_aic_17874
crossref_primary_10_1002_cctc_202301623
crossref_primary_10_1016_j_jallcom_2023_170240
crossref_primary_10_1021_acscatal_4c02517
crossref_primary_10_1021_jacs_4c02792
crossref_primary_10_1039_D2TA00709F
crossref_primary_10_1002_adfm_202401814
crossref_primary_10_1002_tcr_202300216
crossref_primary_10_1016_j_coche_2022_100797
crossref_primary_10_1016_j_apsusc_2023_156825
crossref_primary_10_1002_anie_202419103
crossref_primary_10_1016_j_jallcom_2024_176313
crossref_primary_10_1016_j_mcat_2024_114668
crossref_primary_10_1021_acscatal_3c02552
crossref_primary_10_1002_adfm_202406259
crossref_primary_10_1016_j_jechem_2022_01_023
crossref_primary_10_1002_ange_202421277
crossref_primary_10_1021_acssensors_4c00663
crossref_primary_10_1016_j_jcis_2023_09_079
crossref_primary_10_1016_j_apcatb_2024_124559
crossref_primary_10_1002_ange_202414516
crossref_primary_10_1002_ange_202413788
crossref_primary_10_1126_sciadv_adh1330
crossref_primary_10_1002_cey2_528
crossref_primary_10_1021_acscatal_4c02979
crossref_primary_10_1002_anie_202305661
crossref_primary_10_1021_jacs_3c02487
crossref_primary_10_1002_adma_202409689
crossref_primary_10_3390_ijms241310487
crossref_primary_10_1021_acssensors_3c01659
crossref_primary_10_1002_smll_202407167
crossref_primary_10_1016_j_joule_2023_07_010
crossref_primary_10_1021_acs_jpcc_4c00770
crossref_primary_10_1002_aenm_202201395
crossref_primary_10_1016_j_cej_2023_142808
crossref_primary_10_1016_j_est_2024_115202
crossref_primary_10_1016_j_sctalk_2022_100019
crossref_primary_10_1002_ange_202218630
crossref_primary_10_1016_j_susc_2024_122581
crossref_primary_10_1021_acs_nanolett_2c01538
crossref_primary_10_1016_j_apcatb_2024_124586
crossref_primary_10_1016_j_jcis_2025_02_085
crossref_primary_10_1016_j_matre_2023_100198
crossref_primary_10_1021_acsanm_4c05994
crossref_primary_10_1021_acsenergylett_4c01946
crossref_primary_10_1016_j_cej_2022_137551
crossref_primary_10_1039_D3QI00799E
crossref_primary_10_1021_acs_jpcc_2c07086
crossref_primary_10_1016_j_checat_2024_101067
crossref_primary_10_1016_j_cej_2022_138885
crossref_primary_10_1016_j_ijhydene_2023_09_259
crossref_primary_10_1021_acscatal_4c02874
crossref_primary_10_1021_acs_nanolett_3c02960
crossref_primary_10_1039_D4CC04342A
crossref_primary_10_1016_j_apcatb_2024_124334
crossref_primary_10_1016_S1872_2067_22_64165_2
crossref_primary_10_1002_smll_202204611
crossref_primary_10_1002_smll_202408391
crossref_primary_10_1002_smll_202409240
crossref_primary_10_1016_j_apsusc_2022_153002
crossref_primary_10_1016_j_jre_2025_03_007
crossref_primary_10_1021_acscatal_4c02559
crossref_primary_10_1021_acsanm_3c03652
crossref_primary_10_1016_j_microc_2024_112000
crossref_primary_10_1016_j_comptc_2023_114225
crossref_primary_10_1063_1674_0068_cjcp2207111
crossref_primary_10_1002_adfm_202206163
crossref_primary_10_1002_anie_202218282
crossref_primary_10_1021_jacs_2c06785
crossref_primary_10_1016_j_mcat_2024_113898
crossref_primary_10_1039_D3TA06580D
crossref_primary_10_1007_s11705_024_2434_0
crossref_primary_10_1002_anie_202421860
crossref_primary_10_1021_acscatal_2c04780
crossref_primary_10_1038_s41563_025_02134_9
crossref_primary_10_1007_s42765_022_00177_0
crossref_primary_10_1021_acs_inorgchem_3c01572
crossref_primary_10_1039_D2IM00063F
crossref_primary_10_1038_s44160_025_00758_y
crossref_primary_10_1002_adfm_202304303
crossref_primary_10_1016_j_seppur_2025_131639
crossref_primary_10_1016_j_jcis_2024_01_174
crossref_primary_10_1039_D4SC04001E
crossref_primary_10_1002_ange_202416852
crossref_primary_10_1021_acs_chemrev_3c00081
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1039_D3CC02529B
crossref_primary_10_1016_j_mcat_2023_113485
crossref_primary_10_1021_acscatal_3c02560
crossref_primary_10_1038_s41467_024_52997_w
crossref_primary_10_1021_acs_nanolett_4c03945
crossref_primary_10_1007_s40242_025_4259_x
crossref_primary_10_1021_acs_jpcc_4c01300
crossref_primary_10_1126_science_adj1962
crossref_primary_10_1002_anie_202310062
crossref_primary_10_1021_acs_nanolett_3c03960
crossref_primary_10_1002_ange_202404968
crossref_primary_10_1016_j_apcatb_2024_124660
crossref_primary_10_1016_j_apcatb_2024_124787
crossref_primary_10_1016_j_mtnano_2022_100249
crossref_primary_10_1016_j_nanoen_2023_108895
crossref_primary_10_1039_D4TA08797F
crossref_primary_10_1021_acs_inorgchem_2c02897
crossref_primary_10_1016_j_cej_2024_154030
crossref_primary_10_1016_j_cej_2024_157783
crossref_primary_10_1016_j_apsusc_2023_158081
crossref_primary_10_1002_celc_202400034
crossref_primary_10_1016_j_jcis_2022_06_052
crossref_primary_10_3390_catal14100671
crossref_primary_10_1021_acs_jpclett_5c00020
crossref_primary_10_1021_acsami_3c19119
crossref_primary_10_1016_j_fuel_2023_130600
crossref_primary_10_1002_smll_202308756
crossref_primary_10_2139_ssrn_4097874
Cites_doi 10.1038/s41929-019-0364-x
10.1038/s41929-019-0303-x
10.1126/science.1188267
10.1038/s41929-020-0427-z
10.1088/0953-8984/22/2/022201
10.1021/acscatal.8b03199
10.1016/j.jechem.2018.03.023
10.1103/PhysRevLett.98.206103
10.1021/acs.chemrev.8b00582
10.1103/PhysRevLett.77.3865
10.1039/C7CS00650K
10.1016/S0926-860X(00)00842-5
10.1021/acsnano.6b07502
10.1126/science.aaf8800
10.1007/s11431-018-9407-3
10.1038/ncomms3481
10.1016/0927-0256(96)00008-0
10.1126/sciadv.1700231
10.1002/cctc.201300250
10.1063/1.1708962
10.1002/anie.201601823
10.1021/acs.chemrev.9b00417
10.1038/s41563-020-00805-3
10.1038/s41467-019-09662-4
10.1038/s41467-021-25116-2
10.1038/s41929-020-0446-9
10.1021/acs.jpcc.8b09303
10.1021/acscatal.7b03090
10.1063/1.5126187
10.1002/cnma.201800052
10.1039/C8NR06232C
10.1016/j.surfrep.2016.02.001
10.1021/acs.jpcc.0c02142
10.1021/acscentsci.0c00822
10.1021/jp209898q
10.1126/science.1075094
10.1021/ja3087054
10.1103/PhysRevB.75.035430
10.1016/j.susc.2012.01.022
10.1038/s41929-019-0328-1
10.1002/cctc.201800331
10.1021/acs.jpcc.9b06952
10.1021/nl4029973
10.1063/1.1329672
10.1103/PhysRevB.54.11169
10.1126/science.abe5757
10.1016/0001-6160(76)90034-1
10.1038/s41929-018-0098-1
10.1002/wcms.1415
10.1126/science.1191778
10.1021/la902263s
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abi9828
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1365
ExternalDocumentID 34735220
10_1126_science_abi9828
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-4c569dedfe93d7bbf35ed6c4ffd569088754bf9d3a10ca39a5e0000546cc9e1e3
ISSN 0036-8075
1095-9203
IngestDate Tue Aug 05 09:59:53 EDT 2025
Fri Jul 25 19:25:36 EDT 2025
Thu Apr 03 06:53:20 EDT 2025
Tue Jul 01 02:24:08 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6573
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-4c569dedfe93d7bbf35ed6c4ffd569088754bf9d3a10ca39a5e0000546cc9e1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5350-9447
0000-0002-5043-3088
PMID 34735220
PQID 2638076994
PQPubID 1256
PageCount 6
ParticipantIDs proquest_miscellaneous_2594291952
proquest_journals_2638076994
pubmed_primary_34735220
crossref_primary_10_1126_science_abi9828
crossref_citationtrail_10_1126_science_abi9828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-10
2021-Dec-10
20211210
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
Smoluchowski M. V. (e_1_3_2_36_2) 1916; 17
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_13_2
  doi: 10.1038/s41929-019-0364-x
– ident: e_1_3_2_29_2
  doi: 10.1038/s41929-019-0303-x
– volume: 17
  start-page: 557
  year: 1916
  ident: e_1_3_2_36_2
  article-title: Drei Vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen
  publication-title: Physik. Zeit.
– ident: e_1_3_2_15_2
  doi: 10.1126/science.1188267
– ident: e_1_3_2_18_2
  doi: 10.1038/s41929-020-0427-z
– ident: e_1_3_2_41_2
  doi: 10.1088/0953-8984/22/2/022201
– ident: e_1_3_2_6_2
  doi: 10.1021/acscatal.8b03199
– ident: e_1_3_2_35_2
  doi: 10.1016/j.jechem.2018.03.023
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.98.206103
– ident: e_1_3_2_38_2
  doi: 10.1021/acs.chemrev.8b00582
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_3_2
  doi: 10.1039/C7CS00650K
– ident: e_1_3_2_49_2
  doi: 10.1016/S0926-860X(00)00842-5
– ident: e_1_3_2_22_2
  doi: 10.1021/acsnano.6b07502
– ident: e_1_3_2_53_2
  doi: 10.1126/science.aaf8800
– ident: e_1_3_2_20_2
  doi: 10.1007/s11431-018-9407-3
– ident: e_1_3_2_51_2
  doi: 10.1038/ncomms3481
– ident: e_1_3_2_43_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_3_2_30_2
– ident: e_1_3_2_12_2
  doi: 10.1126/sciadv.1700231
– ident: e_1_3_2_27_2
  doi: 10.1002/cctc.201300250
– ident: e_1_3_2_39_2
  doi: 10.1063/1.1708962
– ident: e_1_3_2_52_2
  doi: 10.1002/anie.201601823
– ident: e_1_3_2_5_2
  doi: 10.1021/acs.chemrev.9b00417
– ident: e_1_3_2_4_2
  doi: 10.1038/s41563-020-00805-3
– ident: e_1_3_2_10_2
  doi: 10.1038/s41467-019-09662-4
– ident: e_1_3_2_21_2
  doi: 10.1038/s41467-021-25116-2
– ident: e_1_3_2_14_2
  doi: 10.1038/s41929-020-0446-9
– ident: e_1_3_2_9_2
  doi: 10.1021/acs.jpcc.8b09303
– ident: e_1_3_2_24_2
  doi: 10.1021/acscatal.7b03090
– ident: e_1_3_2_45_2
  doi: 10.1063/1.5126187
– ident: e_1_3_2_19_2
  doi: 10.1002/cnma.201800052
– ident: e_1_3_2_8_2
  doi: 10.1039/C8NR06232C
– ident: e_1_3_2_26_2
  doi: 10.1016/j.surfrep.2016.02.001
– ident: e_1_3_2_47_2
  doi: 10.1021/acs.jpcc.0c02142
– ident: e_1_3_2_2_2
  doi: 10.1021/acscentsci.0c00822
– ident: e_1_3_2_50_2
  doi: 10.1021/jp209898q
– ident: e_1_3_2_46_2
  doi: 10.1126/science.1075094
– ident: e_1_3_2_7_2
  doi: 10.1021/ja3087054
– ident: e_1_3_2_31_2
  doi: 10.1103/PhysRevB.75.035430
– ident: e_1_3_2_37_2
  doi: 10.1016/j.susc.2012.01.022
– ident: e_1_3_2_54_2
  doi: 10.1038/s41929-019-0328-1
– ident: e_1_3_2_34_2
  doi: 10.1002/cctc.201800331
– ident: e_1_3_2_48_2
  doi: 10.1021/acs.jpcc.9b06952
– ident: e_1_3_2_28_2
  doi: 10.1021/nl4029973
– ident: e_1_3_2_42_2
  doi: 10.1063/1.1329672
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_16_2
  doi: 10.1126/science.abe5757
– ident: e_1_3_2_32_2
  doi: 10.1016/0001-6160(76)90034-1
– ident: e_1_3_2_11_2
  doi: 10.1038/s41929-018-0098-1
– ident: e_1_3_2_17_2
  doi: 10.1002/wcms.1415
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1191778
– ident: e_1_3_2_33_2
  doi: 10.1021/la902263s
SSID ssj0009593
Score 2.7277157
Snippet Sintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts that are stable against sintering is a...
The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve...
Rational design of stable nanocatalystsSintering of nanoparticles is one of the main causes of their catalytic deactivation. Rational design of nanocatalysts...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1360
SubjectTerms Catalysis
Coalescence
Coalescing
Computer applications
Deactivation
Design
Experimentation
First principles
Growth rate
High-throughput screening
Kinetics
Metals
Molecular dynamics
Nanocatalysis
Nanoparticles
Neural networks
Ostwald ripening
Screening
Simulation
Sintering
Volcanoes
Title Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts
URI https://www.ncbi.nlm.nih.gov/pubmed/34735220
https://www.proquest.com/docview/2638076994
https://www.proquest.com/docview/2594291952
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZy2CXsXYfzdoNDXboKA62vlId024lDLbLWpbLMLIkQyA4IbEP3XX_eJ8s2VNKA90uxtiSbPx-fnpP-r33EPpIdGoM4TqhUrCEMU0TWWqZCEu1UiSzYuyCk799F9Mb9nXGZ4PBn4i11NTFSP9-MK7kf6QK10CuLkr2HyTbDwoX4BzkC0eQMBwfJeMfqnBpUddnq27J3G-Xg0GdbJqVM63bfBDrUBDcUQpNS9lw7ZpFvVZgHLrYqbbPWaWqZbuec7vxCZ46s7XTAGCO9ls8kWB7ruLEMwo6gkHoFq02TBtPBVrYeU8FavkEP-08mTU2XoQgmSN0BDpqUKwhr7GfVrwuTV0ZSJLSWNlSX5MnoErwMY20Z0Z9bYEwEzsG3sNaPqpLaUeqmMvzEGG-lU_73jzXsw9bv4eIPAyQhwGeoH0CvgYoy_3JxeeLq525m0OGqCj2qnuHbeNmh8fSWi7XL9Dz4HLgicfPARrY6hA99UVIbw_RQZDSBp-GHOSfXqJfHbRwDy28LPEWtHAELQwIwB5arl0ELd8Hb0HrFbq5-nJ9OU1CJY5EU5nVCdNcSGNNaSU146IoKbdGaFaWBm64iYqzopSGqizVikrFbdp6A0JraTNLX6O9alnZI4QVHYNHYkBFFIxRaApf99yFg7NSZ5liQzTqPmGuQ5p6Vy1lke8Q2xCd9h1WPkPL7qYnnUzy8BtvciJczQUhJTz6Q38blKzbOVOVXTbQhkuw2zLJyRC98bLsn0Vd8W5C0rePf49j9OzvT3SC9up1Y9-BbVsX7wP27gCcu6uA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sabatier+principle+of+metal-support+interaction+for+design+of+ultrastable+metal+nanocatalysts&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hu%2C+Sulei&rft.au=Li%2C+Wei-Xue&rft.date=2021-12-10&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6573&rft.spage=1360&rft.epage=1365&rft_id=info:doi/10.1126%2Fscience.abi9828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abi9828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon