FeatureNet: Machining feature recognition based on 3D Convolution Neural Network
Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel fra...
Saved in:
Published in | Computer aided design Vol. 101; pp. 12 - 22 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Automated machining feature recognition, a sub-discipline of solid modeling, has been an active research area for last three decades and is a critical component in digital manufacturing thread for detecting manufacturing information from computer aided design (CAD) models. In this paper, a novel framework using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learn machining features from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of 3D CAD models with labeled machining features is automatically constructed. The proposed framework can recognize manufacturing features from the low-level geometric data such as voxels with a very high accuracy. The developed framework can also recognize planar intersecting features in the 3D CAD models. Extensive numerical experiments show that FeatureNet enables significant improvements over the state-of-the-arts manufacturing feature detection techniques. The developed data-driven framework can easily be extended to identify a large variety of machining features leading to a sound foundation for real-time computer aided process planning (CAPP) systems.
•A novel deep 3D CNN framework to learn machining features from CAD models.•A large-scale labeled manufacturing features dataset with 3D CAD models.•Significant improvements over the state-of-the-arts manufacturing feature detection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0010-4485 1879-2685 |
DOI: | 10.1016/j.cad.2018.03.006 |