Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil
Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. Methods Maize and faba bean were grown in P-accumulated soil as either sole cropping...
Saved in:
Published in | Plant and soil Vol. 448; no. 1-2; pp. 587 - 601 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool.
Methods
Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance.
Results
The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-P
i
fraction, followed by sole maize, which depleted the NaOH-P
i
and concentrated HCl-P
o
fractions. Sole faba bean depleted the alkali-soluble P
o
fraction (extracted by NaHCO
3
and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-P
o
fraction, which was similar to the effect of sole maize.
Conclusions
Both sole crops and intercrops mainly depleted 1 M HCl-P
i
, but differed in P
o
depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile P
o
fraction, while sole faba bean depleted the labile and moderately labile P
o
fractions. |
---|---|
AbstractList | Aims
This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool.
Methods
Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance.
Results
The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-P
i
fraction, followed by sole maize, which depleted the NaOH-P
i
and concentrated HCl-P
o
fractions. Sole faba bean depleted the alkali-soluble P
o
fraction (extracted by NaHCO
3
and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-P
o
fraction, which was similar to the effect of sole maize.
Conclusions
Both sole crops and intercrops mainly depleted 1 M HCl-P
i
, but differed in P
o
depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile P
o
fraction, while sole faba bean depleted the labile and moderately labile P
o
fractions. AimsThis study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool.MethodsMaize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance.ResultsThe intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-Pi fraction, followed by sole maize, which depleted the NaOH-Pi and concentrated HCl-Po fractions. Sole faba bean depleted the alkali-soluble Po fraction (extracted by NaHCO3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-Po fraction, which was similar to the effect of sole maize.ConclusionsBoth sole crops and intercrops mainly depleted 1 M HCl-Pi, but differed in Po depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile Po fraction, while sole faba bean depleted the labile and moderately labile Po fractions. Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. Methods Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance. Results The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-P.sub.i fraction, followed by sole maize, which depleted the NaOH-P.sub.i and concentrated HCl-P.sub.o fractions. Sole faba bean depleted the alkali-soluble P.sub.o fraction (extracted by NaHCO.sub.3 and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-P.sub.o fraction, which was similar to the effect of sole maize. Conclusions Both sole crops and intercrops mainly depleted 1 M HCl-P.sub.i, but differed in P.sub.o depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile P.sub.o fraction, while sole faba bean depleted the labile and moderately labile P.sub.o fractions. AIMS: This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean intercropping system on dynamic changes in soil P pool. METHODS: Maize and faba bean were grown in P-accumulated soil as either sole cropping or intercropping. After one year (Stage I) or four years (Stage II) of no P application, soil samples were collected respectively and analyzed for soil P pools using sequential fractionation. Aboveground biomass and P content were annually measured from 2013 to 2016 to assess the annual P balance. RESULTS: The intercropped maize/faba bean system showed a P-uptake advantage, with a Land Equivalent Ratio (LER) ranging from 1.2 to 1.5. The average shoot P content over the four years in intercropped maize and faba bean was significantly greater than that of the corresponding sole crops by 29% and 30%, respectively. Over the three-year P depletion period, the three cropping systems primarily depleted the 1 M HCl-Pᵢ fraction, followed by sole maize, which depleted the NaOH-Pᵢ and concentrated HCl-Pₒ fractions. Sole faba bean depleted the alkali-soluble Pₒ fraction (extracted by NaHCO₃ and NaOH), and the intercropped maize/faba bean system depleted the conc. HCl-Pₒ fraction, which was similar to the effect of sole maize. CONCLUSIONS: Both sole crops and intercrops mainly depleted 1 M HCl-Pᵢ, but differed in Pₒ depletion. Sole maize and maize/faba bean intercropping depleted the sparingly labile Pₒ fraction, while sole faba bean depleted the labile and moderately labile Pₒ fractions. |
Audience | Academic |
Author | Zhang, Chaochun Lambers, Hans Zhang, Fusuo Li, Haigang Liao, Dan |
Author_xml | – sequence: 1 givenname: Dan surname: Liao fullname: Liao, Dan organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University – sequence: 2 givenname: Chaochun orcidid: 0000-0002-1278-8400 surname: Zhang fullname: Zhang, Chaochun email: zhangcc@cau.edu.cn organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University – sequence: 3 givenname: Haigang surname: Li fullname: Li, Haigang organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University – sequence: 4 givenname: Hans surname: Lambers fullname: Lambers, Hans organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University, School of Biological Sciences and Institute of Agriculture, The University of Western Australia – sequence: 5 givenname: Fusuo surname: Zhang fullname: Zhang, Fusuo organization: College of Resources and Environmental Science/Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), China Agricultural University |
BookMark | eNp9kclqHDEQhkVwIGMnL5CTIJdc2tbWavXRDNnA4EsCuQm1lrGMRupIPRjn6VPtTgj4YIS24v9KpfrP0Vku2SP0npJLSshw1SilRHSEkY4IIWF9hXa0H3jXEy7P0I4QzjoyjD_foPPW7sl6p3KHHvd3Jh98wzHjVmLC811pMOup4VCNXWLJcCoplYeYD6BJHtta5tk7bLIDbvH1X-Bo4m__FA5mMnjyJuNDLQ8Zl4ytSdZUXyDz-tJb9DqY1Py7v_sF-vH50_f91-7m9su3_fVNZ_lIl477wVjhRsWCI2NwSg3OWUfHPhg3MeN6JvtBTdw6OTA-hVERwwc6MUvYKBS_QB-3vHMtv06-LfoYm_UpmbzWolnf05FLwQRIPzyT3pdTzVCdZlxJRUUvBlBdbqqDSV7HHMoCjYLh_DFa8CVEiF9LOkpJBF8rUBsAbWqt-qBtXMzaWQBj0pTo1US9majBRP1koiaAsmfoXOPR1MeXIb5BDcRgbv3_jReoP-25shE |
CitedBy_id | crossref_primary_10_1016_j_rhisph_2024_100907 crossref_primary_10_1007_s11104_021_04915_y crossref_primary_10_1007_s42729_024_01801_1 crossref_primary_10_1016_j_heliyon_2023_e22859 crossref_primary_10_1016_j_jenvman_2024_120807 crossref_primary_10_3390_ijerph191912262 crossref_primary_10_3390_su151612342 crossref_primary_10_1007_s11104_021_04935_8 crossref_primary_10_3389_fpls_2025_1544893 crossref_primary_10_1016_j_tplants_2022_11_008 crossref_primary_10_3390_soilsystems8010003 crossref_primary_10_1007_s42729_023_01232_4 crossref_primary_10_1016_j_isci_2022_104168 crossref_primary_10_1007_s42729_024_01638_8 crossref_primary_10_1007_s00344_022_10836_6 crossref_primary_10_1007_s11104_023_06297_9 crossref_primary_10_2139_ssrn_4174976 crossref_primary_10_3390_agronomy11112230 crossref_primary_10_1016_j_still_2021_105147 crossref_primary_10_1002_ldr_3963 crossref_primary_10_1016_j_envexpbot_2024_105875 crossref_primary_10_3389_fmicb_2022_972587 crossref_primary_10_1016_j_chemosphere_2022_137452 crossref_primary_10_1371_journal_pone_0300573 crossref_primary_10_1016_j_ecoenv_2023_115441 crossref_primary_10_3390_agronomy15020286 crossref_primary_10_1016_j_chemosphere_2021_130501 crossref_primary_10_3390_agronomy14102372 crossref_primary_10_1016_j_apsoil_2024_105624 crossref_primary_10_1016_j_still_2024_106106 crossref_primary_10_3390_agronomy13112846 crossref_primary_10_1007_s11104_022_05554_7 crossref_primary_10_1016_j_still_2021_105214 crossref_primary_10_1007_s42729_020_00388_7 crossref_primary_10_1080_01904167_2024_2304165 crossref_primary_10_1007_s11104_023_06252_8 crossref_primary_10_3390_agriculture12111949 crossref_primary_10_1007_s11104_023_06426_4 crossref_primary_10_1007_s11104_022_05309_4 crossref_primary_10_1080_15427528_2021_1872754 crossref_primary_10_1007_s11104_023_06271_5 crossref_primary_10_3390_life13102098 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_3390_agronomy13123072 crossref_primary_10_1007_s42729_020_00407_7 crossref_primary_10_1016_j_fcr_2021_108207 crossref_primary_10_3389_fmicb_2022_1028969 crossref_primary_10_3390_agronomy14061121 crossref_primary_10_17221_140_2019_SWR |
Cites_doi | 10.1007/BF02415514 10.2136/sssaj1996.03615995006000040030x 10.1093/aob/mcu191 10.1007/BF02374754 10.1007/s11104-011-0950-4 10.1007/s11104-007-9516-x 10.1046/j.1365-2389.2000.00307.x 10.1071/SR07069 10.1002/jpln.200800223 10.1071/CP14370 10.1016/0038-0717(82)90004-9 10.1073/pnas.0704591104 10.1007/s10705-005-0593-z 10.2136/sssaj1994.03615995005800050021x 10.1016/j.eja.2018.03.004 10.2136/sssaj1984.03615995004800040031x 10.1111/j.1469-8137.1983.tb03470.x 10.1016/j.fcr.2013.05.027 10.1093/pcp/pcy094 10.1023/A:1025544817872 10.1038/srep18663 10.1046/j.1469-8137.2003.00695.x 10.1023/A:1004266411694 10.1023/A:1022389707051 10.1371/journal.pone.0216881 10.24047/BC103136 10.1002/jpln.201200307 10.1007/s11104-005-3936-2 10.1016/j.geoderma.2018.11.049 10.1080/00288233.1989.10423477 10.1007/s11104-015-2392-x 10.1073/pnas.1523580113 10.1016/0016-7061(76)90066-5 10.1016/0016-7061(85)90001-1 10.1007/s10658-019-01711-4 10.1016/j.agee.2013.11.022 10.1371/journal.pone.0135518 10.1023/A:1004543716488 10.1071/SR13168 10.1016/j.fcr.2019.107661 10.1007/s11104-009-9990-4 10.1038/srep36981 10.1016/S0038-0717(01)00207-3 10.1016/S0003-2670(00)88444-5 10.1111/1462-2920.14289 10.1126/science.248.4954.477 10.1016/j.still.2018.01.006 10.1111/nph.12778 10.1007/s11104-011-0880-1 10.1097/00010694-199810000-00006 10.1007/s11104-004-4336-8 10.1016/j.agee.2016.03.007 10.2136/sssaj1985.03615995004900040023x 10.1023/A:1004656205144 10.1007/BF00029271 10.1146/annurev.arplant.50.1.665 10.2136/sssaj1960.03615995002400030016x 10.1007/s00374-011-0612-y 10.1016/j.geoderma.2016.06.022 10.1016/j.fcr.2012.08.014 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 10.1002/jpln.200390037 10.1007/s11104-013-1651-y 10.1023/A:1013351617532 10.1071/AR05060 10.1007/s11104-007-9512-1 10.1111/j.1469-8137.1982.tb03291.x 10.17221/428/2010-PSE 10.1007/BF02187361 10.1097/00010694-197801000-00008 10.1002/jpln.19941570104 10.1097/00010694-199704000-00003 10.1002/jpln.19871500102 10.1023/A:1022367312851 10.4141/P98-130 10.1007/s00374-012-0671-8 10.2136/sssaj1982.03615995004600050017x 10.1007/s11104-020-04476-6 10.4067/S0718-95162017000300020 10.1073/pnas.1113675109 10.1007/s00442-005-0256-4 10.1016/0016-7061(81)90024-0 10.1038/35077146 10.1071/FP05005 10.1002/fes3.187 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 COPYRIGHT 2020 Springer Springer Nature Switzerland AG 2020. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Nature Switzerland AG 2020. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-020-04460-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 601 |
ExternalDocumentID | A619660438 10_1007_s11104_020_04460_0 |
GrantInformation_xml | – fundername: the National Key R & D Program grantid: 2017YFD0200200/2017YFD0200207 – fundername: the European Union’s Horizon 2020 Program for Research & Innovation grantid: 727217 – fundername: the ‘973’ project of Chinese Ministry of Agriculture grantid: 2015CB150400 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c391t-3e7ac4d982fd09fd887ddcd195fadb2ad526578b3cd6723bf980a371b2c029483 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 15:11:59 EDT 2025 Fri Jul 25 10:06:27 EDT 2025 Tue Jun 10 20:28:58 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 01:47:08 EDT 2025 Fri Feb 21 02:33:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Maize Faba bean Hedley fractionation Soil phosphorus fractions Intercropping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-3e7ac4d982fd09fd887ddcd195fadb2ad526578b3cd6723bf980a371b2c029483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1278-8400 |
PQID | 2386814547 |
PQPubID | 54098 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2551936424 proquest_journals_2386814547 gale_infotracacademiconefile_A619660438 crossref_citationtrail_10_1007_s11104_020_04460_0 crossref_primary_10_1007_s11104_020_04460_0 springer_journals_10_1007_s11104_020_04460_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Ae, Otani (CR1) 1997; 196 Maltais-Landry, Scow, Brennan, Torbert, Vitousek (CR53) 2016; 223 Ae, Otani, Makino, Tazawa (CR3) 1996; 186 Hedley, White, Nye (CR30) 1982; 91 Chen, Condron, Davis, Sherlock (CR15) 2002; 34 CR36 Sattari, Bouwman, Giller, van Ittersum (CR67) 2012; 109 Cabeza, Myint, Steingrobe, Stritsis, Schulze, Claassen (CR13) 2017; 17 Bowman, Cole (CR11) 1978; 125 El Dessougi, Dreele, Claassen (CR20) 2003; 166 Xu, Li, Zhang, Yu, van der Werf, Zhang (CR87) 2020; 246 Hassan, Marschner, McNeill, Tang (CR28) 2012; 48 Schmidt, Buol, Kamprath (CR68) 1996; 60 Smeck (CR71) 1985; 36 Bünemann, Keller, Hoop, Jud, Boivin, Frossard (CR12) 2013; 370 Zhang, Postma, York, Lynch (CR88) 2014; 114 Rose, Hardiputra, Rengel (CR65) 2010; 326 Guo, Yost (CR26) 1998; 163 Li, Li, Leffelaar, Shen, Zhang (CR47) 2015; 66 Zhang, Dong, Tang, Zheng, Makowski, Yu, Zhang, van der Werf (CR90) 2019; 154 Hinsinger (CR33) 2001; 237 Kamh, Horst, Amer, Mostafa, Maier (CR39) 1999; 211 Li, Tilman, Lambers, Zhang (CR46) 2014; 203 CR4 Gillingham, Richardson, Power, Riley (CR25) 1990; 51 CR6 Li, Li, Wu, Zhang, Li, Li, Lambers, Li (CR48) 2016; 113 Wang, Lester, Guppy, Lockwood, Tang (CR83) 2007; 45 Zhu, Kaeppler, Lynch (CR91) 2005; 32 CR49 Sucunza, Gutierrez Boem, Garcia, Boxler, Rubio (CR74) 2018; 96 Nuruzzaman, Lambers, Bolland, Veneklaas (CR59) 2005; 56 Soltangheisi, Rodrigues, Arruda Coelho, Gasperini, Sartor, Pavinato (CR72) 2018; 179 Walker, Syers (CR81) 1976; 15 Cu, Hutson, Schuller (CR17) 2005; 272 Dissanayaka, Maruyama, Masuda, Wasaki (CR18) 2015; 390 Vance, Uhde-Stone, Allan (CR78) 2003; 157 CR84 McGill, Cole (CR55) 1981; 26 Carpenter, Caraco, Correll, Howarth, Sharpley, Smith (CR14) 1998; 8 Beck, Sanchez (CR7) 1994; 58 CR80 Ae, Arihara, Okada, Yoshihara, Johansen (CR2) 1990; 248 Randhawa, Condron, Di, Sinaj, McLenaghen (CR63) 2005; 73 Hedley, Stewart, Chauhan (CR31) 1982; 46 Simpson, Oberson, Culvenor, Ryan, Veneklaas, Lambers, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Richardson (CR70) 2011; 349 Li, Tang, Rengel, Zhang (CR41) 2003; 248 Turner, Haygarth (CR77) 2001; 411 Dodd, McDowell, Condron (CR19) 2013; 51 McDowell, Condron, Stewart (CR54) 2016; 280 Linquist, Singleton, Cassman (CR51) 1997; 162 Beck, Sanchez (CR8) 1996; 184 Jimenez, Healy, Daly (CR37) 2019; 338 Nuruzzaman, Lambers, Bolland, Veneklaas (CR60) 2006; 281 Gardner, Barber, Parbery (CR23) 1983; 70 Murphy, Riley (CR57) 1962; 27 Tiessen, Stewart, Cole (CR76) 1984; 48 Horst, Waschkies (CR34) 1987; 150 Hedley, Nye, White (CR32) 1983; 95 CR50 Liu, Xu, Han, Wang, Li, Cheng (CR52) 2018; 59 Xu, Sun, Xu, Lv, Shao, Yan, Zhang, Blackwell (CR86) 2011; 57 Negassa, Leinweber (CR58) 2009; 172 Crews, Brookes (CR16) 2014; 184 Li, Li, Sun, Zhou, Bao, Zhang, Zhang (CR43) 2007; 104 Li, Sun, Zhang, Guo, Bao, Smith, Smith (CR42) 2006; 147 Zhang, Shi, Fan, Wang, George, Feng (CR89) 2018; 20 Xia, Zhao, Sun, Bao, Christie, Zhang, Li (CR85) 2013; 150 Gerke (CR24) 1994; 157 Li, Shen, Zhang, Clairotte, Drevon, Le Cadre, Hinsinger (CR44) 2008; 312 Blake, Goulding, Mott, Poulton (CR9) 2000; 51 Li, Yang, Li, Zhang, Christie (CR40) 1999; 212 Johnson, Ulrich (CR38) 1959; 766 Wang, Shen (CR82) 2019; 103 Li, Sun, Wei, Christie, Zhang, Li (CR45) 2010; 339 Stewart, Tiessen (CR73) 1987; 4 Bao (CR5) 2000 Miller (CR56) 2000; 80 Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (CR64) 2011; 349 CR22 Hassan, Marschner, McNeill, Tang (CR29) 2012; 48 CR66 Blake, Johnston, Poulton, Goulding (CR10) 2003; 254 CR21 Hu, Jia, Zhao, Li, Siddique (CR35) 2012; 137 Tiessen, Moir, Carter (CR75) 1993 Veneklaas, Stevens, Cawthray, Turner, Grigg, Lambers (CR79) 2003; 248 CR62 Perrott, Maher, Thorrold (CR61) 1989; 32 Harrison (CR27) 1982; 14 Sharpley (CR69) 1985; 49 4460_CR36 RJ Dodd (4460_CR19) 2013; 51 JWB Stewart (4460_CR73) 1987; 4 A Soltangheisi (4460_CR72) 2018; 179 RA Cabeza (4460_CR13) 2017; 17 WB McGill (4460_CR55) 1981; 26 FA Sucunza (4460_CR74) 2018; 96 EK Bünemann (4460_CR12) 2013; 370 RJ Simpson (4460_CR70) 2011; 349 L Wang (4460_CR82) 2019; 103 QZ Li (4460_CR45) 2010; 339 CC Zhang (4460_CR90) 2019; 154 N Ae (4460_CR1) 1997; 196 L Li (4460_CR43) 2007; 104 M Nuruzzaman (4460_CR59) 2005; 56 KW Perrott (4460_CR61) 1989; 32 S Bao (4460_CR5) 2000 TE Crews (4460_CR16) 2014; 184 F Guo (4460_CR26) 1998; 163 JLG Jimenez (4460_CR37) 2019; 338 WK Gardner (4460_CR23) 1983; 70 RW McDowell (4460_CR54) 2016; 280 H Tiessen (4460_CR76) 1984; 48 NE Smeck (4460_CR71) 1985; 36 4460_CR22 HM Hassan (4460_CR28) 2012; 48 4460_CR66 4460_CR21 M Nuruzzaman (4460_CR60) 2006; 281 4460_CR62 EJ Veneklaas (4460_CR79) 2003; 248 TW Walker (4460_CR81) 1976; 15 L Zhang (4460_CR89) 2018; 20 WJ Horst (4460_CR34) 1987; 150 MA Beck (4460_CR7) 1994; 58 SR Carpenter (4460_CR14) 1998; 8 L Blake (4460_CR9) 2000; 51 CR Chen (4460_CR15) 2002; 34 MJ Hedley (4460_CR32) 1983; 95 L Li (4460_CR41) 2003; 248 STT Cu (4460_CR17) 2005; 272 J Murphy (4460_CR57) 1962; 27 HY Xia (4460_CR85) 2013; 150 A Gillingham (4460_CR25) 1990; 51 W Negassa (4460_CR58) 2009; 172 J Gerke (4460_CR24) 1994; 157 JM Zhu (4460_CR91) 2005; 32 N Ae (4460_CR3) 1996; 186 JP Schmidt (4460_CR68) 1996; 60 G Maltais-Landry (4460_CR53) 2016; 223 X Wang (4460_CR83) 2007; 45 HM Hassan (4460_CR29) 2012; 48 Z Xu (4460_CR87) 2020; 246 L Blake (4460_CR10) 2003; 254 H El Dessougi (4460_CR20) 2003; 166 CM Johnson (4460_CR38) 1959; 766 B Li (4460_CR48) 2016; 113 AE Richardson (4460_CR64) 2011; 349 TJ Rose (4460_CR65) 2010; 326 BL Turner (4460_CR77) 2001; 411 SZ Sattari (4460_CR67) 2012; 109 P Hinsinger (4460_CR33) 2001; 237 H Tiessen (4460_CR75) 1993 G Xu (4460_CR86) 2011; 57 4460_CR6 PS Randhawa (4460_CR63) 2005; 73 4460_CR4 4460_CR50 AN Sharpley (4460_CR69) 1985; 49 AF Harrison (4460_CR27) 1982; 14 MJ Hedley (4460_CR30) 1982; 91 B Hu (4460_CR35) 2012; 137 L Li (4460_CR40) 1999; 212 M Kamh (4460_CR39) 1999; 211 MJ Hedley (4460_CR31) 1982; 46 4460_CR84 BA Linquist (4460_CR51) 1997; 162 D Dissanayaka (4460_CR18) 2015; 390 4460_CR49 F Liu (4460_CR52) 2018; 59 MA Beck (4460_CR8) 1996; 184 MH Miller (4460_CR56) 2000; 80 H Li (4460_CR44) 2008; 312 RA Bowman (4460_CR11) 1978; 125 G Li (4460_CR47) 2015; 66 CP Vance (4460_CR78) 2003; 157 L Li (4460_CR42) 2006; 147 4460_CR80 CC Zhang (4460_CR88) 2014; 114 N Ae (4460_CR2) 1990; 248 L Li (4460_CR46) 2014; 203 |
References_xml | – ident: CR22 – volume: 280 start-page: 67 year: 2016 end-page: 72 ident: CR54 article-title: Variation in environmentally- and agronomically-significant soil phosphorus concentrations with time since stopping the application of phosphorus fertilisers publication-title: Geoderma – volume: 326 start-page: 159 year: 2010 end-page: 170 ident: CR65 article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics publication-title: Plant Soil – volume: 34 start-page: 487 year: 2002 end-page: 499 ident: CR15 article-title: Phosphorus dynamics in the rhizosphere of perennial ryegrass ( L.) and radiata pine ( D. Don.) publication-title: Soil Biol Biochem – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: CR57 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal Chim Acta – volume: 4 start-page: 41 year: 1987 end-page: 60 ident: CR73 article-title: Dynamics of soil organic phosphorus publication-title: Biogeochemistry – ident: CR49 – ident: CR4 – volume: 51 start-page: 345 year: 2000 end-page: 353 ident: CR9 article-title: Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments publication-title: Eur J Soil Sci – volume: 248 start-page: 187 year: 2003 end-page: 197 ident: CR79 article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake publication-title: Plant Soil – volume: 184 start-page: 168 year: 2014 end-page: 181 ident: CR16 article-title: Changes in soil phosphorus forms through time in perennial versus annual agroecosystems publication-title: Agric Ecosyst Environ – volume: 339 start-page: 147 year: 2010 end-page: 161 ident: CR45 article-title: Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley publication-title: Plant Soil – ident: CR80 – volume: 157 start-page: 17 year: 1994 end-page: 22 ident: CR24 article-title: Kinetics of soil phosphate desorption as affected by citric-acid publication-title: Z Pflanzenernähr Bodenkd – volume: 114 start-page: 1719 year: 2014 end-page: 1733 ident: CR88 article-title: Root foraging elicits niche complementarity-dependent yield advantage in the ancient 'three sisters' (maize/bean/squash) polyculture publication-title: Ann Bot – ident: CR84 – volume: 172 start-page: 305 year: 2009 end-page: 325 ident: CR58 article-title: How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review publication-title: J Plant Nutr Soil Sci – volume: 91 start-page: 45 year: 1982 end-page: 56 ident: CR30 article-title: Plant-induced changes in the rhizosphere of rape ( var. emerald) seedlings publication-title: New Phytol – volume: 349 start-page: 121 year: 2011 end-page: 156 ident: CR64 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil – ident: CR21 – volume: 212 start-page: 105 year: 1999 end-page: 114 ident: CR40 article-title: Interspecific complementary and competitive interactions between intercropped maize and faba bean publication-title: Plant Soil – ident: CR50 – volume: 281 start-page: 109 year: 2006 end-page: 120 ident: CR60 article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes publication-title: Plant Soil – volume: 45 start-page: 524 year: 2007 end-page: 532 ident: CR83 article-title: Changes in phosphorus fractions at various soil depths following long-term P fertiliser application on a black Vertosol from South-Eastern Queensland publication-title: Soil Res – volume: 51 start-page: 427 year: 2013 end-page: 436 ident: CR19 article-title: Changes in soil phosphorus availability and potential phosphorus loss following cessation of phosphorus fertiliser inputs publication-title: Soil Res – volume: 166 start-page: 254 year: 2003 end-page: 261 ident: CR20 article-title: Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues publication-title: J Plant Nutr Soil Sci – volume: 17 start-page: 824 year: 2017 end-page: 838 ident: CR13 article-title: Phosphorus fractions depletion in the rhizosphere of young and adult maize and oilseed rape plants-P publication-title: J Soil Sci Plant Nutr – volume: 51 start-page: 11 year: 1990 end-page: 16 ident: CR25 article-title: Long term effects of withholding phosphate application on North Island hill country: Whatawhata research Centre publication-title: Proc N Z Grassl Assoc – volume: 184 start-page: 23 year: 1996 end-page: 31 ident: CR8 article-title: Soil phosphorus movement and budget after 13 years of fertilized cultivation in the Amazon basin publication-title: Plant Soil – ident: CR36 – start-page: 75 year: 1993 end-page: 86 ident: CR75 article-title: Characterization of available P by sequential extraction publication-title: Soil sampling and methods of analysis – volume: 80 start-page: 47 year: 2000 end-page: 52 ident: CR56 article-title: Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies publication-title: Can J Plant Sci – volume: 154 start-page: 931 year: 2019 end-page: 942 ident: CR90 article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input- a meta-analysis publication-title: Eur J Plant Pathol – volume: 66 start-page: 1151 year: 2015 end-page: 1160 ident: CR47 article-title: Dynamics of phosphorus fractions in the rhizosphere of faba bean ( L.) and maize ( L.) grown in calcareous and acid soils publication-title: Crop Pasture Sci – volume: 73 start-page: 181 year: 2005 end-page: 189 ident: CR63 article-title: Effect of green manure addition on soil organic phosphorus mineralisation publication-title: Nutr Cycl Agroecosyst – volume: 254 start-page: 245 year: 2003 end-page: 261 ident: CR10 article-title: Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods publication-title: Plant Soil – volume: 150 start-page: 1 year: 1987 end-page: 8 ident: CR34 article-title: Phosphatversorgung von sommerweizen ( L.) in mischkultur mit weiBer lupine ( L.) publication-title: Z Pflanzenernähr Bodenkd – volume: 96 start-page: 87 year: 2018 end-page: 95 ident: CR74 article-title: Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: soil test trends, critical levels and balances publication-title: Eur J Agron – ident: CR66 – volume: 57 start-page: 228 year: 2011 end-page: 234 ident: CR86 article-title: Effects of air-drying and freezing on phosphorus fractions in soils with different organic matter contents publication-title: Plant Soil Environ – volume: 26 start-page: 267 year: 1981 end-page: 286 ident: CR55 article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic-matter publication-title: Geoderma – volume: 157 start-page: 423 year: 2003 end-page: 447 ident: CR78 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytol – volume: 150 start-page: 52 year: 2013 end-page: 62 ident: CR85 article-title: Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates publication-title: Field Crop Res – volume: 203 start-page: 63 year: 2014 ident: CR46 article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture publication-title: New Phytol – volume: 8 start-page: 559 year: 1998 end-page: 568 ident: CR14 article-title: Nonpoint pollution of surface waters with phosphorus and nitrogen publication-title: Ecol Appl – volume: 272 start-page: 143 year: 2005 end-page: 151 ident: CR17 article-title: Mixed culture of wheat ( L.) with white lupin ( L.) improves the growth and phosphorus nutrition of the wheat publication-title: Plant Soil – volume: 56 start-page: 1041 year: 2005 end-page: 1047 ident: CR59 article-title: Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser publication-title: Aust J Agric Res – volume: 186 start-page: 197 year: 1996 end-page: 204 ident: CR3 article-title: Role of cell wall of groundnut roots in solubilizing sparingly soluble phosphorus in soil publication-title: Plant Soil – volume: 390 start-page: 223 year: 2015 end-page: 236 ident: CR18 article-title: Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply publication-title: Plant Soil – ident: CR6 – volume: 103 start-page: 36 year: 2019 end-page: 39 ident: CR82 article-title: Root/rhizosphere management for improving phosphorus use efficiency and crop productivity publication-title: Better Crops – volume: 162 start-page: 254 year: 1997 end-page: 264 ident: CR51 article-title: inorganic and organic phosphorus dynamics during a build-up and decline of available phosphorus in an ultisol publication-title: Soil Sci – volume: 349 start-page: 89 year: 2011 end-page: 120 ident: CR70 article-title: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems publication-title: Plant Soil – volume: 237 start-page: 173 year: 2001 end-page: 195 ident: CR33 article-title: Bioavailability of inorganic P in the rhizosphere as affected by root-induced chemical changes: a review publication-title: Plant Soil – volume: 59 start-page: 1683 year: 2018 end-page: 1694 ident: CR52 article-title: Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation publication-title: Plant Cell Physiol – volume: 48 start-page: 853 year: 1984 end-page: 858 ident: CR76 article-title: Pathways of phosphorus transformations in soils of differing pedogenesis publication-title: Soil Sci Soc Am J – volume: 312 start-page: 139 year: 2008 end-page: 150 ident: CR44 article-title: Dynamics of phosphorus fractions in the rhizosphere of common bean ( L.) and durum wheat ( L.) grown in monocropping and intercropping systems publication-title: Plant Soil – volume: 49 start-page: 905 year: 1985 end-page: 911 ident: CR69 article-title: Phosphorus cycling in unfertilized and fertilized agricultural soils publication-title: Soil Sci Soc Am J – volume: 48 start-page: 775 year: 2012 end-page: 785 ident: CR29 article-title: Grain legume pre-crops and their residues affect the growth, P uptake and size of P pools in the rhizosphere of the following wheat publication-title: Biol Fertil Soils – volume: 15 start-page: 1 year: 1976 end-page: 19 ident: CR81 article-title: Fate of phosphorus during pedogenesis publication-title: Geoderma – volume: 125 start-page: 49 year: 1978 end-page: 54 ident: CR11 article-title: Transformations of organic phosphorus substrates in soil as evaluated by NaHCO3 extractions publication-title: Soil Sci – volume: 137 start-page: 221 year: 2012 end-page: 229 ident: CR35 article-title: soil P availability, inorganic P fractions and yield effect in a calcareous soil with plastic-film-mulched spring wheat publication-title: Field Crop Res – volume: 70 start-page: 107 year: 1983 end-page: 124 ident: CR23 article-title: The acquisition of phosphorus by Lupinus-Albus L. 3. The probable mechanism by which phosphorus movement in the soil root interface is enhanced publication-title: Plant Soil – volume: 32 start-page: 749 year: 2005 end-page: 762 ident: CR91 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( ) publication-title: Funct Plant Biol – volume: 370 start-page: 511 year: 2013 end-page: 526 ident: CR12 article-title: Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use publication-title: Plant Soil – volume: 248 start-page: 297 year: 2003 end-page: 303 ident: CR41 article-title: Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source publication-title: Plant Soil – volume: 248 start-page: 477 year: 1990 end-page: 480 ident: CR2 article-title: Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent publication-title: Science – volume: 163 start-page: 822 year: 1998 end-page: 833 ident: CR26 article-title: Partitioning soil phosphorus into three discrete pools of differing availability publication-title: Soil Sci – volume: 95 start-page: 69 year: 1983 end-page: 82 ident: CR32 article-title: Plant-induced changes in the rhizosphere of rape ( var. emerald) seedlings. IV. The effect of rhizosphere phosphorus status on the pH, phosphatase activity and depletion of soil phosphorus fractions in the rhizosphere and on the cation-anion balance in the plants publication-title: New Phytol – volume: 196 start-page: 265 year: 1997 end-page: 270 ident: CR1 article-title: The role of cell wall components from groundnut roots in solubilizing sparingly soluble phosphorus in low fertility soils publication-title: Plant Soil – volume: 179 start-page: 20 year: 2018 end-page: 28 ident: CR72 article-title: Changes in soil phosphorus lability promoted by phosphate sources and cover crops publication-title: Soil Tillage Res – volume: 246 start-page: 107661 year: 2020 ident: CR87 article-title: Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use-a meta-analysis publication-title: Field Crop Res – year: 2000 ident: CR5 publication-title: Soil chemical analysis – volume: 109 start-page: 6348 year: 2012 end-page: 6353 ident: CR67 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc Natl Acad Sci U S A – volume: 60 start-page: 1168 year: 1996 end-page: 1172 ident: CR68 article-title: Soil phosphorus dynamics during seventeen years of continuous cultivation: fractionation analyses publication-title: Soil Sci Soc Am J – volume: 147 start-page: 280 year: 2006 end-page: 290 ident: CR42 article-title: Root distribution and interactions between intercropped species publication-title: Oecologia – volume: 104 start-page: 11192 year: 2007 end-page: 11196 ident: CR43 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils publication-title: Proc Natl Acad Sci U S A – volume: 36 start-page: 185 year: 1985 end-page: 199 ident: CR71 article-title: Phosphorus dynamics in soils and landscapes publication-title: Geoderma – volume: 411 start-page: 258 year: 2001 end-page: 258 ident: CR77 article-title: Biogeochemistry-phosphorus solubilization in rewetted soils publication-title: Nature – volume: 58 start-page: 1424 year: 1994 end-page: 1431 ident: CR7 article-title: Soil-phosphorus fraction dynamics during 18 years of cultivation on a typic paleudult publication-title: Soil Sci Soc Am J – volume: 223 start-page: 197 year: 2016 end-page: 210 ident: CR53 article-title: Higher flexibility in input N:P ratios results in more balanced phosphorus budgets in two long-term experimental agroecosystems publication-title: Agric Ecosyst Environ – volume: 32 start-page: 53 year: 1989 end-page: 62 ident: CR61 article-title: Accumulation of phosphorus fractions in yellow-brown pumice soils with development publication-title: N Z J Agric Res – volume: 48 start-page: 151 year: 2012 end-page: 159 ident: CR28 article-title: Growth, P uptake in grain legumes and changes in rhizosphere soil P pools publication-title: Biol Fertil Soils – volume: 46 start-page: 970 year: 1982 end-page: 976 ident: CR31 article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations publication-title: Soil Sci Soc Am J – volume: 113 start-page: 6496 year: 2016 end-page: 6501 ident: CR48 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N fixation publication-title: Proc Natl Acad Sci U S A – volume: 211 start-page: 19 year: 1999 end-page: 27 ident: CR39 article-title: Mobilization of soil and fertilizer phosphate by cover crops publication-title: Plant Soil – volume: 766 start-page: 25 year: 1959 end-page: 78 ident: CR38 article-title: Analytical methods for use in plant analysis publication-title: Calif Agric Exp Sta Bull – ident: CR62 – volume: 14 start-page: 343 year: 1982 end-page: 351 ident: CR27 article-title: Labile organic phosphorus mineralization in relationship to soil properties publication-title: Soil Biol Biochem – volume: 338 start-page: 128 year: 2019 end-page: 135 ident: CR37 article-title: Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: a fractionation and path analysis study publication-title: Geoderma – volume: 20 start-page: 2639 year: 2018 end-page: 2651 ident: CR89 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environ Microbiol – volume: 186 start-page: 197 year: 1996 ident: 4460_CR3 publication-title: Plant Soil doi: 10.1007/BF02415514 – volume: 60 start-page: 1168 year: 1996 ident: 4460_CR68 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1996.03615995006000040030x – volume-title: Soil chemical analysis year: 2000 ident: 4460_CR5 – volume: 114 start-page: 1719 year: 2014 ident: 4460_CR88 publication-title: Ann Bot doi: 10.1093/aob/mcu191 – volume: 70 start-page: 107 year: 1983 ident: 4460_CR23 publication-title: Plant Soil doi: 10.1007/BF02374754 – volume: 349 start-page: 121 year: 2011 ident: 4460_CR64 publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – ident: 4460_CR80 doi: 10.1007/s11104-007-9516-x – volume: 51 start-page: 345 year: 2000 ident: 4460_CR9 publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.2000.00307.x – volume: 45 start-page: 524 year: 2007 ident: 4460_CR83 publication-title: Soil Res doi: 10.1071/SR07069 – volume: 172 start-page: 305 year: 2009 ident: 4460_CR58 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200800223 – volume: 766 start-page: 25 year: 1959 ident: 4460_CR38 publication-title: Calif Agric Exp Sta Bull – volume: 66 start-page: 1151 year: 2015 ident: 4460_CR47 publication-title: Crop Pasture Sci doi: 10.1071/CP14370 – volume: 14 start-page: 343 year: 1982 ident: 4460_CR27 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(82)90004-9 – volume: 104 start-page: 11192 year: 2007 ident: 4460_CR43 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0704591104 – volume: 73 start-page: 181 year: 2005 ident: 4460_CR63 publication-title: Nutr Cycl Agroecosyst doi: 10.1007/s10705-005-0593-z – volume: 58 start-page: 1424 year: 1994 ident: 4460_CR7 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1994.03615995005800050021x – volume: 96 start-page: 87 year: 2018 ident: 4460_CR74 publication-title: Eur J Agron doi: 10.1016/j.eja.2018.03.004 – volume: 48 start-page: 853 year: 1984 ident: 4460_CR76 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1984.03615995004800040031x – volume: 95 start-page: 69 year: 1983 ident: 4460_CR32 publication-title: New Phytol doi: 10.1111/j.1469-8137.1983.tb03470.x – volume: 150 start-page: 52 year: 2013 ident: 4460_CR85 publication-title: Field Crop Res doi: 10.1016/j.fcr.2013.05.027 – volume: 59 start-page: 1683 year: 2018 ident: 4460_CR52 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcy094 – volume: 254 start-page: 245 year: 2003 ident: 4460_CR10 publication-title: Plant Soil doi: 10.1023/A:1025544817872 – ident: 4460_CR49 doi: 10.1038/srep18663 – volume: 157 start-page: 423 year: 2003 ident: 4460_CR78 publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00695.x – volume: 196 start-page: 265 year: 1997 ident: 4460_CR1 publication-title: Plant Soil doi: 10.1023/A:1004266411694 – volume: 248 start-page: 297 year: 2003 ident: 4460_CR41 publication-title: Plant Soil doi: 10.1023/A:1022389707051 – ident: 4460_CR4 doi: 10.1371/journal.pone.0216881 – ident: 4460_CR84 – volume: 103 start-page: 36 year: 2019 ident: 4460_CR82 publication-title: Better Crops doi: 10.24047/BC103136 – ident: 4460_CR66 doi: 10.1002/jpln.201200307 – volume: 339 start-page: 147 year: 2010 ident: 4460_CR45 publication-title: Plant Soil – volume: 281 start-page: 109 year: 2006 ident: 4460_CR60 publication-title: Plant Soil doi: 10.1007/s11104-005-3936-2 – volume: 338 start-page: 128 year: 2019 ident: 4460_CR37 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.049 – volume: 32 start-page: 53 year: 1989 ident: 4460_CR61 publication-title: N Z J Agric Res doi: 10.1080/00288233.1989.10423477 – volume: 390 start-page: 223 year: 2015 ident: 4460_CR18 publication-title: Plant Soil doi: 10.1007/s11104-015-2392-x – volume: 113 start-page: 6496 year: 2016 ident: 4460_CR48 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1523580113 – volume: 15 start-page: 1 year: 1976 ident: 4460_CR81 publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – start-page: 75 volume-title: Soil sampling and methods of analysis year: 1993 ident: 4460_CR75 – volume: 36 start-page: 185 year: 1985 ident: 4460_CR71 publication-title: Geoderma doi: 10.1016/0016-7061(85)90001-1 – volume: 154 start-page: 931 year: 2019 ident: 4460_CR90 publication-title: Eur J Plant Pathol doi: 10.1007/s10658-019-01711-4 – volume: 184 start-page: 168 year: 2014 ident: 4460_CR16 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.11.022 – ident: 4460_CR36 doi: 10.1371/journal.pone.0135518 – volume: 211 start-page: 19 year: 1999 ident: 4460_CR39 publication-title: Plant Soil doi: 10.1023/A:1004543716488 – volume: 51 start-page: 427 year: 2013 ident: 4460_CR19 publication-title: Soil Res doi: 10.1071/SR13168 – volume: 246 start-page: 107661 year: 2020 ident: 4460_CR87 publication-title: Field Crop Res doi: 10.1016/j.fcr.2019.107661 – volume: 326 start-page: 159 year: 2010 ident: 4460_CR65 publication-title: Plant Soil doi: 10.1007/s11104-009-9990-4 – ident: 4460_CR21 doi: 10.1038/srep36981 – volume: 34 start-page: 487 year: 2002 ident: 4460_CR15 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(01)00207-3 – volume: 27 start-page: 31 year: 1962 ident: 4460_CR57 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 20 start-page: 2639 year: 2018 ident: 4460_CR89 publication-title: Environ Microbiol doi: 10.1111/1462-2920.14289 – volume: 248 start-page: 477 year: 1990 ident: 4460_CR2 publication-title: Science doi: 10.1126/science.248.4954.477 – volume: 179 start-page: 20 year: 2018 ident: 4460_CR72 publication-title: Soil Tillage Res doi: 10.1016/j.still.2018.01.006 – volume: 203 start-page: 63 year: 2014 ident: 4460_CR46 publication-title: New Phytol doi: 10.1111/nph.12778 – volume: 349 start-page: 89 year: 2011 ident: 4460_CR70 publication-title: Plant Soil doi: 10.1007/s11104-011-0880-1 – volume: 163 start-page: 822 year: 1998 ident: 4460_CR26 publication-title: Soil Sci doi: 10.1097/00010694-199810000-00006 – volume: 272 start-page: 143 year: 2005 ident: 4460_CR17 publication-title: Plant Soil doi: 10.1007/s11104-004-4336-8 – volume: 51 start-page: 11 year: 1990 ident: 4460_CR25 publication-title: Proc N Z Grassl Assoc – volume: 223 start-page: 197 year: 2016 ident: 4460_CR53 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.03.007 – volume: 49 start-page: 905 year: 1985 ident: 4460_CR69 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1985.03615995004900040023x – volume: 212 start-page: 105 year: 1999 ident: 4460_CR40 publication-title: Plant Soil doi: 10.1023/A:1004656205144 – volume: 184 start-page: 23 year: 1996 ident: 4460_CR8 publication-title: Plant Soil doi: 10.1007/BF00029271 – ident: 4460_CR62 doi: 10.1146/annurev.arplant.50.1.665 – ident: 4460_CR50 doi: 10.2136/sssaj1960.03615995002400030016x – volume: 48 start-page: 151 year: 2012 ident: 4460_CR28 publication-title: Biol Fertil Soils doi: 10.1007/s00374-011-0612-y – volume: 280 start-page: 67 year: 2016 ident: 4460_CR54 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.022 – volume: 137 start-page: 221 year: 2012 ident: 4460_CR35 publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.08.014 – volume: 8 start-page: 559 year: 1998 ident: 4460_CR14 publication-title: Ecol Appl doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 – volume: 166 start-page: 254 year: 2003 ident: 4460_CR20 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200390037 – volume: 370 start-page: 511 year: 2013 ident: 4460_CR12 publication-title: Plant Soil doi: 10.1007/s11104-013-1651-y – volume: 237 start-page: 173 year: 2001 ident: 4460_CR33 publication-title: Plant Soil doi: 10.1023/A:1013351617532 – volume: 56 start-page: 1041 year: 2005 ident: 4460_CR59 publication-title: Aust J Agric Res doi: 10.1071/AR05060 – volume: 312 start-page: 139 year: 2008 ident: 4460_CR44 publication-title: Plant Soil doi: 10.1007/s11104-007-9512-1 – volume: 91 start-page: 45 year: 1982 ident: 4460_CR30 publication-title: New Phytol doi: 10.1111/j.1469-8137.1982.tb03291.x – volume: 57 start-page: 228 year: 2011 ident: 4460_CR86 publication-title: Plant Soil Environ doi: 10.17221/428/2010-PSE – volume: 4 start-page: 41 year: 1987 ident: 4460_CR73 publication-title: Biogeochemistry doi: 10.1007/BF02187361 – volume: 125 start-page: 49 year: 1978 ident: 4460_CR11 publication-title: Soil Sci doi: 10.1097/00010694-197801000-00008 – volume: 157 start-page: 17 year: 1994 ident: 4460_CR24 publication-title: Z Pflanzenernähr Bodenkd doi: 10.1002/jpln.19941570104 – volume: 162 start-page: 254 year: 1997 ident: 4460_CR51 publication-title: Soil Sci doi: 10.1097/00010694-199704000-00003 – volume: 150 start-page: 1 year: 1987 ident: 4460_CR34 publication-title: Z Pflanzenernähr Bodenkd doi: 10.1002/jpln.19871500102 – volume: 248 start-page: 187 year: 2003 ident: 4460_CR79 publication-title: Plant Soil doi: 10.1023/A:1022367312851 – volume: 80 start-page: 47 year: 2000 ident: 4460_CR56 publication-title: Can J Plant Sci doi: 10.4141/P98-130 – volume: 48 start-page: 775 year: 2012 ident: 4460_CR29 publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0671-8 – volume: 46 start-page: 970 year: 1982 ident: 4460_CR31 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1982.03615995004600050017x – ident: 4460_CR6 doi: 10.1007/s11104-020-04476-6 – volume: 17 start-page: 824 year: 2017 ident: 4460_CR13 publication-title: J Soil Sci Plant Nutr doi: 10.4067/S0718-95162017000300020 – volume: 109 start-page: 6348 year: 2012 ident: 4460_CR67 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1113675109 – volume: 147 start-page: 280 year: 2006 ident: 4460_CR42 publication-title: Oecologia doi: 10.1007/s00442-005-0256-4 – volume: 26 start-page: 267 year: 1981 ident: 4460_CR55 publication-title: Geoderma doi: 10.1016/0016-7061(81)90024-0 – volume: 411 start-page: 258 year: 2001 ident: 4460_CR77 publication-title: Nature doi: 10.1038/35077146 – volume: 32 start-page: 749 year: 2005 ident: 4460_CR91 publication-title: Funct Plant Biol doi: 10.1071/FP05005 – ident: 4460_CR22 doi: 10.1002/fes3.187 |
SSID | ssj0003216 |
Score | 2.5271287 |
Snippet | Aims
This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean... Aims This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean... AimsThis study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba bean... AIMS: This study aimed to investigate the effects of coexistence with faba bean, a phosphorus (P)-efficient crop, on soil-accumulated P use by a maize/faba... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 587 |
SubjectTerms | aboveground biomass Agricultural practices Analysis Beans Biomedical and Life Sciences Broad beans Calcareous soils Coexistence Corn Cropping systems Crops Depletion Ecology faba beans Fractionation Intercropping Legumes Life Sciences Mimosaceae Phosphorus Phosphorus content Plant Physiology Plant Sciences Regular Article Sodium bicarbonate Sodium hydroxide Soil analysis Soil dynamics Soil investigations Soil Science & Conservation Soils Sole cropping |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOidD_ogeiqunhJB8EGDbZO2yZPsyR2H4CHiwb6FfN4trO3a7iHnr3emTXdR8R5aQpqvZibzkWRmCHldli4A3ioWeIxMlA6WVOkVK62RyuaW5wINnD-fVafn4tOiXKQNtz5dq5xo4kCofetwj_w9sJZK5uh-6sP6B8OoUXi6mkJo3Cb7QIIlKF_7R8dnX75uaTEvhuCnmGBZrRbJbGY0ngPOJxiqT3ioCe8_WNPfBPqfk9KBAZ08IPeT5EjnI6gfkluhOSD35hdd8p4RDsidoxZkvetH5Ho0GujpsqF9u1zR9WXbw9Nd9TR2oy0DpAAH2p_QGZRZBYrBvNbBU9N4il4kuinju1n-CkN2NNZQG0xDL1B9p21DAcZ4e6yFlrGnx-T85Pjbx1OWgiwwx1W-YTzUxgmvZBF9pqIHouO987kqo_G2MB7959fScueruuA2KpkZXue2cFmhhORPyF7TNuEpoSB5hCx6VSnhBdQEQFujvJO1y6sqEzOST_OrXfJAjoEwVnrnOxlhogEmeoCJzmbk7bbOevS_cWPpNwg2jYsTWnYm2RjA-NDNlZ6Duogj4XJGDifI6rRqe73DsRl5tf0M6w0PUUyDU6lBBQOZF7Q2-J13E0bsmvj_2J7d3ONzcrcYcBGvtx2SvU13FV6AvLOxLxNS_wbQ9_wA priority: 102 providerName: ProQuest |
Title | Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil |
URI | https://link.springer.com/article/10.1007/s11104-020-04460-0 https://www.proquest.com/docview/2386814547 https://www.proquest.com/docview/2551936424 |
Volume | 448 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0TkEfRFfF1fOIIPighbZJP_LY1V0PxUPEhfUp5Kt3C2u7tHvI-tc702138RN8aBPSfDUzk8yQzC8Az5PEeuRbGXheloFILIpU4mSQGJ1LExkeCXJw_nCens3Fu0Wy6J3C2uG0-7Al2c3UB2c3XKlEQOYObULi-zocJ2S7IxfP42I___K4u_CUIkGYyUXvKvPnOn5ajn6dlH_bHe0WndlduNNri6zYkfceXPPVCG4XF02PmOFHcGNSo363HcHNaQdAvb0P253LQMuWFWvr5YqtL-sWn-aqZWWz82TAGHJA_Q2bxTwrz-gqr7V3TFeOEYZEMyR81cvvvksutdHMeF2xCzLeWV0xpDCdHauxZmrpAcxn08-vz4L-ioXAchltAu4zbYWTeVy6UJYOpxznrItkUmpnYu0IPT_LDbcuzWJuSpmHmmeRiW0YS5Hzh3BU1ZV_BAz1Dh-WTqZSOIElkcxGS2fzzEZpGooxRMNIK9vjj9M1GCt1QE4m6iikjuqoo8IxvNyXWe_QN_6Z-wURUJFoYs1W9x4G2D8CuVIFGovUE56P4WSgsepltlWovKR5RABnY3i2_4zSRlsouqKhVGiAocaLNhv-zquBNw5V_L1vj_8v-xO4FXdcSofdTuBo01z5p6j9bMwpHBeTN5MZhW-_vJ9iOJmef_x02gnBD1Nr_tk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk4ICggUgosEogDWNhev_aAUAqtUtpGCLVSbsu-XCKldohTVeFH8RuZ8SMRIHrrwZa1tnfXO9_Ow7szA_Ayjo1D3ArP8Tz3otjglIqt8GKtMqEDzYOIHJyPR8nwNPo8jscb8KvzhaFtlR1PrBm1LQ39I3-HoiXJAgo_9WH2w6OsUbS62qXQaGBx6JaXaLJV7w8-IX1fheH-3snHoddmFfAMF8HC4y5VJrIiC3Pri9ziLLPW2EDEubI6VJYCxqeZ5sYmach1LjJf8TTQofFDEWUc670BmxFHU6YHm7t7oy9fV7yfh3WyVbrw_FSMWzedxlkPJW3kkblGi6h4_kMU_i0Q_lmZrQXe_j2422qqbNBA6z5suGIL7gzO5m20DrcFN3dL1C2XD2DZOClUbFKwqpxM2ex7WeExv6hYPm98J_AKMVdeYmP4zNQxSh42c5apwjKKWjHvCs7V5Keri3OlFdNOFeyMfhewsmCIKdqtVmLN1NJDOL2W4X8EvaIs3GNgqOk4P7ciEZGN8E0EllbCmiw1QZL4UR-CbnylaSOeU-KNqVzHaiaaSKSJrGki_T68Wb0za-J9XPn0ayKbJGaANRvV-jRg_yislhygeUo94VkfdjrKypZLVHKN6T68WN3G-U2LNqqgoZRo8qGOjVYifs7bDhHrKv7ft-2rW3wOt4Ynx0fy6GB0-ARuhzUuaWvdDvQW8wv3FHWthX7WApzBt-ueU78BRQ05lg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDBAFAYYCcQDREvifPkBoY6t2hhUE2JS34y_slXqktJ0msqfxl_HXT5aAWJve0gUOYnt-H7nu4t9dwCv4tg4xK3wHM9zL4oNslRshRdrlQkdaB5E5OD8ZZQcnESfxvF4A351vjC0rbKbE-uJ2paG_pHvoGhJsoDCT-3k7baI473hh9kPjzJI0Uprl06jgciRW16i-Va9P9xDWr8Ow-H-t48HXpthwDNcBAuPu1SZyIoszK0vcoscZ62xgYhzZXWoLAWPTzPNjU3SkOtcZL7iaaBD44ciyjjWewM2U7SK_B5s7u6Pjr-u5AAP68SrdOH5qRi3LjuN4x5K3cgj040WVPH8h1j8Wzj8s0pbC7_hPbjbaq1s0MDsPmy4YgvuDE7nbeQOtwU3d0vUM5cPYNk4LFRsUrCqnEzZ7Kys8JhfVCyfN34UeIX4Ky-xMXxm6hglEps5y1RhGUWwmHcF52ry09XFudKKaacKdkq_DlhZMMQX7VwrsWZq6SGcXMvwP4JeURbuMTDUepyfW5GIyEb4JoJMK2FNlpogSfyoD0E3vtK00c8pCcdUruM2E00k0kTWNJF-H96u3pk1sT-ufPoNkU3SxIA1G9X6N2D_KMSWHKCpSj3hWR-2O8rKdsao5BrffXi5uo28Tgs4qqChlGj-ob6NFiN-zrsOEesq_t-3J1e3-AJuIS_Jz4ejo6dwO6xhSbvstqG3mF-4Z6h2LfTzFt8Mvl83S_0G7yA9yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+soil+phosphorus+fractions+following+sole+cropped+and+intercropped+maize+and+faba+bean+grown+on+calcareous+soil&rft.jtitle=Plant+and+soil&rft.au=Liao%2C+Dan&rft.au=Zhang%2C+Chaochun&rft.au=Li%2C+Haigang&rft.au=Lambers%2C+H&rft.date=2020-03-01&rft.issn=0032-079X&rft.volume=448&rft.issue=1-2+p.587-601&rft.spage=587&rft.epage=601&rft_id=info:doi/10.1007%2Fs11104-020-04460-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |