Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells

A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The r...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 375; no. 6579; pp. 434 - 437
Main Authors Li, Xiaodong, Zhang, Wenxiao, Guo, Xuemin, Lu, Chunyan, Wei, Jiyao, Fang, Junfeng
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 28.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C. Perovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li et al . sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS Surface sulfidation of perovskite film increases its stability and improves electron extraction through band bending.
AbstractList A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C. Perovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li et al . sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS Surface sulfidation of perovskite film increases its stability and improves electron extraction through band bending.
Inverted solar cells’ surface sulfidationPerovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li et al. sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS
A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.
A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.
Author Li, Xiaodong
Wei, Jiyao
Zhang, Wenxiao
Fang, Junfeng
Lu, Chunyan
Guo, Xuemin
Author_xml – sequence: 1
  givenname: Xiaodong
  orcidid: 0000-0003-0184-008X
  surname: Li
  fullname: Li, Xiaodong
  organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
– sequence: 2
  givenname: Wenxiao
  surname: Zhang
  fullname: Zhang, Wenxiao
  organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
– sequence: 3
  givenname: Xuemin
  surname: Guo
  fullname: Guo, Xuemin
  organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
– sequence: 4
  givenname: Chunyan
  surname: Lu
  fullname: Lu, Chunyan
  organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
– sequence: 5
  givenname: Jiyao
  surname: Wei
  fullname: Wei, Jiyao
  organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
– sequence: 6
  givenname: Junfeng
  orcidid: 0000-0003-2094-8678
  surname: Fang
  fullname: Fang, Junfeng
  organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China., Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35084976$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFP3DAQha0KVBbac28oEpdeAmM7cZIjWlFAQuICZ8uxx623WXuxHST-PQ4sFyROI4-_92Y075gc-OCRkF8Uzill4iJph17juRqnVnTiG1lRGNp6YMAPyAqAi7qHrj0ixyltAMrfwL-TI95C3wydWBG1Dj7lOOvs_N_qH2aMYTP78iz9anyp0hyt0ljqZJ1RS7-yIVZorVuG58r5Z4wZTbUr2uf03-VCh0nFSuM0pR_k0Kop4c99PSGPf64e1jf13f317fryrtZ8oLluaDM2WjCjespHg0ZDzxCFZWpswDTQCKUHUBpYrw3VojOdBQWjaZVte8ZPyO93310MTzOmLLcuLRsoj2FOkgnG-75hAy_o2Sd0E-boy3aF4svBBF0MT_fUPG7RyF10WxVf5MfxCtC-AzqGlCJaqV1-u1COyk2SglxCkvuQ5D6korv4pPuw_krxCnNwmdU
CitedBy_id crossref_primary_10_1002_advs_202410807
crossref_primary_10_1016_j_nanoen_2024_110513
crossref_primary_10_1016_j_nanoen_2024_110634
crossref_primary_10_1021_acs_jpclett_2c03043
crossref_primary_10_1016_j_carbon_2023_118398
crossref_primary_10_1002_solr_202400054
crossref_primary_10_1088_2752_5724_acbb5a
crossref_primary_10_1021_acsaem_3c03138
crossref_primary_10_1088_1674_1056_ac8e9f
crossref_primary_10_1021_acsaem_4c01722
crossref_primary_10_1039_D3QM00574G
crossref_primary_10_1002_advs_202402065
crossref_primary_10_1002_eom2_12313
crossref_primary_10_1002_adma_202201681
crossref_primary_10_1039_D4EE02427C
crossref_primary_10_1039_D3EE03359G
crossref_primary_10_1021_acs_langmuir_3c03610
crossref_primary_10_1002_aenm_202202542
crossref_primary_10_1002_smtd_202301223
crossref_primary_10_1002_solr_202200710
crossref_primary_10_1038_s41560_024_01529_3
crossref_primary_10_1007_s10854_022_09565_z
crossref_primary_10_1002_anie_202300265
crossref_primary_10_1016_j_nanoen_2023_109245
crossref_primary_10_1038_s41586_023_05847_6
crossref_primary_10_1039_D3NR00133D
crossref_primary_10_1016_j_nanoen_2023_108281
crossref_primary_10_32604_jrm_2023_022773
crossref_primary_10_1002_solr_202300458
crossref_primary_10_1007_s40843_022_2199_5
crossref_primary_10_1016_j_measen_2022_100640
crossref_primary_10_1063_5_0210932
crossref_primary_10_1007_s41939_024_00699_7
crossref_primary_10_1002_solr_202300461
crossref_primary_10_1016_j_cej_2024_149590
crossref_primary_10_1002_solr_202300580
crossref_primary_10_1016_j_cej_2025_161648
crossref_primary_10_1038_s41560_023_01442_1
crossref_primary_10_1002_solr_202300345
crossref_primary_10_1002_adfm_202308428
crossref_primary_10_1002_ange_202414118
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1002_adma_202211006
crossref_primary_10_1021_acsenergylett_3c01330
crossref_primary_10_1002_aenm_202304345
crossref_primary_10_1016_j_chempr_2023_09_002
crossref_primary_10_1126_science_ado2351
crossref_primary_10_1016_j_cej_2024_151403
crossref_primary_10_1002_aenm_202201787
crossref_primary_10_1177_00405175231154539
crossref_primary_10_1002_solr_202200856
crossref_primary_10_1016_j_matlet_2022_132842
crossref_primary_10_1002_anie_202409945
crossref_primary_10_1021_acsnano_2c11615
crossref_primary_10_1038_s41467_023_36918_x
crossref_primary_10_3390_ma15072554
crossref_primary_10_1109_TED_2023_3314579
crossref_primary_10_1016_j_nanoen_2022_107924
crossref_primary_10_1039_D3TA02382F
crossref_primary_10_1002_adma_202211593
crossref_primary_10_1021_acsaem_2c00223
crossref_primary_10_1021_acsenergylett_4c01095
crossref_primary_10_1021_acsaem_2c02645
crossref_primary_10_1002_aenm_202303149
crossref_primary_10_1002_smll_202500174
crossref_primary_10_1021_acsaem_2c01798
crossref_primary_10_1126_science_adi4107
crossref_primary_10_1002_adfm_202208841
crossref_primary_10_1039_D3CC00862B
crossref_primary_10_1038_s41560_023_01358_w
crossref_primary_10_1016_j_jechem_2023_01_066
crossref_primary_10_1002_aenm_202404180
crossref_primary_10_1002_aenm_202201436
crossref_primary_10_1002_aenm_202202404
crossref_primary_10_1002_aenm_202201435
crossref_primary_10_1016_j_jechem_2024_10_027
crossref_primary_10_1002_adfm_202305013
crossref_primary_10_1021_acsami_2c15880
crossref_primary_10_1021_acsami_4c14812
crossref_primary_10_1016_j_decarb_2025_100107
crossref_primary_10_1016_j_cej_2022_138920
crossref_primary_10_1002_adfm_202307559
crossref_primary_10_1002_aenm_202304486
crossref_primary_10_1016_j_rinp_2024_107359
crossref_primary_10_1021_jacs_2c05235
crossref_primary_10_1002_eem2_12504
crossref_primary_10_1002_smll_202311673
crossref_primary_10_1038_s41560_022_01096_5
crossref_primary_10_1002_anie_202418606
crossref_primary_10_1002_adfm_202307310
crossref_primary_10_1016_j_cej_2024_158389
crossref_primary_10_1126_science_adj8858
crossref_primary_10_1002_ange_202219307
crossref_primary_10_1002_aenm_202203313
crossref_primary_10_1002_solr_202300650
crossref_primary_10_1002_solr_202200512
crossref_primary_10_1002_adfm_202205478
crossref_primary_10_1016_j_joule_2022_06_026
crossref_primary_10_1039_D2TA09434G
crossref_primary_10_1002_adma_202303275
crossref_primary_10_1002_aesr_202400003
crossref_primary_10_1021_acsami_4c03731
crossref_primary_10_1021_acsenergylett_3c00697
crossref_primary_10_1039_D2TA04381E
crossref_primary_10_1021_acsenergylett_2c01624
crossref_primary_10_1016_j_nanoen_2023_108363
crossref_primary_10_1016_j_xcrp_2023_101376
crossref_primary_10_1039_D2TA08258F
crossref_primary_10_1016_j_nanoen_2024_110547
crossref_primary_10_1016_j_jallcom_2023_169801
crossref_primary_10_1002_smll_202401487
crossref_primary_10_1002_smtd_202300223
crossref_primary_10_1002_smll_202402215
crossref_primary_10_1088_1361_6641_aca625
crossref_primary_10_1021_acsaem_4c00568
crossref_primary_10_1002_adfm_202310828
crossref_primary_10_1002_adma_202203794
crossref_primary_10_1038_s41560_023_01227_6
crossref_primary_10_1038_s41560_023_01421_6
crossref_primary_10_1088_2515_7655_ac975a
crossref_primary_10_1002_adom_202300221
crossref_primary_10_1007_s10854_023_10618_0
crossref_primary_10_3390_cryst14010086
crossref_primary_10_1002_adfm_202206311
crossref_primary_10_1002_aenm_202300025
crossref_primary_10_1016_j_nanoen_2023_109220
crossref_primary_10_1002_aenm_202300382
crossref_primary_10_1016_j_physe_2024_116069
crossref_primary_10_1038_s41566_023_01180_6
crossref_primary_10_1021_acsami_3c08980
crossref_primary_10_1039_D2TA08443K
crossref_primary_10_1002_eom2_12456
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1039_D4EE00568F
crossref_primary_10_1002_ange_202300678
crossref_primary_10_1016_j_solener_2023_111888
crossref_primary_10_1016_j_cej_2023_148275
crossref_primary_10_1002_adma_202414155
crossref_primary_10_7498_aps_73_20240827
crossref_primary_10_1002_adfm_202206585
crossref_primary_10_1016_j_cej_2023_148277
crossref_primary_10_1002_adfm_202208885
crossref_primary_10_1016_j_nanoen_2024_109543
crossref_primary_10_1039_D3SE00081H
crossref_primary_10_1016_j_nanoen_2024_110401
crossref_primary_10_1021_acsenergylett_2c02856
crossref_primary_10_1038_s41570_023_00492_z
crossref_primary_10_1002_anie_202414118
crossref_primary_10_1002_ange_202418606
crossref_primary_10_1016_j_heliyon_2024_e24689
crossref_primary_10_1016_j_mset_2023_07_005
crossref_primary_10_1002_solr_202300511
crossref_primary_10_1021_acsami_2c06903
crossref_primary_10_1002_solr_202300996
crossref_primary_10_1002_adfm_202402833
crossref_primary_10_1002_anie_202201300
crossref_primary_10_1016_j_mtphys_2022_100892
crossref_primary_10_1039_D3DT00662J
crossref_primary_10_1021_acs_jpca_4c04473
crossref_primary_10_1002_anie_202300678
crossref_primary_10_1002_adfm_202303038
crossref_primary_10_1016_j_cej_2022_137515
crossref_primary_10_1002_adfm_202410457
crossref_primary_10_1002_ece2_87
crossref_primary_10_1038_s41586_023_06610_7
crossref_primary_10_1016_j_jechem_2022_04_002
crossref_primary_10_1021_acsami_4c04617
crossref_primary_10_1002_ange_202201300
crossref_primary_10_1016_j_jece_2024_113383
crossref_primary_10_1021_acsenergylett_2c01771
crossref_primary_10_26599_NRE_2022_9120024
crossref_primary_10_3390_catal13060953
crossref_primary_10_1039_D2CS00110A
crossref_primary_10_1016_j_jpowsour_2022_232199
crossref_primary_10_3390_ijms231911792
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1002_anie_202211151
crossref_primary_10_1016_j_nanoen_2022_107747
crossref_primary_10_1002_smll_202407826
crossref_primary_10_1021_acsami_4c14300
crossref_primary_10_1126_science_ade9637
crossref_primary_10_1039_D4TC01243G
crossref_primary_10_1002_aenm_202406064
crossref_primary_10_1016_j_orgel_2023_106778
crossref_primary_10_26599_NRE_2022_9120011
crossref_primary_10_1002_smtd_202401802
crossref_primary_10_1002_ange_202403068
crossref_primary_10_1039_D3TA04992B
crossref_primary_10_1038_s41467_024_52925_y
crossref_primary_10_1088_1361_651X_ad16ef
crossref_primary_10_1007_s40843_023_2832_y
crossref_primary_10_3390_nano14110956
crossref_primary_10_1021_acsnano_4c11866
crossref_primary_10_1039_D3EE03405D
crossref_primary_10_3390_rs15133318
crossref_primary_10_1016_j_mtener_2023_101411
crossref_primary_10_3390_en17246344
crossref_primary_10_1016_j_cej_2023_144561
crossref_primary_10_1021_jacs_3c07222
crossref_primary_10_1021_acsami_4c21058
crossref_primary_10_1039_D3TA03213B
crossref_primary_10_1039_D3DT03501H
crossref_primary_10_1039_D4NR02391A
crossref_primary_10_1002_smll_202402385
crossref_primary_10_1007_s12200_022_00050_3
crossref_primary_10_1016_j_jechem_2022_08_045
crossref_primary_10_1039_D3EE03612J
crossref_primary_10_1002_adfm_202206703
crossref_primary_10_1002_adma_202310752
crossref_primary_10_1039_D2EE02732A
crossref_primary_10_1002_advs_202309111
crossref_primary_10_1002_adma_202309991
crossref_primary_10_1016_j_cej_2022_140160
crossref_primary_10_1039_D3NR00676J
crossref_primary_10_1002_adma_202404561
crossref_primary_10_1002_anie_202206914
crossref_primary_10_1002_adfm_202403563
crossref_primary_10_1002_cssc_202402549
crossref_primary_10_1016_j_mssp_2024_108309
crossref_primary_10_3390_nano12101736
crossref_primary_10_1016_j_cej_2024_151379
crossref_primary_10_1002_aenm_202401753
crossref_primary_10_1002_smll_202201831
crossref_primary_10_1126_science_abm8566
crossref_primary_10_1002_adfm_202214784
crossref_primary_10_1039_D4TA01453G
crossref_primary_10_1002_adfm_202205729
crossref_primary_10_1002_adom_202202809
crossref_primary_10_1002_anie_202300759
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1016_j_enchem_2024_100135
crossref_primary_10_1002_anie_202319882
crossref_primary_10_1002_solr_202300048
crossref_primary_10_1016_j_solmat_2024_112873
crossref_primary_10_1002_ange_202409945
crossref_primary_10_1016_j_solener_2023_02_027
crossref_primary_10_1002_adfm_202210071
crossref_primary_10_1038_s41563_025_02163_4
crossref_primary_10_1016_j_susmat_2023_e00622
crossref_primary_10_1002_ange_202304568
crossref_primary_10_1016_j_cej_2022_140163
crossref_primary_10_1021_acsami_4c02559
crossref_primary_10_1038_s43586_024_00373_9
crossref_primary_10_1007_s10854_023_10008_6
crossref_primary_10_1002_adma_202403682
crossref_primary_10_1016_j_scib_2024_07_026
crossref_primary_10_1002_advs_202206331
crossref_primary_10_1016_j_mtphys_2024_101616
crossref_primary_10_1016_j_nanoen_2025_110670
crossref_primary_10_1002_solr_202300253
crossref_primary_10_1016_j_jechem_2022_05_011
crossref_primary_10_1021_acsami_3c16317
crossref_primary_10_1016_j_cej_2024_154864
crossref_primary_10_1002_aenm_202202982
crossref_primary_10_1021_acsenergylett_3c00173
crossref_primary_10_1039_D4TA06502F
crossref_primary_10_1039_D2EE03082A
crossref_primary_10_1002_cjoc_202300245
crossref_primary_10_1021_acsenergylett_4c00140
crossref_primary_10_1038_s41467_022_34203_x
crossref_primary_10_1002_advs_202303992
crossref_primary_10_1016_j_nanoen_2023_109178
crossref_primary_10_1002_ange_202421637
crossref_primary_10_54097_hset_v58i_10108
crossref_primary_10_1007_s11426_024_1975_6
crossref_primary_10_1126_science_add7331
crossref_primary_10_3390_nano13202766
crossref_primary_10_1002_aenm_202202868
crossref_primary_10_1016_j_cej_2024_150382
crossref_primary_10_1038_s41560_023_01295_8
crossref_primary_10_1126_science_adg3755
crossref_primary_10_1021_acsami_4c05880
crossref_primary_10_1016_j_cej_2024_154611
crossref_primary_10_1016_j_joule_2024_02_019
crossref_primary_10_1063_5_0238732
crossref_primary_10_1002_adfm_202206838
crossref_primary_10_1002_adfm_202200174
crossref_primary_10_1002_adom_202201778
crossref_primary_10_1002_admi_202201436
crossref_primary_10_1002_aenm_202304302
crossref_primary_10_1002_ange_202300265
crossref_primary_10_1007_s40843_022_2437_9
crossref_primary_10_1038_s41467_024_54925_4
crossref_primary_10_1002_adom_202401829
crossref_primary_10_1126_science_ade9463
crossref_primary_10_1002_smll_202207226
crossref_primary_10_1016_j_nanoen_2024_110250
crossref_primary_10_1016_j_inoche_2025_114096
crossref_primary_10_1039_D2TA06672F
crossref_primary_10_1002_adfm_202308584
crossref_primary_10_1016_j_jallcom_2022_166760
crossref_primary_10_1016_j_jechem_2022_12_029
crossref_primary_10_1002_smll_202409943
crossref_primary_10_1021_acsenergylett_4c00240
crossref_primary_10_1002_smll_202407769
crossref_primary_10_1039_D2EE01326F
crossref_primary_10_1002_anie_202400018
crossref_primary_10_1016_j_jechem_2023_07_002
crossref_primary_10_1126_sciadv_abq8345
crossref_primary_10_1016_j_esci_2024_100243
crossref_primary_10_1021_acsami_4c04404
crossref_primary_10_1038_s41586_023_05938_4
crossref_primary_10_1002_anie_202216504
crossref_primary_10_1002_anie_202413660
crossref_primary_10_1039_D4TA00492B
crossref_primary_10_1002_adma_202309310
crossref_primary_10_1002_adfm_202422266
crossref_primary_10_1016_j_jechem_2022_12_015
crossref_primary_10_1021_acs_jpcc_3c06337
crossref_primary_10_1002_adfm_202214102
crossref_primary_10_1038_s41560_024_01689_2
crossref_primary_10_1002_smll_202402197
crossref_primary_10_1039_D3EE00413A
crossref_primary_10_1002_adfm_202414892
crossref_primary_10_1039_D3MH00716B
crossref_primary_10_1021_acsenergylett_3c02322
crossref_primary_10_1039_D3DT00169E
crossref_primary_10_1002_admi_202200483
crossref_primary_10_1016_j_cej_2024_152539
crossref_primary_10_1088_1674_1056_ac5988
crossref_primary_10_1021_acsami_3c16643
crossref_primary_10_1021_acsami_5c01012
crossref_primary_10_1021_jacs_2c13307
crossref_primary_10_1002_adma_202415627
crossref_primary_10_1002_adfm_202316500
crossref_primary_10_1088_1674_4926_44_8_080202
crossref_primary_10_1002_solr_202500104
crossref_primary_10_1002_adfm_202300396
crossref_primary_10_1039_D3EE00423F
crossref_primary_10_1002_adma_202206345
crossref_primary_10_1002_adma_202208522
crossref_primary_10_1021_acsanm_4c02050
crossref_primary_10_1016_j_jpowsour_2022_232595
crossref_primary_10_1002_ange_202319882
crossref_primary_10_1002_smll_202403294
crossref_primary_10_1016_j_cej_2022_140894
crossref_primary_10_1002_ange_202305221
crossref_primary_10_1039_D5EE00350D
crossref_primary_10_1002_smll_202303213
crossref_primary_10_1039_D4EE01839G
crossref_primary_10_1002_idm2_12145
crossref_primary_10_1038_s41586_023_06892_x
crossref_primary_10_1016_j_cclet_2025_111081
crossref_primary_10_1039_D3CC01379K
crossref_primary_10_1039_D4TC02303J
crossref_primary_10_1016_j_solmat_2024_112936
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1002_adma_202302839
crossref_primary_10_1021_acsami_2c15181
crossref_primary_10_1016_j_cej_2024_156798
crossref_primary_10_1039_D3EE02507A
crossref_primary_10_1016_j_orgel_2024_107161
crossref_primary_10_1002_chem_202403716
crossref_primary_10_1016_j_jechem_2022_11_030
crossref_primary_10_1002_anie_202419070
crossref_primary_10_1021_acsaem_3c00544
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1126_science_ade3126
crossref_primary_10_1021_acssuschemeng_3c00112
crossref_primary_10_1002_ange_202216504
crossref_primary_10_1002_smll_202304776
crossref_primary_10_1021_acsami_2c19549
crossref_primary_10_1039_D2NH00499B
crossref_primary_10_1002_adma_202301752
crossref_primary_10_1039_D2EE02698H
crossref_primary_10_1016_j_jechem_2024_06_034
crossref_primary_10_1002_adfm_202213963
crossref_primary_10_1002_adma_202301871
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1039_D4SE01437E
crossref_primary_10_1002_adfm_202213843
crossref_primary_10_1021_acs_jpclett_4c00857
crossref_primary_10_1016_j_fuel_2023_129388
crossref_primary_10_1002_adma_202301879
crossref_primary_10_1016_j_xcrp_2023_101649
crossref_primary_10_1002_anie_202412409
crossref_primary_10_1063_5_0210109
crossref_primary_10_1002_adma_202207656
crossref_primary_10_1007_s40820_023_01033_5
crossref_primary_10_1016_j_cclet_2023_109425
crossref_primary_10_1002_adma_202313860
crossref_primary_10_1039_D2DT02931F
crossref_primary_10_1039_D3RA08639A
crossref_primary_10_1039_D4EE00196F
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_3390_nano14090779
crossref_primary_10_1002_adma_202410273
crossref_primary_10_1039_D2EE02227C
crossref_primary_10_1002_aenm_202303941
crossref_primary_10_1103_PRXEnergy_1_013003
crossref_primary_10_1002_aenm_202302732
crossref_primary_10_1002_cjoc_202200542
crossref_primary_10_1016_j_jechem_2023_04_015
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1016_j_materresbull_2023_112209
crossref_primary_10_1002_aenm_202302614
crossref_primary_10_1002_aenm_202303946
crossref_primary_10_1039_D3QM00956D
crossref_primary_10_1016_j_jallcom_2023_169104
crossref_primary_10_1002_adma_202207763
crossref_primary_10_1002_adfm_202416118
crossref_primary_10_1002_ange_202211151
crossref_primary_10_1016_j_cej_2022_140569
crossref_primary_10_1021_acssuschemeng_2c04392
crossref_primary_10_15541_jim20230002
crossref_primary_10_1016_j_jechem_2023_05_046
crossref_primary_10_1002_cey2_387
crossref_primary_10_1016_j_cclet_2024_110700
crossref_primary_10_1016_j_mtener_2023_101392
crossref_primary_10_1038_s41467_024_51345_2
crossref_primary_10_1126_science_adn9646
crossref_primary_10_1016_j_jhazmat_2024_134796
crossref_primary_10_1016_j_joule_2024_06_018
crossref_primary_10_1016_j_cej_2022_140566
crossref_primary_10_1002_adfm_202313435
crossref_primary_10_1007_s40820_022_00992_5
crossref_primary_10_1039_D3TC02929H
crossref_primary_10_1002_smll_202400807
crossref_primary_10_1016_j_apsusc_2023_157286
crossref_primary_10_1002_adfm_202213429
crossref_primary_10_1002_adma_202409261
crossref_primary_10_1039_D4EE02486A
crossref_primary_10_1002_adma_202208320
crossref_primary_10_1002_ange_202206914
crossref_primary_10_1002_adfm_202202524
crossref_primary_10_1002_ange_202412409
crossref_primary_10_1002_adfm_202315604
crossref_primary_10_1021_acsenergylett_5c00074
crossref_primary_10_1016_j_orgel_2022_106566
crossref_primary_10_1016_j_jechem_2024_07_021
crossref_primary_10_1038_s41578_024_00678_x
crossref_primary_10_1002_adma_202412327
crossref_primary_10_1007_s40820_023_01134_1
crossref_primary_10_1016_j_mtphys_2023_101106
crossref_primary_10_1007_s40820_024_01630_y
crossref_primary_10_1021_acsami_3c04852
crossref_primary_10_1002_adma_202208431
crossref_primary_10_1021_acsami_2c16591
crossref_primary_10_1021_acs_jpcc_4c00841
crossref_primary_10_1016_j_apsusc_2024_161950
crossref_primary_10_1002_adfm_202407828
crossref_primary_10_1039_D3QM00610G
crossref_primary_10_34133_energymatadv_0002
crossref_primary_10_1039_D2TC04225H
crossref_primary_10_1002_adma_202400105
crossref_primary_10_1016_j_jmst_2022_05_038
crossref_primary_10_1016_j_physb_2024_415862
crossref_primary_10_1039_D4EE01044B
crossref_primary_10_1002_solr_202400879
crossref_primary_10_1126_science_ads0901
crossref_primary_10_1002_aenm_202300700
crossref_primary_10_1002_aenm_202303972
crossref_primary_10_1021_acsnano_2c01455
crossref_primary_10_1038_s43246_022_00281_z
crossref_primary_10_1039_D2TC03039J
crossref_primary_10_1002_adfm_202408829
crossref_primary_10_1002_anie_202305221
crossref_primary_10_1002_EXP_20220146
crossref_primary_10_1039_D2YA00303A
crossref_primary_10_1039_D3TA03314G
crossref_primary_10_1002_adfm_202300216
crossref_primary_10_1002_adfm_202407732
crossref_primary_10_1002_smll_202302383
crossref_primary_10_1002_EXP_20220027
crossref_primary_10_1016_j_joule_2024_05_007
crossref_primary_10_1002_adfm_202300576
crossref_primary_10_1002_solr_202201079
crossref_primary_10_1007_s40820_023_01046_0
crossref_primary_10_1039_D2TC05214H
crossref_primary_10_1021_jacs_2c13566
crossref_primary_10_1126_science_adq8385
crossref_primary_10_1021_acssuschemeng_3c08004
crossref_primary_10_1002_adma_202211959
crossref_primary_10_1002_adfm_202303841
crossref_primary_10_1021_acsami_2c17694
crossref_primary_10_1002_solr_202300078
crossref_primary_10_1016_j_cej_2022_141204
crossref_primary_10_1002_adfm_202203872
crossref_primary_10_1038_s43246_022_00291_x
crossref_primary_10_1039_D2TC02592B
crossref_primary_10_1016_j_jechem_2022_09_037
crossref_primary_10_26599_EMD_2024_9370029
crossref_primary_10_1002_cjoc_202200468
crossref_primary_10_1021_acsaem_2c01909
crossref_primary_10_1039_D4EE02279C
crossref_primary_10_1002_adma_202205143
crossref_primary_10_1002_adma_202303869
crossref_primary_10_1016_j_cej_2022_139495
crossref_primary_10_2139_ssrn_4046134
crossref_primary_10_1016_j_jpowsour_2023_233797
crossref_primary_10_1007_s11771_024_5768_3
crossref_primary_10_1002_cey2_586
crossref_primary_10_1016_j_cej_2025_161029
crossref_primary_10_1016_j_jechem_2023_05_006
crossref_primary_10_1002_ente_202201459
crossref_primary_10_1038_s41566_024_01541_9
crossref_primary_10_1016_j_ijleo_2023_171100
crossref_primary_10_1007_s11814_024_00319_7
crossref_primary_10_1016_j_jechem_2022_09_044
crossref_primary_10_1002_smll_202208260
crossref_primary_10_1002_solr_202300081
crossref_primary_10_1002_aenm_202204192
crossref_primary_10_1016_j_nxener_2024_100215
crossref_primary_10_1126_science_adf3349
crossref_primary_10_1002_adfm_202208793
crossref_primary_10_1016_j_ces_2024_120891
crossref_primary_10_3788_LOP221066
crossref_primary_10_1002_aenm_202405423
crossref_primary_10_1002_adma_202409340
crossref_primary_10_1002_smll_202409568
crossref_primary_10_1039_D4MH00701H
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1021_acsnano_4c04768
crossref_primary_10_1126_science_abq7013
crossref_primary_10_1002_adma_202312237
crossref_primary_10_1038_s41586_024_08159_5
crossref_primary_10_1039_D3NR00051F
crossref_primary_10_1007_s42864_023_00202_8
crossref_primary_10_1007_s40843_022_2277_9
crossref_primary_10_1021_acsnano_4c13136
crossref_primary_10_1002_adma_202302552
crossref_primary_10_1021_acsenergylett_3c01855
crossref_primary_10_1038_s41586_024_07712_6
crossref_primary_10_1002_smtd_202401244
crossref_primary_10_1038_s41467_023_43247_6
crossref_primary_10_1007_s40843_022_2255_2
crossref_primary_10_1016_j_cclet_2024_109587
crossref_primary_10_1016_j_cej_2024_156037
crossref_primary_10_1360_TB_2022_0647
crossref_primary_10_1002_aenm_202202395
crossref_primary_10_1002_aenm_202303092
crossref_primary_10_1021_acs_nanolett_3c01614
crossref_primary_10_1002_solr_202300740
crossref_primary_10_1039_D3TC01345F
crossref_primary_10_23919_IEN_2023_0026
crossref_primary_10_1039_D2QM01369J
crossref_primary_10_1002_adfm_202408686
crossref_primary_10_1021_acs_cgd_2c01494
crossref_primary_10_1007_s12274_022_4322_6
crossref_primary_10_1016_j_nanoen_2023_108326
crossref_primary_10_1016_j_jpcs_2023_111337
crossref_primary_10_1021_acsaem_2c03786
crossref_primary_10_1039_D3DT02186F
crossref_primary_10_1002_ange_202413660
crossref_primary_10_1016_j_nanoen_2023_108692
crossref_primary_10_1016_j_jcis_2023_08_158
crossref_primary_10_1063_5_0221521
crossref_primary_10_1002_anie_202421637
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1002_smtd_202400043
crossref_primary_10_1039_D3EE02591H
crossref_primary_10_1016_j_nanoen_2023_108690
crossref_primary_10_1088_1361_6633_ac7c7a
crossref_primary_10_1038_s41560_023_01288_7
crossref_primary_10_1039_D3TA06808K
crossref_primary_10_1038_s41586_022_05268_x
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1038_s41427_023_00474_z
crossref_primary_10_1038_s41467_024_50019_3
crossref_primary_10_1002_ange_202419070
crossref_primary_10_1016_j_apsusc_2023_156808
crossref_primary_10_3390_polym15122750
crossref_primary_10_1002_ange_202300759
crossref_primary_10_1021_acsenergylett_4c00961
crossref_primary_10_1002_anie_202304568
crossref_primary_10_1016_j_cej_2023_147267
crossref_primary_10_1039_D2EE03355K
crossref_primary_10_1039_D4TA03926B
crossref_primary_10_1016_j_xinn_2022_100310
crossref_primary_10_1002_solr_202400540
crossref_primary_10_1016_j_jechem_2024_04_035
crossref_primary_10_1002_eem2_12595
crossref_primary_10_1021_jacs_4c02220
crossref_primary_10_1016_j_colsurfa_2023_132015
crossref_primary_10_1002_adma_202207362
crossref_primary_10_1021_acssensors_4c02980
crossref_primary_10_1080_1448837X_2024_2308415
crossref_primary_10_1002_solr_202300712
crossref_primary_10_1002_adma_202205066
crossref_primary_10_1016_j_decarb_2023_100025
crossref_primary_10_1007_s10854_024_12757_4
crossref_primary_10_1002_advs_202410666
crossref_primary_10_1016_j_joule_2024_08_003
crossref_primary_10_1039_D3CC00431G
crossref_primary_10_1016_j_scib_2022_08_021
crossref_primary_10_1039_D4EE01147C
crossref_primary_10_1016_j_mssp_2022_106839
crossref_primary_10_1002_anie_202219307
crossref_primary_10_1016_j_decarb_2023_100020
crossref_primary_10_1016_j_jechem_2024_06_056
crossref_primary_10_1021_acsenergylett_3c01823
crossref_primary_10_1126_sciadv_abq4524
crossref_primary_10_1002_aenm_202301813
crossref_primary_10_3390_solar2040033
crossref_primary_10_1002_adma_202300169
crossref_primary_10_1021_acs_jpcc_2c03646
crossref_primary_10_7498_aps_72_20230593
crossref_primary_10_1002_solr_202200364
crossref_primary_10_1002_adma_202410779
crossref_primary_10_1016_j_cej_2024_158663
crossref_primary_10_1002_solr_202200120
crossref_primary_10_1016_j_cej_2022_140728
crossref_primary_10_1002_aenm_202204247
crossref_primary_10_1016_j_jechem_2024_05_012
crossref_primary_10_1016_j_joule_2022_04_015
crossref_primary_10_1002_adma_202400852
crossref_primary_10_1002_anie_202403068
crossref_primary_10_1038_s41467_023_42999_5
crossref_primary_10_1021_jacs_4c12042
crossref_primary_10_1016_j_cej_2022_139988
crossref_primary_10_1002_adfm_202314237
crossref_primary_10_1016_j_jechem_2024_12_040
crossref_primary_10_1016_j_jechem_2024_11_009
crossref_primary_10_1039_D4TA03900A
crossref_primary_10_1016_j_jechem_2024_11_008
crossref_primary_10_1016_j_joule_2022_10_007
crossref_primary_10_1021_acsenergylett_4c00839
crossref_primary_10_1038_s41560_023_01377_7
crossref_primary_10_3390_molecules27217590
crossref_primary_10_1016_j_apcatb_2023_123282
crossref_primary_10_1002_smll_202201694
crossref_primary_10_1002_solr_202300931
crossref_primary_10_1002_ifm2_20
crossref_primary_10_1002_adma_202312264
crossref_primary_10_1038_s41467_022_33752_5
crossref_primary_10_1016_j_ceramint_2024_10_287
crossref_primary_10_1021_acsami_3c13950
crossref_primary_10_1039_D3EE03550F
crossref_primary_10_1002_aenm_202404638
crossref_primary_10_1002_adfm_202409852
crossref_primary_10_1016_j_joule_2023_12_008
crossref_primary_10_1007_s12274_024_6639_9
crossref_primary_10_1039_D3TA07014J
crossref_primary_10_1021_acsaem_2c01289
crossref_primary_10_1002_pssa_202400390
crossref_primary_10_1126_science_adk1633
crossref_primary_10_1002_aenm_202202191
crossref_primary_10_1016_j_cej_2023_146498
crossref_primary_10_1021_acs_jpclett_4c00135
crossref_primary_10_1039_D4TC00688G
crossref_primary_10_1002_smll_202205604
crossref_primary_10_3390_molecules29112425
crossref_primary_10_1002_solr_202300901
crossref_primary_10_1039_D3TC01566A
crossref_primary_10_1016_j_jscs_2024_101829
crossref_primary_10_1038_s41570_023_00510_0
crossref_primary_10_1002_aenm_202203250
crossref_primary_10_1002_solr_202400226
crossref_primary_10_1002_adma_202408686
crossref_primary_10_1039_D4CS01231C
crossref_primary_10_1002_ange_202400018
crossref_primary_10_1002_smll_202304273
crossref_primary_10_1021_acsami_3c08119
crossref_primary_10_1002_adma_202106540
crossref_primary_10_1016_j_mtphys_2022_100815
crossref_primary_10_1021_acsaem_3c02258
crossref_primary_10_1002_aenm_202301607
crossref_primary_10_1016_j_joule_2025_101880
crossref_primary_10_1021_acsphotonics_2c01999
crossref_primary_10_1039_D2QM00452F
crossref_primary_10_3390_coatings14040409
crossref_primary_10_1016_j_orgel_2023_106918
crossref_primary_10_1002_smll_202203536
crossref_primary_10_1002_adfm_202304881
crossref_primary_10_1002_chem_202402205
crossref_primary_10_1021_jacs_3c12073
crossref_primary_10_1002_eem2_12426
Cites_doi 10.1038/s41560-019-0538-4
10.1002/aenm.201901852
10.1038/s41467-018-06204-2
10.1038/s41566-019-0398-2
10.1021/acsami.7b11977
10.1126/science.abb8985
10.1126/sciadv.abd1580
10.1038/ncomms6784
10.1038/s41586-019-1357-2
10.1021/jz5005285
10.1002/adma.200305395
10.1002/aenm.201502246
10.1126/science.aax3294
10.1038/s41560-019-0382-6
10.1038/s41528-018-0035-z
10.1021/nn502115k
10.1063/1.4966127
10.1126/science.aap9282
10.1021/acsnano.6b05825
10.1021/acsnano.5b03687
10.1038/s41586-021-03285-w
10.1038/s41586-019-1239-7
10.1016/j.nanoen.2019.103962
10.1021/acs.jpcc.7b04684
10.1002/aenm.201602358
10.1038/ncomms8026
10.1038/nature14563
10.1039/C5TA04712A
10.1038/s41560-020-00749-7
10.1126/science.abf7652
10.1021/nl5012992
10.1002/cssc.201600864
10.1016/j.joule.2020.12.009
10.1002/aenm.201800185
10.1126/science.aax8018
10.1016/j.nanoen.2019.02.009
10.1039/D1TA01572A
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abl5676
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 437
ExternalDocumentID 35084976
10_1126_science_abl5676
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
PKN
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-414b4c62da813bdedc082ee6f2ab40d4046ac90ac028cd1c67d7f0a0bd5af5823
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 11:55:30 EDT 2025
Fri Jul 25 19:20:44 EDT 2025
Wed Feb 19 02:27:15 EST 2025
Thu Apr 24 23:02:01 EDT 2025
Tue Jul 01 02:24:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6579
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-414b4c62da813bdedc082ee6f2ab40d4046ac90ac028cd1c67d7f0a0bd5af5823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2094-8678
0000-0003-0184-008X
PMID 35084976
PQID 2638075612
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2623884293
proquest_journals_2638075612
pubmed_primary_35084976
crossref_citationtrail_10_1126_science_abl5676
crossref_primary_10_1126_science_abl5676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-28
20220128
PublicationDateYYYYMMDD 2022-01-28
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_8_2
  doi: 10.1038/s41560-019-0538-4
– ident: e_1_3_2_33_2
  doi: 10.1002/aenm.201901852
– ident: e_1_3_2_19_2
  doi: 10.1038/s41467-018-06204-2
– ident: e_1_3_2_3_2
  doi: 10.1038/s41566-019-0398-2
– ident: e_1_3_2_39_2
  doi: 10.1021/acsami.7b11977
– ident: e_1_3_2_6_2
  doi: 10.1126/science.abb8985
– ident: e_1_3_2_24_2
  doi: 10.1126/sciadv.abd1580
– ident: e_1_3_2_34_2
  doi: 10.1038/ncomms6784
– ident: e_1_3_2_7_2
  doi: 10.1038/s41586-019-1357-2
– ident: e_1_3_2_11_2
  doi: 10.1021/jz5005285
– ident: e_1_3_2_32_2
  doi: 10.1002/adma.200305395
– ident: e_1_3_2_20_2
  doi: 10.1002/aenm.201502246
– ident: e_1_3_2_29_2
  doi: 10.1126/science.aax3294
– ident: e_1_3_2_27_2
  doi: 10.1038/s41560-019-0382-6
– ident: e_1_3_2_28_2
  doi: 10.1038/s41528-018-0035-z
– ident: e_1_3_2_12_2
  doi: 10.1021/nn502115k
– ident: e_1_3_2_37_2
  doi: 10.1063/1.4966127
– ident: e_1_3_2_9_2
  doi: 10.1126/science.aap9282
– ident: e_1_3_2_10_2
  doi: 10.1021/acsnano.6b05825
– ident: e_1_3_2_21_2
  doi: 10.1021/acsnano.5b03687
– ident: e_1_3_2_5_2
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_3_2_31_2
  doi: 10.1038/s41586-019-1239-7
– ident: e_1_3_2_23_2
  doi: 10.1016/j.nanoen.2019.103962
– ident: e_1_3_2_22_2
  doi: 10.1021/acs.jpcc.7b04684
– ident: e_1_3_2_35_2
  doi: 10.1002/aenm.201602358
– ident: e_1_3_2_16_2
  doi: 10.1038/ncomms8026
– ident: e_1_3_2_30_2
  doi: 10.1038/nature14563
– ident: e_1_3_2_38_2
  doi: 10.1039/C5TA04712A
– ident: e_1_3_2_36_2
  doi: 10.1038/s41560-020-00749-7
– ident: e_1_3_2_4_2
  doi: 10.1126/science.abf7652
– ident: e_1_3_2_15_2
  doi: 10.1021/nl5012992
– ident: e_1_3_2_17_2
  doi: 10.1002/cssc.201600864
– ident: e_1_3_2_13_2
  doi: 10.1016/j.joule.2020.12.009
– ident: e_1_3_2_14_2
  doi: 10.1002/aenm.201800185
– ident: e_1_3_2_18_2
  doi: 10.1126/science.aax8018
– ident: e_1_3_2_25_2
  doi: 10.1016/j.nanoen.2019.02.009
– ident: e_1_3_2_26_2
  doi: 10.1039/D1TA01572A
– ident: e_1_3_2_2_2
SSID ssj0009593
Score 2.7358978
Snippet A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed...
A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed...
Inverted solar cells’ surface sulfidationPerovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 434
SubjectTerms Aging
Bonding strength
Electric fields
Energy conversion efficiency
Heterojunctions
Perovskites
Photovoltaic cells
Solar cells
Sulfidation
Sulfur
Title Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells
URI https://www.ncbi.nlm.nih.gov/pubmed/35084976
https://www.proquest.com/docview/2638075612
https://www.proquest.com/docview/2623884293
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3wkBG4mFoSpXYjtM9dsA0IeBpE32LHNsRnaoUkWZa-V_8P47jEzdMrTR4idrEca2cL-fWz-cQ8tYZKWEsgFcIE0H8xSOVgkAsGB91YuLYtpvCvnyV55fi0yydDQa_e6ylZlWM9a-t-0r-R6pwDuTqdsn-g2TDpHACPoN84QgShuOdZOy6bfr6rxDvf3fEluUV2ClPbgO_sm5-lsrVkG0W5dxsaIW2rRvhWADzyvVjBqfT1Qu_rl0q97h20e6xy-jXfde10wLgkoa_eXrCDXzFqWcVdCQDvK2XcfjcEghmcwURMdrNfub6m61u4FogBjVtMnfWuCooYYrGUwWaao3oxsQFcwyQbiM4KmOshexNkde_sWsdyWLeV9Ach3gkytR3n0GNKzAXavFbtt0u9DpZ2rEqFqnMtlTgvmUZA1-xjZSYzHGCHCe4R_YYRCdsSPampx9Oz3ZWe8aaUr3dWt0a_naHdsQ4ra9z8Yg8xCCFTj3i9snAVgfkvm9buj4g-yjTmh5h1fJ3j4nqg5HeAiMt1hTBSHtgpIAZGsBIOzDSDRhpC0bagvEJuTz7ePH-PML-HZHmJ8kqEokohJbMqEnCC2ONBn_TWlkyVYjYiFhIpUElaPBxtUm0zExWxiouTKrKdML4UzKslpV9TigrJcS2pWU2KUVqJkrzTLntvyxV3HI-IuPuMeYai9u7HiuLfIfoRuQo3PDD13XZPfSwk0uOL3-dM-k6NbjWsiPyJlwG1eweiKrssnFjwB-egMMHy3vm5Rl-i0NgJCAUeHH3dbwkDzav0SEZgkjtK_CIV8VrxN8fw1S_5g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+heterojunctions+by+surface+sulfidation+for+efficient+inverted+perovskite+solar+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Xiaodong&rft.au=Zhang%2C+Wenxiao&rft.au=Guo%2C+Xuemin&rft.au=Lu%2C+Chunyan&rft.date=2022-01-28&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=375&rft.issue=6579&rft.spage=434&rft.epage=437&rft_id=info:doi/10.1126%2Fscience.abl5676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abl5676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon