Finite element modeling of lipid bilayer membranes
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicle...
Saved in:
Published in | Journal of computational physics Vol. 220; no. 1; pp. 394 - 408 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.12.2006
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9991 1090-2716 |
DOI | 10.1016/j.jcp.2006.05.023 |
Cover
Loading…
Abstract | A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of
C
1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here. |
---|---|
AbstractList | A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here. A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C 1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here. A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here. |
Author | Feng, Feng Klug, William S. |
Author_xml | – sequence: 1 givenname: Feng surname: Feng fullname: Feng, Feng – sequence: 2 givenname: William S. surname: Klug fullname: Klug, William S. email: klug@ucla.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18409335$$DView record in Pascal Francis |
BookMark | eNp9kEFLwzAYhoNMcE5_gLdeFC-tX9I2bfAk4lQYeNFzSJMvkpG2M-kE_70ZGx487BQIz_OSPOdkNowDEnJFoaBA-d26WOtNwQB4AXUBrDwhcwoCctZQPiNzAEZzIQQ9I-cxrgGgrat2TtjSDW7CDD32OExZPxr0bvjMRpt5t3Em65xXPxiyHvsuqAHjBTm1yke8PJwL8rF8en98yVdvz6-PD6tcl4JOecU5KlvzCrluBKOqxU43VCvLmWGVYK0RpmPK0qajdbppRNsBb7jtuLHMlAtys9_dhPFri3GSvYsavU-PGLdRMsG4AMESeHsUpNAyKqDhO_T6gKqolbfpQ9pFuQmuV-FH0rYCUZZ14po9p8MYY0ArtZvU5MZhCsr5NCl32eVapuxyl11CLVP2ZNJ_5t_4Eed-72DK-e0wyKgdDhqNC6gnaUZ3xP4FpICbUA |
CitedBy_id | crossref_primary_10_1002_nme_2863 crossref_primary_10_1016_j_jcp_2008_11_036 crossref_primary_10_1016_j_cma_2021_114472 crossref_primary_10_1039_D1SM01333E crossref_primary_10_1016_j_cma_2014_12_024 crossref_primary_10_1007_s10237_010_0246_2 crossref_primary_10_1016_j_jcp_2017_04_024 crossref_primary_10_1007_s00161_015_0426_5 crossref_primary_10_1007_s40571_024_00892_y crossref_primary_10_1016_j_jmaa_2007_07_084 crossref_primary_10_1016_j_jcp_2024_113124 crossref_primary_10_1103_PhysRevE_93_012417 crossref_primary_10_1137_16M1076794 crossref_primary_10_1371_journal_pone_0244796 crossref_primary_10_1016_j_chemphyslip_2020_104983 crossref_primary_10_1088_1361_648X_aa6313 crossref_primary_10_1016_j_jcp_2009_06_020 crossref_primary_10_1016_j_jcp_2017_04_019 crossref_primary_10_1371_journal_pcbi_1010762 crossref_primary_10_1016_j_camwa_2024_09_012 crossref_primary_10_1016_j_mbplus_2021_100096 crossref_primary_10_1007_s00466_014_1119_9 crossref_primary_10_1016_j_jcp_2015_05_001 crossref_primary_10_1063_1_4869307 crossref_primary_10_1007_s00033_015_0523_0 crossref_primary_10_1209_0295_5075_97_68008 crossref_primary_10_1088_1367_2630_14_9_095021 crossref_primary_10_1137_130904600 crossref_primary_10_1016_j_ijsolstr_2012_05_030 crossref_primary_10_1371_journal_pcbi_1009969 crossref_primary_10_1115_1_4049143 crossref_primary_10_2140_memocs_2015_3_101 crossref_primary_10_4208_cicp_OA_2015_0029 crossref_primary_10_1016_j_jcp_2015_06_010 crossref_primary_10_1063_1_5120516 crossref_primary_10_1140_epjs_s11734_024_01177_4 crossref_primary_10_3390_membranes13050493 crossref_primary_10_1016_j_crhy_2009_10_001 crossref_primary_10_1016_j_jcp_2020_109253 crossref_primary_10_4208_cicp_170611_130112a crossref_primary_10_1016_j_jbiomech_2012_01_041 crossref_primary_10_1002_mma_9607 crossref_primary_10_1016_j_cpc_2024_109166 crossref_primary_10_1146_annurev_biophys_093008_131238 crossref_primary_10_1002_nme_4536 crossref_primary_10_1016_j_jcp_2016_11_004 crossref_primary_10_1002_nme_3206 crossref_primary_10_1016_j_cma_2023_116441 crossref_primary_10_1103_PhysRevE_92_032721 crossref_primary_10_1016_j_physa_2018_06_050 crossref_primary_10_1016_j_jmps_2012_02_004 crossref_primary_10_1016_j_bbamem_2016_02_003 crossref_primary_10_1007_s10409_020_01033_3 crossref_primary_10_1016_j_bpj_2011_11_4012 crossref_primary_10_1016_j_bpj_2020_05_002 crossref_primary_10_1016_j_cma_2016_07_011 crossref_primary_10_1016_j_jcp_2009_02_034 crossref_primary_10_1103_PhysRevE_90_022702 crossref_primary_10_1063_1_5009107 crossref_primary_10_3390_membranes12100960 crossref_primary_10_1016_j_bpj_2010_12_3701 crossref_primary_10_1080_14786435_2010_492768 crossref_primary_10_1039_c0sm00244e crossref_primary_10_1016_j_jtbi_2015_05_010 crossref_primary_10_1017_jfm_2023_1051 crossref_primary_10_1103_PhysRevE_81_031904 crossref_primary_10_1017_jfm_2019_341 crossref_primary_10_1039_C6SM00194G crossref_primary_10_1002_nme_4443 crossref_primary_10_1016_j_jcp_2009_07_027 crossref_primary_10_1137_15M1043716 crossref_primary_10_1007_s10237_021_01550_5 crossref_primary_10_1016_j_bpj_2014_06_031 crossref_primary_10_1155_2017_7275131 crossref_primary_10_1103_PhysRevE_97_032414 crossref_primary_10_1137_110831301 crossref_primary_10_1016_j_bpj_2017_04_020 crossref_primary_10_1016_j_bpr_2022_100062 crossref_primary_10_1007_s11012_024_01923_x crossref_primary_10_1016_j_jcp_2008_02_019 crossref_primary_10_1073_pnas_0806814105 crossref_primary_10_1007_s12668_011_0011_8 crossref_primary_10_1016_j_jcp_2013_04_046 crossref_primary_10_1063_1_3669440 crossref_primary_10_1137_060656449 crossref_primary_10_1103_PhysRevLett_124_158101 crossref_primary_10_1016_j_jcp_2011_03_045 crossref_primary_10_1016_j_jcp_2011_07_019 crossref_primary_10_1103_PhysRevE_82_011905 crossref_primary_10_1016_j_ijsolstr_2023_112169 crossref_primary_10_1021_acsami_8b13458 crossref_primary_10_1016_j_cma_2012_10_021 crossref_primary_10_1016_j_jcp_2010_05_014 crossref_primary_10_1016_j_ijengsci_2023_103971 crossref_primary_10_1016_j_jcp_2021_110288 crossref_primary_10_7498_aps_62_248701 crossref_primary_10_1016_j_cma_2021_113849 |
Cites_doi | 10.1088/0953-8984/4/7/004 10.1088/0305-4470/36/23/301 10.1016/j.jmps.2003.09.019 10.1080/10586458.1992.10504253 10.1103/PhysRevE.61.4218 10.1007/BF00275981 10.1103/PhysRevE.48.3112 10.1080/10586458.1992.10504258 10.1137/0132063 10.1051/jphyscol:1990734 10.1529/biophysj.105.063826 10.1016/S0006-3495(99)77362-5 10.1016/S0006-3495(74)85959-X 10.1529/biophysj.105.059436 10.1080/00018739700101488 10.1016/j.jcp.2005.07.020 10.1016/S0022-5193(70)80032-7 10.1103/PhysRevLett.71.452 10.1083/jcb.153.6.F25 10.1103/PhysRevE.49.5389 10.1038/nature04396 10.1016/S0006-3495(92)81903-3 10.1002/nme.182.abs 10.1103/PhysRevLett.76.4444 10.1016/j.jcp.2004.01.029 10.1016/S0968-0004(00)01609-1 10.1515/znc-1973-11-1209 10.1209/epl/i1996-00353-8 10.1209/0295-5075/32/5/009 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1 10.1103/PhysRevA.44.1182 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Inc. – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jcp.2006.05.023 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1090-2716 |
EndPage | 408 |
ExternalDocumentID | 18409335 10_1016_j_jcp_2006_05_023 S0021999106002476 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSV SSZ T5K T9H TN5 UPT UQL WUQ XFK YQT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-466eaf564e6c7921a8ebc71caf62d24928d9db2af17b15d24798b0676fb6df2d3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9991 |
IngestDate | Fri Jul 11 11:23:01 EDT 2025 Fri Jul 11 08:30:09 EDT 2025 Mon Jul 21 09:13:13 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Tue Jul 01 04:33:25 EDT 2025 Fri Feb 23 02:35:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 02.70.Dh 46.70.Hg Subdivision surfaces Lipid bilayer mechanics Biomembranes 87.16.Dg 87.16.Ac 46.15.−x Cell mechanics Finite element Phase diagrams Membranes 87.16.Dg; 87.16.Ac; 02.70.Dh; 46.15.-x; 46.70.Hg Biomembranes; Lipid bilayer mechanics; Cell mechanics; Finite element; Subdivision surfaces Digital simulation Equilibrium shape Mechanical properties Calculation methods Finite element method Models Modelling Calculation Curvature |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-466eaf564e6c7921a8ebc71caf62d24928d9db2af17b15d24798b0676fb6df2d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1082190762 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_29269092 proquest_miscellaneous_1082190762 pascalfrancis_primary_18409335 crossref_citationtrail_10_1016_j_jcp_2006_05_023 crossref_primary_10_1016_j_jcp_2006_05_023 elsevier_sciencedirect_doi_10_1016_j_jcp_2006_05_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20061201 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 20061201 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of computational physics |
PublicationYear | 2006 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Do Carmo (bib31) 1976 McIntosh (bib3) 2001; 153 Cirak, Ortiz, Schröder (bib28) 2000; 47 Warren (bib35) 2001 Seifert (bib1) 1997; 46 Wiese, Harbich, Helfrich (bib12) 1992; 4 Sen, Subramanian, Discher (bib40) 2005; 89 Kraus, Seifert, Lipowsky (bib19) 1995; 32 Heinrich, Božič, Saša, Žekš (bib15) 1999; 76 Jenkins (bib8) 1977; 4 McMahon, Gallop (bib2) 2005; 428 Brakke (bib21) 1992; 1 Jürlicher, Seifert, Lipowsky (bib37) 1993; 71 Helfrich (bib6) 1974; 28 Capovilla, Guven, Santiago (bib34) 2003; 36 Hsu, Kusner, Sullivan (bib17) 1992; 1 Seifert (bib11) 1990; 51 Wintz, Döbereiner, Seifert (bib20) 1996; 33 Bozic, Svetina, Zeks, Waugh (bib13) 1992; 61 Zienkiewicz, Taylor (bib25) 2000; vols. 1–3 Nocedal, Wright (bib33) 1999 Jaric, Seifert, Wintz, Wortis (bib18) 1995; 52 Taniguchi (bib38) 1996; 76 Seifert, Berndl, Lipowsky (bib10) 1991; 44 Du, Liu, Wang (bib24) 2006; 212 Strang, Fix (bib27) 1973 Jenkins (bib9) 1977; 32 Frey, Mannella (bib4) 2000; 25 Miao, Seifert, Wortis, Döbreiner (bib14) 1994; 49 Luenberger (bib32) 1989 Ayton, McWhirter, McMurtry, Voth (bib39) 2005; 88 Sokolnikoff (bib30) 1964 Evans (bib7) 1974; 14 Dao, Lim, Suresh (bib26) 2003; 51 C. Loop, Subdivision surfaces based on triangles, Master’s thesis, University of Utah, Department of Mathematics, 1987. Heinrich, Saˇsa, Žekš (bib16) 1993; 48 Bloor, Wilson (bib22) 2000; 61 Cirak, Ortiz (bib29) 2001; 51 Canham (bib5) 1970; 26 Du, Liu, Wang (bib23) 2004; 198 Helfrich (10.1016/j.jcp.2006.05.023_bib6) 1974; 28 Bloor (10.1016/j.jcp.2006.05.023_bib22) 2000; 61 Cirak (10.1016/j.jcp.2006.05.023_bib28) 2000; 47 Heinrich (10.1016/j.jcp.2006.05.023_bib16) 1993; 48 Canham (10.1016/j.jcp.2006.05.023_bib5) 1970; 26 Zienkiewicz (10.1016/j.jcp.2006.05.023_bib25) 2000; vols. 1–3 10.1016/j.jcp.2006.05.023_bib36 Seifert (10.1016/j.jcp.2006.05.023_bib1) 1997; 46 Strang (10.1016/j.jcp.2006.05.023_bib27) 1973 Taniguchi (10.1016/j.jcp.2006.05.023_bib38) 1996; 76 Do Carmo (10.1016/j.jcp.2006.05.023_bib31) 1976 Dao (10.1016/j.jcp.2006.05.023_bib26) 2003; 51 Evans (10.1016/j.jcp.2006.05.023_bib7) 1974; 14 Frey (10.1016/j.jcp.2006.05.023_bib4) 2000; 25 Jenkins (10.1016/j.jcp.2006.05.023_bib9) 1977; 32 Miao (10.1016/j.jcp.2006.05.023_bib14) 1994; 49 Kraus (10.1016/j.jcp.2006.05.023_bib19) 1995; 32 Wintz (10.1016/j.jcp.2006.05.023_bib20) 1996; 33 McIntosh (10.1016/j.jcp.2006.05.023_bib3) 2001; 153 Wiese (10.1016/j.jcp.2006.05.023_bib12) 1992; 4 Hsu (10.1016/j.jcp.2006.05.023_bib17) 1992; 1 McMahon (10.1016/j.jcp.2006.05.023_bib2) 2005; 428 Jaric (10.1016/j.jcp.2006.05.023_bib18) 1995; 52 Luenberger (10.1016/j.jcp.2006.05.023_bib32) 1989 Brakke (10.1016/j.jcp.2006.05.023_bib21) 1992; 1 Sen (10.1016/j.jcp.2006.05.023_bib40) 2005; 89 Seifert (10.1016/j.jcp.2006.05.023_bib10) 1991; 44 Sokolnikoff (10.1016/j.jcp.2006.05.023_bib30) 1964 Bozic (10.1016/j.jcp.2006.05.023_bib13) 1992; 61 Jürlicher (10.1016/j.jcp.2006.05.023_bib37) 1993; 71 Warren (10.1016/j.jcp.2006.05.023_bib35) 2001 Du (10.1016/j.jcp.2006.05.023_bib24) 2006; 212 Nocedal (10.1016/j.jcp.2006.05.023_bib33) 1999 Capovilla (10.1016/j.jcp.2006.05.023_bib34) 2003; 36 Ayton (10.1016/j.jcp.2006.05.023_bib39) 2005; 88 Du (10.1016/j.jcp.2006.05.023_bib23) 2004; 198 Seifert (10.1016/j.jcp.2006.05.023_bib11) 1990; 51 Heinrich (10.1016/j.jcp.2006.05.023_bib15) 1999; 76 Jenkins (10.1016/j.jcp.2006.05.023_bib8) 1977; 4 Cirak (10.1016/j.jcp.2006.05.023_bib29) 2001; 51 |
References_xml | – volume: 51 start-page: 2259 year: 2003 end-page: 2280 ident: bib26 article-title: Mechanics of the human red blood cell deformed by optical tweezers publication-title: J. Mech. Phys. Solids – volume: 51 start-page: 339 year: 1990 end-page: 344 ident: bib11 article-title: Shape transformation and free, toroidal and bound vesicles publication-title: J. Phys. Colloque – volume: 28 start-page: 693 year: 1974 end-page: 703 ident: bib6 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Z. Naturforsch. C – volume: 61 start-page: 4218 year: 2000 end-page: 4229 ident: bib22 article-title: Method for efficient shape parametrization of fluid membranes and vesicles publication-title: Phys. Rev. E – volume: 428 start-page: 590 year: 2005 end-page: 596 ident: bib2 article-title: Membrane curvature and mechanisms of dynamic cell membrane remodelling publication-title: Nature – volume: 212 start-page: 757 year: 2006 end-page: 777 ident: bib24 article-title: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions publication-title: J. Comput. Phys. – year: 1973 ident: bib27 article-title: An Analysis of the Finite Element Method – volume: 44 start-page: 1182 year: 1991 end-page: 1202 ident: bib10 article-title: Shape transformations of vesicles-phase-diagram for spontaneous-curvature and bilayer-coupling models publication-title: Phys. Rev. A – volume: 61 start-page: 963 year: 1992 end-page: 973 ident: bib13 article-title: Role of lamellar membrane structure in tether formation from bilayer vesicles publication-title: Biophys. J. – volume: 153 start-page: F25 year: 2001 end-page: F32 ident: bib3 article-title: Electron microscopy of cells: a new beginning for a new century publication-title: J. Cell Biol. – volume: 36 start-page: 6281 year: 2003 end-page: 6295 ident: bib34 article-title: Deformations of the geometry of lipid vesicles publication-title: J. Phys. A: Math. Gen. – volume: 4 start-page: 1647 year: 1992 end-page: 1657 ident: bib12 article-title: Budding of lipid bilayer vesicles and flat membranes publication-title: J. Phys.: Condens. Matter – year: 1976 ident: bib31 article-title: Differential Geometry of Curves and Surfaces – reference: C. Loop, Subdivision surfaces based on triangles, Master’s thesis, University of Utah, Department of Mathematics, 1987. – year: 2001 ident: bib35 article-title: Subdivision Methods for Geometric Design: A Constructive Approach – volume: 51 start-page: 813 year: 2001 end-page: 833 ident: bib29 article-title: Fully publication-title: Int. J. Numer. Methods Eng. – volume: 32 start-page: 431 year: 1995 end-page: 436 ident: bib19 article-title: Gravity-induced shape transformations of vesicles publication-title: Europhys. Lett. – year: 1999 ident: bib33 article-title: Numerical Optimization – volume: 14 start-page: 923 year: 1974 end-page: 931 ident: bib7 article-title: Bending resistance and chemically induced moments in membrane bilayers publication-title: Biophys. J. – volume: 52 start-page: 6623 year: 1995 ident: bib18 article-title: Vesicular instabilities: the prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes publication-title: Phys. Rev. Lett. – year: 1964 ident: bib30 article-title: Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua – volume: 71 start-page: 452 year: 1993 end-page: 455 ident: bib37 article-title: Conformal degeneracy and conformal diffusion of vesicles publication-title: Phys. Rev. Lett. – volume: 198 start-page: 450 year: 2004 end-page: 468 ident: bib23 article-title: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes publication-title: J. Comput. Phys. – year: 1989 ident: bib32 article-title: Linear and Nonlinear Programming – volume: 25 start-page: 319 year: 2000 end-page: 324 ident: bib4 article-title: The internal structure of mitochondria publication-title: Trends Biochem. Sci. – volume: 33 start-page: 403 year: 1996 end-page: 408 ident: bib20 article-title: Starfish vesicles publication-title: Europhys. Lett. – volume: 46 start-page: 13 year: 1997 end-page: 137 ident: bib1 article-title: Configurations of fluid membranes and vesicles publication-title: Adv. Phys. – volume: 26 start-page: 61 year: 1970 end-page: 81 ident: bib5 article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the red blood cell publication-title: J. Theor. Biol. – volume: 4 start-page: 149 year: 1977 end-page: 169 ident: bib8 article-title: Static equilibrium configurations of a model red blood cell publication-title: J. Math. Biol. – volume: 76 start-page: 2056 year: 1999 end-page: 2071 ident: bib15 article-title: Vesicle deformation by an axial load: from elongated shapes to tethered vesicles publication-title: Biophys. J. – volume: 48 start-page: 3112 year: 1993 end-page: 3123 ident: bib16 article-title: Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes publication-title: Phys. Rev. E – volume: 76 start-page: 4444 year: 1996 end-page: 4447 ident: bib38 article-title: Shape deformation and phase separation dynamics of two-component vesicles publication-title: Phys. Rev. Lett. – volume: 1 start-page: 191 year: 1992 end-page: 207 ident: bib17 article-title: Minimizing the squared mean curvature integral for surfaces in space forms publication-title: Exp. Math. – volume: 47 start-page: 2039 year: 2000 end-page: 2072 ident: bib28 article-title: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis publication-title: Int. J. Numer. Methods Eng. – volume: 89 start-page: 3203 year: 2005 end-page: 3213 ident: bib40 article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments publication-title: Biophys. J. – volume: 1 start-page: 141 year: 1992 end-page: 165 ident: bib21 article-title: The surface evolver publication-title: Exp. Math. – volume: vols. 1–3 year: 2000 ident: bib25 publication-title: The Finite Element Method – volume: 32 start-page: 755 year: 1977 end-page: 764 ident: bib9 article-title: The equations of mechanical equilibrium of a model membrane publication-title: SIAM J. Appl. Math. – volume: 49 start-page: 5389 year: 1994 end-page: 5407 ident: bib14 article-title: Budding transitions of fluid-bilayer vesicles: the effect of area difference elasticity publication-title: Phys. Rev. E – volume: 88 start-page: 3855 year: 2005 end-page: 3869 ident: bib39 article-title: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles publication-title: Biophys. J. – volume: 4 start-page: 1647 year: 1992 ident: 10.1016/j.jcp.2006.05.023_bib12 article-title: Budding of lipid bilayer vesicles and flat membranes publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/4/7/004 – year: 1999 ident: 10.1016/j.jcp.2006.05.023_bib33 – volume: 36 start-page: 6281 year: 2003 ident: 10.1016/j.jcp.2006.05.023_bib34 article-title: Deformations of the geometry of lipid vesicles publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/36/23/301 – volume: 51 start-page: 2259 year: 2003 ident: 10.1016/j.jcp.2006.05.023_bib26 article-title: Mechanics of the human red blood cell deformed by optical tweezers publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2003.09.019 – volume: 1 start-page: 141 issue: 2 year: 1992 ident: 10.1016/j.jcp.2006.05.023_bib21 article-title: The surface evolver publication-title: Exp. Math. doi: 10.1080/10586458.1992.10504253 – year: 1973 ident: 10.1016/j.jcp.2006.05.023_bib27 – volume: 61 start-page: 4218 issue: 4 year: 2000 ident: 10.1016/j.jcp.2006.05.023_bib22 article-title: Method for efficient shape parametrization of fluid membranes and vesicles publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.4218 – volume: 4 start-page: 149 year: 1977 ident: 10.1016/j.jcp.2006.05.023_bib8 article-title: Static equilibrium configurations of a model red blood cell publication-title: J. Math. Biol. doi: 10.1007/BF00275981 – ident: 10.1016/j.jcp.2006.05.023_bib36 – volume: 48 start-page: 3112 issue: 4 year: 1993 ident: 10.1016/j.jcp.2006.05.023_bib16 article-title: Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.48.3112 – volume: 1 start-page: 191 issue: 3 year: 1992 ident: 10.1016/j.jcp.2006.05.023_bib17 article-title: Minimizing the squared mean curvature integral for surfaces in space forms publication-title: Exp. Math. doi: 10.1080/10586458.1992.10504258 – volume: 32 start-page: 755 issue: 4 year: 1977 ident: 10.1016/j.jcp.2006.05.023_bib9 article-title: The equations of mechanical equilibrium of a model membrane publication-title: SIAM J. Appl. Math. doi: 10.1137/0132063 – volume: 51 start-page: 339 issue: C7 year: 1990 ident: 10.1016/j.jcp.2006.05.023_bib11 article-title: Shape transformation and free, toroidal and bound vesicles publication-title: J. Phys. Colloque doi: 10.1051/jphyscol:1990734 – volume: 52 start-page: 6623 year: 1995 ident: 10.1016/j.jcp.2006.05.023_bib18 article-title: Vesicular instabilities: the prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes publication-title: Phys. Rev. Lett. – year: 1989 ident: 10.1016/j.jcp.2006.05.023_bib32 – volume: 89 start-page: 3203 year: 2005 ident: 10.1016/j.jcp.2006.05.023_bib40 article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments publication-title: Biophys. J. doi: 10.1529/biophysj.105.063826 – year: 2001 ident: 10.1016/j.jcp.2006.05.023_bib35 – volume: 76 start-page: 2056 year: 1999 ident: 10.1016/j.jcp.2006.05.023_bib15 article-title: Vesicle deformation by an axial load: from elongated shapes to tethered vesicles publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77362-5 – volume: 14 start-page: 923 issue: 12 year: 1974 ident: 10.1016/j.jcp.2006.05.023_bib7 article-title: Bending resistance and chemically induced moments in membrane bilayers publication-title: Biophys. J. doi: 10.1016/S0006-3495(74)85959-X – year: 1976 ident: 10.1016/j.jcp.2006.05.023_bib31 – volume: 88 start-page: 3855 issue: 6 year: 2005 ident: 10.1016/j.jcp.2006.05.023_bib39 article-title: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles publication-title: Biophys. J. doi: 10.1529/biophysj.105.059436 – volume: 46 start-page: 13 issue: 1 year: 1997 ident: 10.1016/j.jcp.2006.05.023_bib1 article-title: Configurations of fluid membranes and vesicles publication-title: Adv. Phys. doi: 10.1080/00018739700101488 – volume: 212 start-page: 757 issue: 2 year: 2006 ident: 10.1016/j.jcp.2006.05.023_bib24 article-title: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.07.020 – volume: 26 start-page: 61 year: 1970 ident: 10.1016/j.jcp.2006.05.023_bib5 article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the red blood cell publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(70)80032-7 – volume: 71 start-page: 452 year: 1993 ident: 10.1016/j.jcp.2006.05.023_bib37 article-title: Conformal degeneracy and conformal diffusion of vesicles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.452 – volume: 153 start-page: F25 issue: 6 year: 2001 ident: 10.1016/j.jcp.2006.05.023_bib3 article-title: Electron microscopy of cells: a new beginning for a new century publication-title: J. Cell Biol. doi: 10.1083/jcb.153.6.F25 – volume: 49 start-page: 5389 year: 1994 ident: 10.1016/j.jcp.2006.05.023_bib14 article-title: Budding transitions of fluid-bilayer vesicles: the effect of area difference elasticity publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.5389 – volume: 428 start-page: 590 year: 2005 ident: 10.1016/j.jcp.2006.05.023_bib2 article-title: Membrane curvature and mechanisms of dynamic cell membrane remodelling publication-title: Nature doi: 10.1038/nature04396 – volume: 61 start-page: 963 year: 1992 ident: 10.1016/j.jcp.2006.05.023_bib13 article-title: Role of lamellar membrane structure in tether formation from bilayer vesicles publication-title: Biophys. J. doi: 10.1016/S0006-3495(92)81903-3 – volume: 51 start-page: 813 year: 2001 ident: 10.1016/j.jcp.2006.05.023_bib29 article-title: Fully C1-conforming subdivision elements for finite element-deformation thin-shell analysis publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.182.abs – volume: 76 start-page: 4444 issue: 23 year: 1996 ident: 10.1016/j.jcp.2006.05.023_bib38 article-title: Shape deformation and phase separation dynamics of two-component vesicles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.4444 – volume: 198 start-page: 450 year: 2004 ident: 10.1016/j.jcp.2006.05.023_bib23 article-title: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.01.029 – year: 1964 ident: 10.1016/j.jcp.2006.05.023_bib30 – volume: 25 start-page: 319 issue: 7 year: 2000 ident: 10.1016/j.jcp.2006.05.023_bib4 article-title: The internal structure of mitochondria publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(00)01609-1 – volume: vols. 1–3 year: 2000 ident: 10.1016/j.jcp.2006.05.023_bib25 – volume: 28 start-page: 693 year: 1974 ident: 10.1016/j.jcp.2006.05.023_bib6 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Z. Naturforsch. C doi: 10.1515/znc-1973-11-1209 – volume: 33 start-page: 403 year: 1996 ident: 10.1016/j.jcp.2006.05.023_bib20 article-title: Starfish vesicles publication-title: Europhys. Lett. doi: 10.1209/epl/i1996-00353-8 – volume: 32 start-page: 431 issue: 5 year: 1995 ident: 10.1016/j.jcp.2006.05.023_bib19 article-title: Gravity-induced shape transformations of vesicles publication-title: Europhys. Lett. doi: 10.1209/0295-5075/32/5/009 – volume: 47 start-page: 2039 year: 2000 ident: 10.1016/j.jcp.2006.05.023_bib28 article-title: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1 – volume: 44 start-page: 1182 year: 1991 ident: 10.1016/j.jcp.2006.05.023_bib10 article-title: Shape transformations of vesicles-phase-diagram for spontaneous-curvature and bilayer-coupling models publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.44.1182 |
SSID | ssj0008548 |
Score | 2.2473576 |
Snippet | A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 394 |
SubjectTerms | Biomembranes Cell mechanics Computational techniques Computer simulation Curvature Exact sciences and technology Finite element Finite element method Lipid bilayer mechanics Lipids Mathematical analysis Mathematical methods in physics Mathematical models Membranes Physics Subdivision surfaces Vesicles |
Title | Finite element modeling of lipid bilayer membranes |
URI | https://dx.doi.org/10.1016/j.jcp.2006.05.023 https://www.proquest.com/docview/1082190762 https://www.proquest.com/docview/29269092 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH_4cSkUa7_o2rqm0FNhNN8zOYq4rBY8VfA2JJMERtbdobte_dt9mclYpOih15CQ8MvL772Ql98D-KGptLwKvhA6mkK6KhRWGVpYIalQIimu9WqfV3p-LS9v1M0WnI1_YVJaZeb-gdN7ts4tJxnNk65t0x9fnv7Q450mOZpSb8MuF0ajae-eXvyaXz0RcqXkQMgpGwEHjI-bfZrXbdPlJwl1TLl4yT297ewaQYtDtYt_iLv3RrN92MthJDkdVvoetsLyA7zLISXJB3b9EfisTUElCUOWOOkL36C3IqtIFm3XeuLahcWwm9yFO7w4I_F9guvZ-e-zeZHLJBSNMGxTSK2DjUrLoJvScGar4JqSNTZq7pMgYOWNd9xGVjqmsKU0lUMnpaPTPnIvPsPOcrUMX4BwbnlpmXRNgwyatL3K0lFuHbNReOsnQEd06iZriKdSFot6TBa7rRHQVNtS11TVCOgEfj4N6QYBjdc6yxHy-pkV1Ejwrw2bPtuevxOl66sQagLfx_2q8fikNxEEdHW_TvqoaEUUXcIEjl7oww3Xhhp-8H-r-wpveK52RNk32Nn8uQ-HGMls3BS2jx_YNNvrIwZi8Is |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9NBA6SNNyPaRqJBTwYmsl61jCV22zeOUQG5CsiRw2Oya7Oba396RLTeEkhx6FRISnzTfjNDoG4BDRYVldfAFV1EXwtWhsFLTwnJBueRJca1X-7xQsyvx61peb8DJ-BcmpVVm7h84vWfr3HKc0Tzu2jb98WXpDz3eaZKjqdQLeCnQfJN1Hv1-yPOopRjoOOUiYPfxabNP8rppuvwgIY8o4085p9edXSFkcah18Q9t975o-g7e5CCSfB_W-R42wmIb3uaAkmRzXX0ANm1TSEnCkCNO-rI36KvIMpJ527WeuHZuMegmt-EWr81IeztwNf1xeTIrcpGEouG6XBdCqWCjVCKoptKstHVwTVU2Nirmkxxg7bV3zMaycqXElkrXDl2Uik75yDzfhc3FchH2gDBmWWVL4ZoG-TMpe1WVo8y60kburZ8AHdExTVYQT4Us5mZMFbsxCGiqbKkMlQYBncC3v0O6QT7juc5ihNw8OgMG6f25YfuPtudhonR55VxO4Ou4XwaNJ72IIKDL-1VSR8UzRNEhTODgiT5MM6WpZh__b3UH8Gp2eX5mzn5enH6CLZbrHtHyM2yu7-7DF4xp1m6_P7N_APmY8U8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+modeling+of+lipid+bilayer+membranes&rft.jtitle=Journal+of+computational+physics&rft.au=FENG+FENG&rft.au=KLUG%2C+William+S&rft.date=2006-12-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.volume=220&rft.issue=1&rft.spage=394&rft.epage=408&rft_id=info:doi/10.1016%2Fj.jcp.2006.05.023&rft.externalDBID=n%2Fa&rft.externalDocID=18409335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |