Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect

Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play...

Full description

Saved in:
Bibliographic Details
Published inMetabolites Vol. 10; no. 10; p. 391
Main Authors Giglio, Rosaria Vincenza, Nikolic, Dragana, Volti, Giovanni Li, Stoian, Anca Pantea, Banerjee, Yajnavalka, Magan-Fernandez, Antonio, Castellino, Giuseppa, Patti, Angelo Maria, Chianetta, Roberta, Castracani, Carlo Castruccio, Montalto, Giuseppe, Rizvi, Ali A., Sesti, Giorgio, Rizzo, Manfredi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.09.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management.
AbstractList Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide's benefits and may represent useful targets for cardiometabolic management.Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide's benefits and may represent useful targets for cardiometabolic management.
Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management.
Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) ( p = 0.0401), 1.91 (3.64) ( p = 0.0401) and 2.09 (11.0) ( p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management.
Author Chianetta, Roberta
Castellino, Giuseppa
Patti, Angelo Maria
Banerjee, Yajnavalka
Magan-Fernandez, Antonio
Volti, Giovanni Li
Montalto, Giuseppe
Stoian, Anca Pantea
Sesti, Giorgio
Nikolic, Dragana
Giglio, Rosaria Vincenza
Castracani, Carlo Castruccio
Rizvi, Ali A.
Rizzo, Manfredi
AuthorAffiliation 5 Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA
6 Division of Endocrinology, Metabolism, and Lipids Emory University School of Medicine, Atlanta, GA 30322, USA
3 Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; ancastoian@yahoo.com
4 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; Yajnavalka.Banerjee@mbru.ac.ae
1 Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; rosaria.vincenza.giglio@alice.it (R.V.G.); dragana.nikolic@unipa.it (D.N.); amaganf@ugr.es (A.M.-F.); castellinogiusy@gmail.com (G.C.); pattiangelomaria@gmail.com (A.M.P.); chianetta.roberta8@gmail.com (R.C.); giuseppe.montalto@unipa.it (G.M.); manfredi.rizzo@unipa.it (M.R.)
2 Department of Biomedical and Bi
AuthorAffiliation_xml – name: 7 Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00182 Rome, Italy; giorgio.sesti@uniroma1.it
– name: 1 Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; rosaria.vincenza.giglio@alice.it (R.V.G.); dragana.nikolic@unipa.it (D.N.); amaganf@ugr.es (A.M.-F.); castellinogiusy@gmail.com (G.C.); pattiangelomaria@gmail.com (A.M.P.); chianetta.roberta8@gmail.com (R.C.); giuseppe.montalto@unipa.it (G.M.); manfredi.rizzo@unipa.it (M.R.)
– name: 2 Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; livolti@unict.it (G.L.V.); carlo.castruccio@unict.it (C.C.C.)
– name: 5 Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA
– name: 3 Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; ancastoian@yahoo.com
– name: 6 Division of Endocrinology, Metabolism, and Lipids Emory University School of Medicine, Atlanta, GA 30322, USA
– name: 4 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; Yajnavalka.Banerjee@mbru.ac.ae
Author_xml – sequence: 1
  givenname: Rosaria Vincenza
  surname: Giglio
  fullname: Giglio, Rosaria Vincenza
– sequence: 2
  givenname: Dragana
  surname: Nikolic
  fullname: Nikolic, Dragana
– sequence: 3
  givenname: Giovanni Li
  orcidid: 0000-0002-8678-2183
  surname: Volti
  fullname: Volti, Giovanni Li
– sequence: 4
  givenname: Anca Pantea
  orcidid: 0000-0003-0555-526X
  surname: Stoian
  fullname: Stoian, Anca Pantea
– sequence: 5
  givenname: Yajnavalka
  orcidid: 0000-0002-7546-8893
  surname: Banerjee
  fullname: Banerjee, Yajnavalka
– sequence: 6
  givenname: Antonio
  orcidid: 0000-0001-6430-2276
  surname: Magan-Fernandez
  fullname: Magan-Fernandez, Antonio
– sequence: 7
  givenname: Giuseppa
  surname: Castellino
  fullname: Castellino, Giuseppa
– sequence: 8
  givenname: Angelo Maria
  surname: Patti
  fullname: Patti, Angelo Maria
– sequence: 9
  givenname: Roberta
  surname: Chianetta
  fullname: Chianetta, Roberta
– sequence: 10
  givenname: Carlo Castruccio
  orcidid: 0000-0002-1002-8969
  surname: Castracani
  fullname: Castracani, Carlo Castruccio
– sequence: 11
  givenname: Giuseppe
  surname: Montalto
  fullname: Montalto, Giuseppe
– sequence: 12
  givenname: Ali A.
  surname: Rizvi
  fullname: Rizvi, Ali A.
– sequence: 13
  givenname: Giorgio
  orcidid: 0000-0002-1618-7688
  surname: Sesti
  fullname: Sesti, Giorgio
– sequence: 14
  givenname: Manfredi
  orcidid: 0000-0002-9549-8504
  surname: Rizzo
  fullname: Rizzo, Manfredi
BookMark eNp1kk1vEzEQhleoiJbSK2dLXDiwxV_rtTkgRSVApLQgKGfL6x2njjbr1PYW9Rfwt3FIhUglfLE1fufRzDvzvDoawwhV9ZLgc8YUfruBbLpAMMGYKfKkOqGUyJooqY7-eR9XZymtcTkCNy0mz6pjxjCWmPOT6tfSR7Mapux7QIvRRjAJEvoOcdqgJdzBkFBw6NLbGL5dzWradm9QTRg2yIw9qinByI_oq8kexpzQT59v0PX9FhBFH7zpIBfaJQyDz1N6h2boKhQmmm_9CkbI3qK5c2Dzi-qpM0OCs4f7tPrxcX598blefvm0uJgta1s6zDXrGeaEEpBGCdE3De5VKxpqhHMWS0UU7alyTkrBJXGMYkKoIZxIkKQpgdNqsef2waz1NvqNifc6GK__BEJcaRNLWQNo2irORdvs_OVATWdZ23WKS-mYFdIW1vs9azt1G-htMSCa4QB6-DP6G70Kd7ptlFK4LYDXD4AYbidIWW98ssUsM0KYkqacS46FEKxIXz2SrsMUx2KVpg2XCnMmSFGd71VlWilFcH-LIVjvVkYfrkxJ4I8SrM9llmFXsB_-l_YbLPfCaA
CitedBy_id crossref_primary_10_3390_pr9050819
crossref_primary_10_3389_fendo_2024_1412138
crossref_primary_10_1080_00015385_2023_2227484
crossref_primary_10_3389_fendo_2024_1378291
crossref_primary_10_1007_s12672_022_00589_9
crossref_primary_10_1186_s13098_024_01371_3
crossref_primary_10_1177_03000605211055059
crossref_primary_10_25259_JKSUS_103_2024
crossref_primary_10_1186_s13098_025_01581_3
crossref_primary_10_3390_ijms22095047
crossref_primary_10_3390_endocrines5030023
crossref_primary_10_2174_0109298673262124231102042914
crossref_primary_10_3390_biology10010018
crossref_primary_10_1038_s41598_021_97967_0
crossref_primary_10_3390_ijms231810253
crossref_primary_10_1186_s12933_023_01842_3
crossref_primary_10_3389_fcvm_2024_1379189
Cites_doi 10.1016/j.atherosclerosis.2016.10.007
10.2337/dc14-1175
10.1517/14712598.2015.1067299
10.1016/j.hjc.2018.11.008
10.1097/MD.0000000000017860
10.2174/1570161113666150401101603
10.1186/1475-2840-13-49
10.1056/NEJMoa1603827
10.1093/clinchem/20.4.470
10.1097/MCA.0b013e3282f3fbde
10.18632/oncotarget.19941
10.7717/peerj.6567
10.1007/s13577-018-0208-z
10.1074/jbc.M800731200
10.1161/CIRCULATIONAHA.109.928424
10.1016/j.ijcard.2019.02.041
10.1210/jc.2014-2291
10.1016/j.jaci.2017.08.034
10.1186/s12933-016-0480-8
10.1080/09168451.2017.1343118
10.1016/j.redox.2018.09.025
10.1074/jbc.M113.514372
10.1002/hep.25846
10.4238/gmr.15027784
10.1016/j.metabol.2018.07.001
10.1093/jb/mvx017
10.1210/me.2014-1335
10.1177/0003319716638242
10.1002/iub.427
10.1016/j.lfs.2017.12.012
10.1161/CIRCRESAHA.110.226357
10.18632/oncotarget.5037
10.1155/2019/4727283
10.1016/j.neo.2019.07.005
10.2174/1389557515666150324123208
10.1161/01.ATV.0000216787.85457.f3
10.1159/000478071
10.2174/1573399812666151016101622
10.1016/j.jdiacomp.2018.12.013
10.1136/heartjnl-2013-305402
10.21037/atm.2017.04.41
10.1016/j.bbadis.2018.05.012
10.1080/14728222.2018.1420168
10.2174/157016111303150707103801
10.1093/nutrit/nux014
10.3390/nu9111168
10.3389/fendo.2018.00719
10.1089/ars.2013.5206
10.1182/blood-2012-01-403642
10.1159/000430132
10.2337/dc15-2479
10.1038/srep44986
10.2337/dc19-0437
10.1186/1475-2840-13-44
10.2337/db16-1405
10.1016/j.cca.2010.09.029
10.12659/MSM.906603
10.1016/j.vph.2018.10.010
10.1016/j.metabol.2020.154343
10.1371/journal.pone.0173576
10.1177/0022034511425045
10.5114/aoms.2017.68717
10.1016/j.bbrc.2015.08.092
10.1007/s00125-019-05039-w
10.1093/clinchem/31.2.217
10.2174/1381612819666131206102255
10.1038/nm.3361
10.1007/s10495-008-0181-1
10.1161/CIRCRESAHA.116.309318
10.1517/14728220903241633
10.1093/eurheartj/ehw272
10.1155/2009/641082
10.1016/j.metabol.2013.10.004
10.1016/j.jacc.2013.11.002
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7QR
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/metabo10100391
DatabaseName CrossRef
Chemoreception Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Natural Science Collection (Hollins)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-1989
ExternalDocumentID oai_doaj_org_article_2794467510104e2abc37bb9488f3c68c
PMC7599907
10_3390_metabo10100391
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7QR
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c391t-3d304121e8a966d550d97652a6ffc089192d29ff886481f320112a1418e8151f3
IEDL.DBID M48
ISSN 2218-1989
IngestDate Wed Aug 27 01:23:59 EDT 2025
Thu Aug 21 14:03:35 EDT 2025
Fri Jul 11 06:13:45 EDT 2025
Fri Jul 25 11:39:48 EDT 2025
Tue Jul 01 00:44:01 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-3d304121e8a966d550d97652a6ffc089192d29ff886481f320112a1418e8151f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to the work.
ORCID 0000-0001-6430-2276
0000-0003-0555-526X
0000-0002-8678-2183
0000-0002-7546-8893
0000-0002-1618-7688
0000-0002-1002-8969
0000-0002-9549-8504
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/metabo10100391
PMID 33008044
PQID 2548904361
PQPubID 2032362
ParticipantIDs doaj_primary_oai_doaj_org_article_2794467510104e2abc37bb9488f3c68c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7599907
proquest_miscellaneous_2448406663
proquest_journals_2548904361
crossref_primary_10_3390_metabo10100391
crossref_citationtrail_10_3390_metabo10100391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200930
PublicationDateYYYYMMDD 2020-09-30
PublicationDate_xml – month: 9
  year: 2020
  text: 20200930
  day: 30
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Metabolites
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rizzo (ref_49) 2016; 15
Lu (ref_5) 2018; 141
Rizzo (ref_44) 2015; 100
Zhu (ref_70) 2018; 46
Marso (ref_42) 2016; 375
Athyros (ref_74) 2015; 13
ref_54
Pan (ref_25) 2017; 8
Catapano (ref_80) 2016; 37
Stone (ref_81) 2014; 63
Patti (ref_38) 2018; 14
Kang (ref_52) 2013; 288
Perri (ref_59) 2012; 91
Yuan (ref_51) 2019; 20
Capuani (ref_13) 2018; 9
Lotfy (ref_32) 2017; 13
Warnick (ref_85) 1985; 31
Signorelli (ref_16) 2016; 67
Hu (ref_75) 2010; 122
Zhao (ref_57) 2018; 17
Johnson (ref_10) 2019; 114
Melo (ref_53) 2012; 119
Jiao (ref_23) 2015; 7
Simonson (ref_6) 2015; 15
Athyros (ref_73) 2016; 14
Corrado (ref_33) 2008; 19
Cheng (ref_47) 2015; 43
Rizvi (ref_3) 2015; 15
ref_29
Nauck (ref_36) 2016; 39
Ofori (ref_58) 2017; 7
Mantovani (ref_61) 2017; 5
Peeters (ref_63) 2015; 38
Wang (ref_55) 2018; 31
Romaine (ref_7) 2015; 101
Zhang (ref_50) 2016; 8
Guo (ref_45) 2018; 17
Qun (ref_21) 2016; 254
Zaccagnini (ref_67) 2014; 21
Shang (ref_11) 2015; 29
Ye (ref_22) 2015; 36
Jia (ref_26) 2017; 42
Fasanaro (ref_66) 2008; 283
Lee (ref_64) 2015; 6
Suzuki (ref_20) 2017; 161
Andrikou (ref_40) 2019; 60
ref_79
Song (ref_76) 2008; 13
Vickers (ref_56) 2013; 57
Allain (ref_83) 1974; 20
Toth (ref_39) 2015; 6
Devlin (ref_27) 2011; 63
Li (ref_78) 2017; 23
Diao (ref_69) 2017; 81
Yaribeygi (ref_77) 2018; 87
Rizzo (ref_43) 2009; 18
Rizzo (ref_48) 2014; 13
Kim (ref_62) 2019; 21
Mikhailidis (ref_37) 2017; 75
Regazzi (ref_9) 2018; 22
Jiang (ref_24) 2018; 22
Xu (ref_31) 2018; 195
Nagele (ref_84) 1984; 22
Cheung (ref_65) 2019; 42
ref_82
Wang (ref_12) 2015; 466
Eken (ref_68) 2017; 120
Sachinidis (ref_4) 2020; 111
Zhang (ref_30) 2019; 7
Poirier (ref_18) 2006; 26
Guan (ref_28) 2019; 2019
Rawal (ref_72) 2014; 13
Buse (ref_35) 2020; 63
Duan (ref_2) 2019; 98
Rizzo (ref_41) 2014; 20
Rizzo (ref_71) 2018; 1864
Cianflone (ref_1) 2019; 286
Zampetaki (ref_34) 2010; 107
Bostjancic (ref_15) 2009; 27
Zheng (ref_60) 2018; 18
Harms (ref_19) 2013; 19
Ding (ref_46) 2019; 33
Brennan (ref_8) 2017; 66
Li (ref_14) 2011; 412
Sun (ref_17) 2014; 63
References_xml – volume: 254
  start-page: 184
  year: 2016
  ident: ref_21
  article-title: miRNA-27b modulates endothelial cell angiogenesis by directly targeting Naa15 in atherogenesis
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2016.10.007
– volume: 38
  start-page: 495
  year: 2015
  ident: ref_63
  article-title: The risk of colorectal cancer in patients with type 2 diabetes: Associations with treatment stage and obesity
  publication-title: Diabetes Care
  doi: 10.2337/dc14-1175
– volume: 15
  start-page: 1391
  year: 2015
  ident: ref_3
  article-title: Liraglutide improves carotid intima-media thickness in patients with type 2 diabetes and non-alcoholic fatty liver disease: An 8-month prospective pilot study
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.2015.1067299
– volume: 17
  start-page: 8316
  year: 2018
  ident: ref_45
  article-title: Liraglutide reduces hepatic glucolipotoxicityinduced liver cell apoptosis through NRF2 signaling in Zucker diabetic fatty rats
  publication-title: Mol. Med. Rep.
– volume: 60
  start-page: 347
  year: 2019
  ident: ref_40
  article-title: GLP-1 receptor agonists and cardiovascular outcome trials: An update
  publication-title: Hell. J. Cardiol.
  doi: 10.1016/j.hjc.2018.11.008
– volume: 98
  start-page: e17860
  year: 2019
  ident: ref_2
  article-title: Cardiovascular outcomes of liraglutide in patients with type 2 diabetes: A systematic review and meta-analysis
  publication-title: Medicine
  doi: 10.1097/MD.0000000000017860
– volume: 14
  start-page: 88
  year: 2016
  ident: ref_73
  article-title: Is Targeting microRNAs the Philosopher’s Stone for Vascular Disease?
  publication-title: Curr. Vasc. Pharmacol.
  doi: 10.2174/1570161113666150401101603
– volume: 13
  start-page: 49
  year: 2014
  ident: ref_48
  article-title: Liraglutide decreases carotid intima-media thickness in patients with type 2 diabetes: 8-Month prospective pilot study
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/1475-2840-13-49
– volume: 375
  start-page: 311
  year: 2016
  ident: ref_42
  article-title: Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1603827
– volume: 18
  start-page: 3077
  year: 2018
  ident: ref_60
  article-title: MicroRNA130a inhibits the proliferation, migration and invasive ability of hepatocellular carcinoma cells by downregulating Rhokinase 2
  publication-title: Mol. Med. Rep.
– volume: 20
  start-page: 470
  year: 1974
  ident: ref_83
  article-title: Enzymatic determination of total serum cholesterol
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/20.4.470
– volume: 19
  start-page: 139
  year: 2008
  ident: ref_33
  article-title: Endothelial dysfunction and carotid lesions are strong predictors of clinical events in patients with early stages of atherosclerosis: A 24-month follow-up study
  publication-title: Coron. Artery Dis.
  doi: 10.1097/MCA.0b013e3282f3fbde
– volume: 8
  start-page: 60280
  year: 2017
  ident: ref_25
  article-title: Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19941
– volume: 7
  start-page: e6567
  year: 2019
  ident: ref_30
  article-title: A glucagon-like peptide-1 analog, liraglutide, ameliorates endothelial dysfunction through miRNAs to inhibit apoptosis in rats
  publication-title: PeerJ
  doi: 10.7717/peerj.6567
– volume: 31
  start-page: 251
  year: 2018
  ident: ref_55
  article-title: Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5
  publication-title: Hum. Cell
  doi: 10.1007/s13577-018-0208-z
– volume: 283
  start-page: 15878
  year: 2008
  ident: ref_66
  article-title: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800731200
– volume: 122
  start-page: 124
  year: 2010
  ident: ref_75
  article-title: MicroRNA-210 as a novel therapy for treatment of ischemic heart disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.928424
– volume: 286
  start-page: 17
  year: 2019
  ident: ref_1
  article-title: Microvascular and macrovascular effects of liraglutide
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2019.02.041
– volume: 100
  start-page: 603
  year: 2015
  ident: ref_44
  article-title: Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes: A prospective pilot study
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2014-2291
– volume: 141
  start-page: 1202
  year: 2018
  ident: ref_5
  article-title: MicroRNA
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2017.08.034
– volume: 15
  start-page: 162
  year: 2016
  ident: ref_49
  article-title: Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: An 18-month prospective study
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-016-0480-8
– volume: 81
  start-page: 1712
  year: 2017
  ident: ref_69
  article-title: MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2017.1343118
– volume: 7
  start-page: 1984
  year: 2015
  ident: ref_23
  article-title: MicroRNA-130a expression is decreased in Xinjiang Uygur patients with type 2 diabetes mellitus
  publication-title: Am. J. Transl. Res.
– volume: 20
  start-page: 247
  year: 2019
  ident: ref_51
  article-title: New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.09.025
– volume: 288
  start-page: 34394
  year: 2013
  ident: ref_52
  article-title: MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.514372
– volume: 57
  start-page: 533
  year: 2013
  ident: ref_56
  article-title: MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia
  publication-title: Hepatology
  doi: 10.1002/hep.25846
– volume: 8
  start-page: 2650
  year: 2016
  ident: ref_50
  article-title: Circulating MiRNA biomarkers serve as a fingerprint for diabetic atherosclerosis
  publication-title: Am. J. Transl. Res.
– ident: ref_54
  doi: 10.4238/gmr.15027784
– volume: 87
  start-page: 48
  year: 2018
  ident: ref_77
  article-title: MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2018.07.001
– volume: 161
  start-page: 417
  year: 2017
  ident: ref_20
  article-title: Regulation of TGF-beta-mediated endothelial-mesenchymal transition by microRNA-27
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvx017
– volume: 29
  start-page: 1243
  year: 2015
  ident: ref_11
  article-title: Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic beta-Cells
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2014-1335
– volume: 67
  start-page: 945
  year: 2016
  ident: ref_16
  article-title: Circulating miR-130a, miR-27b, and miR-210 in Patients With Peripheral Artery Disease and Their Potential Relationship With Oxidative Stress
  publication-title: Angiology
  doi: 10.1177/0003319716638242
– volume: 63
  start-page: 94
  year: 2011
  ident: ref_27
  article-title: miR-210: More than a silent player in hypoxia
  publication-title: IUBMB Life
  doi: 10.1002/iub.427
– volume: 195
  start-page: 87
  year: 2018
  ident: ref_31
  article-title: Liraglutide regulates the viability of pancreatic alpha-cells and pancreatic beta-cells through cAMP-PKA signal pathway
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2017.12.012
– volume: 107
  start-page: 810
  year: 2010
  ident: ref_34
  article-title: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.226357
– volume: 6
  start-page: 33269
  year: 2015
  ident: ref_64
  article-title: Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5037
– volume: 2019
  start-page: 4727283
  year: 2019
  ident: ref_28
  article-title: Effect of Hypoxia-Induced MicroRNA-210 Expression on Cardiovascular Disease and the Underlying Mechanism
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/4727283
– volume: 21
  start-page: 882
  year: 2019
  ident: ref_62
  article-title: MicroRNA-130a modulates a radiosensitivity of rectal cancer by targeting SOX4
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2019.07.005
– volume: 15
  start-page: 467
  year: 2015
  ident: ref_6
  article-title: MicroRNA Therapeutics: The Next Magic Bullet?
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/1389557515666150324123208
– volume: 26
  start-page: 968
  year: 2006
  ident: ref_18
  article-title: Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000216787.85457.f3
– volume: 42
  start-page: 808
  year: 2017
  ident: ref_26
  article-title: Predictive Effects of Circulating miR-221, miR-130a and miR-155 for Coronary Heart Disease: A Multi-Ethnic Study in China
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000478071
– volume: 13
  start-page: 3
  year: 2017
  ident: ref_32
  article-title: Chronic Complications of Diabetes Mellitus: A Mini Review
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/1573399812666151016101622
– volume: 33
  start-page: 267
  year: 2019
  ident: ref_46
  article-title: Liraglutide prevents beta-cell apoptosis via inactivation of NOX2 and its related signaling pathway
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2018.12.013
– volume: 101
  start-page: 921
  year: 2015
  ident: ref_7
  article-title: MicroRNAs in cardiovascular disease: An introduction for clinicians
  publication-title: Heart
  doi: 10.1136/heartjnl-2013-305402
– volume: 5
  start-page: 270
  year: 2017
  ident: ref_61
  article-title: Type 2 diabetes mellitus and risk of hepatocellular carcinoma: Spotlight on nonalcoholic fatty liver disease
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2017.04.41
– volume: 1864
  start-page: 2814
  year: 2018
  ident: ref_71
  article-title: GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2018.05.012
– volume: 22
  start-page: 153
  year: 2018
  ident: ref_9
  article-title: MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2018.1420168
– volume: 13
  start-page: 366
  year: 2015
  ident: ref_74
  article-title: Editorial: microRNAs: Potential Targets for the Treatment of Cardiovascular Disease
  publication-title: Curr. Vasc. Pharmacol.
  doi: 10.2174/157016111303150707103801
– volume: 75
  start-page: 307
  year: 2017
  ident: ref_37
  article-title: Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation
  publication-title: Nutr. Rev.
  doi: 10.1093/nutrit/nux014
– ident: ref_79
  doi: 10.3390/nu9111168
– ident: ref_82
– volume: 9
  start-page: 719
  year: 2018
  ident: ref_13
  article-title: Glucagon Like Peptide 1 and MicroRNA in Metabolic Diseases: Focusing on GLP1 Action on miRNAs
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00719
– volume: 21
  start-page: 1177
  year: 2014
  ident: ref_67
  article-title: Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2013.5206
– volume: 119
  start-page: 2439
  year: 2012
  ident: ref_53
  article-title: Angiogenesis is controlled by miR-27b associated with endothelial tip cells
  publication-title: Blood
  doi: 10.1182/blood-2012-01-403642
– volume: 36
  start-page: 712
  year: 2015
  ident: ref_22
  article-title: MicroRNA-130a Targets MAP3K12 to Modulate Diabetic Endothelial Progenitor Cell Function
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000430132
– volume: 39
  start-page: 1501
  year: 2016
  ident: ref_36
  article-title: Once-Daily Liraglutide Versus Lixisenatide as Add-on to Metformin in Type 2 Diabetes: A 26-Week Randomized Controlled Clinical Trial
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2479
– volume: 7
  start-page: 44986
  year: 2017
  ident: ref_58
  article-title: Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell
  publication-title: Sci. Rep.
  doi: 10.1038/srep44986
– volume: 42
  start-page: 1769
  year: 2019
  ident: ref_65
  article-title: Diabetes Increases Risk of Gastric Cancer After Helicobacter pylori Eradication: A Territory-Wide Study With Propensity Score Analysis
  publication-title: Diabetes Care
  doi: 10.2337/dc19-0437
– volume: 13
  start-page: 44
  year: 2014
  ident: ref_72
  article-title: Cardiovascular microRNAs: As modulators and diagnostic biomarkers of diabetic heart disease
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/1475-2840-13-44
– volume: 66
  start-page: 2266
  year: 2017
  ident: ref_8
  article-title: Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis
  publication-title: Diabetes
  doi: 10.2337/db16-1405
– volume: 412
  start-page: 66
  year: 2011
  ident: ref_14
  article-title: Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2010.09.029
– volume: 23
  start-page: 5410
  year: 2017
  ident: ref_78
  article-title: Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Alters Bone Marrow Exosome-Mediated miRNA Signal Pathways in Ovariectomized Rats with Type 2 Diabetes
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.906603
– volume: 17
  start-page: 5202
  year: 2018
  ident: ref_57
  article-title: Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression
  publication-title: Mol. Med. Rep.
– volume: 114
  start-page: 31
  year: 2019
  ident: ref_10
  article-title: Elucidating the contributory role of microRNA to cardiovascular diseases (a review)
  publication-title: Vascul. Pharmacol.
  doi: 10.1016/j.vph.2018.10.010
– volume: 111
  start-page: 154343
  year: 2020
  ident: ref_4
  article-title: Cardiovascular outcomes trials with incretin-based medications: A critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154343
– volume: 22
  start-page: 8454
  year: 2018
  ident: ref_24
  article-title: miRNA-130a improves cardiac function by down-regulating TNF-alpha expression in a rat model of heart failure
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 43
  start-page: 259
  year: 2015
  ident: ref_47
  article-title: Liraglutide attenuates myocardial ischemia/reperfusion injury possibly through reducing cardiomyocytes apoptosis and oxidation in rats
  publication-title: Zhonghua Xin Xue Guan Bing Za Zhi
– ident: ref_29
  doi: 10.1371/journal.pone.0173576
– volume: 91
  start-page: 33
  year: 2012
  ident: ref_59
  article-title: MicroRNA modulation in obesity and periodontitis
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034511425045
– volume: 22
  start-page: 165
  year: 1984
  ident: ref_84
  article-title: Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency
  publication-title: J. Clin. Chem. Clin. Biochem.
– volume: 14
  start-page: 422
  year: 2018
  ident: ref_38
  article-title: Natural approaches in metabolic syndrome management
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2017.68717
– volume: 466
  start-page: 33
  year: 2015
  ident: ref_12
  article-title: GLP-1 contributes to increases in PGC-1alpha expression by downregulating miR-23a to reduce apoptosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.08.092
– volume: 63
  start-page: 221
  year: 2020
  ident: ref_35
  article-title: 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-05039-w
– volume: 31
  start-page: 217
  year: 1985
  ident: ref_85
  article-title: Comparison of improved precipitation methods for quantification of high-density lipoprotein cholesterol
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/31.2.217
– volume: 6
  start-page: 299
  year: 2015
  ident: ref_39
  article-title: Bergamot Reduces Plasma Lipids, Atherogenic Small Dense LDL, and Subclinical Atherosclerosis in Subjects with Moderate Hypercholesterolemia: A 6 Months Prospective Study
  publication-title: Front. Pharmacol.
– volume: 20
  start-page: 4953
  year: 2014
  ident: ref_41
  article-title: Incretin-based therapies, glucometabolic health and endovascular inflammation
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612819666131206102255
– volume: 19
  start-page: 1252
  year: 2013
  ident: ref_19
  article-title: Brown and beige fat: Development, function and therapeutic potential
  publication-title: Nat. Med.
  doi: 10.1038/nm.3361
– volume: 13
  start-page: 383
  year: 2008
  ident: ref_76
  article-title: Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes
  publication-title: Apoptosis
  doi: 10.1007/s10495-008-0181-1
– volume: 120
  start-page: 633
  year: 2017
  ident: ref_68
  article-title: MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.309318
– volume: 18
  start-page: 1495
  year: 2009
  ident: ref_43
  article-title: Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors
  publication-title: Expert Opin. Investig. Drugs
  doi: 10.1517/14728220903241633
– volume: 37
  start-page: 2999
  year: 2016
  ident: ref_80
  article-title: 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehw272
– volume: 27
  start-page: 255
  year: 2009
  ident: ref_15
  article-title: MicroRNA microarray expression profiling in human myocardial infarction
  publication-title: Dis. Markers
  doi: 10.1155/2009/641082
– volume: 63
  start-page: 272
  year: 2014
  ident: ref_17
  article-title: MiR-27 orchestrates the transcriptional regulation of brown adipogenesis
  publication-title: Metabolism: Clin. Exp.
  doi: 10.1016/j.metabol.2013.10.004
– volume: 46
  start-page: 1659
  year: 2018
  ident: ref_70
  article-title: Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way
  publication-title: Artif. Cells Nanomed. Biotechnol.
– volume: 63
  start-page: 2889
  year: 2014
  ident: ref_81
  article-title: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.11.002
SSID ssj0000605701
Score 2.245156
Snippet Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 391
SubjectTerms Angiogenesis
Apoptosis
Atherosclerosis
Biomarkers
Blood pressure
cardiometabolic risk
Cardiovascular disease
Cell growth
Cholesterol
Diabetes
Diabetes mellitus (non-insulin dependent)
Endothelial cells
epigenetic
Epigenetics
Gene expression
Glucose
Heart attacks
Hemoglobin
Homeostasis
Ischemia
liraglutide
Metabolic disorders
Metformin
MicroRNAs
miRNA
Mortality
Oxidative stress
Polymerase chain reaction
Post-transcription
Risk factors
Serum levels
Triglycerides
type-2 diabetes
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEG3EkxfRVdlRV0oQvWxj0p1MeryNoog4gywreAv9qQNORkzm4C_wb1uVxGFyEC9ekyYfXVXd73VeXjN2JLX2cUgjbtPM8YRkrkY4yRErpD6QAZuldcjRuH99n9w8pA9LW32RJqyxB2467lRgwmAxU-pEiRfaWJkZM8C8C9L2laXRF-e8JTLVjMGIQ6K4cWmUyOtPp77CXqWrkCd6Zxaqzfo7CLOrj1yacK422HqLFGHYPOEmW_HFL7Y1LJAlT9_gGGrtZr0ovsXebyev-pGSyHnAkieluS8BB4L5FG5JF1TCLMCI1Hf_xkMuMvMXOE4sGnThgCMjg0kBd43Jagm0OgtEUUFAq5kpYUTendW8PIMhjGd4Tbh8IS9P-g0SGhfkbXZ_dfn_4pq3Wyxwi71QcekkGW7FXmnkPQ7pikN8kgrdD8FGaoD4z4lBCEr1ExUHSXBB6DiJlVeIFYLcYavFrPC_GWilXYZhV0LbxHijDYIDr9KgDO0bI3qMf3Z5blv_cdoG4zlHHkIhyrsh6rGTRfuXxnnjy5bnFMFFK3LMrg9gHuVtHuXf5VGP7X_GP2_LuMyRPasBmfTjPQ4Xp7EA6auKLvxsjm2Q4CbEAmWPZZ286TxQ90wxeaqtvLMUAXqU7f7EG-yxNUGLAbWYZZ-tVq9z_wcRU2UO6uL4AH3KEXc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BeuGCgIIIFDRICC6sau_a8YYLSlGqCjVRVVGpN2s_SyRih9g58Av428zYm4APcLVXtrUzO_ve7PgNY2-l1j4NecJtXjieUZmrEU5yxAq5DyTAZikPuVhOLm6yL7f5bUy4NbGsch8Tu0Dtaks58lMkMmpKeunpp80PTl2j6HQ1ttC4z44wBCs1Ykdn8-XV9SHLkiBaL5K0V2uUyO9P177F2UVH7LTRB7tRJ9o_QJrDOsm_Np7zR-xhRIww6038mN3z1RN2PKuQLa9_wjvoaji75Pgx-3W52uo7cibnAZc-VZz7BjAg7NZwSfVBDdQBFlSFd72ccVGYD8Bxg9GgKwccmRmsKrjqxVYboCwtEFUFAbF2poEFaXi2u-YjzGBZ4zNhviFNT_odEno15Kfs5nz-9fMFj60WuMVZaLl0koS3Uq808h-HtMUhTsmFnoRgEzVFHOjENASlJplKgyTYIHSapcorxAxBPmOjqq78cwZaaVeg-ZXQNjPeaIMgwas8KEP9Y8SY8f2UlzbqkFM7jO8l8hEyUTk00Zi9P4zf9Aoc_xx5RhY8jCLl7O5Cvb0r40IsBQYg3BwoFCWZF9pYWRgzxTgWpJ0oO2Yne_uXcTk35R_nG7M3h9u4EOl0RVe-3uEYJLoZsUE5ZsXAbwYfNLxTrb51kt5FjkA9KV78_-Uv2QNBdL8rVzlho3a7868QE7XmdXT837s5C1s
  priority: 102
  providerName: ProQuest
Title Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect
URI https://www.proquest.com/docview/2548904361
https://www.proquest.com/docview/2448406663
https://pubmed.ncbi.nlm.nih.gov/PMC7599907
https://doaj.org/article/2794467510104e2abc37bb9488f3c68c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZbC6Mvo103lq0LNxjby7TZkhwrg1LSkVJGE0pZoG9GsqU20Nhd7ED7C_a3d2c76Qzdy15j2Q660933XS7fMfZBGuNCHwU8jeKMK2pztSKTHLFC5DwJsKVUh5xMB6cz9eMyunzof2o3sHyU2tE8qdny5svdr_sjPPCHxDiRsn9duAo3DH2rljt_yrYxK8U0zWDSQv0mKiMyCcJGt_GR23bYM6T2iJ-U6qSoWsm_Az-7zZN_ZaOTXfa8hZEwauy-x564_AXbH-VIoRf38BHqxs66Yr7Pfp_Nl-aKPCxzgPGA2tBdCRglVgs4o6ahEgoPE2rNu5iOuIjtZ-CYdQyYPAOOdA3mOZw3CqwlUOkWiL-CgLahpoQJCXtWq_IbjGBa4DNhfEtCn_QfSWgkkl-y2cn45_dT3s5f4CluSMVlJkmNK3TaICnKkMtkCF4iYQbep4EeIjjMxNB7rQdKh14SlhAmVKF2GoGEl6_YVl7k7jUDo00Wo09oYVJlnTUWbeR05LWloTKix_h6y5O0FSenGRk3CZIUslbStVaPfdqsv21kOf658pgsuFlFctr1B8XyKmlPZyIwKmHGoPgUKCeMTWVs7RCDm5fpQKc9drC2f7J20QSptR6Sgj--4_3mMp5O-snF5K5Y4Rpkv4ooouyxuOM3nS_UvZLPr2ud7zhC9B7Eb_77zrdsR1B5oG5vOWBb1XLl3iGGqmyfbR-Pp-cX_boG0a-Pyh8qcR1A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2V9AAXRCmIQIFB4uPCqvauHa-REEohVUoTq6paqTd3be-WSMQOsSPUX8C_4Td2xnYCPsCtV3tlW57ZmXnj5zeMvZZaG9f6Dk_9IOMe0VwTkUmOtYJvLAmwpdSHnEaD8bn39cK_2GK_1__CEK1yHRPrQJ0VKfXI9xHIqJD00t1Pix-cpkbR19X1CI3GLY7N9U-EbOXHoy9o3zdCHI7OPo95O1WApzJ0Ky4zSRpTrlEaS_0MK_QMU7Iv9MDa1FEhljyZCK1VauAp10rKkEK7nquMwvRoJV73DtvGJ3FEj20fjKKT001Xx0F0EDhuow4pZejsz02F1kTHr7XYO9mvHhLQqWy7vMy_Et3hA3a_rVBh2LjUDtsy-UO2O8wRnc-v4S3UnNG6Gb_Lfk1mS31FzpsZwFBDDHdTAgag1RwmxEcqobAwJdbfaTTkIkjeA8eEpkHnGXBEgjDL4aQRdy2BusJA0BgEtFydEqakGVqtyg8whKjAa8JoQRqi9PslNOrLj9j5rRjhMevlRW6eMNBKZwG6mxI69RKT6ASLEqN8qxKaVyP6jK9feZy2uuc0fuN7jPiHTBR3TdRn7zbrF43ixz9XHpAFN6tIqbs-UCyv4nbjxwIDHiYjCn2OZ4ROUhkkSYhx08p0oNI-21vbP27DRxn_cfY-e7U5jRufvubo3BQrXIPA2iP0Kfss6PhN54G6Z_LZt1pCPPARGDjB0__f_CW7Oz6bTuLJUXT8jN0T1GqoqTJ7rFctV-Y51mNV8qLdBMAub3vf3QDqqkUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2VVEJcEKUgDAUGiY8Lq9i7drxGQiiliVqaRFFFpd7ctb1bIhE7xIlQfwH_iV_XGdsJ-AC3Xu2VbXlmZ-aNn98w9lpqbTwbuDwNwoz7RHNNRCY51gqBsSTAllIfcjzpHZ_7Xy6Cix32e_MvDNEqNzGxCtRZkVKPvItARkWkl-51bUOLmB4NPy1-cJogRV9aN-M0ahc5Ndc_Eb6VH0-O0NZvhBgOvn4-5s2EAZ7KyFtxmUnSm_KM0lj2Z1itZ5ieA6F71qauirD8yURkrVI9X3lWUrYU2vM9ZRSmSivxunfYbkioqMN2DweT6dm2w-MiUghdr1aKlDJyu3OzQsviJqh02VuZsBoY0Kpy2xzNv5Le8AG731Sr0K_da4_tmPwh2-_niNTn1_AWKv5o1ZjfZ79Gs6W-IkfODGDYIba7KQGD0XoOI-ImlVBYGBMD8GzS5yJM3gPH5KZB5xlwRIUwy2FaC72WQB1iIJgMAhreTglj0g9drcsP0IdJgdeEwYL0ROlXTKiVmB-x81sxwmPWyYvcPGGglc5CdD0ldOonJtEJFihGBVYlNLtGOIxvXnmcNhroNIrje4xYiEwUt03ksHfb9Yta_eOfKw_JgttVpNpdHSiWV3ETBGKBwQ8TE4VB1zdCJ6kMkyTCGGpl2lOpww429o-bUFLGfxzfYa-2pzEI0JcdnZtijWsQZPuERKXDwpbftB6ofSaffavkxMMAQYIbPv3_zV-yu7jf4tHJ5PQZuyeo61CxZg5YZ7Vcm-dYmq2SF80eAHZ529vuBiiESUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liraglutide+Increases+Serum+Levels+of+MicroRNA-27b%2C+-130a+and+-210+in+Patients+with+Type+2+Diabetes+Mellitus%3A+A+Novel+Epigenetic+Effect&rft.jtitle=Metabolites&rft.au=Giglio%2C+Rosaria+Vincenza&rft.au=Nikolic%2C+Dragana&rft.au=Volti%2C+Giovanni+Li&rft.au=Stoian%2C+Anca+Pantea&rft.date=2020-09-30&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=10&rft.issue=10&rft_id=info:doi/10.3390%2Fmetabo10100391&rft_id=info%3Apmid%2F33008044&rft.externalDocID=PMC7599907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon