FeatureNet: Machining feature recognition based on 3D Convolution Neural Network
Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel fra...
Saved in:
Published in | Computer aided design Vol. 101; pp. 12 - 22 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems.
•A novel deep 3D CNN framework to learn machining features from CAD models.•A large-scale labeled manufacturing features dataset with 3D CAD models.•Significant improvements over the state-of-the-arts manufacturing feature detection. |
---|---|
AbstractList | Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems.
•A novel deep 3D CNN framework to learn machining features from CAD models.•A large-scale labeled manufacturing features dataset with 3D CAD models.•Significant improvements over the state-of-the-arts manufacturing feature detection. Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems. |
Author | Rai, Rahul Jaiswal, Prakhar Zhang, Zhibo |
Author_xml | – sequence: 1 givenname: Zhibo surname: Zhang fullname: Zhang, Zhibo – sequence: 2 givenname: Prakhar surname: Jaiswal fullname: Jaiswal, Prakhar – sequence: 3 givenname: Rahul surname: Rai fullname: Rai, Rahul email: rahulrai@buffalo.edu |
BookMark | eNp9kDtPwzAQgC1UJNrCD2CLxJxwfuQFEyoUkKAwwGy5zqW4FLs4ThH_HpcyMXS60-m-e3wjMrDOIiGnFDIKtDhfZlo1GQNaZcAzgOKADGlV1ikrqnxAhgAUUiGq_IiMum4JAIzyekiep6hC73GG4SJ5VPrNWGMXSburJh61W1gTjLPJXHXYJDHh18nE2Y1b9b_1GfZerWIIX86_H5PDVq06PPmLY_I6vXmZ3KUPT7f3k6uHVPOahlQwWiNraVXNa6EUCiZ4XVa6UC1iO88VsqLJoWUFFprqkmGjFeQcgbV5Ixo-Jme7uWvvPnvsgly63tu4UjKoaFmIXPDYVe66tHdd57GV2gS1PTt4ZVaSgtzqk0sZ9cmtPglcRn2RpP_ItTcfyn_vZS53DMbHNwa97LRBq7ExUWSQjTN76B9NxYol |
CitedBy_id | crossref_primary_10_14775_ksmpe_2023_22_07_062 crossref_primary_10_32604_cmes_2023_027320 crossref_primary_10_1016_j_promfg_2021_06_083 crossref_primary_10_1007_s42791_023_00059_5 crossref_primary_10_1016_j_dajour_2024_100489 crossref_primary_10_1007_s10845_023_02134_z crossref_primary_10_1016_j_neucom_2023_01_015 crossref_primary_10_1016_j_cag_2023_01_006 crossref_primary_10_1038_s41598_024_61443_2 crossref_primary_10_1007_s10845_020_01533_w crossref_primary_10_1016_j_jmsy_2023_09_018 crossref_primary_10_1007_s12008_020_00727_z crossref_primary_10_2478_amns_2025_0717 crossref_primary_10_1016_j_rcim_2022_102369 crossref_primary_10_1115_1_4056806 crossref_primary_10_1007_s10845_024_02547_4 crossref_primary_10_1016_j_cad_2023_103629 crossref_primary_10_1016_j_cirpj_2024_12_004 crossref_primary_10_1109_ACCESS_2021_3126333 crossref_primary_10_1016_j_jmapro_2022_10_075 crossref_primary_10_1016_j_jmsy_2023_11_005 crossref_primary_10_1007_s00170_024_14903_y crossref_primary_10_1016_j_patcog_2023_110126 crossref_primary_10_1080_00207543_2021_1930234 crossref_primary_10_3390_machines10050319 crossref_primary_10_3390_machines10121165 crossref_primary_10_1155_2022_5767818 crossref_primary_10_1115_1_4047486 crossref_primary_10_1007_s11740_022_01146_7 crossref_primary_10_1016_j_tsep_2025_103226 crossref_primary_10_1109_TIM_2023_3256460 crossref_primary_10_1007_s00170_021_07412_9 crossref_primary_10_1093_jcde_qwae005 crossref_primary_10_1016_j_cja_2021_08_023 crossref_primary_10_1016_j_softx_2023_101466 crossref_primary_10_1016_j_cad_2021_102991 crossref_primary_10_1177_16878140211002700 crossref_primary_10_1007_s10845_024_02406_2 crossref_primary_10_1007_s00170_022_10281_5 crossref_primary_10_1016_j_cad_2024_103806 crossref_primary_10_1080_00207543_2023_2201860 crossref_primary_10_1016_j_autcon_2022_104277 crossref_primary_10_1080_0951192X_2024_2387767 crossref_primary_10_1007_s10845_025_02575_8 crossref_primary_10_1016_j_jmsy_2025_02_016 crossref_primary_10_1016_j_rcim_2021_102260 crossref_primary_10_1080_0951192X_2020_1858507 crossref_primary_10_1007_s10845_022_01998_x crossref_primary_10_3389_frobt_2022_1021755 crossref_primary_10_1016_j_jmatprotec_2021_117485 crossref_primary_10_1038_s41598_022_19212_6 crossref_primary_10_1016_j_aei_2022_101680 crossref_primary_10_1093_jcde_qwad027 crossref_primary_10_1093_jcde_qwad025 crossref_primary_10_1109_TMI_2021_3134650 crossref_primary_10_1007_s10845_023_02122_3 crossref_primary_10_1016_j_heliyon_2023_e21515 crossref_primary_10_1145_3450626_3459818 crossref_primary_10_1016_j_advengsoft_2019_04_007 crossref_primary_10_1016_j_cad_2024_103813 crossref_primary_10_1016_j_cie_2024_110106 crossref_primary_10_1093_jcde_qwab072 crossref_primary_10_1299_jamdsm_2024jamdsm0056 crossref_primary_10_3390_su12155878 crossref_primary_10_1016_j_cad_2019_03_003 crossref_primary_10_1016_j_procir_2023_08_025 crossref_primary_10_1016_j_jmsy_2024_08_029 crossref_primary_10_1016_j_cam_2023_115166 crossref_primary_10_1115_1_4067334 crossref_primary_10_1016_j_mfglet_2023_07_025 crossref_primary_10_1109_ACCESS_2020_3018270 crossref_primary_10_1007_s12206_023_2403_4 crossref_primary_10_1007_s00170_023_11031_x crossref_primary_10_1080_00207543_2023_2290700 crossref_primary_10_1109_TII_2020_3030620 crossref_primary_10_1016_j_jmsy_2023_01_006 crossref_primary_10_1007_s10462_023_10535_y crossref_primary_10_1007_s12541_023_00836_1 crossref_primary_10_1007_s00170_022_09839_0 crossref_primary_10_1016_j_cie_2024_110359 crossref_primary_10_1007_s00158_021_02953_9 crossref_primary_10_1080_00207543_2021_1956675 crossref_primary_10_1016_j_procir_2020_04_132 crossref_primary_10_1016_j_procir_2021_11_295 crossref_primary_10_1007_s40964_024_00583_3 crossref_primary_10_1007_s10845_022_01939_8 crossref_primary_10_7232_JKIIE_2024_50_6_437 crossref_primary_10_1016_j_powtec_2021_07_056 crossref_primary_10_1016_j_rcim_2023_102688 crossref_primary_10_1016_j_procs_2022_12_319 crossref_primary_10_1007_s12206_023_0334_8 crossref_primary_10_1186_s42492_023_00133_8 crossref_primary_10_1145_3476576_3476602 crossref_primary_10_1080_0951192X_2021_1992659 crossref_primary_10_1007_s10845_021_01827_7 crossref_primary_10_1155_2022_9325200 crossref_primary_10_1016_j_compind_2022_103736 crossref_primary_10_1111_sapm_70043 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1155_2021_5609885 crossref_primary_10_1007_s12541_022_00764_6 crossref_primary_10_1016_j_aei_2024_102721 crossref_primary_10_3390_met12071079 crossref_primary_10_1109_ACCESS_2021_3055826 crossref_primary_10_3233_JIFS_189251 crossref_primary_10_3390_app12157900 crossref_primary_10_1007_s40997_023_00610_8 crossref_primary_10_1007_s10845_022_02009_9 crossref_primary_10_1007_s00170_022_09586_2 crossref_primary_10_3390_app8091542 crossref_primary_10_1088_2631_7990_acc76e crossref_primary_10_3390_machines12060416 crossref_primary_10_1080_0951192X_2021_1963483 crossref_primary_10_1016_j_rcim_2023_102661 crossref_primary_10_1016_j_promfg_2020_05_130 crossref_primary_10_1115_1_4045410 crossref_primary_10_1016_j_procir_2023_02_145 crossref_primary_10_1016_j_aei_2023_102256 crossref_primary_10_1016_j_csbj_2022_05_016 crossref_primary_10_2478_amns_2023_2_01340 crossref_primary_10_1093_jcde_qwad106 crossref_primary_10_1007_s10845_020_01550_9 crossref_primary_10_1016_j_cma_2021_114008 crossref_primary_10_1093_jcde_qwab044 crossref_primary_10_1016_j_engappai_2019_06_007 crossref_primary_10_1080_00207543_2023_2262050 crossref_primary_10_3233_JIFS_189319 crossref_primary_10_1142_S0219686724500227 crossref_primary_10_1038_s41598_021_01313_3 crossref_primary_10_1016_j_eswa_2021_115430 crossref_primary_10_1109_TII_2021_3136167 crossref_primary_10_1016_j_cagd_2024_102318 crossref_primary_10_1088_1742_6596_1879_3_032130 crossref_primary_10_1007_s10845_022_01984_3 crossref_primary_10_1109_TITS_2021_3089120 crossref_primary_10_1016_j_procir_2024_10_092 crossref_primary_10_1115_1_4052298 crossref_primary_10_15673_ret_v58i4_2567 crossref_primary_10_3390_app13053181 |
Cites_doi | 10.1109/TVCG.2003.1196006 10.1007/s001700200222 10.1016/S0010-4485(01)00128-2 10.1016/S0010-4485(98)00033-5 10.1109/ICCV.2015.169 10.1023/A:1008904109029 10.1016/S0010-4485(97)00003-1 10.1038/nature14539 10.1109/CVPR.2014.81 10.1109/CVPR.2015.7298594 10.1016/B978-0-444-81600-9.50007-9 10.1016/0010-4485(88)90050-4 10.1007/s00170-008-1536-z 10.1109/70.897789 10.1080/09511921003642121 10.1109/21.179847 10.1016/0010-4485(92)90064-H 10.7717/peerj.453 10.1109/5.726791 10.1023/A:1018521207901 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2018 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2018.03.006 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 22 |
ExternalDocumentID | 10_1016_j_cad_2018_03_006 S0010448518301349 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c391t-4219e2f188b94aae4243978c6afeefb5ae26d50f26e6c1c72edca053e02f5d4d3 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Fri Jul 25 06:30:28 EDT 2025 Tue Jul 01 03:34:35 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Fri Feb 23 02:28:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Machining feature recognition Convolution neural network Computer aided process planning (CAPP) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-4219e2f188b94aae4243978c6afeefb5ae26d50f26e6c1c72edca053e02f5d4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2081764543 |
PQPubID | 2045267 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2081764543 crossref_citationtrail_10_1016_j_cad_2018_03_006 crossref_primary_10_1016_j_cad_2018_03_006 elsevier_sciencedirect_doi_10_1016_j_cad_2018_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Gao, Shah (b6) 1998; 30 Kingma D, Ba J. Adam: a method for stochastic optimization; 2014. ArXiv preprint Krizhevsky, Sutskever, Hinton (b17) 2012 Brock A, Lim T, Ritchie JM, Weston N. Generative and discriminative voxel modeling with convolutional neural networks; 2016. ArXiv preprint Huang, Yip-Hoi (b8) 2002; 34 Maturana, Scherer (b25) 2015 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9. Neubert, Protzel (b36) 2014 Joshi, Chang (b3) 1988; 20 Lankalapalli, Chatterjee, Chang (b13) 1997; 8 Babai (b4) 2016 Sunil, Pande (b15) 2009; 41 Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2014. p. 580–7. Marefat, Kashyap (b5) 1992; 22 Henderson, Srinath, Stage, Walker, Regli (b9) 1994; 20 Ibrhim, McCormack (b7) 2002; 20 LeCun, Bengio, Hinton (b23) 2015; 521 Van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (b35) 2014; 2 Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2015; p. 1440–8. Han, Pratt, Regli (b1) 2000; 16 Nooruddin, Turk (b32) 2003; 9 Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d classification and segmentation; 2016. ArXiv preprint Schraudolph (b33) 1998 Onwubolu (b14) 1999; 10 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. ArXiv preprint Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1912–1920. . Nezis, Vosniakos (b12) 1997; 29 LeCun, Bottou, Bengio, Haffner (b16) 1998; 86 Ren, He, Girshick, Sun (b22) 2015 Hwang (b11) 1992 Balu A, Lore KG, Young G, Krishnamurthy A, Sarkar S. A deep 3d convolutional neural network based design for manufacturability framework; 2016. ArXiv preprint Hegde V, Zadeh R. Fusionnet: 3d object classification using multiple data representations; 2016. ArXiv preprint Min P. Binvox: 3d mesh voxelizer. Retrieved July 24, 2017. Prabhakar, Henderson (b10) 1992; 24 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org; 2015. Verma, Rajotia (b2) 2010; 23 Onwubolu (10.1016/j.cad.2018.03.006_b14) 1999; 10 Krizhevsky (10.1016/j.cad.2018.03.006_b17) 2012 Nooruddin (10.1016/j.cad.2018.03.006_b32) 2003; 9 Huang (10.1016/j.cad.2018.03.006_b8) 2002; 34 10.1016/j.cad.2018.03.006_b34 Henderson (10.1016/j.cad.2018.03.006_b9) 1994; 20 10.1016/j.cad.2018.03.006_b19 10.1016/j.cad.2018.03.006_b18 10.1016/j.cad.2018.03.006_b31 10.1016/j.cad.2018.03.006_b30 Verma (10.1016/j.cad.2018.03.006_b2) 2010; 23 Ibrhim (10.1016/j.cad.2018.03.006_b7) 2002; 20 Ren (10.1016/j.cad.2018.03.006_b22) 2015 Marefat (10.1016/j.cad.2018.03.006_b5) 1992; 22 Prabhakar (10.1016/j.cad.2018.03.006_b10) 1992; 24 LeCun (10.1016/j.cad.2018.03.006_b16) 1998; 86 Gao (10.1016/j.cad.2018.03.006_b6) 1998; 30 Schraudolph (10.1016/j.cad.2018.03.006_b33) 1998 Neubert (10.1016/j.cad.2018.03.006_b36) 2014 10.1016/j.cad.2018.03.006_b24 10.1016/j.cad.2018.03.006_b26 10.1016/j.cad.2018.03.006_b28 10.1016/j.cad.2018.03.006_b27 Nezis (10.1016/j.cad.2018.03.006_b12) 1997; 29 10.1016/j.cad.2018.03.006_b29 Han (10.1016/j.cad.2018.03.006_b1) 2000; 16 10.1016/j.cad.2018.03.006_b20 Sunil (10.1016/j.cad.2018.03.006_b15) 2009; 41 10.1016/j.cad.2018.03.006_b21 LeCun (10.1016/j.cad.2018.03.006_b23) 2015; 521 Babai (10.1016/j.cad.2018.03.006_b4) 2016 Van der Walt (10.1016/j.cad.2018.03.006_b35) 2014; 2 Joshi (10.1016/j.cad.2018.03.006_b3) 1988; 20 Hwang (10.1016/j.cad.2018.03.006_b11) 1992 Lankalapalli (10.1016/j.cad.2018.03.006_b13) 1997; 8 Maturana (10.1016/j.cad.2018.03.006_b25) 2015 |
References_xml | – volume: 10 start-page: 289 year: 1999 end-page: 299 ident: b14 article-title: Manufacturing features recognition using backpropagation neural networks publication-title: J Intell Manuf – reference: Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2015; p. 1440–8. – volume: 34 start-page: 561 year: 2002 end-page: 582 ident: b8 article-title: High-level feature recognition using feature relationship graphs publication-title: Comput Aided Des – reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. ArXiv preprint – volume: 2 start-page: e453 year: 2014 ident: b35 article-title: scikit-image: image processing in Python publication-title: PeerJ – start-page: 996 year: 2014 end-page: 1001 ident: b36 article-title: Compact watershed and preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms publication-title: Pattern recognition, 2014 22nd international conference on – reference: Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1912–1920. – volume: 30 start-page: 727 year: 1998 end-page: 739 ident: b6 article-title: Automatic recognition of interacting machining features based on minimal condition subgraph publication-title: Comput Aided Des – volume: 29 start-page: 523 year: 1997 end-page: 539 ident: b12 article-title: Recognizing 212d shape features using a neural network and heuristics publication-title: Comput Aided Des – start-page: 922 year: 2015 end-page: 928 ident: b25 article-title: Voxnet: A 3d convolutional neural network for real-time object recognition publication-title: Intelligent robots and systems, 2015 IEEE/RSJ international conference on – volume: 20 start-page: 58 year: 1988 end-page: 66 ident: b3 article-title: Graph-based heuristics for recognition of machined features from a 3D solid model publication-title: Comput Aided Des – start-page: 91 year: 2015 end-page: 99 ident: b22 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – reference: Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d classification and segmentation; 2016. ArXiv preprint – volume: 9 start-page: 191 year: 2003 end-page: 205 ident: b32 article-title: Simplification and repair of polygonal models using volumetric techniques publication-title: IEEE Trans Vis Comput Graphics – reference: Kingma D, Ba J. Adam: a method for stochastic optimization; 2014. ArXiv preprint – start-page: 207 year: 1998 end-page: 226 ident: b33 article-title: Centering neural network gradient factors publication-title: Neural networks: Tricks of the trade – start-page: 684 year: 2016 end-page: 697 ident: b4 article-title: Graph isomorphism in quasipolynomial time publication-title: Proceedings of the forty-eighth annual ACM symposium on theory of computing – reference: Brock A, Lim T, Ritchie JM, Weston N. Generative and discriminative voxel modeling with convolutional neural networks; 2016. ArXiv preprint – volume: 23 start-page: 353 year: 2010 end-page: 368 ident: b2 article-title: A review of machining feature recognition methodologies publication-title: Int J Comput Integr Manuf – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b23 article-title: Deep learning publication-title: Nature – reference: Hegde V, Zadeh R. Fusionnet: 3d object classification using multiple data representations; 2016. ArXiv preprint – volume: 8 start-page: 203 year: 1997 end-page: 214 ident: b13 article-title: Feature recognition using ART2: a self-organizing neural network publication-title: J Intell Manuf – start-page: 1097 year: 2012 end-page: 1105 ident: b17 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b16 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE – reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org; 2015. – reference: . – reference: Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2014. p. 580–7. – volume: 16 start-page: 782 year: 2000 end-page: 796 ident: b1 article-title: Manufacturing feature recognition from solid models: a status report publication-title: IEEE Trans Robot Autom – volume: 41 start-page: 932 year: 2009 end-page: 947 ident: b15 article-title: Automatic recognition of machining features using artificial neural networks publication-title: Int J Adv Manuf Technol – reference: Balu A, Lore KG, Young G, Krishnamurthy A, Sarkar S. A deep 3d convolutional neural network based design for manufacturability framework; 2016. ArXiv preprint – volume: 20 year: 1994 ident: b9 article-title: Boundary representation-based feature identification publication-title: Manuf Res Technol – year: 1992 ident: b11 article-title: Applying the perceptron to three-dimensional feature recognition – volume: 20 start-page: 817 year: 2002 end-page: 823 ident: b7 article-title: Process planning using adjacency-based feature extraction publication-title: Int J Adv Manuf Technol. – volume: 22 start-page: 1097 year: 1992 end-page: 1115 ident: b5 article-title: Automatic construction of process plans from solid model representations publication-title: IEEE Trans Syst Man Cybern – volume: 24 start-page: 381 year: 1992 end-page: 393 ident: b10 article-title: Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models publication-title: Comput Aided Des – reference: Min P. Binvox: 3d mesh voxelizer. Retrieved July 24, 2017. – volume: 9 start-page: 191 issue: 2 year: 2003 ident: 10.1016/j.cad.2018.03.006_b32 article-title: Simplification and repair of polygonal models using volumetric techniques publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2003.1196006 – volume: 20 start-page: 817 issue: 11 year: 2002 ident: 10.1016/j.cad.2018.03.006_b7 article-title: Process planning using adjacency-based feature extraction publication-title: Int J Adv Manuf Technol. doi: 10.1007/s001700200222 – volume: 34 start-page: 561 issue: 8 year: 2002 ident: 10.1016/j.cad.2018.03.006_b8 article-title: High-level feature recognition using feature relationship graphs publication-title: Comput Aided Des doi: 10.1016/S0010-4485(01)00128-2 – ident: 10.1016/j.cad.2018.03.006_b24 – volume: 30 start-page: 727 issue: 9 year: 1998 ident: 10.1016/j.cad.2018.03.006_b6 article-title: Automatic recognition of interacting machining features based on minimal condition subgraph publication-title: Comput Aided Des doi: 10.1016/S0010-4485(98)00033-5 – start-page: 996 year: 2014 ident: 10.1016/j.cad.2018.03.006_b36 article-title: Compact watershed and preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms – ident: 10.1016/j.cad.2018.03.006_b26 – start-page: 1097 year: 2012 ident: 10.1016/j.cad.2018.03.006_b17 article-title: Imagenet classification with deep convolutional neural networks – ident: 10.1016/j.cad.2018.03.006_b29 – ident: 10.1016/j.cad.2018.03.006_b21 doi: 10.1109/ICCV.2015.169 – ident: 10.1016/j.cad.2018.03.006_b28 – volume: 10 start-page: 289 issue: 3–4 year: 1999 ident: 10.1016/j.cad.2018.03.006_b14 article-title: Manufacturing features recognition using backpropagation neural networks publication-title: J Intell Manuf doi: 10.1023/A:1008904109029 – ident: 10.1016/j.cad.2018.03.006_b30 – volume: 29 start-page: 523 issue: 7 year: 1997 ident: 10.1016/j.cad.2018.03.006_b12 article-title: Recognizing 212d shape features using a neural network and heuristics publication-title: Comput Aided Des doi: 10.1016/S0010-4485(97)00003-1 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cad.2018.03.006_b23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.cad.2018.03.006_b34 – ident: 10.1016/j.cad.2018.03.006_b20 doi: 10.1109/CVPR.2014.81 – start-page: 922 year: 2015 ident: 10.1016/j.cad.2018.03.006_b25 article-title: Voxnet: A 3d convolutional neural network for real-time object recognition – ident: 10.1016/j.cad.2018.03.006_b19 doi: 10.1109/CVPR.2015.7298594 – volume: 20 year: 1994 ident: 10.1016/j.cad.2018.03.006_b9 article-title: Boundary representation-based feature identification publication-title: Manuf Res Technol doi: 10.1016/B978-0-444-81600-9.50007-9 – volume: 20 start-page: 58 issue: 2 year: 1988 ident: 10.1016/j.cad.2018.03.006_b3 article-title: Graph-based heuristics for recognition of machined features from a 3D solid model publication-title: Comput Aided Des doi: 10.1016/0010-4485(88)90050-4 – volume: 41 start-page: 932 issue: 9 year: 2009 ident: 10.1016/j.cad.2018.03.006_b15 article-title: Automatic recognition of machining features using artificial neural networks publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-008-1536-z – volume: 16 start-page: 782 issue: 6 year: 2000 ident: 10.1016/j.cad.2018.03.006_b1 article-title: Manufacturing feature recognition from solid models: a status report publication-title: IEEE Trans Robot Autom doi: 10.1109/70.897789 – start-page: 684 year: 2016 ident: 10.1016/j.cad.2018.03.006_b4 article-title: Graph isomorphism in quasipolynomial time – volume: 23 start-page: 353 issue: 4 year: 2010 ident: 10.1016/j.cad.2018.03.006_b2 article-title: A review of machining feature recognition methodologies publication-title: Int J Comput Integr Manuf doi: 10.1080/09511921003642121 – ident: 10.1016/j.cad.2018.03.006_b27 – start-page: 91 year: 2015 ident: 10.1016/j.cad.2018.03.006_b22 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – ident: 10.1016/j.cad.2018.03.006_b31 – volume: 22 start-page: 1097 issue: 5 year: 1992 ident: 10.1016/j.cad.2018.03.006_b5 article-title: Automatic construction of process plans from solid model representations publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.179847 – volume: 24 start-page: 381 issue: 7 year: 1992 ident: 10.1016/j.cad.2018.03.006_b10 article-title: Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models publication-title: Comput Aided Des doi: 10.1016/0010-4485(92)90064-H – volume: 2 start-page: e453 year: 2014 ident: 10.1016/j.cad.2018.03.006_b35 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – year: 1992 ident: 10.1016/j.cad.2018.03.006_b11 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.cad.2018.03.006_b16 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – start-page: 207 year: 1998 ident: 10.1016/j.cad.2018.03.006_b33 article-title: Centering neural network gradient factors – ident: 10.1016/j.cad.2018.03.006_b18 – volume: 8 start-page: 203 issue: 3 year: 1997 ident: 10.1016/j.cad.2018.03.006_b13 article-title: Feature recognition using ART2: a self-organizing neural network publication-title: J Intell Manuf doi: 10.1023/A:1018521207901 |
SSID | ssj0002139 |
Score | 2.5886831 |
Snippet | Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Artificial neural networks Automation CAD Computer aided design Computer aided process planning (CAPP) Convolution Convolution neural network Critical components Deep learning Digital computers Feature recognition Machining Machining feature recognition Manufacturing Mathematical models Neural networks Process planning Recognition Solid modelling Studies Three dimensional models |
Title | FeatureNet: Machining feature recognition based on 3D Convolution Neural Network |
URI | https://dx.doi.org/10.1016/j.cad.2018.03.006 https://www.proquest.com/docview/2081764543 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6WedGD8WeczqUHTyY4KKUUb8t0mRqJB5fs1kB5TWYMWybz6N_uKz_mj8QdvEFpgXy8vvcRvn4QciG4gShi4CQhziasEODIxBgHmT2y-cj3GJRun7EYT_j9NJi2yLBZC2NllXXur3J6ma3rln6NZn8xm9k1vvgqwZExSAxSn9tFfJyHNsqvPr5kHszzKwqM-cb2br5slhovnVizUE9WPqfir9r0K0uXpWe0R3ZrzkgH1W3tkxbkB2Tnm5PgIXmyVG61hBiKa_pYCiSxnZqqla5lQvOc2rqVUdzwb-hwnr_XsUetTQdeJa504UdkMrp9Ho6d-mcJjvYjr3A4ph5gxpMyjXiSAGeWakgtEgNg0iABJrLANUyA0J4OGWQ6wRkILjNBxjP_mLTzeQ4nhAotUmvaKSREXCM8aWggkKmx3ChN3Q5xG5iUrp3E7Q8tXlUjGXtRiKyyyCrXV4hsh1yuhywqG41NnXmDvfoRCwrT_KZh3eY5qXoivuFx6YXWtcw__d9Zz8i23as0f13SLpYrOEceUqS9MtB6ZGtw9zCOPwFRSdr3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsUwFL04LNSFOOJsFroRqm2a5qWCC3HgOT1cKLiLbXoDivSJPhU3_pQ_6E2bOoEuBHclbdJyenPvCT09AViRwmKacgyyFs0mqhAYqMzagJg9sfk0jjhWbp8d2T4XhxfJRR-8Nv_COFmlz_11Tq-ytW_Z8Ghu3F5duX98aSkhiDEoCtJYpF5ZeYTPT7Ruu9862KWXvMr5_t7ZTjvwWwsEJk6jXiBooiK3kVJ5KrIMBXeFWRmZWUSbJxlyWSSh5RKliUyLY2EyilcMuU0KUcQ0bj8MCkoXbtuE9ZcPXQmP4ppzU4Jzj9d8Sq1EZSZz7qSRqo1V5U_F8FtZqGrd_hiMepLKtmscxqEPywkY-WRdOAmnjjs-3GEHe5vspFJkUjuzdSt71yV1S-YKZcHoIN5lO93y0Qc7c74gdJdOLUSfgvN_gXAaBspuiTPApJG5cwmVClNhCJ68ZTFRuXVkLM_DWQgbmLTx1uVuB40b3WjUrjUhqx2yOow1ITsLa-9dbmvfjt8uFg32-kvwaaorv3VbaN6T9jP_ns6rqOVs0uK5v426DEPts5NjfXzQOZqHYXemFhwuwEDv7gEXiQT18qUq6Bhc_neUvwGnSRfq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FeatureNet%3A+Machining+feature+recognition+based+on+3D+Convolution+Neural+Network&rft.jtitle=Computer+aided+design&rft.au=Zhang%2C+Zhibo&rft.au=Jaiswal%2C+Prakhar&rft.au=Rai%2C+Rahul&rft.date=2018-08-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=101&rft.spage=12&rft_id=info:doi/10.1016%2Fj.cad.2018.03.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |