Finite element modeling of lipid bilayer membranes

A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicle...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 220; no. 1; pp. 394 - 408
Main Authors Feng, Feng, Klug, William S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.12.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2006.05.023

Cover

Loading…
Abstract A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C 1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
AbstractList A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C 1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
Author Feng, Feng
Klug, William S.
Author_xml – sequence: 1
  givenname: Feng
  surname: Feng
  fullname: Feng, Feng
– sequence: 2
  givenname: William S.
  surname: Klug
  fullname: Klug, William S.
  email: klug@ucla.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18409335$$DView record in Pascal Francis
BookMark eNp9kEFLwzAYhoNMcE5_gLdeFC-tX9I2bfAk4lQYeNFzSJMvkpG2M-kE_70ZGx487BQIz_OSPOdkNowDEnJFoaBA-d26WOtNwQB4AXUBrDwhcwoCctZQPiNzAEZzIQQ9I-cxrgGgrat2TtjSDW7CDD32OExZPxr0bvjMRpt5t3Em65xXPxiyHvsuqAHjBTm1yke8PJwL8rF8en98yVdvz6-PD6tcl4JOecU5KlvzCrluBKOqxU43VCvLmWGVYK0RpmPK0qajdbppRNsBb7jtuLHMlAtys9_dhPFri3GSvYsavU-PGLdRMsG4AMESeHsUpNAyKqDhO_T6gKqolbfpQ9pFuQmuV-FH0rYCUZZ14po9p8MYY0ArtZvU5MZhCsr5NCl32eVapuxyl11CLVP2ZNJ_5t_4Eed-72DK-e0wyKgdDhqNC6gnaUZ3xP4FpICbUA
CitedBy_id crossref_primary_10_1002_nme_2863
crossref_primary_10_1016_j_jcp_2008_11_036
crossref_primary_10_1016_j_cma_2021_114472
crossref_primary_10_1039_D1SM01333E
crossref_primary_10_1016_j_cma_2014_12_024
crossref_primary_10_1007_s10237_010_0246_2
crossref_primary_10_1016_j_jcp_2017_04_024
crossref_primary_10_1007_s00161_015_0426_5
crossref_primary_10_1007_s40571_024_00892_y
crossref_primary_10_1016_j_jmaa_2007_07_084
crossref_primary_10_1016_j_jcp_2024_113124
crossref_primary_10_1103_PhysRevE_93_012417
crossref_primary_10_1137_16M1076794
crossref_primary_10_1371_journal_pone_0244796
crossref_primary_10_1016_j_chemphyslip_2020_104983
crossref_primary_10_1088_1361_648X_aa6313
crossref_primary_10_1016_j_jcp_2009_06_020
crossref_primary_10_1016_j_jcp_2017_04_019
crossref_primary_10_1371_journal_pcbi_1010762
crossref_primary_10_1016_j_camwa_2024_09_012
crossref_primary_10_1016_j_mbplus_2021_100096
crossref_primary_10_1007_s00466_014_1119_9
crossref_primary_10_1016_j_jcp_2015_05_001
crossref_primary_10_1063_1_4869307
crossref_primary_10_1007_s00033_015_0523_0
crossref_primary_10_1209_0295_5075_97_68008
crossref_primary_10_1088_1367_2630_14_9_095021
crossref_primary_10_1137_130904600
crossref_primary_10_1016_j_ijsolstr_2012_05_030
crossref_primary_10_1371_journal_pcbi_1009969
crossref_primary_10_1115_1_4049143
crossref_primary_10_2140_memocs_2015_3_101
crossref_primary_10_4208_cicp_OA_2015_0029
crossref_primary_10_1016_j_jcp_2015_06_010
crossref_primary_10_1063_1_5120516
crossref_primary_10_1140_epjs_s11734_024_01177_4
crossref_primary_10_3390_membranes13050493
crossref_primary_10_1016_j_crhy_2009_10_001
crossref_primary_10_1016_j_jcp_2020_109253
crossref_primary_10_4208_cicp_170611_130112a
crossref_primary_10_1016_j_jbiomech_2012_01_041
crossref_primary_10_1002_mma_9607
crossref_primary_10_1016_j_cpc_2024_109166
crossref_primary_10_1146_annurev_biophys_093008_131238
crossref_primary_10_1002_nme_4536
crossref_primary_10_1016_j_jcp_2016_11_004
crossref_primary_10_1002_nme_3206
crossref_primary_10_1016_j_cma_2023_116441
crossref_primary_10_1103_PhysRevE_92_032721
crossref_primary_10_1016_j_physa_2018_06_050
crossref_primary_10_1016_j_jmps_2012_02_004
crossref_primary_10_1016_j_bbamem_2016_02_003
crossref_primary_10_1007_s10409_020_01033_3
crossref_primary_10_1016_j_bpj_2011_11_4012
crossref_primary_10_1016_j_bpj_2020_05_002
crossref_primary_10_1016_j_cma_2016_07_011
crossref_primary_10_1016_j_jcp_2009_02_034
crossref_primary_10_1103_PhysRevE_90_022702
crossref_primary_10_1063_1_5009107
crossref_primary_10_3390_membranes12100960
crossref_primary_10_1016_j_bpj_2010_12_3701
crossref_primary_10_1080_14786435_2010_492768
crossref_primary_10_1039_c0sm00244e
crossref_primary_10_1016_j_jtbi_2015_05_010
crossref_primary_10_1017_jfm_2023_1051
crossref_primary_10_1103_PhysRevE_81_031904
crossref_primary_10_1017_jfm_2019_341
crossref_primary_10_1039_C6SM00194G
crossref_primary_10_1002_nme_4443
crossref_primary_10_1016_j_jcp_2009_07_027
crossref_primary_10_1137_15M1043716
crossref_primary_10_1007_s10237_021_01550_5
crossref_primary_10_1016_j_bpj_2014_06_031
crossref_primary_10_1155_2017_7275131
crossref_primary_10_1103_PhysRevE_97_032414
crossref_primary_10_1137_110831301
crossref_primary_10_1016_j_bpj_2017_04_020
crossref_primary_10_1016_j_bpr_2022_100062
crossref_primary_10_1007_s11012_024_01923_x
crossref_primary_10_1016_j_jcp_2008_02_019
crossref_primary_10_1073_pnas_0806814105
crossref_primary_10_1007_s12668_011_0011_8
crossref_primary_10_1016_j_jcp_2013_04_046
crossref_primary_10_1063_1_3669440
crossref_primary_10_1137_060656449
crossref_primary_10_1103_PhysRevLett_124_158101
crossref_primary_10_1016_j_jcp_2011_03_045
crossref_primary_10_1016_j_jcp_2011_07_019
crossref_primary_10_1103_PhysRevE_82_011905
crossref_primary_10_1016_j_ijsolstr_2023_112169
crossref_primary_10_1021_acsami_8b13458
crossref_primary_10_1016_j_cma_2012_10_021
crossref_primary_10_1016_j_jcp_2010_05_014
crossref_primary_10_1016_j_ijengsci_2023_103971
crossref_primary_10_1016_j_jcp_2021_110288
crossref_primary_10_7498_aps_62_248701
crossref_primary_10_1016_j_cma_2021_113849
Cites_doi 10.1088/0953-8984/4/7/004
10.1088/0305-4470/36/23/301
10.1016/j.jmps.2003.09.019
10.1080/10586458.1992.10504253
10.1103/PhysRevE.61.4218
10.1007/BF00275981
10.1103/PhysRevE.48.3112
10.1080/10586458.1992.10504258
10.1137/0132063
10.1051/jphyscol:1990734
10.1529/biophysj.105.063826
10.1016/S0006-3495(99)77362-5
10.1016/S0006-3495(74)85959-X
10.1529/biophysj.105.059436
10.1080/00018739700101488
10.1016/j.jcp.2005.07.020
10.1016/S0022-5193(70)80032-7
10.1103/PhysRevLett.71.452
10.1083/jcb.153.6.F25
10.1103/PhysRevE.49.5389
10.1038/nature04396
10.1016/S0006-3495(92)81903-3
10.1002/nme.182.abs
10.1103/PhysRevLett.76.4444
10.1016/j.jcp.2004.01.029
10.1016/S0968-0004(00)01609-1
10.1515/znc-1973-11-1209
10.1209/epl/i1996-00353-8
10.1209/0295-5075/32/5/009
10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
10.1103/PhysRevA.44.1182
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2006.05.023
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 408
ExternalDocumentID 18409335
10_1016_j_jcp_2006_05_023
S0021999106002476
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-466eaf564e6c7921a8ebc71caf62d24928d9db2af17b15d24798b0676fb6df2d3
IEDL.DBID AIKHN
ISSN 0021-9991
IngestDate Fri Jul 11 11:23:01 EDT 2025
Fri Jul 11 08:30:09 EDT 2025
Mon Jul 21 09:13:13 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Tue Jul 01 04:33:25 EDT 2025
Fri Feb 23 02:35:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 02.70.Dh
46.70.Hg
Subdivision surfaces
Lipid bilayer mechanics
Biomembranes
87.16.Dg
87.16.Ac
46.15.−x
Cell mechanics
Finite element
Phase diagrams
Membranes
87.16.Dg; 87.16.Ac; 02.70.Dh; 46.15.-x; 46.70.Hg
Biomembranes; Lipid bilayer mechanics; Cell mechanics; Finite element; Subdivision surfaces
Digital simulation
Equilibrium shape
Mechanical properties
Calculation methods
Finite element method
Models
Modelling
Calculation
Curvature
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-466eaf564e6c7921a8ebc71caf62d24928d9db2af17b15d24798b0676fb6df2d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082190762
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_29269092
proquest_miscellaneous_1082190762
pascalfrancis_primary_18409335
crossref_citationtrail_10_1016_j_jcp_2006_05_023
crossref_primary_10_1016_j_jcp_2006_05_023
elsevier_sciencedirect_doi_10_1016_j_jcp_2006_05_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20061201
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 20061201
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational physics
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Do Carmo (bib31) 1976
McIntosh (bib3) 2001; 153
Cirak, Ortiz, Schröder (bib28) 2000; 47
Warren (bib35) 2001
Seifert (bib1) 1997; 46
Wiese, Harbich, Helfrich (bib12) 1992; 4
Sen, Subramanian, Discher (bib40) 2005; 89
Kraus, Seifert, Lipowsky (bib19) 1995; 32
Heinrich, Božič, Saša, Žekš (bib15) 1999; 76
Jenkins (bib8) 1977; 4
McMahon, Gallop (bib2) 2005; 428
Brakke (bib21) 1992; 1
Jürlicher, Seifert, Lipowsky (bib37) 1993; 71
Helfrich (bib6) 1974; 28
Capovilla, Guven, Santiago (bib34) 2003; 36
Hsu, Kusner, Sullivan (bib17) 1992; 1
Seifert (bib11) 1990; 51
Wintz, Döbereiner, Seifert (bib20) 1996; 33
Bozic, Svetina, Zeks, Waugh (bib13) 1992; 61
Zienkiewicz, Taylor (bib25) 2000; vols. 1–3
Nocedal, Wright (bib33) 1999
Jaric, Seifert, Wintz, Wortis (bib18) 1995; 52
Taniguchi (bib38) 1996; 76
Seifert, Berndl, Lipowsky (bib10) 1991; 44
Du, Liu, Wang (bib24) 2006; 212
Strang, Fix (bib27) 1973
Jenkins (bib9) 1977; 32
Frey, Mannella (bib4) 2000; 25
Miao, Seifert, Wortis, Döbreiner (bib14) 1994; 49
Luenberger (bib32) 1989
Ayton, McWhirter, McMurtry, Voth (bib39) 2005; 88
Sokolnikoff (bib30) 1964
Evans (bib7) 1974; 14
Dao, Lim, Suresh (bib26) 2003; 51
C. Loop, Subdivision surfaces based on triangles, Master’s thesis, University of Utah, Department of Mathematics, 1987.
Heinrich, Saˇsa, Žekš (bib16) 1993; 48
Bloor, Wilson (bib22) 2000; 61
Cirak, Ortiz (bib29) 2001; 51
Canham (bib5) 1970; 26
Du, Liu, Wang (bib23) 2004; 198
Helfrich (10.1016/j.jcp.2006.05.023_bib6) 1974; 28
Bloor (10.1016/j.jcp.2006.05.023_bib22) 2000; 61
Cirak (10.1016/j.jcp.2006.05.023_bib28) 2000; 47
Heinrich (10.1016/j.jcp.2006.05.023_bib16) 1993; 48
Canham (10.1016/j.jcp.2006.05.023_bib5) 1970; 26
Zienkiewicz (10.1016/j.jcp.2006.05.023_bib25) 2000; vols. 1–3
10.1016/j.jcp.2006.05.023_bib36
Seifert (10.1016/j.jcp.2006.05.023_bib1) 1997; 46
Strang (10.1016/j.jcp.2006.05.023_bib27) 1973
Taniguchi (10.1016/j.jcp.2006.05.023_bib38) 1996; 76
Do Carmo (10.1016/j.jcp.2006.05.023_bib31) 1976
Dao (10.1016/j.jcp.2006.05.023_bib26) 2003; 51
Evans (10.1016/j.jcp.2006.05.023_bib7) 1974; 14
Frey (10.1016/j.jcp.2006.05.023_bib4) 2000; 25
Jenkins (10.1016/j.jcp.2006.05.023_bib9) 1977; 32
Miao (10.1016/j.jcp.2006.05.023_bib14) 1994; 49
Kraus (10.1016/j.jcp.2006.05.023_bib19) 1995; 32
Wintz (10.1016/j.jcp.2006.05.023_bib20) 1996; 33
McIntosh (10.1016/j.jcp.2006.05.023_bib3) 2001; 153
Wiese (10.1016/j.jcp.2006.05.023_bib12) 1992; 4
Hsu (10.1016/j.jcp.2006.05.023_bib17) 1992; 1
McMahon (10.1016/j.jcp.2006.05.023_bib2) 2005; 428
Jaric (10.1016/j.jcp.2006.05.023_bib18) 1995; 52
Luenberger (10.1016/j.jcp.2006.05.023_bib32) 1989
Brakke (10.1016/j.jcp.2006.05.023_bib21) 1992; 1
Sen (10.1016/j.jcp.2006.05.023_bib40) 2005; 89
Seifert (10.1016/j.jcp.2006.05.023_bib10) 1991; 44
Sokolnikoff (10.1016/j.jcp.2006.05.023_bib30) 1964
Bozic (10.1016/j.jcp.2006.05.023_bib13) 1992; 61
Jürlicher (10.1016/j.jcp.2006.05.023_bib37) 1993; 71
Warren (10.1016/j.jcp.2006.05.023_bib35) 2001
Du (10.1016/j.jcp.2006.05.023_bib24) 2006; 212
Nocedal (10.1016/j.jcp.2006.05.023_bib33) 1999
Capovilla (10.1016/j.jcp.2006.05.023_bib34) 2003; 36
Ayton (10.1016/j.jcp.2006.05.023_bib39) 2005; 88
Du (10.1016/j.jcp.2006.05.023_bib23) 2004; 198
Seifert (10.1016/j.jcp.2006.05.023_bib11) 1990; 51
Heinrich (10.1016/j.jcp.2006.05.023_bib15) 1999; 76
Jenkins (10.1016/j.jcp.2006.05.023_bib8) 1977; 4
Cirak (10.1016/j.jcp.2006.05.023_bib29) 2001; 51
References_xml – volume: 51
  start-page: 2259
  year: 2003
  end-page: 2280
  ident: bib26
  article-title: Mechanics of the human red blood cell deformed by optical tweezers
  publication-title: J. Mech. Phys. Solids
– volume: 51
  start-page: 339
  year: 1990
  end-page: 344
  ident: bib11
  article-title: Shape transformation and free, toroidal and bound vesicles
  publication-title: J. Phys. Colloque
– volume: 28
  start-page: 693
  year: 1974
  end-page: 703
  ident: bib6
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Z. Naturforsch. C
– volume: 61
  start-page: 4218
  year: 2000
  end-page: 4229
  ident: bib22
  article-title: Method for efficient shape parametrization of fluid membranes and vesicles
  publication-title: Phys. Rev. E
– volume: 428
  start-page: 590
  year: 2005
  end-page: 596
  ident: bib2
  article-title: Membrane curvature and mechanisms of dynamic cell membrane remodelling
  publication-title: Nature
– volume: 212
  start-page: 757
  year: 2006
  end-page: 777
  ident: bib24
  article-title: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions
  publication-title: J. Comput. Phys.
– year: 1973
  ident: bib27
  article-title: An Analysis of the Finite Element Method
– volume: 44
  start-page: 1182
  year: 1991
  end-page: 1202
  ident: bib10
  article-title: Shape transformations of vesicles-phase-diagram for spontaneous-curvature and bilayer-coupling models
  publication-title: Phys. Rev. A
– volume: 61
  start-page: 963
  year: 1992
  end-page: 973
  ident: bib13
  article-title: Role of lamellar membrane structure in tether formation from bilayer vesicles
  publication-title: Biophys. J.
– volume: 153
  start-page: F25
  year: 2001
  end-page: F32
  ident: bib3
  article-title: Electron microscopy of cells: a new beginning for a new century
  publication-title: J. Cell Biol.
– volume: 36
  start-page: 6281
  year: 2003
  end-page: 6295
  ident: bib34
  article-title: Deformations of the geometry of lipid vesicles
  publication-title: J. Phys. A: Math. Gen.
– volume: 4
  start-page: 1647
  year: 1992
  end-page: 1657
  ident: bib12
  article-title: Budding of lipid bilayer vesicles and flat membranes
  publication-title: J. Phys.: Condens. Matter
– year: 1976
  ident: bib31
  article-title: Differential Geometry of Curves and Surfaces
– reference: C. Loop, Subdivision surfaces based on triangles, Master’s thesis, University of Utah, Department of Mathematics, 1987.
– year: 2001
  ident: bib35
  article-title: Subdivision Methods for Geometric Design: A Constructive Approach
– volume: 51
  start-page: 813
  year: 2001
  end-page: 833
  ident: bib29
  article-title: Fully
  publication-title: Int. J. Numer. Methods Eng.
– volume: 32
  start-page: 431
  year: 1995
  end-page: 436
  ident: bib19
  article-title: Gravity-induced shape transformations of vesicles
  publication-title: Europhys. Lett.
– year: 1999
  ident: bib33
  article-title: Numerical Optimization
– volume: 14
  start-page: 923
  year: 1974
  end-page: 931
  ident: bib7
  article-title: Bending resistance and chemically induced moments in membrane bilayers
  publication-title: Biophys. J.
– volume: 52
  start-page: 6623
  year: 1995
  ident: bib18
  article-title: Vesicular instabilities: the prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes
  publication-title: Phys. Rev. Lett.
– year: 1964
  ident: bib30
  article-title: Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua
– volume: 71
  start-page: 452
  year: 1993
  end-page: 455
  ident: bib37
  article-title: Conformal degeneracy and conformal diffusion of vesicles
  publication-title: Phys. Rev. Lett.
– volume: 198
  start-page: 450
  year: 2004
  end-page: 468
  ident: bib23
  article-title: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes
  publication-title: J. Comput. Phys.
– year: 1989
  ident: bib32
  article-title: Linear and Nonlinear Programming
– volume: 25
  start-page: 319
  year: 2000
  end-page: 324
  ident: bib4
  article-title: The internal structure of mitochondria
  publication-title: Trends Biochem. Sci.
– volume: 33
  start-page: 403
  year: 1996
  end-page: 408
  ident: bib20
  article-title: Starfish vesicles
  publication-title: Europhys. Lett.
– volume: 46
  start-page: 13
  year: 1997
  end-page: 137
  ident: bib1
  article-title: Configurations of fluid membranes and vesicles
  publication-title: Adv. Phys.
– volume: 26
  start-page: 61
  year: 1970
  end-page: 81
  ident: bib5
  article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the red blood cell
  publication-title: J. Theor. Biol.
– volume: 4
  start-page: 149
  year: 1977
  end-page: 169
  ident: bib8
  article-title: Static equilibrium configurations of a model red blood cell
  publication-title: J. Math. Biol.
– volume: 76
  start-page: 2056
  year: 1999
  end-page: 2071
  ident: bib15
  article-title: Vesicle deformation by an axial load: from elongated shapes to tethered vesicles
  publication-title: Biophys. J.
– volume: 48
  start-page: 3112
  year: 1993
  end-page: 3123
  ident: bib16
  article-title: Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes
  publication-title: Phys. Rev. E
– volume: 76
  start-page: 4444
  year: 1996
  end-page: 4447
  ident: bib38
  article-title: Shape deformation and phase separation dynamics of two-component vesicles
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 191
  year: 1992
  end-page: 207
  ident: bib17
  article-title: Minimizing the squared mean curvature integral for surfaces in space forms
  publication-title: Exp. Math.
– volume: 47
  start-page: 2039
  year: 2000
  end-page: 2072
  ident: bib28
  article-title: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis
  publication-title: Int. J. Numer. Methods Eng.
– volume: 89
  start-page: 3203
  year: 2005
  end-page: 3213
  ident: bib40
  article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments
  publication-title: Biophys. J.
– volume: 1
  start-page: 141
  year: 1992
  end-page: 165
  ident: bib21
  article-title: The surface evolver
  publication-title: Exp. Math.
– volume: vols. 1–3
  year: 2000
  ident: bib25
  publication-title: The Finite Element Method
– volume: 32
  start-page: 755
  year: 1977
  end-page: 764
  ident: bib9
  article-title: The equations of mechanical equilibrium of a model membrane
  publication-title: SIAM J. Appl. Math.
– volume: 49
  start-page: 5389
  year: 1994
  end-page: 5407
  ident: bib14
  article-title: Budding transitions of fluid-bilayer vesicles: the effect of area difference elasticity
  publication-title: Phys. Rev. E
– volume: 88
  start-page: 3855
  year: 2005
  end-page: 3869
  ident: bib39
  article-title: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles
  publication-title: Biophys. J.
– volume: 4
  start-page: 1647
  year: 1992
  ident: 10.1016/j.jcp.2006.05.023_bib12
  article-title: Budding of lipid bilayer vesicles and flat membranes
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/4/7/004
– year: 1999
  ident: 10.1016/j.jcp.2006.05.023_bib33
– volume: 36
  start-page: 6281
  year: 2003
  ident: 10.1016/j.jcp.2006.05.023_bib34
  article-title: Deformations of the geometry of lipid vesicles
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/36/23/301
– volume: 51
  start-page: 2259
  year: 2003
  ident: 10.1016/j.jcp.2006.05.023_bib26
  article-title: Mechanics of the human red blood cell deformed by optical tweezers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2003.09.019
– volume: 1
  start-page: 141
  issue: 2
  year: 1992
  ident: 10.1016/j.jcp.2006.05.023_bib21
  article-title: The surface evolver
  publication-title: Exp. Math.
  doi: 10.1080/10586458.1992.10504253
– year: 1973
  ident: 10.1016/j.jcp.2006.05.023_bib27
– volume: 61
  start-page: 4218
  issue: 4
  year: 2000
  ident: 10.1016/j.jcp.2006.05.023_bib22
  article-title: Method for efficient shape parametrization of fluid membranes and vesicles
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.4218
– volume: 4
  start-page: 149
  year: 1977
  ident: 10.1016/j.jcp.2006.05.023_bib8
  article-title: Static equilibrium configurations of a model red blood cell
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00275981
– ident: 10.1016/j.jcp.2006.05.023_bib36
– volume: 48
  start-page: 3112
  issue: 4
  year: 1993
  ident: 10.1016/j.jcp.2006.05.023_bib16
  article-title: Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.48.3112
– volume: 1
  start-page: 191
  issue: 3
  year: 1992
  ident: 10.1016/j.jcp.2006.05.023_bib17
  article-title: Minimizing the squared mean curvature integral for surfaces in space forms
  publication-title: Exp. Math.
  doi: 10.1080/10586458.1992.10504258
– volume: 32
  start-page: 755
  issue: 4
  year: 1977
  ident: 10.1016/j.jcp.2006.05.023_bib9
  article-title: The equations of mechanical equilibrium of a model membrane
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0132063
– volume: 51
  start-page: 339
  issue: C7
  year: 1990
  ident: 10.1016/j.jcp.2006.05.023_bib11
  article-title: Shape transformation and free, toroidal and bound vesicles
  publication-title: J. Phys. Colloque
  doi: 10.1051/jphyscol:1990734
– volume: 52
  start-page: 6623
  year: 1995
  ident: 10.1016/j.jcp.2006.05.023_bib18
  article-title: Vesicular instabilities: the prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes
  publication-title: Phys. Rev. Lett.
– year: 1989
  ident: 10.1016/j.jcp.2006.05.023_bib32
– volume: 89
  start-page: 3203
  year: 2005
  ident: 10.1016/j.jcp.2006.05.023_bib40
  article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.063826
– year: 2001
  ident: 10.1016/j.jcp.2006.05.023_bib35
– volume: 76
  start-page: 2056
  year: 1999
  ident: 10.1016/j.jcp.2006.05.023_bib15
  article-title: Vesicle deformation by an axial load: from elongated shapes to tethered vesicles
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77362-5
– volume: 14
  start-page: 923
  issue: 12
  year: 1974
  ident: 10.1016/j.jcp.2006.05.023_bib7
  article-title: Bending resistance and chemically induced moments in membrane bilayers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(74)85959-X
– year: 1976
  ident: 10.1016/j.jcp.2006.05.023_bib31
– volume: 88
  start-page: 3855
  issue: 6
  year: 2005
  ident: 10.1016/j.jcp.2006.05.023_bib39
  article-title: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.059436
– volume: 46
  start-page: 13
  issue: 1
  year: 1997
  ident: 10.1016/j.jcp.2006.05.023_bib1
  article-title: Configurations of fluid membranes and vesicles
  publication-title: Adv. Phys.
  doi: 10.1080/00018739700101488
– volume: 212
  start-page: 757
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2006.05.023_bib24
  article-title: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.07.020
– volume: 26
  start-page: 61
  year: 1970
  ident: 10.1016/j.jcp.2006.05.023_bib5
  article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the red blood cell
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(70)80032-7
– volume: 71
  start-page: 452
  year: 1993
  ident: 10.1016/j.jcp.2006.05.023_bib37
  article-title: Conformal degeneracy and conformal diffusion of vesicles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.452
– volume: 153
  start-page: F25
  issue: 6
  year: 2001
  ident: 10.1016/j.jcp.2006.05.023_bib3
  article-title: Electron microscopy of cells: a new beginning for a new century
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.6.F25
– volume: 49
  start-page: 5389
  year: 1994
  ident: 10.1016/j.jcp.2006.05.023_bib14
  article-title: Budding transitions of fluid-bilayer vesicles: the effect of area difference elasticity
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.5389
– volume: 428
  start-page: 590
  year: 2005
  ident: 10.1016/j.jcp.2006.05.023_bib2
  article-title: Membrane curvature and mechanisms of dynamic cell membrane remodelling
  publication-title: Nature
  doi: 10.1038/nature04396
– volume: 61
  start-page: 963
  year: 1992
  ident: 10.1016/j.jcp.2006.05.023_bib13
  article-title: Role of lamellar membrane structure in tether formation from bilayer vesicles
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(92)81903-3
– volume: 51
  start-page: 813
  year: 2001
  ident: 10.1016/j.jcp.2006.05.023_bib29
  article-title: Fully C1-conforming subdivision elements for finite element-deformation thin-shell analysis
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.182.abs
– volume: 76
  start-page: 4444
  issue: 23
  year: 1996
  ident: 10.1016/j.jcp.2006.05.023_bib38
  article-title: Shape deformation and phase separation dynamics of two-component vesicles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.4444
– volume: 198
  start-page: 450
  year: 2004
  ident: 10.1016/j.jcp.2006.05.023_bib23
  article-title: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.01.029
– year: 1964
  ident: 10.1016/j.jcp.2006.05.023_bib30
– volume: 25
  start-page: 319
  issue: 7
  year: 2000
  ident: 10.1016/j.jcp.2006.05.023_bib4
  article-title: The internal structure of mitochondria
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(00)01609-1
– volume: vols. 1–3
  year: 2000
  ident: 10.1016/j.jcp.2006.05.023_bib25
– volume: 28
  start-page: 693
  year: 1974
  ident: 10.1016/j.jcp.2006.05.023_bib6
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Z. Naturforsch. C
  doi: 10.1515/znc-1973-11-1209
– volume: 33
  start-page: 403
  year: 1996
  ident: 10.1016/j.jcp.2006.05.023_bib20
  article-title: Starfish vesicles
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1996-00353-8
– volume: 32
  start-page: 431
  issue: 5
  year: 1995
  ident: 10.1016/j.jcp.2006.05.023_bib19
  article-title: Gravity-induced shape transformations of vesicles
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/32/5/009
– volume: 47
  start-page: 2039
  year: 2000
  ident: 10.1016/j.jcp.2006.05.023_bib28
  article-title: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
– volume: 44
  start-page: 1182
  year: 1991
  ident: 10.1016/j.jcp.2006.05.023_bib10
  article-title: Shape transformations of vesicles-phase-diagram for spontaneous-curvature and bilayer-coupling models
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.44.1182
SSID ssj0008548
Score 2.2473576
Snippet A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 394
SubjectTerms Biomembranes
Cell mechanics
Computational techniques
Computer simulation
Curvature
Exact sciences and technology
Finite element
Finite element method
Lipid bilayer mechanics
Lipids
Mathematical analysis
Mathematical methods in physics
Mathematical models
Membranes
Physics
Subdivision surfaces
Vesicles
Title Finite element modeling of lipid bilayer membranes
URI https://dx.doi.org/10.1016/j.jcp.2006.05.023
https://www.proquest.com/docview/1082190762
https://www.proquest.com/docview/29269092
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH_4cSkUa7_o2rqm0FNhNN8zOYq4rBY8VfA2JJMERtbdobte_dt9mclYpOih15CQ8MvL772Ql98D-KGptLwKvhA6mkK6KhRWGVpYIalQIimu9WqfV3p-LS9v1M0WnI1_YVJaZeb-gdN7ts4tJxnNk65t0x9fnv7Q450mOZpSb8MuF0ajae-eXvyaXz0RcqXkQMgpGwEHjI-bfZrXbdPlJwl1TLl4yT297ewaQYtDtYt_iLv3RrN92MthJDkdVvoetsLyA7zLISXJB3b9EfisTUElCUOWOOkL36C3IqtIFm3XeuLahcWwm9yFO7w4I_F9guvZ-e-zeZHLJBSNMGxTSK2DjUrLoJvScGar4JqSNTZq7pMgYOWNd9xGVjqmsKU0lUMnpaPTPnIvPsPOcrUMX4BwbnlpmXRNgwyatL3K0lFuHbNReOsnQEd06iZriKdSFot6TBa7rRHQVNtS11TVCOgEfj4N6QYBjdc6yxHy-pkV1Ejwrw2bPtuevxOl66sQagLfx_2q8fikNxEEdHW_TvqoaEUUXcIEjl7oww3Xhhp-8H-r-wpveK52RNk32Nn8uQ-HGMls3BS2jx_YNNvrIwZi8Is
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9NBA6SNNyPaRqJBTwYmsl61jCV22zeOUQG5CsiRw2Oya7Oba396RLTeEkhx6FRISnzTfjNDoG4BDRYVldfAFV1EXwtWhsFLTwnJBueRJca1X-7xQsyvx61peb8DJ-BcmpVVm7h84vWfr3HKc0Tzu2jb98WXpDz3eaZKjqdQLeCnQfJN1Hv1-yPOopRjoOOUiYPfxabNP8rppuvwgIY8o4085p9edXSFkcah18Q9t975o-g7e5CCSfB_W-R42wmIb3uaAkmRzXX0ANm1TSEnCkCNO-rI36KvIMpJ527WeuHZuMegmt-EWr81IeztwNf1xeTIrcpGEouG6XBdCqWCjVCKoptKstHVwTVU2Nirmkxxg7bV3zMaycqXElkrXDl2Uik75yDzfhc3FchH2gDBmWWVL4ZoG-TMpe1WVo8y60kburZ8AHdExTVYQT4Us5mZMFbsxCGiqbKkMlQYBncC3v0O6QT7juc5ihNw8OgMG6f25YfuPtudhonR55VxO4Ou4XwaNJ72IIKDL-1VSR8UzRNEhTODgiT5MM6WpZh__b3UH8Gp2eX5mzn5enH6CLZbrHtHyM2yu7-7DF4xp1m6_P7N_APmY8U8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+modeling+of+lipid+bilayer+membranes&rft.jtitle=Journal+of+computational+physics&rft.au=FENG+FENG&rft.au=KLUG%2C+William+S&rft.date=2006-12-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.volume=220&rft.issue=1&rft.spage=394&rft.epage=408&rft_id=info:doi/10.1016%2Fj.jcp.2006.05.023&rft.externalDBID=n%2Fa&rft.externalDocID=18409335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon