Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil

Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. Methods Maize and faba bean were grown in P-accumulated soil as either sole cropping...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 448; no. 1-2; pp. 587 - 601
Main Authors Liao, Dan, Zhang, Chaochun, Li, Haigang, Lambers, Hans, Zhang, Fusuo
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. Methods Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance. Results The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-P i fraction, followed by sole maize, which depleted the NaOH-P i and concentrated HCl-P o fractions. Sole faba bean depleted the alkali-soluble P o fraction (extracted by NaHCO 3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-P o fraction, which was similar to the effect of sole maize. Conclusions Both sole crops and intercrops mainly depleted 1 M HCl-P i , but differed in P o depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile P o fraction, while sole faba bean depleted the labile and moderately labile P o fractions.
AbstractList Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. Methods Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance. Results The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-P i fraction, followed by sole maize, which depleted the NaOH-P i and concentrated HCl-P o fractions. Sole faba bean depleted the alkali-soluble P o fraction (extracted by NaHCO 3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-P o fraction, which was similar to the effect of sole maize. Conclusions Both sole crops and intercrops mainly depleted 1 M HCl-P i , but differed in P o depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile P o fraction, while sole faba bean depleted the labile and moderately labile P o fractions.
AimsThis study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool.MethodsMaize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance.ResultsThe intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-Pi fraction, followed by sole maize, which depleted the NaOH-Pi and concentrated HCl-Po fractions. Sole faba bean depleted the alkali-soluble Po fraction (extracted by NaHCO3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-Po fraction, which was similar to the effect of sole maize.ConclusionsBoth sole crops and intercrops mainly depleted 1 M HCl-Pi, but differed in Po depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile Po fraction, while sole faba bean depleted the labile and moderately labile Po fractions.
Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. Methods Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance. Results The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-P.sub.i fraction, followed by sole maize, which depleted the NaOH-P.sub.i and concentrated HCl-P.sub.o fractions. Sole faba bean depleted the alkali-soluble P.sub.o fraction (extracted by NaHCO.sub.3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-P.sub.o fraction, which was similar to the effect of sole maize. Conclusions Both sole crops and intercrops mainly depleted 1 M HCl-P.sub.i, but differed in P.sub.o depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile P.sub.o fraction, while sole faba bean depleted the labile and moderately labile P.sub.o fractions.
AIMS: This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. METHODS: Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance. RESULTS: The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-Pᵢ fraction, followed by sole maize, which depleted the NaOH-Pᵢ and concentrated HCl-Pₒ fractions. Sole faba bean depleted the alkali-soluble Pₒ fraction (extracted by NaHCO₃ and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-Pₒ fraction, which was similar to the effect of sole maize. CONCLUSIONS: Both sole crops and intercrops mainly depleted 1 M HCl-Pᵢ, but differed in Pₒ depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile Pₒ fraction, while sole faba bean depleted the labile and moderately labile Pₒ fractions.
Audience Academic
Author Zhang, Chaochun
Lambers, Hans
Zhang, Fusuo
Li, Haigang
Liao, Dan
Author_xml – sequence: 1
  givenname: Dan
  surname: Liao
  fullname: Liao, Dan
  organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University
– sequence: 2
  givenname: Chaochun
  orcidid: 0000-0002-1278-8400
  surname: Zhang
  fullname: Zhang, Chaochun
  email: zhangcc@cau.edu.cn
  organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University
– sequence: 3
  givenname: Haigang
  surname: Li
  fullname: Li, Haigang
  organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University
– sequence: 4
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
  organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University, School of Biological Sciences and Institute of Agriculture, The University of Western Australia
– sequence: 5
  givenname: Fusuo
  surname: Zhang
  fullname: Zhang, Fusuo
  organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University
BookMark eNp9kclqHDEQhkVwIGMnL5CTIJdc2tbWavXRDNnA4EsCuQm1lrGMRupIPRjn6VPtTgj4YIS24v9KpfrP0Vku2SP0npJLSshw1SilRHSEkY4IIWF9hXa0H3jXEy7P0I4QzjoyjD_foPPW7sl6p3KHHvd3Jh98wzHjVmLC811pMOup4VCNXWLJcCoplYeYD6BJHtta5tk7bLIDbvH1X-Bo4m__FA5mMnjyJuNDLQ8Zl4ytSdZUXyDz-tJb9DqY1Py7v_sF-vH50_f91-7m9su3_fVNZ_lIl477wVjhRsWCI2NwSg3OWUfHPhg3MeN6JvtBTdw6OTA-hVERwwc6MUvYKBS_QB-3vHMtv06-LfoYm_UpmbzWolnf05FLwQRIPzyT3pdTzVCdZlxJRUUvBlBdbqqDSV7HHMoCjYLh_DFa8CVEiF9LOkpJBF8rUBsAbWqt-qBtXMzaWQBj0pTo1US9majBRP1koiaAsmfoXOPR1MeXIb5BDcRgbv3_jReoP-25shE
CitedBy_id crossref_primary_10_1016_j_rhisph_2024_100907
crossref_primary_10_1007_s11104_021_04915_y
crossref_primary_10_1007_s42729_024_01801_1
crossref_primary_10_1016_j_heliyon_2023_e22859
crossref_primary_10_1016_j_jenvman_2024_120807
crossref_primary_10_3390_ijerph191912262
crossref_primary_10_3390_su151612342
crossref_primary_10_1007_s11104_021_04935_8
crossref_primary_10_3389_fpls_2025_1544893
crossref_primary_10_1016_j_tplants_2022_11_008
crossref_primary_10_3390_soilsystems8010003
crossref_primary_10_1007_s42729_023_01232_4
crossref_primary_10_1016_j_isci_2022_104168
crossref_primary_10_1007_s42729_024_01638_8
crossref_primary_10_1007_s00344_022_10836_6
crossref_primary_10_1007_s11104_023_06297_9
crossref_primary_10_2139_ssrn_4174976
crossref_primary_10_3390_agronomy11112230
crossref_primary_10_1016_j_still_2021_105147
crossref_primary_10_1002_ldr_3963
crossref_primary_10_1016_j_envexpbot_2024_105875
crossref_primary_10_3389_fmicb_2022_972587
crossref_primary_10_1016_j_chemosphere_2022_137452
crossref_primary_10_1371_journal_pone_0300573
crossref_primary_10_1016_j_ecoenv_2023_115441
crossref_primary_10_3390_agronomy15020286
crossref_primary_10_1016_j_chemosphere_2021_130501
crossref_primary_10_3390_agronomy14102372
crossref_primary_10_1016_j_apsoil_2024_105624
crossref_primary_10_1016_j_still_2024_106106
crossref_primary_10_3390_agronomy13112846
crossref_primary_10_1007_s11104_022_05554_7
crossref_primary_10_1016_j_still_2021_105214
crossref_primary_10_1007_s42729_020_00388_7
crossref_primary_10_1080_01904167_2024_2304165
crossref_primary_10_1007_s11104_023_06252_8
crossref_primary_10_3390_agriculture12111949
crossref_primary_10_1007_s11104_023_06426_4
crossref_primary_10_1007_s11104_022_05309_4
crossref_primary_10_1080_15427528_2021_1872754
crossref_primary_10_1007_s11104_023_06271_5
crossref_primary_10_3390_life13102098
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_3390_agronomy13123072
crossref_primary_10_1007_s42729_020_00407_7
crossref_primary_10_1016_j_fcr_2021_108207
crossref_primary_10_3389_fmicb_2022_1028969
crossref_primary_10_3390_agronomy14061121
crossref_primary_10_17221_140_2019_SWR
Cites_doi 10.1007/BF02415514
10.2136/sssaj1996.03615995006000040030x
10.1093/aob/mcu191
10.1007/BF02374754
10.1007/s11104-011-0950-4
10.1007/s11104-007-9516-x
10.1046/j.1365-2389.2000.00307.x
10.1071/SR07069
10.1002/jpln.200800223
10.1071/CP14370
10.1016/0038-0717(82)90004-9
10.1073/pnas.0704591104
10.1007/s10705-005-0593-z
10.2136/sssaj1994.03615995005800050021x
10.1016/j.eja.2018.03.004
10.2136/sssaj1984.03615995004800040031x
10.1111/j.1469-8137.1983.tb03470.x
10.1016/j.fcr.2013.05.027
10.1093/pcp/pcy094
10.1023/A:1025544817872
10.1038/srep18663
10.1046/j.1469-8137.2003.00695.x
10.1023/A:1004266411694
10.1023/A:1022389707051
10.1371/journal.pone.0216881
10.24047/BC103136
10.1002/jpln.201200307
10.1007/s11104-005-3936-2
10.1016/j.geoderma.2018.11.049
10.1080/00288233.1989.10423477
10.1007/s11104-015-2392-x
10.1073/pnas.1523580113
10.1016/0016-7061(76)90066-5
10.1016/0016-7061(85)90001-1
10.1007/s10658-019-01711-4
10.1016/j.agee.2013.11.022
10.1371/journal.pone.0135518
10.1023/A:1004543716488
10.1071/SR13168
10.1016/j.fcr.2019.107661
10.1007/s11104-009-9990-4
10.1038/srep36981
10.1016/S0038-0717(01)00207-3
10.1016/S0003-2670(00)88444-5
10.1111/1462-2920.14289
10.1126/science.248.4954.477
10.1016/j.still.2018.01.006
10.1111/nph.12778
10.1007/s11104-011-0880-1
10.1097/00010694-199810000-00006
10.1007/s11104-004-4336-8
10.1016/j.agee.2016.03.007
10.2136/sssaj1985.03615995004900040023x
10.1023/A:1004656205144
10.1007/BF00029271
10.1146/annurev.arplant.50.1.665
10.2136/sssaj1960.03615995002400030016x
10.1007/s00374-011-0612-y
10.1016/j.geoderma.2016.06.022
10.1016/j.fcr.2012.08.014
10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
10.1002/jpln.200390037
10.1007/s11104-013-1651-y
10.1023/A:1013351617532
10.1071/AR05060
10.1007/s11104-007-9512-1
10.1111/j.1469-8137.1982.tb03291.x
10.17221/428/2010-PSE
10.1007/BF02187361
10.1097/00010694-197801000-00008
10.1002/jpln.19941570104
10.1097/00010694-199704000-00003
10.1002/jpln.19871500102
10.1023/A:1022367312851
10.4141/P98-130
10.1007/s00374-012-0671-8
10.2136/sssaj1982.03615995004600050017x
10.1007/s11104-020-04476-6
10.4067/S0718-95162017000300020
10.1073/pnas.1113675109
10.1007/s00442-005-0256-4
10.1016/0016-7061(81)90024-0
10.1038/35077146
10.1071/FP05005
10.1002/fes3.187
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
COPYRIGHT 2020 Springer
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-020-04460-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 601
ExternalDocumentID A619660438
10_1007_s11104_020_04460_0
GrantInformation_xml – fundername: the National Key R & D Program
  grantid: 2017YFD0200200/2017YFD0200207
– fundername: the European Union’s Horizon 2020 Program for Research & Innovation
  grantid: 727217
– fundername: the ‘973’ project of Chinese Ministry of Agriculture
  grantid: 2015CB150400
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c391t-3e7ac4d982fd09fd887ddcd195fadb2ad526578b3cd6723bf980a371b2c029483
IEDL.DBID U2A
ISSN 0032-079X
IngestDate Fri Jul 11 15:11:59 EDT 2025
Fri Jul 25 10:06:27 EDT 2025
Tue Jun 10 20:28:58 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 01:47:08 EDT 2025
Fri Feb 21 02:33:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Maize
Faba bean
Hedley fractionation
Soil phosphorus fractions
Intercropping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-3e7ac4d982fd09fd887ddcd195fadb2ad526578b3cd6723bf980a371b2c029483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1278-8400
PQID 2386814547
PQPubID 54098
PageCount 15
ParticipantIDs proquest_miscellaneous_2551936424
proquest_journals_2386814547
gale_infotracacademiconefile_A619660438
crossref_citationtrail_10_1007_s11104_020_04460_0
crossref_primary_10_1007_s11104_020_04460_0
springer_journals_10_1007_s11104_020_04460_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Ae, Otani (CR1) 1997; 196
Maltais-Landry, Scow, Brennan, Torbert, Vitousek (CR53) 2016; 223
Ae, Otani, Makino, Tazawa (CR3) 1996; 186
Hedley, White, Nye (CR30) 1982; 91
Chen, Condron, Davis, Sherlock (CR15) 2002; 34
CR36
Sattari, Bouwman, Giller, van Ittersum (CR67) 2012; 109
Cabeza, Myint, Steingrobe, Stritsis, Schulze, Claassen (CR13) 2017; 17
Bowman, Cole (CR11) 1978; 125
El Dessougi, Dreele, Claassen (CR20) 2003; 166
Xu, Li, Zhang, Yu, van der Werf, Zhang (CR87) 2020; 246
Hassan, Marschner, McNeill, Tang (CR28) 2012; 48
Schmidt, Buol, Kamprath (CR68) 1996; 60
Smeck (CR71) 1985; 36
Bünemann, Keller, Hoop, Jud, Boivin, Frossard (CR12) 2013; 370
Zhang, Postma, York, Lynch (CR88) 2014; 114
Rose, Hardiputra, Rengel (CR65) 2010; 326
Guo, Yost (CR26) 1998; 163
Li, Li, Leffelaar, Shen, Zhang (CR47) 2015; 66
Zhang, Dong, Tang, Zheng, Makowski, Yu, Zhang, van der Werf (CR90) 2019; 154
Hinsinger (CR33) 2001; 237
Kamh, Horst, Amer, Mostafa, Maier (CR39) 1999; 211
Li, Tilman, Lambers, Zhang (CR46) 2014; 203
CR4
Gillingham, Richardson, Power, Riley (CR25) 1990; 51
CR6
Li, Li, Wu, Zhang, Li, Li, Lambers, Li (CR48) 2016; 113
Wang, Lester, Guppy, Lockwood, Tang (CR83) 2007; 45
Zhu, Kaeppler, Lynch (CR91) 2005; 32
CR49
Sucunza, Gutierrez Boem, Garcia, Boxler, Rubio (CR74) 2018; 96
Nuruzzaman, Lambers, Bolland, Veneklaas (CR59) 2005; 56
Soltangheisi, Rodrigues, Arruda Coelho, Gasperini, Sartor, Pavinato (CR72) 2018; 179
Walker, Syers (CR81) 1976; 15
Cu, Hutson, Schuller (CR17) 2005; 272
Dissanayaka, Maruyama, Masuda, Wasaki (CR18) 2015; 390
Vance, Uhde-Stone, Allan (CR78) 2003; 157
CR84
McGill, Cole (CR55) 1981; 26
Carpenter, Caraco, Correll, Howarth, Sharpley, Smith (CR14) 1998; 8
Beck, Sanchez (CR7) 1994; 58
CR80
Ae, Arihara, Okada, Yoshihara, Johansen (CR2) 1990; 248
Randhawa, Condron, Di, Sinaj, McLenaghen (CR63) 2005; 73
Hedley, Stewart, Chauhan (CR31) 1982; 46
Simpson, Oberson, Culvenor, Ryan, Veneklaas, Lambers, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Richardson (CR70) 2011; 349
Li, Tang, Rengel, Zhang (CR41) 2003; 248
Turner, Haygarth (CR77) 2001; 411
Dodd, McDowell, Condron (CR19) 2013; 51
McDowell, Condron, Stewart (CR54) 2016; 280
Linquist, Singleton, Cassman (CR51) 1997; 162
Beck, Sanchez (CR8) 1996; 184
Jimenez, Healy, Daly (CR37) 2019; 338
Nuruzzaman, Lambers, Bolland, Veneklaas (CR60) 2006; 281
Gardner, Barber, Parbery (CR23) 1983; 70
Murphy, Riley (CR57) 1962; 27
Tiessen, Stewart, Cole (CR76) 1984; 48
Horst, Waschkies (CR34) 1987; 150
Hedley, Nye, White (CR32) 1983; 95
CR50
Liu, Xu, Han, Wang, Li, Cheng (CR52) 2018; 59
Xu, Sun, Xu, Lv, Shao, Yan, Zhang, Blackwell (CR86) 2011; 57
Negassa, Leinweber (CR58) 2009; 172
Crews, Brookes (CR16) 2014; 184
Li, Li, Sun, Zhou, Bao, Zhang, Zhang (CR43) 2007; 104
Li, Sun, Zhang, Guo, Bao, Smith, Smith (CR42) 2006; 147
Zhang, Shi, Fan, Wang, George, Feng (CR89) 2018; 20
Xia, Zhao, Sun, Bao, Christie, Zhang, Li (CR85) 2013; 150
Gerke (CR24) 1994; 157
Li, Shen, Zhang, Clairotte, Drevon, Le Cadre, Hinsinger (CR44) 2008; 312
Blake, Goulding, Mott, Poulton (CR9) 2000; 51
Li, Yang, Li, Zhang, Christie (CR40) 1999; 212
Johnson, Ulrich (CR38) 1959; 766
Wang, Shen (CR82) 2019; 103
Li, Sun, Wei, Christie, Zhang, Li (CR45) 2010; 339
Stewart, Tiessen (CR73) 1987; 4
Bao (CR5) 2000
Miller (CR56) 2000; 80
Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (CR64) 2011; 349
CR22
Hassan, Marschner, McNeill, Tang (CR29) 2012; 48
CR66
Blake, Johnston, Poulton, Goulding (CR10) 2003; 254
CR21
Hu, Jia, Zhao, Li, Siddique (CR35) 2012; 137
Tiessen, Moir, Carter (CR75) 1993
Veneklaas, Stevens, Cawthray, Turner, Grigg, Lambers (CR79) 2003; 248
CR62
Perrott, Maher, Thorrold (CR61) 1989; 32
Harrison (CR27) 1982; 14
Sharpley (CR69) 1985; 49
4460_CR36
RJ Dodd (4460_CR19) 2013; 51
JWB Stewart (4460_CR73) 1987; 4
A Soltangheisi (4460_CR72) 2018; 179
RA Cabeza (4460_CR13) 2017; 17
WB McGill (4460_CR55) 1981; 26
FA Sucunza (4460_CR74) 2018; 96
EK Bünemann (4460_CR12) 2013; 370
RJ Simpson (4460_CR70) 2011; 349
L Wang (4460_CR82) 2019; 103
QZ Li (4460_CR45) 2010; 339
CC Zhang (4460_CR90) 2019; 154
N Ae (4460_CR1) 1997; 196
L Li (4460_CR43) 2007; 104
M Nuruzzaman (4460_CR59) 2005; 56
KW Perrott (4460_CR61) 1989; 32
S Bao (4460_CR5) 2000
TE Crews (4460_CR16) 2014; 184
F Guo (4460_CR26) 1998; 163
JLG Jimenez (4460_CR37) 2019; 338
WK Gardner (4460_CR23) 1983; 70
RW McDowell (4460_CR54) 2016; 280
H Tiessen (4460_CR76) 1984; 48
NE Smeck (4460_CR71) 1985; 36
4460_CR22
HM Hassan (4460_CR28) 2012; 48
4460_CR66
4460_CR21
M Nuruzzaman (4460_CR60) 2006; 281
4460_CR62
EJ Veneklaas (4460_CR79) 2003; 248
TW Walker (4460_CR81) 1976; 15
L Zhang (4460_CR89) 2018; 20
WJ Horst (4460_CR34) 1987; 150
MA Beck (4460_CR7) 1994; 58
SR Carpenter (4460_CR14) 1998; 8
L Blake (4460_CR9) 2000; 51
CR Chen (4460_CR15) 2002; 34
MJ Hedley (4460_CR32) 1983; 95
L Li (4460_CR41) 2003; 248
STT Cu (4460_CR17) 2005; 272
J Murphy (4460_CR57) 1962; 27
HY Xia (4460_CR85) 2013; 150
A Gillingham (4460_CR25) 1990; 51
W Negassa (4460_CR58) 2009; 172
J Gerke (4460_CR24) 1994; 157
JM Zhu (4460_CR91) 2005; 32
N Ae (4460_CR3) 1996; 186
JP Schmidt (4460_CR68) 1996; 60
G Maltais-Landry (4460_CR53) 2016; 223
X Wang (4460_CR83) 2007; 45
HM Hassan (4460_CR29) 2012; 48
Z Xu (4460_CR87) 2020; 246
L Blake (4460_CR10) 2003; 254
H El Dessougi (4460_CR20) 2003; 166
CM Johnson (4460_CR38) 1959; 766
B Li (4460_CR48) 2016; 113
AE Richardson (4460_CR64) 2011; 349
TJ Rose (4460_CR65) 2010; 326
BL Turner (4460_CR77) 2001; 411
SZ Sattari (4460_CR67) 2012; 109
P Hinsinger (4460_CR33) 2001; 237
H Tiessen (4460_CR75) 1993
G Xu (4460_CR86) 2011; 57
4460_CR6
PS Randhawa (4460_CR63) 2005; 73
4460_CR4
4460_CR50
AN Sharpley (4460_CR69) 1985; 49
AF Harrison (4460_CR27) 1982; 14
MJ Hedley (4460_CR30) 1982; 91
B Hu (4460_CR35) 2012; 137
L Li (4460_CR40) 1999; 212
M Kamh (4460_CR39) 1999; 211
MJ Hedley (4460_CR31) 1982; 46
4460_CR84
BA Linquist (4460_CR51) 1997; 162
D Dissanayaka (4460_CR18) 2015; 390
4460_CR49
F Liu (4460_CR52) 2018; 59
MA Beck (4460_CR8) 1996; 184
MH Miller (4460_CR56) 2000; 80
H Li (4460_CR44) 2008; 312
RA Bowman (4460_CR11) 1978; 125
G Li (4460_CR47) 2015; 66
CP Vance (4460_CR78) 2003; 157
L Li (4460_CR42) 2006; 147
4460_CR80
CC Zhang (4460_CR88) 2014; 114
N Ae (4460_CR2) 1990; 248
L Li (4460_CR46) 2014; 203
References_xml – ident: CR22
– volume: 280
  start-page: 67
  year: 2016
  end-page: 72
  ident: CR54
  article-title: Variation in environmentally- and agronomically-significant soil phosphorus concentrations with time since stopping the application of phosphorus fertilisers
  publication-title: Geoderma
– volume: 326
  start-page: 159
  year: 2010
  end-page: 170
  ident: CR65
  article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics
  publication-title: Plant Soil
– volume: 34
  start-page: 487
  year: 2002
  end-page: 499
  ident: CR15
  article-title: Phosphorus dynamics in the rhizosphere of perennial ryegrass ( L.) and radiata pine ( D. Don.)
  publication-title: Soil Biol Biochem
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: CR57
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal Chim Acta
– volume: 4
  start-page: 41
  year: 1987
  end-page: 60
  ident: CR73
  article-title: Dynamics of soil organic phosphorus
  publication-title: Biogeochemistry
– ident: CR49
– ident: CR4
– volume: 51
  start-page: 345
  year: 2000
  end-page: 353
  ident: CR9
  article-title: Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments
  publication-title: Eur J Soil Sci
– volume: 248
  start-page: 187
  year: 2003
  end-page: 197
  ident: CR79
  article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake
  publication-title: Plant Soil
– volume: 184
  start-page: 168
  year: 2014
  end-page: 181
  ident: CR16
  article-title: Changes in soil phosphorus forms through time in perennial versus annual agroecosystems
  publication-title: Agric Ecosyst Environ
– volume: 339
  start-page: 147
  year: 2010
  end-page: 161
  ident: CR45
  article-title: Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley
  publication-title: Plant Soil
– ident: CR80
– volume: 157
  start-page: 17
  year: 1994
  end-page: 22
  ident: CR24
  article-title: Kinetics of soil phosphate desorption as affected by citric-acid
  publication-title: Z Pflanzenernähr Bodenkd
– volume: 114
  start-page: 1719
  year: 2014
  end-page: 1733
  ident: CR88
  article-title: Root foraging elicits niche complementarity-dependent yield advantage in the ancient 'three sisters' (maize/bean/squash) polyculture
  publication-title: Ann Bot
– ident: CR84
– volume: 172
  start-page: 305
  year: 2009
  end-page: 325
  ident: CR58
  article-title: How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review
  publication-title: J Plant Nutr Soil Sci
– volume: 91
  start-page: 45
  year: 1982
  end-page: 56
  ident: CR30
  article-title: Plant-induced changes in the rhizosphere of rape ( var. emerald) seedlings
  publication-title: New Phytol
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  ident: CR64
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
– ident: CR21
– volume: 212
  start-page: 105
  year: 1999
  end-page: 114
  ident: CR40
  article-title: Interspecific complementary and competitive interactions between intercropped maize and faba bean
  publication-title: Plant Soil
– ident: CR50
– volume: 281
  start-page: 109
  year: 2006
  end-page: 120
  ident: CR60
  article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes
  publication-title: Plant Soil
– volume: 45
  start-page: 524
  year: 2007
  end-page: 532
  ident: CR83
  article-title: Changes in phosphorus fractions at various soil depths following long-term P fertiliser application on a black Vertosol from South-Eastern Queensland
  publication-title: Soil Res
– volume: 51
  start-page: 427
  year: 2013
  end-page: 436
  ident: CR19
  article-title: Changes in soil phosphorus availability and potential phosphorus loss following cessation of phosphorus fertiliser inputs
  publication-title: Soil Res
– volume: 166
  start-page: 254
  year: 2003
  end-page: 261
  ident: CR20
  article-title: Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues
  publication-title: J Plant Nutr Soil Sci
– volume: 17
  start-page: 824
  year: 2017
  end-page: 838
  ident: CR13
  article-title: Phosphorus fractions depletion in the rhizosphere of young and adult maize and oilseed rape plants-P
  publication-title: J Soil Sci Plant Nutr
– volume: 51
  start-page: 11
  year: 1990
  end-page: 16
  ident: CR25
  article-title: Long term effects of withholding phosphate application on North Island hill country: Whatawhata research Centre
  publication-title: Proc N Z Grassl Assoc
– volume: 184
  start-page: 23
  year: 1996
  end-page: 31
  ident: CR8
  article-title: Soil phosphorus movement and budget after 13 years of fertilized cultivation in the Amazon basin
  publication-title: Plant Soil
– ident: CR36
– start-page: 75
  year: 1993
  end-page: 86
  ident: CR75
  article-title: Characterization of available P by sequential extraction
  publication-title: Soil sampling and methods of analysis
– volume: 80
  start-page: 47
  year: 2000
  end-page: 52
  ident: CR56
  article-title: Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies
  publication-title: Can J Plant Sci
– volume: 154
  start-page: 931
  year: 2019
  end-page: 942
  ident: CR90
  article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input- a meta-analysis
  publication-title: Eur J Plant Pathol
– volume: 66
  start-page: 1151
  year: 2015
  end-page: 1160
  ident: CR47
  article-title: Dynamics of phosphorus fractions in the rhizosphere of faba bean ( L.) and maize ( L.) grown in calcareous and acid soils
  publication-title: Crop Pasture Sci
– volume: 73
  start-page: 181
  year: 2005
  end-page: 189
  ident: CR63
  article-title: Effect of green manure addition on soil organic phosphorus mineralisation
  publication-title: Nutr Cycl Agroecosyst
– volume: 254
  start-page: 245
  year: 2003
  end-page: 261
  ident: CR10
  article-title: Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods
  publication-title: Plant Soil
– volume: 150
  start-page: 1
  year: 1987
  end-page: 8
  ident: CR34
  article-title: Phosphatversorgung von sommerweizen ( L.) in mischkultur mit weiBer lupine ( L.)
  publication-title: Z Pflanzenernähr Bodenkd
– volume: 96
  start-page: 87
  year: 2018
  end-page: 95
  ident: CR74
  article-title: Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: soil test trends, critical levels and balances
  publication-title: Eur J Agron
– ident: CR66
– volume: 57
  start-page: 228
  year: 2011
  end-page: 234
  ident: CR86
  article-title: Effects of air-drying and freezing on phosphorus fractions in soils with different organic matter contents
  publication-title: Plant Soil Environ
– volume: 26
  start-page: 267
  year: 1981
  end-page: 286
  ident: CR55
  article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic-matter
  publication-title: Geoderma
– volume: 157
  start-page: 423
  year: 2003
  end-page: 447
  ident: CR78
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytol
– volume: 150
  start-page: 52
  year: 2013
  end-page: 62
  ident: CR85
  article-title: Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates
  publication-title: Field Crop Res
– volume: 203
  start-page: 63
  year: 2014
  ident: CR46
  article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture
  publication-title: New Phytol
– volume: 8
  start-page: 559
  year: 1998
  end-page: 568
  ident: CR14
  article-title: Nonpoint pollution of surface waters with phosphorus and nitrogen
  publication-title: Ecol Appl
– volume: 272
  start-page: 143
  year: 2005
  end-page: 151
  ident: CR17
  article-title: Mixed culture of wheat ( L.) with white lupin ( L.) improves the growth and phosphorus nutrition of the wheat
  publication-title: Plant Soil
– volume: 56
  start-page: 1041
  year: 2005
  end-page: 1047
  ident: CR59
  article-title: Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser
  publication-title: Aust J Agric Res
– volume: 186
  start-page: 197
  year: 1996
  end-page: 204
  ident: CR3
  article-title: Role of cell wall of groundnut roots in solubilizing sparingly soluble phosphorus in soil
  publication-title: Plant Soil
– volume: 390
  start-page: 223
  year: 2015
  end-page: 236
  ident: CR18
  article-title: Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply
  publication-title: Plant Soil
– ident: CR6
– volume: 103
  start-page: 36
  year: 2019
  end-page: 39
  ident: CR82
  article-title: Root/rhizosphere management for improving phosphorus use efficiency and crop productivity
  publication-title: Better Crops
– volume: 162
  start-page: 254
  year: 1997
  end-page: 264
  ident: CR51
  article-title: inorganic and organic phosphorus dynamics during a build-up and decline of available phosphorus in an ultisol
  publication-title: Soil Sci
– volume: 349
  start-page: 89
  year: 2011
  end-page: 120
  ident: CR70
  article-title: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems
  publication-title: Plant Soil
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  ident: CR33
  article-title: Bioavailability of inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
– volume: 59
  start-page: 1683
  year: 2018
  end-page: 1694
  ident: CR52
  article-title: Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation
  publication-title: Plant Cell Physiol
– volume: 48
  start-page: 853
  year: 1984
  end-page: 858
  ident: CR76
  article-title: Pathways of phosphorus transformations in soils of differing pedogenesis
  publication-title: Soil Sci Soc Am J
– volume: 312
  start-page: 139
  year: 2008
  end-page: 150
  ident: CR44
  article-title: Dynamics of phosphorus fractions in the rhizosphere of common bean ( L.) and durum wheat ( L.) grown in monocropping and intercropping systems
  publication-title: Plant Soil
– volume: 49
  start-page: 905
  year: 1985
  end-page: 911
  ident: CR69
  article-title: Phosphorus cycling in unfertilized and fertilized agricultural soils
  publication-title: Soil Sci Soc Am J
– volume: 48
  start-page: 775
  year: 2012
  end-page: 785
  ident: CR29
  article-title: Grain legume pre-crops and their residues affect the growth, P uptake and size of P pools in the rhizosphere of the following wheat
  publication-title: Biol Fertil Soils
– volume: 15
  start-page: 1
  year: 1976
  end-page: 19
  ident: CR81
  article-title: Fate of phosphorus during pedogenesis
  publication-title: Geoderma
– volume: 125
  start-page: 49
  year: 1978
  end-page: 54
  ident: CR11
  article-title: Transformations of organic phosphorus substrates in soil as evaluated by NaHCO3 extractions
  publication-title: Soil Sci
– volume: 137
  start-page: 221
  year: 2012
  end-page: 229
  ident: CR35
  article-title: soil P availability, inorganic P fractions and yield effect in a calcareous soil with plastic-film-mulched spring wheat
  publication-title: Field Crop Res
– volume: 70
  start-page: 107
  year: 1983
  end-page: 124
  ident: CR23
  article-title: The acquisition of phosphorus by Lupinus-Albus L. 3. The probable mechanism by which phosphorus movement in the soil root interface is enhanced
  publication-title: Plant Soil
– volume: 32
  start-page: 749
  year: 2005
  end-page: 762
  ident: CR91
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( )
  publication-title: Funct Plant Biol
– volume: 370
  start-page: 511
  year: 2013
  end-page: 526
  ident: CR12
  article-title: Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use
  publication-title: Plant Soil
– volume: 248
  start-page: 297
  year: 2003
  end-page: 303
  ident: CR41
  article-title: Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source
  publication-title: Plant Soil
– volume: 248
  start-page: 477
  year: 1990
  end-page: 480
  ident: CR2
  article-title: Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent
  publication-title: Science
– volume: 163
  start-page: 822
  year: 1998
  end-page: 833
  ident: CR26
  article-title: Partitioning soil phosphorus into three discrete pools of differing availability
  publication-title: Soil Sci
– volume: 95
  start-page: 69
  year: 1983
  end-page: 82
  ident: CR32
  article-title: Plant-induced changes in the rhizosphere of rape ( var. emerald) seedlings. IV. The effect of rhizosphere phosphorus status on the pH, phosphatase activity and depletion of soil phosphorus fractions in the rhizosphere and on the cation-anion balance in the plants
  publication-title: New Phytol
– volume: 196
  start-page: 265
  year: 1997
  end-page: 270
  ident: CR1
  article-title: The role of cell wall components from groundnut roots in solubilizing sparingly soluble phosphorus in low fertility soils
  publication-title: Plant Soil
– volume: 179
  start-page: 20
  year: 2018
  end-page: 28
  ident: CR72
  article-title: Changes in soil phosphorus lability promoted by phosphate sources and cover crops
  publication-title: Soil Tillage Res
– volume: 246
  start-page: 107661
  year: 2020
  ident: CR87
  article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use-a meta-analysis
  publication-title: Field Crop Res
– year: 2000
  ident: CR5
  publication-title: Soil chemical analysis
– volume: 109
  start-page: 6348
  year: 2012
  end-page: 6353
  ident: CR67
  article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle
  publication-title: Proc Natl Acad Sci U S A
– volume: 60
  start-page: 1168
  year: 1996
  end-page: 1172
  ident: CR68
  article-title: Soil phosphorus dynamics during seventeen years of continuous cultivation: fractionation analyses
  publication-title: Soil Sci Soc Am J
– volume: 147
  start-page: 280
  year: 2006
  end-page: 290
  ident: CR42
  article-title: Root distribution and interactions between intercropped species
  publication-title: Oecologia
– volume: 104
  start-page: 11192
  year: 2007
  end-page: 11196
  ident: CR43
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
  publication-title: Proc Natl Acad Sci U S A
– volume: 36
  start-page: 185
  year: 1985
  end-page: 199
  ident: CR71
  article-title: Phosphorus dynamics in soils and landscapes
  publication-title: Geoderma
– volume: 411
  start-page: 258
  year: 2001
  end-page: 258
  ident: CR77
  article-title: Biogeochemistry-phosphorus solubilization in rewetted soils
  publication-title: Nature
– volume: 58
  start-page: 1424
  year: 1994
  end-page: 1431
  ident: CR7
  article-title: Soil-phosphorus fraction dynamics during 18 years of cultivation on a typic paleudult
  publication-title: Soil Sci Soc Am J
– volume: 223
  start-page: 197
  year: 2016
  end-page: 210
  ident: CR53
  article-title: Higher flexibility in input N:P ratios results in more balanced phosphorus budgets in two long-term experimental agroecosystems
  publication-title: Agric Ecosyst Environ
– volume: 32
  start-page: 53
  year: 1989
  end-page: 62
  ident: CR61
  article-title: Accumulation of phosphorus fractions in yellow-brown pumice soils with development
  publication-title: N Z J Agric Res
– volume: 48
  start-page: 151
  year: 2012
  end-page: 159
  ident: CR28
  article-title: Growth, P uptake in grain legumes and changes in rhizosphere soil P pools
  publication-title: Biol Fertil Soils
– volume: 46
  start-page: 970
  year: 1982
  end-page: 976
  ident: CR31
  article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations
  publication-title: Soil Sci Soc Am J
– volume: 113
  start-page: 6496
  year: 2016
  end-page: 6501
  ident: CR48
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N fixation
  publication-title: Proc Natl Acad Sci U S A
– volume: 211
  start-page: 19
  year: 1999
  end-page: 27
  ident: CR39
  article-title: Mobilization of soil and fertilizer phosphate by cover crops
  publication-title: Plant Soil
– volume: 766
  start-page: 25
  year: 1959
  end-page: 78
  ident: CR38
  article-title: Analytical methods for use in plant analysis
  publication-title: Calif Agric Exp Sta Bull
– ident: CR62
– volume: 14
  start-page: 343
  year: 1982
  end-page: 351
  ident: CR27
  article-title: Labile organic phosphorus mineralization in relationship to soil properties
  publication-title: Soil Biol Biochem
– volume: 338
  start-page: 128
  year: 2019
  end-page: 135
  ident: CR37
  article-title: Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: a fractionation and path analysis study
  publication-title: Geoderma
– volume: 20
  start-page: 2639
  year: 2018
  end-page: 2651
  ident: CR89
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environ Microbiol
– volume: 186
  start-page: 197
  year: 1996
  ident: 4460_CR3
  publication-title: Plant Soil
  doi: 10.1007/BF02415514
– volume: 60
  start-page: 1168
  year: 1996
  ident: 4460_CR68
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1996.03615995006000040030x
– volume-title: Soil chemical analysis
  year: 2000
  ident: 4460_CR5
– volume: 114
  start-page: 1719
  year: 2014
  ident: 4460_CR88
  publication-title: Ann Bot
  doi: 10.1093/aob/mcu191
– volume: 70
  start-page: 107
  year: 1983
  ident: 4460_CR23
  publication-title: Plant Soil
  doi: 10.1007/BF02374754
– volume: 349
  start-page: 121
  year: 2011
  ident: 4460_CR64
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– ident: 4460_CR80
  doi: 10.1007/s11104-007-9516-x
– volume: 51
  start-page: 345
  year: 2000
  ident: 4460_CR9
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.2000.00307.x
– volume: 45
  start-page: 524
  year: 2007
  ident: 4460_CR83
  publication-title: Soil Res
  doi: 10.1071/SR07069
– volume: 172
  start-page: 305
  year: 2009
  ident: 4460_CR58
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200800223
– volume: 766
  start-page: 25
  year: 1959
  ident: 4460_CR38
  publication-title: Calif Agric Exp Sta Bull
– volume: 66
  start-page: 1151
  year: 2015
  ident: 4460_CR47
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP14370
– volume: 14
  start-page: 343
  year: 1982
  ident: 4460_CR27
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(82)90004-9
– volume: 104
  start-page: 11192
  year: 2007
  ident: 4460_CR43
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0704591104
– volume: 73
  start-page: 181
  year: 2005
  ident: 4460_CR63
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1007/s10705-005-0593-z
– volume: 58
  start-page: 1424
  year: 1994
  ident: 4460_CR7
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1994.03615995005800050021x
– volume: 96
  start-page: 87
  year: 2018
  ident: 4460_CR74
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2018.03.004
– volume: 48
  start-page: 853
  year: 1984
  ident: 4460_CR76
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1984.03615995004800040031x
– volume: 95
  start-page: 69
  year: 1983
  ident: 4460_CR32
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1983.tb03470.x
– volume: 150
  start-page: 52
  year: 2013
  ident: 4460_CR85
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2013.05.027
– volume: 59
  start-page: 1683
  year: 2018
  ident: 4460_CR52
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcy094
– volume: 254
  start-page: 245
  year: 2003
  ident: 4460_CR10
  publication-title: Plant Soil
  doi: 10.1023/A:1025544817872
– ident: 4460_CR49
  doi: 10.1038/srep18663
– volume: 157
  start-page: 423
  year: 2003
  ident: 4460_CR78
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 196
  start-page: 265
  year: 1997
  ident: 4460_CR1
  publication-title: Plant Soil
  doi: 10.1023/A:1004266411694
– volume: 248
  start-page: 297
  year: 2003
  ident: 4460_CR41
  publication-title: Plant Soil
  doi: 10.1023/A:1022389707051
– ident: 4460_CR4
  doi: 10.1371/journal.pone.0216881
– ident: 4460_CR84
– volume: 103
  start-page: 36
  year: 2019
  ident: 4460_CR82
  publication-title: Better Crops
  doi: 10.24047/BC103136
– ident: 4460_CR66
  doi: 10.1002/jpln.201200307
– volume: 339
  start-page: 147
  year: 2010
  ident: 4460_CR45
  publication-title: Plant Soil
– volume: 281
  start-page: 109
  year: 2006
  ident: 4460_CR60
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-3936-2
– volume: 338
  start-page: 128
  year: 2019
  ident: 4460_CR37
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.049
– volume: 32
  start-page: 53
  year: 1989
  ident: 4460_CR61
  publication-title: N Z J Agric Res
  doi: 10.1080/00288233.1989.10423477
– volume: 390
  start-page: 223
  year: 2015
  ident: 4460_CR18
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2392-x
– volume: 113
  start-page: 6496
  year: 2016
  ident: 4460_CR48
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1523580113
– volume: 15
  start-page: 1
  year: 1976
  ident: 4460_CR81
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– start-page: 75
  volume-title: Soil sampling and methods of analysis
  year: 1993
  ident: 4460_CR75
– volume: 36
  start-page: 185
  year: 1985
  ident: 4460_CR71
  publication-title: Geoderma
  doi: 10.1016/0016-7061(85)90001-1
– volume: 154
  start-page: 931
  year: 2019
  ident: 4460_CR90
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-019-01711-4
– volume: 184
  start-page: 168
  year: 2014
  ident: 4460_CR16
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.11.022
– ident: 4460_CR36
  doi: 10.1371/journal.pone.0135518
– volume: 211
  start-page: 19
  year: 1999
  ident: 4460_CR39
  publication-title: Plant Soil
  doi: 10.1023/A:1004543716488
– volume: 51
  start-page: 427
  year: 2013
  ident: 4460_CR19
  publication-title: Soil Res
  doi: 10.1071/SR13168
– volume: 246
  start-page: 107661
  year: 2020
  ident: 4460_CR87
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2019.107661
– volume: 326
  start-page: 159
  year: 2010
  ident: 4460_CR65
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9990-4
– ident: 4460_CR21
  doi: 10.1038/srep36981
– volume: 34
  start-page: 487
  year: 2002
  ident: 4460_CR15
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00207-3
– volume: 27
  start-page: 31
  year: 1962
  ident: 4460_CR57
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 20
  start-page: 2639
  year: 2018
  ident: 4460_CR89
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14289
– volume: 248
  start-page: 477
  year: 1990
  ident: 4460_CR2
  publication-title: Science
  doi: 10.1126/science.248.4954.477
– volume: 179
  start-page: 20
  year: 2018
  ident: 4460_CR72
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2018.01.006
– volume: 203
  start-page: 63
  year: 2014
  ident: 4460_CR46
  publication-title: New Phytol
  doi: 10.1111/nph.12778
– volume: 349
  start-page: 89
  year: 2011
  ident: 4460_CR70
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0880-1
– volume: 163
  start-page: 822
  year: 1998
  ident: 4460_CR26
  publication-title: Soil Sci
  doi: 10.1097/00010694-199810000-00006
– volume: 272
  start-page: 143
  year: 2005
  ident: 4460_CR17
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-4336-8
– volume: 51
  start-page: 11
  year: 1990
  ident: 4460_CR25
  publication-title: Proc N Z Grassl Assoc
– volume: 223
  start-page: 197
  year: 2016
  ident: 4460_CR53
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.03.007
– volume: 49
  start-page: 905
  year: 1985
  ident: 4460_CR69
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1985.03615995004900040023x
– volume: 212
  start-page: 105
  year: 1999
  ident: 4460_CR40
  publication-title: Plant Soil
  doi: 10.1023/A:1004656205144
– volume: 184
  start-page: 23
  year: 1996
  ident: 4460_CR8
  publication-title: Plant Soil
  doi: 10.1007/BF00029271
– ident: 4460_CR62
  doi: 10.1146/annurev.arplant.50.1.665
– ident: 4460_CR50
  doi: 10.2136/sssaj1960.03615995002400030016x
– volume: 48
  start-page: 151
  year: 2012
  ident: 4460_CR28
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-011-0612-y
– volume: 280
  start-page: 67
  year: 2016
  ident: 4460_CR54
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.022
– volume: 137
  start-page: 221
  year: 2012
  ident: 4460_CR35
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.08.014
– volume: 8
  start-page: 559
  year: 1998
  ident: 4460_CR14
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
– volume: 166
  start-page: 254
  year: 2003
  ident: 4460_CR20
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200390037
– volume: 370
  start-page: 511
  year: 2013
  ident: 4460_CR12
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1651-y
– volume: 237
  start-page: 173
  year: 2001
  ident: 4460_CR33
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: 56
  start-page: 1041
  year: 2005
  ident: 4460_CR59
  publication-title: Aust J Agric Res
  doi: 10.1071/AR05060
– volume: 312
  start-page: 139
  year: 2008
  ident: 4460_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9512-1
– volume: 91
  start-page: 45
  year: 1982
  ident: 4460_CR30
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1982.tb03291.x
– volume: 57
  start-page: 228
  year: 2011
  ident: 4460_CR86
  publication-title: Plant Soil Environ
  doi: 10.17221/428/2010-PSE
– volume: 4
  start-page: 41
  year: 1987
  ident: 4460_CR73
  publication-title: Biogeochemistry
  doi: 10.1007/BF02187361
– volume: 125
  start-page: 49
  year: 1978
  ident: 4460_CR11
  publication-title: Soil Sci
  doi: 10.1097/00010694-197801000-00008
– volume: 157
  start-page: 17
  year: 1994
  ident: 4460_CR24
  publication-title: Z Pflanzenernähr Bodenkd
  doi: 10.1002/jpln.19941570104
– volume: 162
  start-page: 254
  year: 1997
  ident: 4460_CR51
  publication-title: Soil Sci
  doi: 10.1097/00010694-199704000-00003
– volume: 150
  start-page: 1
  year: 1987
  ident: 4460_CR34
  publication-title: Z Pflanzenernähr Bodenkd
  doi: 10.1002/jpln.19871500102
– volume: 248
  start-page: 187
  year: 2003
  ident: 4460_CR79
  publication-title: Plant Soil
  doi: 10.1023/A:1022367312851
– volume: 80
  start-page: 47
  year: 2000
  ident: 4460_CR56
  publication-title: Can J Plant Sci
  doi: 10.4141/P98-130
– volume: 48
  start-page: 775
  year: 2012
  ident: 4460_CR29
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-012-0671-8
– volume: 46
  start-page: 970
  year: 1982
  ident: 4460_CR31
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1982.03615995004600050017x
– ident: 4460_CR6
  doi: 10.1007/s11104-020-04476-6
– volume: 17
  start-page: 824
  year: 2017
  ident: 4460_CR13
  publication-title: J Soil Sci Plant Nutr
  doi: 10.4067/S0718-95162017000300020
– volume: 109
  start-page: 6348
  year: 2012
  ident: 4460_CR67
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1113675109
– volume: 147
  start-page: 280
  year: 2006
  ident: 4460_CR42
  publication-title: Oecologia
  doi: 10.1007/s00442-005-0256-4
– volume: 26
  start-page: 267
  year: 1981
  ident: 4460_CR55
  publication-title: Geoderma
  doi: 10.1016/0016-7061(81)90024-0
– volume: 411
  start-page: 258
  year: 2001
  ident: 4460_CR77
  publication-title: Nature
  doi: 10.1038/35077146
– volume: 32
  start-page: 749
  year: 2005
  ident: 4460_CR91
  publication-title: Funct Plant Biol
  doi: 10.1071/FP05005
– ident: 4460_CR22
  doi: 10.1002/fes3.187
SSID ssj0003216
Score 2.5271287
Snippet Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean...
Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean...
AimsThis study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean...
AIMS: This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 587
SubjectTerms aboveground biomass
Agricultural practices
Analysis
Beans
Biomedical and Life Sciences
Broad beans
Calcareous soils
Coexistence
Corn
Cropping systems
Crops
Depletion
Ecology
faba beans
Fractionation
Intercropping
Legumes
Life Sciences
Mimosaceae
Phosphorus
Phosphorus content
Plant Physiology
Plant Sciences
Regular Article
Sodium bicarbonate
Sodium hydroxide
Soil analysis
Soil dynamics
Soil investigations
Soil Science & Conservation
Soils
Sole cropping
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOidD_ogeiqunhJB8EGDbZO2yZPsyR2H4CHiwb6FfN4trO3a7iHnr3emTXdR8R5aQpqvZibzkWRmCHldli4A3ioWeIxMlA6WVOkVK62RyuaW5wINnD-fVafn4tOiXKQNtz5dq5xo4kCofetwj_w9sJZK5uh-6sP6B8OoUXi6mkJo3Cb7QIIlKF_7R8dnX75uaTEvhuCnmGBZrRbJbGY0ngPOJxiqT3ioCe8_WNPfBPqfk9KBAZ08IPeT5EjnI6gfkluhOSD35hdd8p4RDsidoxZkvetH5Ho0GujpsqF9u1zR9WXbw9Nd9TR2oy0DpAAH2p_QGZRZBYrBvNbBU9N4il4kuinju1n-CkN2NNZQG0xDL1B9p21DAcZ4e6yFlrGnx-T85Pjbx1OWgiwwx1W-YTzUxgmvZBF9pqIHouO987kqo_G2MB7959fScueruuA2KpkZXue2cFmhhORPyF7TNuEpoSB5hCx6VSnhBdQEQFujvJO1y6sqEzOST_OrXfJAjoEwVnrnOxlhogEmeoCJzmbk7bbOevS_cWPpNwg2jYsTWnYm2RjA-NDNlZ6Duogj4XJGDifI6rRqe73DsRl5tf0M6w0PUUyDU6lBBQOZF7Q2-J13E0bsmvj_2J7d3ONzcrcYcBGvtx2SvU13FV6AvLOxLxNS_wbQ9_wA
  priority: 102
  providerName: ProQuest
Title Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil
URI https://link.springer.com/article/10.1007/s11104-020-04460-0
https://www.proquest.com/docview/2386814547
https://www.proquest.com/docview/2551936424
Volume 448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0TkEfRFfF1fOIIPighbZJP_LY1V0PxUPEhfUp5Kt3C2u7tHvI-tc702138RN8aBPSfDUzk8yQzC8Az5PEeuRbGXheloFILIpU4mSQGJ1LExkeCXJw_nCens3Fu0Wy6J3C2uG0-7Al2c3UB2c3XKlEQOYObULi-zocJ2S7IxfP42I___K4u_CUIkGYyUXvKvPnOn5ajn6dlH_bHe0WndlduNNri6zYkfceXPPVCG4XF02PmOFHcGNSo363HcHNaQdAvb0P253LQMuWFWvr5YqtL-sWn-aqZWWz82TAGHJA_Q2bxTwrz-gqr7V3TFeOEYZEMyR81cvvvksutdHMeF2xCzLeWV0xpDCdHauxZmrpAcxn08-vz4L-ioXAchltAu4zbYWTeVy6UJYOpxznrItkUmpnYu0IPT_LDbcuzWJuSpmHmmeRiW0YS5Hzh3BU1ZV_BAz1Dh-WTqZSOIElkcxGS2fzzEZpGooxRMNIK9vjj9M1GCt1QE4m6iikjuqoo8IxvNyXWe_QN_6Z-wURUJFoYs1W9x4G2D8CuVIFGovUE56P4WSgsepltlWovKR5RABnY3i2_4zSRlsouqKhVGiAocaLNhv-zquBNw5V_L1vj_8v-xO4FXdcSofdTuBo01z5p6j9bMwpHBeTN5MZhW-_vJ9iOJmef_x02gnBD1Nr_tk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk4ICggUgosEogDWNhev_aAUAqtUtpGCLVSbsu-XCKldohTVeFH8RuZ8SMRIHrrwZa1tnfXO9_Ow7szA_Ayjo1D3ArP8Tz3otjglIqt8GKtMqEDzYOIHJyPR8nwNPo8jscb8KvzhaFtlR1PrBm1LQ39I3-HoiXJAgo_9WH2w6OsUbS62qXQaGBx6JaXaLJV7w8-IX1fheH-3snHoddmFfAMF8HC4y5VJrIiC3Pri9ziLLPW2EDEubI6VJYCxqeZ5sYmach1LjJf8TTQofFDEWUc670BmxFHU6YHm7t7oy9fV7yfh3WyVbrw_FSMWzedxlkPJW3kkblGi6h4_kMU_i0Q_lmZrQXe_j2422qqbNBA6z5suGIL7gzO5m20DrcFN3dL1C2XD2DZOClUbFKwqpxM2ex7WeExv6hYPm98J_AKMVdeYmP4zNQxSh42c5apwjKKWjHvCs7V5Keri3OlFdNOFeyMfhewsmCIKdqtVmLN1NJDOL2W4X8EvaIs3GNgqOk4P7ciEZGN8E0EllbCmiw1QZL4UR-CbnylaSOeU-KNqVzHaiaaSKSJrGki_T68Wb0za-J9XPn0ayKbJGaANRvV-jRg_yislhygeUo94VkfdjrKypZLVHKN6T68WN3G-U2LNqqgoZRo8qGOjVYifs7bDhHrKv7ft-2rW3wOt4Ynx0fy6GB0-ARuhzUuaWvdDvQW8wv3FHWthX7WApzBt-ueU78BRQ05lg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDBAFAYYCcQDREvifPkBoY6t2hhUE2JS34y_slXqktJ0msqfxl_HXT5aAWJve0gUOYnt-H7nu4t9dwCv4tg4xK3wHM9zL4oNslRshRdrlQkdaB5E5OD8ZZQcnESfxvF4A351vjC0rbKbE-uJ2paG_pHvoGhJsoDCT-3k7baI473hh9kPjzJI0Uprl06jgciRW16i-Va9P9xDWr8Ow-H-t48HXpthwDNcBAuPu1SZyIoszK0vcoscZ62xgYhzZXWoLAWPTzPNjU3SkOtcZL7iaaBD44ciyjjWewM2U7SK_B5s7u6Pjr-u5AAP68SrdOH5qRi3LjuN4x5K3cgj040WVPH8h1j8Wzj8s0pbC7_hPbjbaq1s0MDsPmy4YgvuDE7nbeQOtwU3d0vUM5cPYNk4LFRsUrCqnEzZ7Kys8JhfVCyfN34UeIX4Ky-xMXxm6hglEps5y1RhGUWwmHcF52ry09XFudKKaacKdkq_DlhZMMQX7VwrsWZq6SGcXMvwP4JeURbuMTDUepyfW5GIyEb4JoJMK2FNlpogSfyoD0E3vtK00c8pCcdUruM2E00k0kTWNJF-H96u3pk1sT-ufPoNkU3SxIA1G9X6N2D_KMSWHKCpSj3hWR-2O8rKdsao5BrffXi5uo28Tgs4qqChlGj-ob6NFiN-zrsOEesq_t-3J1e3-AJuIS_Jz4ejo6dwO6xhSbvstqG3mF-4Z6h2LfTzFt8Mvl83S_0G7yA9yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+soil+phosphorus+fractions+following+sole+cropped+and+intercropped+maize+and+faba+bean+grown+on+calcareous+soil&rft.jtitle=Plant+and+soil&rft.au=Liao%2C+Dan&rft.au=Zhang%2C+Chaochun&rft.au=Li%2C+Haigang&rft.au=Lambers%2C+H&rft.date=2020-03-01&rft.issn=0032-079X&rft.volume=448&rft.issue=1-2+p.587-601&rft.spage=587&rft.epage=601&rft_id=info:doi/10.1007%2Fs11104-020-04460-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon