Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells
A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The r...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 375; no. 6579; pp. 434 - 437 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
28.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.
Perovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li
et al
. sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS
Surface sulfidation of perovskite film increases its stability and improves electron extraction through band bending. |
---|---|
AbstractList | A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.
Perovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li
et al
. sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS
Surface sulfidation of perovskite film increases its stability and improves electron extraction through band bending. Inverted solar cells’ surface sulfidationPerovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li et al. sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C. A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C. |
Author | Li, Xiaodong Wei, Jiyao Zhang, Wenxiao Fang, Junfeng Lu, Chunyan Guo, Xuemin |
Author_xml | – sequence: 1 givenname: Xiaodong orcidid: 0000-0003-0184-008X surname: Li fullname: Li, Xiaodong organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China – sequence: 2 givenname: Wenxiao surname: Zhang fullname: Zhang, Wenxiao organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China – sequence: 3 givenname: Xuemin surname: Guo fullname: Guo, Xuemin organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China – sequence: 4 givenname: Chunyan surname: Lu fullname: Lu, Chunyan organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China – sequence: 5 givenname: Jiyao surname: Wei fullname: Wei, Jiyao organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China – sequence: 6 givenname: Junfeng orcidid: 0000-0003-2094-8678 surname: Fang fullname: Fang, Junfeng organization: School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China., Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35084976$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFP3DAQha0KVBbac28oEpdeAmM7cZIjWlFAQuICZ8uxx623WXuxHST-PQ4sFyROI4-_92Y075gc-OCRkF8Uzill4iJph17juRqnVnTiG1lRGNp6YMAPyAqAi7qHrj0ixyltAMrfwL-TI95C3wydWBG1Dj7lOOvs_N_qH2aMYTP78iz9anyp0hyt0ljqZJ1RS7-yIVZorVuG58r5Z4wZTbUr2uf03-VCh0nFSuM0pR_k0Kop4c99PSGPf64e1jf13f317fryrtZ8oLluaDM2WjCjespHg0ZDzxCFZWpswDTQCKUHUBpYrw3VojOdBQWjaZVte8ZPyO93310MTzOmLLcuLRsoj2FOkgnG-75hAy_o2Sd0E-boy3aF4svBBF0MT_fUPG7RyF10WxVf5MfxCtC-AzqGlCJaqV1-u1COyk2SglxCkvuQ5D6korv4pPuw_krxCnNwmdU |
CitedBy_id | crossref_primary_10_1002_advs_202410807 crossref_primary_10_1016_j_nanoen_2024_110513 crossref_primary_10_1016_j_nanoen_2024_110634 crossref_primary_10_1021_acs_jpclett_2c03043 crossref_primary_10_1016_j_carbon_2023_118398 crossref_primary_10_1002_solr_202400054 crossref_primary_10_1088_2752_5724_acbb5a crossref_primary_10_1021_acsaem_3c03138 crossref_primary_10_1088_1674_1056_ac8e9f crossref_primary_10_1021_acsaem_4c01722 crossref_primary_10_1039_D3QM00574G crossref_primary_10_1002_advs_202402065 crossref_primary_10_1002_eom2_12313 crossref_primary_10_1002_adma_202201681 crossref_primary_10_1039_D4EE02427C crossref_primary_10_1039_D3EE03359G crossref_primary_10_1021_acs_langmuir_3c03610 crossref_primary_10_1002_aenm_202202542 crossref_primary_10_1002_smtd_202301223 crossref_primary_10_1002_solr_202200710 crossref_primary_10_1038_s41560_024_01529_3 crossref_primary_10_1007_s10854_022_09565_z crossref_primary_10_1002_anie_202300265 crossref_primary_10_1016_j_nanoen_2023_109245 crossref_primary_10_1038_s41586_023_05847_6 crossref_primary_10_1039_D3NR00133D crossref_primary_10_1016_j_nanoen_2023_108281 crossref_primary_10_32604_jrm_2023_022773 crossref_primary_10_1002_solr_202300458 crossref_primary_10_1007_s40843_022_2199_5 crossref_primary_10_1016_j_measen_2022_100640 crossref_primary_10_1063_5_0210932 crossref_primary_10_1007_s41939_024_00699_7 crossref_primary_10_1002_solr_202300461 crossref_primary_10_1016_j_cej_2024_149590 crossref_primary_10_1002_solr_202300580 crossref_primary_10_1016_j_cej_2025_161648 crossref_primary_10_1038_s41560_023_01442_1 crossref_primary_10_1002_solr_202300345 crossref_primary_10_1002_adfm_202308428 crossref_primary_10_1002_ange_202414118 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1002_adma_202211006 crossref_primary_10_1021_acsenergylett_3c01330 crossref_primary_10_1002_aenm_202304345 crossref_primary_10_1016_j_chempr_2023_09_002 crossref_primary_10_1126_science_ado2351 crossref_primary_10_1016_j_cej_2024_151403 crossref_primary_10_1002_aenm_202201787 crossref_primary_10_1177_00405175231154539 crossref_primary_10_1002_solr_202200856 crossref_primary_10_1016_j_matlet_2022_132842 crossref_primary_10_1002_anie_202409945 crossref_primary_10_1021_acsnano_2c11615 crossref_primary_10_1038_s41467_023_36918_x crossref_primary_10_3390_ma15072554 crossref_primary_10_1109_TED_2023_3314579 crossref_primary_10_1016_j_nanoen_2022_107924 crossref_primary_10_1039_D3TA02382F crossref_primary_10_1002_adma_202211593 crossref_primary_10_1021_acsaem_2c00223 crossref_primary_10_1021_acsenergylett_4c01095 crossref_primary_10_1021_acsaem_2c02645 crossref_primary_10_1002_aenm_202303149 crossref_primary_10_1002_smll_202500174 crossref_primary_10_1021_acsaem_2c01798 crossref_primary_10_1126_science_adi4107 crossref_primary_10_1002_adfm_202208841 crossref_primary_10_1039_D3CC00862B crossref_primary_10_1038_s41560_023_01358_w crossref_primary_10_1016_j_jechem_2023_01_066 crossref_primary_10_1002_aenm_202404180 crossref_primary_10_1002_aenm_202201436 crossref_primary_10_1002_aenm_202202404 crossref_primary_10_1002_aenm_202201435 crossref_primary_10_1016_j_jechem_2024_10_027 crossref_primary_10_1002_adfm_202305013 crossref_primary_10_1021_acsami_2c15880 crossref_primary_10_1021_acsami_4c14812 crossref_primary_10_1016_j_decarb_2025_100107 crossref_primary_10_1016_j_cej_2022_138920 crossref_primary_10_1002_adfm_202307559 crossref_primary_10_1002_aenm_202304486 crossref_primary_10_1016_j_rinp_2024_107359 crossref_primary_10_1021_jacs_2c05235 crossref_primary_10_1002_eem2_12504 crossref_primary_10_1002_smll_202311673 crossref_primary_10_1038_s41560_022_01096_5 crossref_primary_10_1002_anie_202418606 crossref_primary_10_1002_adfm_202307310 crossref_primary_10_1016_j_cej_2024_158389 crossref_primary_10_1126_science_adj8858 crossref_primary_10_1002_ange_202219307 crossref_primary_10_1002_aenm_202203313 crossref_primary_10_1002_solr_202300650 crossref_primary_10_1002_solr_202200512 crossref_primary_10_1002_adfm_202205478 crossref_primary_10_1016_j_joule_2022_06_026 crossref_primary_10_1039_D2TA09434G crossref_primary_10_1002_adma_202303275 crossref_primary_10_1002_aesr_202400003 crossref_primary_10_1021_acsami_4c03731 crossref_primary_10_1021_acsenergylett_3c00697 crossref_primary_10_1039_D2TA04381E crossref_primary_10_1021_acsenergylett_2c01624 crossref_primary_10_1016_j_nanoen_2023_108363 crossref_primary_10_1016_j_xcrp_2023_101376 crossref_primary_10_1039_D2TA08258F crossref_primary_10_1016_j_nanoen_2024_110547 crossref_primary_10_1016_j_jallcom_2023_169801 crossref_primary_10_1002_smll_202401487 crossref_primary_10_1002_smtd_202300223 crossref_primary_10_1002_smll_202402215 crossref_primary_10_1088_1361_6641_aca625 crossref_primary_10_1021_acsaem_4c00568 crossref_primary_10_1002_adfm_202310828 crossref_primary_10_1002_adma_202203794 crossref_primary_10_1038_s41560_023_01227_6 crossref_primary_10_1038_s41560_023_01421_6 crossref_primary_10_1088_2515_7655_ac975a crossref_primary_10_1002_adom_202300221 crossref_primary_10_1007_s10854_023_10618_0 crossref_primary_10_3390_cryst14010086 crossref_primary_10_1002_adfm_202206311 crossref_primary_10_1002_aenm_202300025 crossref_primary_10_1016_j_nanoen_2023_109220 crossref_primary_10_1002_aenm_202300382 crossref_primary_10_1016_j_physe_2024_116069 crossref_primary_10_1038_s41566_023_01180_6 crossref_primary_10_1021_acsami_3c08980 crossref_primary_10_1039_D2TA08443K crossref_primary_10_1002_eom2_12456 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1039_D4EE00568F crossref_primary_10_1002_ange_202300678 crossref_primary_10_1016_j_solener_2023_111888 crossref_primary_10_1016_j_cej_2023_148275 crossref_primary_10_1002_adma_202414155 crossref_primary_10_7498_aps_73_20240827 crossref_primary_10_1002_adfm_202206585 crossref_primary_10_1016_j_cej_2023_148277 crossref_primary_10_1002_adfm_202208885 crossref_primary_10_1016_j_nanoen_2024_109543 crossref_primary_10_1039_D3SE00081H crossref_primary_10_1016_j_nanoen_2024_110401 crossref_primary_10_1021_acsenergylett_2c02856 crossref_primary_10_1038_s41570_023_00492_z crossref_primary_10_1002_anie_202414118 crossref_primary_10_1002_ange_202418606 crossref_primary_10_1016_j_heliyon_2024_e24689 crossref_primary_10_1016_j_mset_2023_07_005 crossref_primary_10_1002_solr_202300511 crossref_primary_10_1021_acsami_2c06903 crossref_primary_10_1002_solr_202300996 crossref_primary_10_1002_adfm_202402833 crossref_primary_10_1002_anie_202201300 crossref_primary_10_1016_j_mtphys_2022_100892 crossref_primary_10_1039_D3DT00662J crossref_primary_10_1021_acs_jpca_4c04473 crossref_primary_10_1002_anie_202300678 crossref_primary_10_1002_adfm_202303038 crossref_primary_10_1016_j_cej_2022_137515 crossref_primary_10_1002_adfm_202410457 crossref_primary_10_1002_ece2_87 crossref_primary_10_1038_s41586_023_06610_7 crossref_primary_10_1016_j_jechem_2022_04_002 crossref_primary_10_1021_acsami_4c04617 crossref_primary_10_1002_ange_202201300 crossref_primary_10_1016_j_jece_2024_113383 crossref_primary_10_1021_acsenergylett_2c01771 crossref_primary_10_26599_NRE_2022_9120024 crossref_primary_10_3390_catal13060953 crossref_primary_10_1039_D2CS00110A crossref_primary_10_1016_j_jpowsour_2022_232199 crossref_primary_10_3390_ijms231911792 crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1002_anie_202211151 crossref_primary_10_1016_j_nanoen_2022_107747 crossref_primary_10_1002_smll_202407826 crossref_primary_10_1021_acsami_4c14300 crossref_primary_10_1126_science_ade9637 crossref_primary_10_1039_D4TC01243G crossref_primary_10_1002_aenm_202406064 crossref_primary_10_1016_j_orgel_2023_106778 crossref_primary_10_26599_NRE_2022_9120011 crossref_primary_10_1002_smtd_202401802 crossref_primary_10_1002_ange_202403068 crossref_primary_10_1039_D3TA04992B crossref_primary_10_1038_s41467_024_52925_y crossref_primary_10_1088_1361_651X_ad16ef crossref_primary_10_1007_s40843_023_2832_y crossref_primary_10_3390_nano14110956 crossref_primary_10_1021_acsnano_4c11866 crossref_primary_10_1039_D3EE03405D crossref_primary_10_3390_rs15133318 crossref_primary_10_1016_j_mtener_2023_101411 crossref_primary_10_3390_en17246344 crossref_primary_10_1016_j_cej_2023_144561 crossref_primary_10_1021_jacs_3c07222 crossref_primary_10_1021_acsami_4c21058 crossref_primary_10_1039_D3TA03213B crossref_primary_10_1039_D3DT03501H crossref_primary_10_1039_D4NR02391A crossref_primary_10_1002_smll_202402385 crossref_primary_10_1007_s12200_022_00050_3 crossref_primary_10_1016_j_jechem_2022_08_045 crossref_primary_10_1039_D3EE03612J crossref_primary_10_1002_adfm_202206703 crossref_primary_10_1002_adma_202310752 crossref_primary_10_1039_D2EE02732A crossref_primary_10_1002_advs_202309111 crossref_primary_10_1002_adma_202309991 crossref_primary_10_1016_j_cej_2022_140160 crossref_primary_10_1039_D3NR00676J crossref_primary_10_1002_adma_202404561 crossref_primary_10_1002_anie_202206914 crossref_primary_10_1002_adfm_202403563 crossref_primary_10_1002_cssc_202402549 crossref_primary_10_1016_j_mssp_2024_108309 crossref_primary_10_3390_nano12101736 crossref_primary_10_1016_j_cej_2024_151379 crossref_primary_10_1002_aenm_202401753 crossref_primary_10_1002_smll_202201831 crossref_primary_10_1126_science_abm8566 crossref_primary_10_1002_adfm_202214784 crossref_primary_10_1039_D4TA01453G crossref_primary_10_1002_adfm_202205729 crossref_primary_10_1002_adom_202202809 crossref_primary_10_1002_anie_202300759 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1016_j_enchem_2024_100135 crossref_primary_10_1002_anie_202319882 crossref_primary_10_1002_solr_202300048 crossref_primary_10_1016_j_solmat_2024_112873 crossref_primary_10_1002_ange_202409945 crossref_primary_10_1016_j_solener_2023_02_027 crossref_primary_10_1002_adfm_202210071 crossref_primary_10_1038_s41563_025_02163_4 crossref_primary_10_1016_j_susmat_2023_e00622 crossref_primary_10_1002_ange_202304568 crossref_primary_10_1016_j_cej_2022_140163 crossref_primary_10_1021_acsami_4c02559 crossref_primary_10_1038_s43586_024_00373_9 crossref_primary_10_1007_s10854_023_10008_6 crossref_primary_10_1002_adma_202403682 crossref_primary_10_1016_j_scib_2024_07_026 crossref_primary_10_1002_advs_202206331 crossref_primary_10_1016_j_mtphys_2024_101616 crossref_primary_10_1016_j_nanoen_2025_110670 crossref_primary_10_1002_solr_202300253 crossref_primary_10_1016_j_jechem_2022_05_011 crossref_primary_10_1021_acsami_3c16317 crossref_primary_10_1016_j_cej_2024_154864 crossref_primary_10_1002_aenm_202202982 crossref_primary_10_1021_acsenergylett_3c00173 crossref_primary_10_1039_D4TA06502F crossref_primary_10_1039_D2EE03082A crossref_primary_10_1002_cjoc_202300245 crossref_primary_10_1021_acsenergylett_4c00140 crossref_primary_10_1038_s41467_022_34203_x crossref_primary_10_1002_advs_202303992 crossref_primary_10_1016_j_nanoen_2023_109178 crossref_primary_10_1002_ange_202421637 crossref_primary_10_54097_hset_v58i_10108 crossref_primary_10_1007_s11426_024_1975_6 crossref_primary_10_1126_science_add7331 crossref_primary_10_3390_nano13202766 crossref_primary_10_1002_aenm_202202868 crossref_primary_10_1016_j_cej_2024_150382 crossref_primary_10_1038_s41560_023_01295_8 crossref_primary_10_1126_science_adg3755 crossref_primary_10_1021_acsami_4c05880 crossref_primary_10_1016_j_cej_2024_154611 crossref_primary_10_1016_j_joule_2024_02_019 crossref_primary_10_1063_5_0238732 crossref_primary_10_1002_adfm_202206838 crossref_primary_10_1002_adfm_202200174 crossref_primary_10_1002_adom_202201778 crossref_primary_10_1002_admi_202201436 crossref_primary_10_1002_aenm_202304302 crossref_primary_10_1002_ange_202300265 crossref_primary_10_1007_s40843_022_2437_9 crossref_primary_10_1038_s41467_024_54925_4 crossref_primary_10_1002_adom_202401829 crossref_primary_10_1126_science_ade9463 crossref_primary_10_1002_smll_202207226 crossref_primary_10_1016_j_nanoen_2024_110250 crossref_primary_10_1016_j_inoche_2025_114096 crossref_primary_10_1039_D2TA06672F crossref_primary_10_1002_adfm_202308584 crossref_primary_10_1016_j_jallcom_2022_166760 crossref_primary_10_1016_j_jechem_2022_12_029 crossref_primary_10_1002_smll_202409943 crossref_primary_10_1021_acsenergylett_4c00240 crossref_primary_10_1002_smll_202407769 crossref_primary_10_1039_D2EE01326F crossref_primary_10_1002_anie_202400018 crossref_primary_10_1016_j_jechem_2023_07_002 crossref_primary_10_1126_sciadv_abq8345 crossref_primary_10_1016_j_esci_2024_100243 crossref_primary_10_1021_acsami_4c04404 crossref_primary_10_1038_s41586_023_05938_4 crossref_primary_10_1002_anie_202216504 crossref_primary_10_1002_anie_202413660 crossref_primary_10_1039_D4TA00492B crossref_primary_10_1002_adma_202309310 crossref_primary_10_1002_adfm_202422266 crossref_primary_10_1016_j_jechem_2022_12_015 crossref_primary_10_1021_acs_jpcc_3c06337 crossref_primary_10_1002_adfm_202214102 crossref_primary_10_1038_s41560_024_01689_2 crossref_primary_10_1002_smll_202402197 crossref_primary_10_1039_D3EE00413A crossref_primary_10_1002_adfm_202414892 crossref_primary_10_1039_D3MH00716B crossref_primary_10_1021_acsenergylett_3c02322 crossref_primary_10_1039_D3DT00169E crossref_primary_10_1002_admi_202200483 crossref_primary_10_1016_j_cej_2024_152539 crossref_primary_10_1088_1674_1056_ac5988 crossref_primary_10_1021_acsami_3c16643 crossref_primary_10_1021_acsami_5c01012 crossref_primary_10_1021_jacs_2c13307 crossref_primary_10_1002_adma_202415627 crossref_primary_10_1002_adfm_202316500 crossref_primary_10_1088_1674_4926_44_8_080202 crossref_primary_10_1002_solr_202500104 crossref_primary_10_1002_adfm_202300396 crossref_primary_10_1039_D3EE00423F crossref_primary_10_1002_adma_202206345 crossref_primary_10_1002_adma_202208522 crossref_primary_10_1021_acsanm_4c02050 crossref_primary_10_1016_j_jpowsour_2022_232595 crossref_primary_10_1002_ange_202319882 crossref_primary_10_1002_smll_202403294 crossref_primary_10_1016_j_cej_2022_140894 crossref_primary_10_1002_ange_202305221 crossref_primary_10_1039_D5EE00350D crossref_primary_10_1002_smll_202303213 crossref_primary_10_1039_D4EE01839G crossref_primary_10_1002_idm2_12145 crossref_primary_10_1038_s41586_023_06892_x crossref_primary_10_1016_j_cclet_2025_111081 crossref_primary_10_1039_D3CC01379K crossref_primary_10_1039_D4TC02303J crossref_primary_10_1016_j_solmat_2024_112936 crossref_primary_10_1039_D4EE02917H crossref_primary_10_1002_adma_202302839 crossref_primary_10_1021_acsami_2c15181 crossref_primary_10_1016_j_cej_2024_156798 crossref_primary_10_1039_D3EE02507A crossref_primary_10_1016_j_orgel_2024_107161 crossref_primary_10_1002_chem_202403716 crossref_primary_10_1016_j_jechem_2022_11_030 crossref_primary_10_1002_anie_202419070 crossref_primary_10_1021_acsaem_3c00544 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1126_science_ade3126 crossref_primary_10_1021_acssuschemeng_3c00112 crossref_primary_10_1002_ange_202216504 crossref_primary_10_1002_smll_202304776 crossref_primary_10_1021_acsami_2c19549 crossref_primary_10_1039_D2NH00499B crossref_primary_10_1002_adma_202301752 crossref_primary_10_1039_D2EE02698H crossref_primary_10_1016_j_jechem_2024_06_034 crossref_primary_10_1002_adfm_202213963 crossref_primary_10_1002_adma_202301871 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1039_D4SE01437E crossref_primary_10_1002_adfm_202213843 crossref_primary_10_1021_acs_jpclett_4c00857 crossref_primary_10_1016_j_fuel_2023_129388 crossref_primary_10_1002_adma_202301879 crossref_primary_10_1016_j_xcrp_2023_101649 crossref_primary_10_1002_anie_202412409 crossref_primary_10_1063_5_0210109 crossref_primary_10_1002_adma_202207656 crossref_primary_10_1007_s40820_023_01033_5 crossref_primary_10_1016_j_cclet_2023_109425 crossref_primary_10_1002_adma_202313860 crossref_primary_10_1039_D2DT02931F crossref_primary_10_1039_D3RA08639A crossref_primary_10_1039_D4EE00196F crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_3390_nano14090779 crossref_primary_10_1002_adma_202410273 crossref_primary_10_1039_D2EE02227C crossref_primary_10_1002_aenm_202303941 crossref_primary_10_1103_PRXEnergy_1_013003 crossref_primary_10_1002_aenm_202302732 crossref_primary_10_1002_cjoc_202200542 crossref_primary_10_1016_j_jechem_2023_04_015 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1016_j_materresbull_2023_112209 crossref_primary_10_1002_aenm_202302614 crossref_primary_10_1002_aenm_202303946 crossref_primary_10_1039_D3QM00956D crossref_primary_10_1016_j_jallcom_2023_169104 crossref_primary_10_1002_adma_202207763 crossref_primary_10_1002_adfm_202416118 crossref_primary_10_1002_ange_202211151 crossref_primary_10_1016_j_cej_2022_140569 crossref_primary_10_1021_acssuschemeng_2c04392 crossref_primary_10_15541_jim20230002 crossref_primary_10_1016_j_jechem_2023_05_046 crossref_primary_10_1002_cey2_387 crossref_primary_10_1016_j_cclet_2024_110700 crossref_primary_10_1016_j_mtener_2023_101392 crossref_primary_10_1038_s41467_024_51345_2 crossref_primary_10_1126_science_adn9646 crossref_primary_10_1016_j_jhazmat_2024_134796 crossref_primary_10_1016_j_joule_2024_06_018 crossref_primary_10_1016_j_cej_2022_140566 crossref_primary_10_1002_adfm_202313435 crossref_primary_10_1007_s40820_022_00992_5 crossref_primary_10_1039_D3TC02929H crossref_primary_10_1002_smll_202400807 crossref_primary_10_1016_j_apsusc_2023_157286 crossref_primary_10_1002_adfm_202213429 crossref_primary_10_1002_adma_202409261 crossref_primary_10_1039_D4EE02486A crossref_primary_10_1002_adma_202208320 crossref_primary_10_1002_ange_202206914 crossref_primary_10_1002_adfm_202202524 crossref_primary_10_1002_ange_202412409 crossref_primary_10_1002_adfm_202315604 crossref_primary_10_1021_acsenergylett_5c00074 crossref_primary_10_1016_j_orgel_2022_106566 crossref_primary_10_1016_j_jechem_2024_07_021 crossref_primary_10_1038_s41578_024_00678_x crossref_primary_10_1002_adma_202412327 crossref_primary_10_1007_s40820_023_01134_1 crossref_primary_10_1016_j_mtphys_2023_101106 crossref_primary_10_1007_s40820_024_01630_y crossref_primary_10_1021_acsami_3c04852 crossref_primary_10_1002_adma_202208431 crossref_primary_10_1021_acsami_2c16591 crossref_primary_10_1021_acs_jpcc_4c00841 crossref_primary_10_1016_j_apsusc_2024_161950 crossref_primary_10_1002_adfm_202407828 crossref_primary_10_1039_D3QM00610G crossref_primary_10_34133_energymatadv_0002 crossref_primary_10_1039_D2TC04225H crossref_primary_10_1002_adma_202400105 crossref_primary_10_1016_j_jmst_2022_05_038 crossref_primary_10_1016_j_physb_2024_415862 crossref_primary_10_1039_D4EE01044B crossref_primary_10_1002_solr_202400879 crossref_primary_10_1126_science_ads0901 crossref_primary_10_1002_aenm_202300700 crossref_primary_10_1002_aenm_202303972 crossref_primary_10_1021_acsnano_2c01455 crossref_primary_10_1038_s43246_022_00281_z crossref_primary_10_1039_D2TC03039J crossref_primary_10_1002_adfm_202408829 crossref_primary_10_1002_anie_202305221 crossref_primary_10_1002_EXP_20220146 crossref_primary_10_1039_D2YA00303A crossref_primary_10_1039_D3TA03314G crossref_primary_10_1002_adfm_202300216 crossref_primary_10_1002_adfm_202407732 crossref_primary_10_1002_smll_202302383 crossref_primary_10_1002_EXP_20220027 crossref_primary_10_1016_j_joule_2024_05_007 crossref_primary_10_1002_adfm_202300576 crossref_primary_10_1002_solr_202201079 crossref_primary_10_1007_s40820_023_01046_0 crossref_primary_10_1039_D2TC05214H crossref_primary_10_1021_jacs_2c13566 crossref_primary_10_1126_science_adq8385 crossref_primary_10_1021_acssuschemeng_3c08004 crossref_primary_10_1002_adma_202211959 crossref_primary_10_1002_adfm_202303841 crossref_primary_10_1021_acsami_2c17694 crossref_primary_10_1002_solr_202300078 crossref_primary_10_1016_j_cej_2022_141204 crossref_primary_10_1002_adfm_202203872 crossref_primary_10_1038_s43246_022_00291_x crossref_primary_10_1039_D2TC02592B crossref_primary_10_1016_j_jechem_2022_09_037 crossref_primary_10_26599_EMD_2024_9370029 crossref_primary_10_1002_cjoc_202200468 crossref_primary_10_1021_acsaem_2c01909 crossref_primary_10_1039_D4EE02279C crossref_primary_10_1002_adma_202205143 crossref_primary_10_1002_adma_202303869 crossref_primary_10_1016_j_cej_2022_139495 crossref_primary_10_2139_ssrn_4046134 crossref_primary_10_1016_j_jpowsour_2023_233797 crossref_primary_10_1007_s11771_024_5768_3 crossref_primary_10_1002_cey2_586 crossref_primary_10_1016_j_cej_2025_161029 crossref_primary_10_1016_j_jechem_2023_05_006 crossref_primary_10_1002_ente_202201459 crossref_primary_10_1038_s41566_024_01541_9 crossref_primary_10_1016_j_ijleo_2023_171100 crossref_primary_10_1007_s11814_024_00319_7 crossref_primary_10_1016_j_jechem_2022_09_044 crossref_primary_10_1002_smll_202208260 crossref_primary_10_1002_solr_202300081 crossref_primary_10_1002_aenm_202204192 crossref_primary_10_1016_j_nxener_2024_100215 crossref_primary_10_1126_science_adf3349 crossref_primary_10_1002_adfm_202208793 crossref_primary_10_1016_j_ces_2024_120891 crossref_primary_10_3788_LOP221066 crossref_primary_10_1002_aenm_202405423 crossref_primary_10_1002_adma_202409340 crossref_primary_10_1002_smll_202409568 crossref_primary_10_1039_D4MH00701H crossref_primary_10_1002_adma_202311025 crossref_primary_10_1021_acsnano_4c04768 crossref_primary_10_1126_science_abq7013 crossref_primary_10_1002_adma_202312237 crossref_primary_10_1038_s41586_024_08159_5 crossref_primary_10_1039_D3NR00051F crossref_primary_10_1007_s42864_023_00202_8 crossref_primary_10_1007_s40843_022_2277_9 crossref_primary_10_1021_acsnano_4c13136 crossref_primary_10_1002_adma_202302552 crossref_primary_10_1021_acsenergylett_3c01855 crossref_primary_10_1038_s41586_024_07712_6 crossref_primary_10_1002_smtd_202401244 crossref_primary_10_1038_s41467_023_43247_6 crossref_primary_10_1007_s40843_022_2255_2 crossref_primary_10_1016_j_cclet_2024_109587 crossref_primary_10_1016_j_cej_2024_156037 crossref_primary_10_1360_TB_2022_0647 crossref_primary_10_1002_aenm_202202395 crossref_primary_10_1002_aenm_202303092 crossref_primary_10_1021_acs_nanolett_3c01614 crossref_primary_10_1002_solr_202300740 crossref_primary_10_1039_D3TC01345F crossref_primary_10_23919_IEN_2023_0026 crossref_primary_10_1039_D2QM01369J crossref_primary_10_1002_adfm_202408686 crossref_primary_10_1021_acs_cgd_2c01494 crossref_primary_10_1007_s12274_022_4322_6 crossref_primary_10_1016_j_nanoen_2023_108326 crossref_primary_10_1016_j_jpcs_2023_111337 crossref_primary_10_1021_acsaem_2c03786 crossref_primary_10_1039_D3DT02186F crossref_primary_10_1002_ange_202413660 crossref_primary_10_1016_j_nanoen_2023_108692 crossref_primary_10_1016_j_jcis_2023_08_158 crossref_primary_10_1063_5_0221521 crossref_primary_10_1002_anie_202421637 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1002_smtd_202400043 crossref_primary_10_1039_D3EE02591H crossref_primary_10_1016_j_nanoen_2023_108690 crossref_primary_10_1088_1361_6633_ac7c7a crossref_primary_10_1038_s41560_023_01288_7 crossref_primary_10_1039_D3TA06808K crossref_primary_10_1038_s41586_022_05268_x crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1038_s41427_023_00474_z crossref_primary_10_1038_s41467_024_50019_3 crossref_primary_10_1002_ange_202419070 crossref_primary_10_1016_j_apsusc_2023_156808 crossref_primary_10_3390_polym15122750 crossref_primary_10_1002_ange_202300759 crossref_primary_10_1021_acsenergylett_4c00961 crossref_primary_10_1002_anie_202304568 crossref_primary_10_1016_j_cej_2023_147267 crossref_primary_10_1039_D2EE03355K crossref_primary_10_1039_D4TA03926B crossref_primary_10_1016_j_xinn_2022_100310 crossref_primary_10_1002_solr_202400540 crossref_primary_10_1016_j_jechem_2024_04_035 crossref_primary_10_1002_eem2_12595 crossref_primary_10_1021_jacs_4c02220 crossref_primary_10_1016_j_colsurfa_2023_132015 crossref_primary_10_1002_adma_202207362 crossref_primary_10_1021_acssensors_4c02980 crossref_primary_10_1080_1448837X_2024_2308415 crossref_primary_10_1002_solr_202300712 crossref_primary_10_1002_adma_202205066 crossref_primary_10_1016_j_decarb_2023_100025 crossref_primary_10_1007_s10854_024_12757_4 crossref_primary_10_1002_advs_202410666 crossref_primary_10_1016_j_joule_2024_08_003 crossref_primary_10_1039_D3CC00431G crossref_primary_10_1016_j_scib_2022_08_021 crossref_primary_10_1039_D4EE01147C crossref_primary_10_1016_j_mssp_2022_106839 crossref_primary_10_1002_anie_202219307 crossref_primary_10_1016_j_decarb_2023_100020 crossref_primary_10_1016_j_jechem_2024_06_056 crossref_primary_10_1021_acsenergylett_3c01823 crossref_primary_10_1126_sciadv_abq4524 crossref_primary_10_1002_aenm_202301813 crossref_primary_10_3390_solar2040033 crossref_primary_10_1002_adma_202300169 crossref_primary_10_1021_acs_jpcc_2c03646 crossref_primary_10_7498_aps_72_20230593 crossref_primary_10_1002_solr_202200364 crossref_primary_10_1002_adma_202410779 crossref_primary_10_1016_j_cej_2024_158663 crossref_primary_10_1002_solr_202200120 crossref_primary_10_1016_j_cej_2022_140728 crossref_primary_10_1002_aenm_202204247 crossref_primary_10_1016_j_jechem_2024_05_012 crossref_primary_10_1016_j_joule_2022_04_015 crossref_primary_10_1002_adma_202400852 crossref_primary_10_1002_anie_202403068 crossref_primary_10_1038_s41467_023_42999_5 crossref_primary_10_1021_jacs_4c12042 crossref_primary_10_1016_j_cej_2022_139988 crossref_primary_10_1002_adfm_202314237 crossref_primary_10_1016_j_jechem_2024_12_040 crossref_primary_10_1016_j_jechem_2024_11_009 crossref_primary_10_1039_D4TA03900A crossref_primary_10_1016_j_jechem_2024_11_008 crossref_primary_10_1016_j_joule_2022_10_007 crossref_primary_10_1021_acsenergylett_4c00839 crossref_primary_10_1038_s41560_023_01377_7 crossref_primary_10_3390_molecules27217590 crossref_primary_10_1016_j_apcatb_2023_123282 crossref_primary_10_1002_smll_202201694 crossref_primary_10_1002_solr_202300931 crossref_primary_10_1002_ifm2_20 crossref_primary_10_1002_adma_202312264 crossref_primary_10_1038_s41467_022_33752_5 crossref_primary_10_1016_j_ceramint_2024_10_287 crossref_primary_10_1021_acsami_3c13950 crossref_primary_10_1039_D3EE03550F crossref_primary_10_1002_aenm_202404638 crossref_primary_10_1002_adfm_202409852 crossref_primary_10_1016_j_joule_2023_12_008 crossref_primary_10_1007_s12274_024_6639_9 crossref_primary_10_1039_D3TA07014J crossref_primary_10_1021_acsaem_2c01289 crossref_primary_10_1002_pssa_202400390 crossref_primary_10_1126_science_adk1633 crossref_primary_10_1002_aenm_202202191 crossref_primary_10_1016_j_cej_2023_146498 crossref_primary_10_1021_acs_jpclett_4c00135 crossref_primary_10_1039_D4TC00688G crossref_primary_10_1002_smll_202205604 crossref_primary_10_3390_molecules29112425 crossref_primary_10_1002_solr_202300901 crossref_primary_10_1039_D3TC01566A crossref_primary_10_1016_j_jscs_2024_101829 crossref_primary_10_1038_s41570_023_00510_0 crossref_primary_10_1002_aenm_202203250 crossref_primary_10_1002_solr_202400226 crossref_primary_10_1002_adma_202408686 crossref_primary_10_1039_D4CS01231C crossref_primary_10_1002_ange_202400018 crossref_primary_10_1002_smll_202304273 crossref_primary_10_1021_acsami_3c08119 crossref_primary_10_1002_adma_202106540 crossref_primary_10_1016_j_mtphys_2022_100815 crossref_primary_10_1021_acsaem_3c02258 crossref_primary_10_1002_aenm_202301607 crossref_primary_10_1016_j_joule_2025_101880 crossref_primary_10_1021_acsphotonics_2c01999 crossref_primary_10_1039_D2QM00452F crossref_primary_10_3390_coatings14040409 crossref_primary_10_1016_j_orgel_2023_106918 crossref_primary_10_1002_smll_202203536 crossref_primary_10_1002_adfm_202304881 crossref_primary_10_1002_chem_202402205 crossref_primary_10_1021_jacs_3c12073 crossref_primary_10_1002_eem2_12426 |
Cites_doi | 10.1038/s41560-019-0538-4 10.1002/aenm.201901852 10.1038/s41467-018-06204-2 10.1038/s41566-019-0398-2 10.1021/acsami.7b11977 10.1126/science.abb8985 10.1126/sciadv.abd1580 10.1038/ncomms6784 10.1038/s41586-019-1357-2 10.1021/jz5005285 10.1002/adma.200305395 10.1002/aenm.201502246 10.1126/science.aax3294 10.1038/s41560-019-0382-6 10.1038/s41528-018-0035-z 10.1021/nn502115k 10.1063/1.4966127 10.1126/science.aap9282 10.1021/acsnano.6b05825 10.1021/acsnano.5b03687 10.1038/s41586-021-03285-w 10.1038/s41586-019-1239-7 10.1016/j.nanoen.2019.103962 10.1021/acs.jpcc.7b04684 10.1002/aenm.201602358 10.1038/ncomms8026 10.1038/nature14563 10.1039/C5TA04712A 10.1038/s41560-020-00749-7 10.1126/science.abf7652 10.1021/nl5012992 10.1002/cssc.201600864 10.1016/j.joule.2020.12.009 10.1002/aenm.201800185 10.1126/science.aax8018 10.1016/j.nanoen.2019.02.009 10.1039/D1TA01572A |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abl5676 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 437 |
ExternalDocumentID | 35084976 10_1126_science_abl5676 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 PKN UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-414b4c62da813bdedc082ee6f2ab40d4046ac90ac028cd1c67d7f0a0bd5af5823 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 11:55:30 EDT 2025 Fri Jul 25 19:20:44 EDT 2025 Wed Feb 19 02:27:15 EST 2025 Thu Apr 24 23:02:01 EDT 2025 Tue Jul 01 02:24:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6579 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-414b4c62da813bdedc082ee6f2ab40d4046ac90ac028cd1c67d7f0a0bd5af5823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2094-8678 0000-0003-0184-008X |
PMID | 35084976 |
PQID | 2638075612 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2623884293 proquest_journals_2638075612 pubmed_primary_35084976 crossref_citationtrail_10_1126_science_abl5676 crossref_primary_10_1126_science_abl5676 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-28 20220128 |
PublicationDateYYYYMMDD | 2022-01-28 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_8_2 doi: 10.1038/s41560-019-0538-4 – ident: e_1_3_2_33_2 doi: 10.1002/aenm.201901852 – ident: e_1_3_2_19_2 doi: 10.1038/s41467-018-06204-2 – ident: e_1_3_2_3_2 doi: 10.1038/s41566-019-0398-2 – ident: e_1_3_2_39_2 doi: 10.1021/acsami.7b11977 – ident: e_1_3_2_6_2 doi: 10.1126/science.abb8985 – ident: e_1_3_2_24_2 doi: 10.1126/sciadv.abd1580 – ident: e_1_3_2_34_2 doi: 10.1038/ncomms6784 – ident: e_1_3_2_7_2 doi: 10.1038/s41586-019-1357-2 – ident: e_1_3_2_11_2 doi: 10.1021/jz5005285 – ident: e_1_3_2_32_2 doi: 10.1002/adma.200305395 – ident: e_1_3_2_20_2 doi: 10.1002/aenm.201502246 – ident: e_1_3_2_29_2 doi: 10.1126/science.aax3294 – ident: e_1_3_2_27_2 doi: 10.1038/s41560-019-0382-6 – ident: e_1_3_2_28_2 doi: 10.1038/s41528-018-0035-z – ident: e_1_3_2_12_2 doi: 10.1021/nn502115k – ident: e_1_3_2_37_2 doi: 10.1063/1.4966127 – ident: e_1_3_2_9_2 doi: 10.1126/science.aap9282 – ident: e_1_3_2_10_2 doi: 10.1021/acsnano.6b05825 – ident: e_1_3_2_21_2 doi: 10.1021/acsnano.5b03687 – ident: e_1_3_2_5_2 doi: 10.1038/s41586-021-03285-w – ident: e_1_3_2_31_2 doi: 10.1038/s41586-019-1239-7 – ident: e_1_3_2_23_2 doi: 10.1016/j.nanoen.2019.103962 – ident: e_1_3_2_22_2 doi: 10.1021/acs.jpcc.7b04684 – ident: e_1_3_2_35_2 doi: 10.1002/aenm.201602358 – ident: e_1_3_2_16_2 doi: 10.1038/ncomms8026 – ident: e_1_3_2_30_2 doi: 10.1038/nature14563 – ident: e_1_3_2_38_2 doi: 10.1039/C5TA04712A – ident: e_1_3_2_36_2 doi: 10.1038/s41560-020-00749-7 – ident: e_1_3_2_4_2 doi: 10.1126/science.abf7652 – ident: e_1_3_2_15_2 doi: 10.1021/nl5012992 – ident: e_1_3_2_17_2 doi: 10.1002/cssc.201600864 – ident: e_1_3_2_13_2 doi: 10.1016/j.joule.2020.12.009 – ident: e_1_3_2_14_2 doi: 10.1002/aenm.201800185 – ident: e_1_3_2_18_2 doi: 10.1126/science.aax8018 – ident: e_1_3_2_25_2 doi: 10.1016/j.nanoen.2019.02.009 – ident: e_1_3_2_26_2 doi: 10.1039/D1TA01572A – ident: e_1_3_2_2_2 |
SSID | ssj0009593 |
Score | 2.7358978 |
Snippet | A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed... A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed... Inverted solar cells’ surface sulfidationPerovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 434 |
SubjectTerms | Aging Bonding strength Electric fields Energy conversion efficiency Heterojunctions Perovskites Photovoltaic cells Solar cells Sulfidation Sulfur |
Title | Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35084976 https://www.proquest.com/docview/2638075612 https://www.proquest.com/docview/2623884293 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3wkBG4mFoSpXYjtM9dsA0IeBpE32LHNsRnaoUkWZa-V_8P47jEzdMrTR4idrEca2cL-fWz-cQ8tYZKWEsgFcIE0H8xSOVgkAsGB91YuLYtpvCvnyV55fi0yydDQa_e6ylZlWM9a-t-0r-R6pwDuTqdsn-g2TDpHACPoN84QgShuOdZOy6bfr6rxDvf3fEluUV2ClPbgO_sm5-lsrVkG0W5dxsaIW2rRvhWADzyvVjBqfT1Qu_rl0q97h20e6xy-jXfde10wLgkoa_eXrCDXzFqWcVdCQDvK2XcfjcEghmcwURMdrNfub6m61u4FogBjVtMnfWuCooYYrGUwWaao3oxsQFcwyQbiM4KmOshexNkde_sWsdyWLeV9Ach3gkytR3n0GNKzAXavFbtt0u9DpZ2rEqFqnMtlTgvmUZA1-xjZSYzHGCHCe4R_YYRCdsSPampx9Oz3ZWe8aaUr3dWt0a_naHdsQ4ra9z8Yg8xCCFTj3i9snAVgfkvm9buj4g-yjTmh5h1fJ3j4nqg5HeAiMt1hTBSHtgpIAZGsBIOzDSDRhpC0bagvEJuTz7ePH-PML-HZHmJ8kqEokohJbMqEnCC2ONBn_TWlkyVYjYiFhIpUElaPBxtUm0zExWxiouTKrKdML4UzKslpV9TigrJcS2pWU2KUVqJkrzTLntvyxV3HI-IuPuMeYai9u7HiuLfIfoRuQo3PDD13XZPfSwk0uOL3-dM-k6NbjWsiPyJlwG1eweiKrssnFjwB-egMMHy3vm5Rl-i0NgJCAUeHH3dbwkDzav0SEZgkjtK_CIV8VrxN8fw1S_5g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+heterojunctions+by+surface+sulfidation+for+efficient+inverted+perovskite+solar+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Xiaodong&rft.au=Zhang%2C+Wenxiao&rft.au=Guo%2C+Xuemin&rft.au=Lu%2C+Chunyan&rft.date=2022-01-28&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=375&rft.issue=6579&rft.spage=434&rft.epage=437&rft_id=info:doi/10.1126%2Fscience.abl5676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abl5676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |