Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells

A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The r...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 375; no. 6579; pp. 434 - 437
Main Authors Li, Xiaodong, Zhang, Wenxiao, Guo, Xuemin, Lu, Chunyan, Wei, Jiyao, Fang, Junfeng
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 28.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)–rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C. Perovskite solar cells (PSCs) with high power conversion efficiency (PCE) and stability have been reported in regular n-i-p devices, but inverted p-i-n PSCs that could be easier to use in tandem solar cells usually have lower PCEs (22 to 23%) Li et al . sulfurized a lead-rich layer with hexamethyldisilathiane, and the lead-sulfur bonds shifted the Fermi level of perovskite-transporter layer interface to create an electric field that enhanced electron extraction. The inverted PSCs had PCEs >24%, and the strong lead-sulfur bonds helped to maintain >90% of this efficiency during illuminated operation for 1000 hours at 55°C and after dark aging at 85°C for 2200 hours. —PDS Surface sulfidation of perovskite film increases its stability and improves electron extraction through band bending.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.abl5676