FeatureNet: Machining feature recognition based on 3D Convolution Neural Network

Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel fra...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 101; pp. 12 - 22
Main Authors Zhang, Zhibo, Jaiswal, Prakhar, Rai, Rahul
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.08.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems. •A novel deep 3D CNN framework to learn machining features from CAD models.•A large-scale labeled manufacturing features dataset with 3D CAD models.•Significant improvements over the state-of-the-arts manufacturing feature detection.
AbstractList Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems. •A novel deep 3D CNN framework to learn machining features from CAD models.•A large-scale labeled manufacturing features dataset with 3D CAD models.•Significant improvements over the state-of-the-arts manufacturing feature detection.
Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems.
Author Rai, Rahul
Jaiswal, Prakhar
Zhang, Zhibo
Author_xml – sequence: 1
  givenname: Zhibo
  surname: Zhang
  fullname: Zhang, Zhibo
– sequence: 2
  givenname: Prakhar
  surname: Jaiswal
  fullname: Jaiswal, Prakhar
– sequence: 3
  givenname: Rahul
  surname: Rai
  fullname: Rai, Rahul
  email: rahulrai@buffalo.edu
BookMark eNp9kDtPwzAQgC1UJNrCD2CLxJxwfuQFEyoUkKAwwGy5zqW4FLs4ThH_HpcyMXS60-m-e3wjMrDOIiGnFDIKtDhfZlo1GQNaZcAzgOKADGlV1ikrqnxAhgAUUiGq_IiMum4JAIzyekiep6hC73GG4SJ5VPrNWGMXSburJh61W1gTjLPJXHXYJDHh18nE2Y1b9b_1GfZerWIIX86_H5PDVq06PPmLY_I6vXmZ3KUPT7f3k6uHVPOahlQwWiNraVXNa6EUCiZ4XVa6UC1iO88VsqLJoWUFFprqkmGjFeQcgbV5Ixo-Jme7uWvvPnvsgly63tu4UjKoaFmIXPDYVe66tHdd57GV2gS1PTt4ZVaSgtzqk0sZ9cmtPglcRn2RpP_ItTcfyn_vZS53DMbHNwa97LRBq7ExUWSQjTN76B9NxYol
CitedBy_id crossref_primary_10_14775_ksmpe_2023_22_07_062
crossref_primary_10_32604_cmes_2023_027320
crossref_primary_10_1016_j_promfg_2021_06_083
crossref_primary_10_1007_s42791_023_00059_5
crossref_primary_10_1016_j_dajour_2024_100489
crossref_primary_10_1007_s10845_023_02134_z
crossref_primary_10_1016_j_neucom_2023_01_015
crossref_primary_10_1016_j_cag_2023_01_006
crossref_primary_10_1038_s41598_024_61443_2
crossref_primary_10_1007_s10845_020_01533_w
crossref_primary_10_1016_j_jmsy_2023_09_018
crossref_primary_10_1007_s12008_020_00727_z
crossref_primary_10_2478_amns_2025_0717
crossref_primary_10_1016_j_rcim_2022_102369
crossref_primary_10_1115_1_4056806
crossref_primary_10_1007_s10845_024_02547_4
crossref_primary_10_1016_j_cad_2023_103629
crossref_primary_10_1016_j_cirpj_2024_12_004
crossref_primary_10_1109_ACCESS_2021_3126333
crossref_primary_10_1016_j_jmapro_2022_10_075
crossref_primary_10_1016_j_jmsy_2023_11_005
crossref_primary_10_1007_s00170_024_14903_y
crossref_primary_10_1016_j_patcog_2023_110126
crossref_primary_10_1080_00207543_2021_1930234
crossref_primary_10_3390_machines10050319
crossref_primary_10_3390_machines10121165
crossref_primary_10_1155_2022_5767818
crossref_primary_10_1115_1_4047486
crossref_primary_10_1007_s11740_022_01146_7
crossref_primary_10_1016_j_tsep_2025_103226
crossref_primary_10_1109_TIM_2023_3256460
crossref_primary_10_1007_s00170_021_07412_9
crossref_primary_10_1093_jcde_qwae005
crossref_primary_10_1016_j_cja_2021_08_023
crossref_primary_10_1016_j_softx_2023_101466
crossref_primary_10_1016_j_cad_2021_102991
crossref_primary_10_1177_16878140211002700
crossref_primary_10_1007_s10845_024_02406_2
crossref_primary_10_1007_s00170_022_10281_5
crossref_primary_10_1016_j_cad_2024_103806
crossref_primary_10_1080_00207543_2023_2201860
crossref_primary_10_1016_j_autcon_2022_104277
crossref_primary_10_1080_0951192X_2024_2387767
crossref_primary_10_1007_s10845_025_02575_8
crossref_primary_10_1016_j_jmsy_2025_02_016
crossref_primary_10_1016_j_rcim_2021_102260
crossref_primary_10_1080_0951192X_2020_1858507
crossref_primary_10_1007_s10845_022_01998_x
crossref_primary_10_3389_frobt_2022_1021755
crossref_primary_10_1016_j_jmatprotec_2021_117485
crossref_primary_10_1038_s41598_022_19212_6
crossref_primary_10_1016_j_aei_2022_101680
crossref_primary_10_1093_jcde_qwad027
crossref_primary_10_1093_jcde_qwad025
crossref_primary_10_1109_TMI_2021_3134650
crossref_primary_10_1007_s10845_023_02122_3
crossref_primary_10_1016_j_heliyon_2023_e21515
crossref_primary_10_1145_3450626_3459818
crossref_primary_10_1016_j_advengsoft_2019_04_007
crossref_primary_10_1016_j_cad_2024_103813
crossref_primary_10_1016_j_cie_2024_110106
crossref_primary_10_1093_jcde_qwab072
crossref_primary_10_1299_jamdsm_2024jamdsm0056
crossref_primary_10_3390_su12155878
crossref_primary_10_1016_j_cad_2019_03_003
crossref_primary_10_1016_j_procir_2023_08_025
crossref_primary_10_1016_j_jmsy_2024_08_029
crossref_primary_10_1016_j_cam_2023_115166
crossref_primary_10_1115_1_4067334
crossref_primary_10_1016_j_mfglet_2023_07_025
crossref_primary_10_1109_ACCESS_2020_3018270
crossref_primary_10_1007_s12206_023_2403_4
crossref_primary_10_1007_s00170_023_11031_x
crossref_primary_10_1080_00207543_2023_2290700
crossref_primary_10_1109_TII_2020_3030620
crossref_primary_10_1016_j_jmsy_2023_01_006
crossref_primary_10_1007_s10462_023_10535_y
crossref_primary_10_1007_s12541_023_00836_1
crossref_primary_10_1007_s00170_022_09839_0
crossref_primary_10_1016_j_cie_2024_110359
crossref_primary_10_1007_s00158_021_02953_9
crossref_primary_10_1080_00207543_2021_1956675
crossref_primary_10_1016_j_procir_2020_04_132
crossref_primary_10_1016_j_procir_2021_11_295
crossref_primary_10_1007_s40964_024_00583_3
crossref_primary_10_1007_s10845_022_01939_8
crossref_primary_10_7232_JKIIE_2024_50_6_437
crossref_primary_10_1016_j_powtec_2021_07_056
crossref_primary_10_1016_j_rcim_2023_102688
crossref_primary_10_1016_j_procs_2022_12_319
crossref_primary_10_1007_s12206_023_0334_8
crossref_primary_10_1186_s42492_023_00133_8
crossref_primary_10_1145_3476576_3476602
crossref_primary_10_1080_0951192X_2021_1992659
crossref_primary_10_1007_s10845_021_01827_7
crossref_primary_10_1155_2022_9325200
crossref_primary_10_1016_j_compind_2022_103736
crossref_primary_10_1111_sapm_70043
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1155_2021_5609885
crossref_primary_10_1007_s12541_022_00764_6
crossref_primary_10_1016_j_aei_2024_102721
crossref_primary_10_3390_met12071079
crossref_primary_10_1109_ACCESS_2021_3055826
crossref_primary_10_3233_JIFS_189251
crossref_primary_10_3390_app12157900
crossref_primary_10_1007_s40997_023_00610_8
crossref_primary_10_1007_s10845_022_02009_9
crossref_primary_10_1007_s00170_022_09586_2
crossref_primary_10_3390_app8091542
crossref_primary_10_1088_2631_7990_acc76e
crossref_primary_10_3390_machines12060416
crossref_primary_10_1080_0951192X_2021_1963483
crossref_primary_10_1016_j_rcim_2023_102661
crossref_primary_10_1016_j_promfg_2020_05_130
crossref_primary_10_1115_1_4045410
crossref_primary_10_1016_j_procir_2023_02_145
crossref_primary_10_1016_j_aei_2023_102256
crossref_primary_10_1016_j_csbj_2022_05_016
crossref_primary_10_2478_amns_2023_2_01340
crossref_primary_10_1093_jcde_qwad106
crossref_primary_10_1007_s10845_020_01550_9
crossref_primary_10_1016_j_cma_2021_114008
crossref_primary_10_1093_jcde_qwab044
crossref_primary_10_1016_j_engappai_2019_06_007
crossref_primary_10_1080_00207543_2023_2262050
crossref_primary_10_3233_JIFS_189319
crossref_primary_10_1142_S0219686724500227
crossref_primary_10_1038_s41598_021_01313_3
crossref_primary_10_1016_j_eswa_2021_115430
crossref_primary_10_1109_TII_2021_3136167
crossref_primary_10_1016_j_cagd_2024_102318
crossref_primary_10_1088_1742_6596_1879_3_032130
crossref_primary_10_1007_s10845_022_01984_3
crossref_primary_10_1109_TITS_2021_3089120
crossref_primary_10_1016_j_procir_2024_10_092
crossref_primary_10_1115_1_4052298
crossref_primary_10_15673_ret_v58i4_2567
crossref_primary_10_3390_app13053181
Cites_doi 10.1109/TVCG.2003.1196006
10.1007/s001700200222
10.1016/S0010-4485(01)00128-2
10.1016/S0010-4485(98)00033-5
10.1109/ICCV.2015.169
10.1023/A:1008904109029
10.1016/S0010-4485(97)00003-1
10.1038/nature14539
10.1109/CVPR.2014.81
10.1109/CVPR.2015.7298594
10.1016/B978-0-444-81600-9.50007-9
10.1016/0010-4485(88)90050-4
10.1007/s00170-008-1536-z
10.1109/70.897789
10.1080/09511921003642121
10.1109/21.179847
10.1016/0010-4485(92)90064-H
10.7717/peerj.453
10.1109/5.726791
10.1023/A:1018521207901
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2018.03.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
EndPage 22
ExternalDocumentID 10_1016_j_cad_2018_03_006
S0010448518301349
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-4219e2f188b94aae4243978c6afeefb5ae26d50f26e6c1c72edca053e02f5d4d3
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Fri Jul 25 06:30:28 EDT 2025
Tue Jul 01 03:34:35 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Fri Feb 23 02:28:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Machining feature recognition
Convolution neural network
Computer aided process planning (CAPP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-4219e2f188b94aae4243978c6afeefb5ae26d50f26e6c1c72edca053e02f5d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2081764543
PQPubID 2045267
PageCount 11
ParticipantIDs proquest_journals_2081764543
crossref_citationtrail_10_1016_j_cad_2018_03_006
crossref_primary_10_1016_j_cad_2018_03_006
elsevier_sciencedirect_doi_10_1016_j_cad_2018_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer aided design
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Gao, Shah (b6) 1998; 30
Kingma D, Ba J. Adam: a method for stochastic optimization; 2014. ArXiv preprint
Krizhevsky, Sutskever, Hinton (b17) 2012
Brock A, Lim T, Ritchie JM, Weston N. Generative and discriminative voxel modeling with convolutional neural networks; 2016. ArXiv preprint
Huang, Yip-Hoi (b8) 2002; 34
Maturana, Scherer (b25) 2015
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.
Neubert, Protzel (b36) 2014
Joshi, Chang (b3) 1988; 20
Lankalapalli, Chatterjee, Chang (b13) 1997; 8
Babai (b4) 2016
Sunil, Pande (b15) 2009; 41
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2014. p. 580–7.
Marefat, Kashyap (b5) 1992; 22
Henderson, Srinath, Stage, Walker, Regli (b9) 1994; 20
Ibrhim, McCormack (b7) 2002; 20
LeCun, Bengio, Hinton (b23) 2015; 521
Van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (b35) 2014; 2
Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2015; p. 1440–8.
Han, Pratt, Regli (b1) 2000; 16
Nooruddin, Turk (b32) 2003; 9
Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d classification and segmentation; 2016. ArXiv preprint
Schraudolph (b33) 1998
Onwubolu (b14) 1999; 10
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. ArXiv preprint
Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1912–1920.
.
Nezis, Vosniakos (b12) 1997; 29
LeCun, Bottou, Bengio, Haffner (b16) 1998; 86
Ren, He, Girshick, Sun (b22) 2015
Hwang (b11) 1992
Balu A, Lore KG, Young G, Krishnamurthy A, Sarkar S. A deep 3d convolutional neural network based design for manufacturability framework; 2016. ArXiv preprint
Hegde V, Zadeh R. Fusionnet: 3d object classification using multiple data representations; 2016. ArXiv preprint
Min P. Binvox: 3d mesh voxelizer. Retrieved July 24, 2017.
Prabhakar, Henderson (b10) 1992; 24
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org; 2015.
Verma, Rajotia (b2) 2010; 23
Onwubolu (10.1016/j.cad.2018.03.006_b14) 1999; 10
Krizhevsky (10.1016/j.cad.2018.03.006_b17) 2012
Nooruddin (10.1016/j.cad.2018.03.006_b32) 2003; 9
Huang (10.1016/j.cad.2018.03.006_b8) 2002; 34
10.1016/j.cad.2018.03.006_b34
Henderson (10.1016/j.cad.2018.03.006_b9) 1994; 20
10.1016/j.cad.2018.03.006_b19
10.1016/j.cad.2018.03.006_b18
10.1016/j.cad.2018.03.006_b31
10.1016/j.cad.2018.03.006_b30
Verma (10.1016/j.cad.2018.03.006_b2) 2010; 23
Ibrhim (10.1016/j.cad.2018.03.006_b7) 2002; 20
Ren (10.1016/j.cad.2018.03.006_b22) 2015
Marefat (10.1016/j.cad.2018.03.006_b5) 1992; 22
Prabhakar (10.1016/j.cad.2018.03.006_b10) 1992; 24
LeCun (10.1016/j.cad.2018.03.006_b16) 1998; 86
Gao (10.1016/j.cad.2018.03.006_b6) 1998; 30
Schraudolph (10.1016/j.cad.2018.03.006_b33) 1998
Neubert (10.1016/j.cad.2018.03.006_b36) 2014
10.1016/j.cad.2018.03.006_b24
10.1016/j.cad.2018.03.006_b26
10.1016/j.cad.2018.03.006_b28
10.1016/j.cad.2018.03.006_b27
Nezis (10.1016/j.cad.2018.03.006_b12) 1997; 29
10.1016/j.cad.2018.03.006_b29
Han (10.1016/j.cad.2018.03.006_b1) 2000; 16
10.1016/j.cad.2018.03.006_b20
Sunil (10.1016/j.cad.2018.03.006_b15) 2009; 41
10.1016/j.cad.2018.03.006_b21
LeCun (10.1016/j.cad.2018.03.006_b23) 2015; 521
Babai (10.1016/j.cad.2018.03.006_b4) 2016
Van der Walt (10.1016/j.cad.2018.03.006_b35) 2014; 2
Joshi (10.1016/j.cad.2018.03.006_b3) 1988; 20
Hwang (10.1016/j.cad.2018.03.006_b11) 1992
Lankalapalli (10.1016/j.cad.2018.03.006_b13) 1997; 8
Maturana (10.1016/j.cad.2018.03.006_b25) 2015
References_xml – volume: 10
  start-page: 289
  year: 1999
  end-page: 299
  ident: b14
  article-title: Manufacturing features recognition using backpropagation neural networks
  publication-title: J Intell Manuf
– reference: Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2015; p. 1440–8.
– volume: 34
  start-page: 561
  year: 2002
  end-page: 582
  ident: b8
  article-title: High-level feature recognition using feature relationship graphs
  publication-title: Comput Aided Des
– reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. ArXiv preprint
– volume: 2
  start-page: e453
  year: 2014
  ident: b35
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
– start-page: 996
  year: 2014
  end-page: 1001
  ident: b36
  article-title: Compact watershed and preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms
  publication-title: Pattern recognition, 2014 22nd international conference on
– reference: Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1912–1920.
– volume: 30
  start-page: 727
  year: 1998
  end-page: 739
  ident: b6
  article-title: Automatic recognition of interacting machining features based on minimal condition subgraph
  publication-title: Comput Aided Des
– volume: 29
  start-page: 523
  year: 1997
  end-page: 539
  ident: b12
  article-title: Recognizing 212d shape features using a neural network and heuristics
  publication-title: Comput Aided Des
– start-page: 922
  year: 2015
  end-page: 928
  ident: b25
  article-title: Voxnet: A 3d convolutional neural network for real-time object recognition
  publication-title: Intelligent robots and systems, 2015 IEEE/RSJ international conference on
– volume: 20
  start-page: 58
  year: 1988
  end-page: 66
  ident: b3
  article-title: Graph-based heuristics for recognition of machined features from a 3D solid model
  publication-title: Comput Aided Des
– start-page: 91
  year: 2015
  end-page: 99
  ident: b22
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– reference: Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d classification and segmentation; 2016. ArXiv preprint
– volume: 9
  start-page: 191
  year: 2003
  end-page: 205
  ident: b32
  article-title: Simplification and repair of polygonal models using volumetric techniques
  publication-title: IEEE Trans Vis Comput Graphics
– reference: Kingma D, Ba J. Adam: a method for stochastic optimization; 2014. ArXiv preprint
– start-page: 207
  year: 1998
  end-page: 226
  ident: b33
  article-title: Centering neural network gradient factors
  publication-title: Neural networks: Tricks of the trade
– start-page: 684
  year: 2016
  end-page: 697
  ident: b4
  article-title: Graph isomorphism in quasipolynomial time
  publication-title: Proceedings of the forty-eighth annual ACM symposium on theory of computing
– reference: Brock A, Lim T, Ritchie JM, Weston N. Generative and discriminative voxel modeling with convolutional neural networks; 2016. ArXiv preprint
– volume: 23
  start-page: 353
  year: 2010
  end-page: 368
  ident: b2
  article-title: A review of machining feature recognition methodologies
  publication-title: Int J Comput Integr Manuf
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b23
  article-title: Deep learning
  publication-title: Nature
– reference: Hegde V, Zadeh R. Fusionnet: 3d object classification using multiple data representations; 2016. ArXiv preprint
– volume: 8
  start-page: 203
  year: 1997
  end-page: 214
  ident: b13
  article-title: Feature recognition using ART2: a self-organizing neural network
  publication-title: J Intell Manuf
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b17
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b16
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org; 2015.
– reference: .
– reference: Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2014. p. 580–7.
– volume: 16
  start-page: 782
  year: 2000
  end-page: 796
  ident: b1
  article-title: Manufacturing feature recognition from solid models: a status report
  publication-title: IEEE Trans Robot Autom
– volume: 41
  start-page: 932
  year: 2009
  end-page: 947
  ident: b15
  article-title: Automatic recognition of machining features using artificial neural networks
  publication-title: Int J Adv Manuf Technol
– reference: Balu A, Lore KG, Young G, Krishnamurthy A, Sarkar S. A deep 3d convolutional neural network based design for manufacturability framework; 2016. ArXiv preprint
– volume: 20
  year: 1994
  ident: b9
  article-title: Boundary representation-based feature identification
  publication-title: Manuf Res Technol
– year: 1992
  ident: b11
  article-title: Applying the perceptron to three-dimensional feature recognition
– volume: 20
  start-page: 817
  year: 2002
  end-page: 823
  ident: b7
  article-title: Process planning using adjacency-based feature extraction
  publication-title: Int J Adv Manuf Technol.
– volume: 22
  start-page: 1097
  year: 1992
  end-page: 1115
  ident: b5
  article-title: Automatic construction of process plans from solid model representations
  publication-title: IEEE Trans Syst Man Cybern
– volume: 24
  start-page: 381
  year: 1992
  end-page: 393
  ident: b10
  article-title: Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models
  publication-title: Comput Aided Des
– reference: Min P. Binvox: 3d mesh voxelizer. Retrieved July 24, 2017.
– volume: 9
  start-page: 191
  issue: 2
  year: 2003
  ident: 10.1016/j.cad.2018.03.006_b32
  article-title: Simplification and repair of polygonal models using volumetric techniques
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2003.1196006
– volume: 20
  start-page: 817
  issue: 11
  year: 2002
  ident: 10.1016/j.cad.2018.03.006_b7
  article-title: Process planning using adjacency-based feature extraction
  publication-title: Int J Adv Manuf Technol.
  doi: 10.1007/s001700200222
– volume: 34
  start-page: 561
  issue: 8
  year: 2002
  ident: 10.1016/j.cad.2018.03.006_b8
  article-title: High-level feature recognition using feature relationship graphs
  publication-title: Comput Aided Des
  doi: 10.1016/S0010-4485(01)00128-2
– ident: 10.1016/j.cad.2018.03.006_b24
– volume: 30
  start-page: 727
  issue: 9
  year: 1998
  ident: 10.1016/j.cad.2018.03.006_b6
  article-title: Automatic recognition of interacting machining features based on minimal condition subgraph
  publication-title: Comput Aided Des
  doi: 10.1016/S0010-4485(98)00033-5
– start-page: 996
  year: 2014
  ident: 10.1016/j.cad.2018.03.006_b36
  article-title: Compact watershed and preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms
– ident: 10.1016/j.cad.2018.03.006_b26
– start-page: 1097
  year: 2012
  ident: 10.1016/j.cad.2018.03.006_b17
  article-title: Imagenet classification with deep convolutional neural networks
– ident: 10.1016/j.cad.2018.03.006_b29
– ident: 10.1016/j.cad.2018.03.006_b21
  doi: 10.1109/ICCV.2015.169
– ident: 10.1016/j.cad.2018.03.006_b28
– volume: 10
  start-page: 289
  issue: 3–4
  year: 1999
  ident: 10.1016/j.cad.2018.03.006_b14
  article-title: Manufacturing features recognition using backpropagation neural networks
  publication-title: J Intell Manuf
  doi: 10.1023/A:1008904109029
– ident: 10.1016/j.cad.2018.03.006_b30
– volume: 29
  start-page: 523
  issue: 7
  year: 1997
  ident: 10.1016/j.cad.2018.03.006_b12
  article-title: Recognizing 212d shape features using a neural network and heuristics
  publication-title: Comput Aided Des
  doi: 10.1016/S0010-4485(97)00003-1
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cad.2018.03.006_b23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.cad.2018.03.006_b34
– ident: 10.1016/j.cad.2018.03.006_b20
  doi: 10.1109/CVPR.2014.81
– start-page: 922
  year: 2015
  ident: 10.1016/j.cad.2018.03.006_b25
  article-title: Voxnet: A 3d convolutional neural network for real-time object recognition
– ident: 10.1016/j.cad.2018.03.006_b19
  doi: 10.1109/CVPR.2015.7298594
– volume: 20
  year: 1994
  ident: 10.1016/j.cad.2018.03.006_b9
  article-title: Boundary representation-based feature identification
  publication-title: Manuf Res Technol
  doi: 10.1016/B978-0-444-81600-9.50007-9
– volume: 20
  start-page: 58
  issue: 2
  year: 1988
  ident: 10.1016/j.cad.2018.03.006_b3
  article-title: Graph-based heuristics for recognition of machined features from a 3D solid model
  publication-title: Comput Aided Des
  doi: 10.1016/0010-4485(88)90050-4
– volume: 41
  start-page: 932
  issue: 9
  year: 2009
  ident: 10.1016/j.cad.2018.03.006_b15
  article-title: Automatic recognition of machining features using artificial neural networks
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-008-1536-z
– volume: 16
  start-page: 782
  issue: 6
  year: 2000
  ident: 10.1016/j.cad.2018.03.006_b1
  article-title: Manufacturing feature recognition from solid models: a status report
  publication-title: IEEE Trans Robot Autom
  doi: 10.1109/70.897789
– start-page: 684
  year: 2016
  ident: 10.1016/j.cad.2018.03.006_b4
  article-title: Graph isomorphism in quasipolynomial time
– volume: 23
  start-page: 353
  issue: 4
  year: 2010
  ident: 10.1016/j.cad.2018.03.006_b2
  article-title: A review of machining feature recognition methodologies
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/09511921003642121
– ident: 10.1016/j.cad.2018.03.006_b27
– start-page: 91
  year: 2015
  ident: 10.1016/j.cad.2018.03.006_b22
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: 10.1016/j.cad.2018.03.006_b31
– volume: 22
  start-page: 1097
  issue: 5
  year: 1992
  ident: 10.1016/j.cad.2018.03.006_b5
  article-title: Automatic construction of process plans from solid model representations
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.179847
– volume: 24
  start-page: 381
  issue: 7
  year: 1992
  ident: 10.1016/j.cad.2018.03.006_b10
  article-title: Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models
  publication-title: Comput Aided Des
  doi: 10.1016/0010-4485(92)90064-H
– volume: 2
  start-page: e453
  year: 2014
  ident: 10.1016/j.cad.2018.03.006_b35
  article-title: scikit-image: image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– year: 1992
  ident: 10.1016/j.cad.2018.03.006_b11
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.cad.2018.03.006_b16
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– start-page: 207
  year: 1998
  ident: 10.1016/j.cad.2018.03.006_b33
  article-title: Centering neural network gradient factors
– ident: 10.1016/j.cad.2018.03.006_b18
– volume: 8
  start-page: 203
  issue: 3
  year: 1997
  ident: 10.1016/j.cad.2018.03.006_b13
  article-title: Feature recognition using ART2: a self-organizing neural network
  publication-title: J Intell Manuf
  doi: 10.1023/A:1018521207901
SSID ssj0002139
Score 2.5886831
Snippet Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Artificial neural networks
Automation
CAD
Computer aided design
Computer aided process planning (CAPP)
Convolution
Convolution neural network
Critical components
Deep learning
Digital computers
Feature recognition
Machining
Machining feature recognition
Manufacturing
Mathematical models
Neural networks
Process planning
Recognition
Solid modelling
Studies
Three dimensional models
Title FeatureNet: Machining feature recognition based on 3D Convolution Neural Network
URI https://dx.doi.org/10.1016/j.cad.2018.03.006
https://www.proquest.com/docview/2081764543
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6WedGD8WeczqUHTyY4KKUUb8t0mRqJB5fs1kB5TWYMWybz6N_uKz_mj8QdvEFpgXy8vvcRvn4QciG4gShi4CQhziasEODIxBgHmT2y-cj3GJRun7EYT_j9NJi2yLBZC2NllXXur3J6ma3rln6NZn8xm9k1vvgqwZExSAxSn9tFfJyHNsqvPr5kHszzKwqM-cb2br5slhovnVizUE9WPqfir9r0K0uXpWe0R3ZrzkgH1W3tkxbkB2Tnm5PgIXmyVG61hBiKa_pYCiSxnZqqla5lQvOc2rqVUdzwb-hwnr_XsUetTQdeJa504UdkMrp9Ho6d-mcJjvYjr3A4ph5gxpMyjXiSAGeWakgtEgNg0iABJrLANUyA0J4OGWQ6wRkILjNBxjP_mLTzeQ4nhAotUmvaKSREXCM8aWggkKmx3ChN3Q5xG5iUrp3E7Q8tXlUjGXtRiKyyyCrXV4hsh1yuhywqG41NnXmDvfoRCwrT_KZh3eY5qXoivuFx6YXWtcw__d9Zz8i23as0f13SLpYrOEceUqS9MtB6ZGtw9zCOPwFRSdr3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsUwFL04LNSFOOJsFroRqm2a5qWCC3HgOT1cKLiLbXoDivSJPhU3_pQ_6E2bOoEuBHclbdJyenPvCT09AViRwmKacgyyFs0mqhAYqMzagJg9sfk0jjhWbp8d2T4XhxfJRR-8Nv_COFmlz_11Tq-ytW_Z8Ghu3F5duX98aSkhiDEoCtJYpF5ZeYTPT7Ruu9862KWXvMr5_t7ZTjvwWwsEJk6jXiBooiK3kVJ5KrIMBXeFWRmZWUSbJxlyWSSh5RKliUyLY2EyilcMuU0KUcQ0bj8MCkoXbtuE9ZcPXQmP4ppzU4Jzj9d8Sq1EZSZz7qSRqo1V5U_F8FtZqGrd_hiMepLKtmscxqEPywkY-WRdOAmnjjs-3GEHe5vspFJkUjuzdSt71yV1S-YKZcHoIN5lO93y0Qc7c74gdJdOLUSfgvN_gXAaBspuiTPApJG5cwmVClNhCJ68ZTFRuXVkLM_DWQgbmLTx1uVuB40b3WjUrjUhqx2yOow1ITsLa-9dbmvfjt8uFg32-kvwaaorv3VbaN6T9jP_ns6rqOVs0uK5v426DEPts5NjfXzQOZqHYXemFhwuwEDv7gEXiQT18qUq6Bhc_neUvwGnSRfq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FeatureNet%3A+Machining+feature+recognition+based+on+3D+Convolution+Neural+Network&rft.jtitle=Computer+aided+design&rft.au=Zhang%2C+Zhibo&rft.au=Jaiswal%2C+Prakhar&rft.au=Rai%2C+Rahul&rft.date=2018-08-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=101&rft.spage=12&rft_id=info:doi/10.1016%2Fj.cad.2018.03.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon