Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect
Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play...
Saved in:
Published in | Metabolites Vol. 10; no. 10; p. 391 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.09.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management. |
---|---|
AbstractList | Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide's benefits and may represent useful targets for cardiometabolic management.Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide's benefits and may represent useful targets for cardiometabolic management. Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) (p = 0.0401), 1.91 (3.64) (p = 0.0401) and 2.09 (11.0) (p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management. Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), naïve to incretin-based therapy, were treated with liraglutide (1.2 mg/day as an add-on to metformin) for 4 months. miRNAs were quantified using real-time polymerase chain reaction. After liraglutide treatment, we found significant reductions in fasting glucose (from 9.8 ± 5.3 to 6.7 ± 1.6 mmol/L, p = 0.0042), glycosylated haemoglobin (HbA1c) (from 8.1 ± 0.8 to 6.6 ± 1.0%, p = 0.0008), total cholesterol (from 5.0 ± 1.0 to 4.0 ± 0.7 mmol/L, p = 0.0011), triglycerides (from 1.9 ± 1.0 to 1.5 ± 0.8 mmol/L, p = 0.0104) and low-density lipoprotein cholesterol (from 2.9 ± 1.2 to 2.2 ± 0.6 mmol/L, p = 0.0125), while the serum levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased (median (interquartile range, IQR) changes: 1.73 (7.12) ( p = 0.0401), 1.91 (3.64) ( p = 0.0401) and 2.09 (11.0) ( p = 0.0486), respectively). Since the changes in miRNAs were independent of changes in all the metabolic parameters investigated, liraglutide seems to exert a direct epigenetic effect in T2DM patients, regulating microRNAs involved in the maintenance of endothelial cell homeostasis. These changes might be implicated in liraglutide’s benefits and may represent useful targets for cardiometabolic management. |
Author | Chianetta, Roberta Castellino, Giuseppa Patti, Angelo Maria Banerjee, Yajnavalka Magan-Fernandez, Antonio Volti, Giovanni Li Montalto, Giuseppe Stoian, Anca Pantea Sesti, Giorgio Nikolic, Dragana Giglio, Rosaria Vincenza Castracani, Carlo Castruccio Rizvi, Ali A. Rizzo, Manfredi |
AuthorAffiliation | 5 Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA 6 Division of Endocrinology, Metabolism, and Lipids Emory University School of Medicine, Atlanta, GA 30322, USA 3 Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; ancastoian@yahoo.com 4 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; Yajnavalka.Banerjee@mbru.ac.ae 1 Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; rosaria.vincenza.giglio@alice.it (R.V.G.); dragana.nikolic@unipa.it (D.N.); amaganf@ugr.es (A.M.-F.); castellinogiusy@gmail.com (G.C.); pattiangelomaria@gmail.com (A.M.P.); chianetta.roberta8@gmail.com (R.C.); giuseppe.montalto@unipa.it (G.M.); manfredi.rizzo@unipa.it (M.R.) 2 Department of Biomedical and Bi |
AuthorAffiliation_xml | – name: 7 Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00182 Rome, Italy; giorgio.sesti@uniroma1.it – name: 1 Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; rosaria.vincenza.giglio@alice.it (R.V.G.); dragana.nikolic@unipa.it (D.N.); amaganf@ugr.es (A.M.-F.); castellinogiusy@gmail.com (G.C.); pattiangelomaria@gmail.com (A.M.P.); chianetta.roberta8@gmail.com (R.C.); giuseppe.montalto@unipa.it (G.M.); manfredi.rizzo@unipa.it (M.R.) – name: 2 Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; livolti@unict.it (G.L.V.); carlo.castruccio@unict.it (C.C.C.) – name: 5 Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA – name: 3 Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; ancastoian@yahoo.com – name: 6 Division of Endocrinology, Metabolism, and Lipids Emory University School of Medicine, Atlanta, GA 30322, USA – name: 4 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; Yajnavalka.Banerjee@mbru.ac.ae |
Author_xml | – sequence: 1 givenname: Rosaria Vincenza surname: Giglio fullname: Giglio, Rosaria Vincenza – sequence: 2 givenname: Dragana surname: Nikolic fullname: Nikolic, Dragana – sequence: 3 givenname: Giovanni Li orcidid: 0000-0002-8678-2183 surname: Volti fullname: Volti, Giovanni Li – sequence: 4 givenname: Anca Pantea orcidid: 0000-0003-0555-526X surname: Stoian fullname: Stoian, Anca Pantea – sequence: 5 givenname: Yajnavalka orcidid: 0000-0002-7546-8893 surname: Banerjee fullname: Banerjee, Yajnavalka – sequence: 6 givenname: Antonio orcidid: 0000-0001-6430-2276 surname: Magan-Fernandez fullname: Magan-Fernandez, Antonio – sequence: 7 givenname: Giuseppa surname: Castellino fullname: Castellino, Giuseppa – sequence: 8 givenname: Angelo Maria surname: Patti fullname: Patti, Angelo Maria – sequence: 9 givenname: Roberta surname: Chianetta fullname: Chianetta, Roberta – sequence: 10 givenname: Carlo Castruccio orcidid: 0000-0002-1002-8969 surname: Castracani fullname: Castracani, Carlo Castruccio – sequence: 11 givenname: Giuseppe surname: Montalto fullname: Montalto, Giuseppe – sequence: 12 givenname: Ali A. surname: Rizvi fullname: Rizvi, Ali A. – sequence: 13 givenname: Giorgio orcidid: 0000-0002-1618-7688 surname: Sesti fullname: Sesti, Giorgio – sequence: 14 givenname: Manfredi orcidid: 0000-0002-9549-8504 surname: Rizzo fullname: Rizzo, Manfredi |
BookMark | eNp1kk1vEzEQhleoiJbSK2dLXDiwxV_rtTkgRSVApLQgKGfL6x2njjbr1PYW9Rfwt3FIhUglfLE1fufRzDvzvDoawwhV9ZLgc8YUfruBbLpAMMGYKfKkOqGUyJooqY7-eR9XZymtcTkCNy0mz6pjxjCWmPOT6tfSR7Mapux7QIvRRjAJEvoOcdqgJdzBkFBw6NLbGL5dzWradm9QTRg2yIw9qinByI_oq8kexpzQT59v0PX9FhBFH7zpIBfaJQyDz1N6h2boKhQmmm_9CkbI3qK5c2Dzi-qpM0OCs4f7tPrxcX598blefvm0uJgta1s6zDXrGeaEEpBGCdE3De5VKxpqhHMWS0UU7alyTkrBJXGMYkKoIZxIkKQpgdNqsef2waz1NvqNifc6GK__BEJcaRNLWQNo2irORdvs_OVATWdZ23WKS-mYFdIW1vs9azt1G-htMSCa4QB6-DP6G70Kd7ptlFK4LYDXD4AYbidIWW98ssUsM0KYkqacS46FEKxIXz2SrsMUx2KVpg2XCnMmSFGd71VlWilFcH-LIVjvVkYfrkxJ4I8SrM9llmFXsB_-l_YbLPfCaA |
CitedBy_id | crossref_primary_10_3390_pr9050819 crossref_primary_10_3389_fendo_2024_1412138 crossref_primary_10_1080_00015385_2023_2227484 crossref_primary_10_3389_fendo_2024_1378291 crossref_primary_10_1007_s12672_022_00589_9 crossref_primary_10_1186_s13098_024_01371_3 crossref_primary_10_1177_03000605211055059 crossref_primary_10_25259_JKSUS_103_2024 crossref_primary_10_1186_s13098_025_01581_3 crossref_primary_10_3390_ijms22095047 crossref_primary_10_3390_endocrines5030023 crossref_primary_10_2174_0109298673262124231102042914 crossref_primary_10_3390_biology10010018 crossref_primary_10_1038_s41598_021_97967_0 crossref_primary_10_3390_ijms231810253 crossref_primary_10_1186_s12933_023_01842_3 crossref_primary_10_3389_fcvm_2024_1379189 |
Cites_doi | 10.1016/j.atherosclerosis.2016.10.007 10.2337/dc14-1175 10.1517/14712598.2015.1067299 10.1016/j.hjc.2018.11.008 10.1097/MD.0000000000017860 10.2174/1570161113666150401101603 10.1186/1475-2840-13-49 10.1056/NEJMoa1603827 10.1093/clinchem/20.4.470 10.1097/MCA.0b013e3282f3fbde 10.18632/oncotarget.19941 10.7717/peerj.6567 10.1007/s13577-018-0208-z 10.1074/jbc.M800731200 10.1161/CIRCULATIONAHA.109.928424 10.1016/j.ijcard.2019.02.041 10.1210/jc.2014-2291 10.1016/j.jaci.2017.08.034 10.1186/s12933-016-0480-8 10.1080/09168451.2017.1343118 10.1016/j.redox.2018.09.025 10.1074/jbc.M113.514372 10.1002/hep.25846 10.4238/gmr.15027784 10.1016/j.metabol.2018.07.001 10.1093/jb/mvx017 10.1210/me.2014-1335 10.1177/0003319716638242 10.1002/iub.427 10.1016/j.lfs.2017.12.012 10.1161/CIRCRESAHA.110.226357 10.18632/oncotarget.5037 10.1155/2019/4727283 10.1016/j.neo.2019.07.005 10.2174/1389557515666150324123208 10.1161/01.ATV.0000216787.85457.f3 10.1159/000478071 10.2174/1573399812666151016101622 10.1016/j.jdiacomp.2018.12.013 10.1136/heartjnl-2013-305402 10.21037/atm.2017.04.41 10.1016/j.bbadis.2018.05.012 10.1080/14728222.2018.1420168 10.2174/157016111303150707103801 10.1093/nutrit/nux014 10.3390/nu9111168 10.3389/fendo.2018.00719 10.1089/ars.2013.5206 10.1182/blood-2012-01-403642 10.1159/000430132 10.2337/dc15-2479 10.1038/srep44986 10.2337/dc19-0437 10.1186/1475-2840-13-44 10.2337/db16-1405 10.1016/j.cca.2010.09.029 10.12659/MSM.906603 10.1016/j.vph.2018.10.010 10.1016/j.metabol.2020.154343 10.1371/journal.pone.0173576 10.1177/0022034511425045 10.5114/aoms.2017.68717 10.1016/j.bbrc.2015.08.092 10.1007/s00125-019-05039-w 10.1093/clinchem/31.2.217 10.2174/1381612819666131206102255 10.1038/nm.3361 10.1007/s10495-008-0181-1 10.1161/CIRCRESAHA.116.309318 10.1517/14728220903241633 10.1093/eurheartj/ehw272 10.1155/2009/641082 10.1016/j.metabol.2013.10.004 10.1016/j.jacc.2013.11.002 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 7QR 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/metabo10100391 |
DatabaseName | CrossRef Chemoreception Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central ProQuest Natural Science Collection (Hollins) ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-1989 |
ExternalDocumentID | oai_doaj_org_article_2794467510104e2abc37bb9488f3c68c PMC7599907 10_3390_metabo10100391 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 7QR 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c391t-3d304121e8a966d550d97652a6ffc089192d29ff886481f320112a1418e8151f3 |
IEDL.DBID | M48 |
ISSN | 2218-1989 |
IngestDate | Wed Aug 27 01:23:59 EDT 2025 Thu Aug 21 14:03:35 EDT 2025 Fri Jul 11 06:13:45 EDT 2025 Fri Jul 25 11:39:48 EDT 2025 Tue Jul 01 00:44:01 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-3d304121e8a966d550d97652a6ffc089192d29ff886481f320112a1418e8151f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to the work. |
ORCID | 0000-0001-6430-2276 0000-0003-0555-526X 0000-0002-8678-2183 0000-0002-7546-8893 0000-0002-1618-7688 0000-0002-1002-8969 0000-0002-9549-8504 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/metabo10100391 |
PMID | 33008044 |
PQID | 2548904361 |
PQPubID | 2032362 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2794467510104e2abc37bb9488f3c68c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7599907 proquest_miscellaneous_2448406663 proquest_journals_2548904361 crossref_primary_10_3390_metabo10100391 crossref_citationtrail_10_3390_metabo10100391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200930 |
PublicationDateYYYYMMDD | 2020-09-30 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200930 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metabolites |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Rizzo (ref_49) 2016; 15 Lu (ref_5) 2018; 141 Rizzo (ref_44) 2015; 100 Zhu (ref_70) 2018; 46 Marso (ref_42) 2016; 375 Athyros (ref_74) 2015; 13 ref_54 Pan (ref_25) 2017; 8 Catapano (ref_80) 2016; 37 Stone (ref_81) 2014; 63 Patti (ref_38) 2018; 14 Kang (ref_52) 2013; 288 Perri (ref_59) 2012; 91 Yuan (ref_51) 2019; 20 Capuani (ref_13) 2018; 9 Lotfy (ref_32) 2017; 13 Warnick (ref_85) 1985; 31 Signorelli (ref_16) 2016; 67 Hu (ref_75) 2010; 122 Zhao (ref_57) 2018; 17 Johnson (ref_10) 2019; 114 Melo (ref_53) 2012; 119 Jiao (ref_23) 2015; 7 Simonson (ref_6) 2015; 15 Athyros (ref_73) 2016; 14 Corrado (ref_33) 2008; 19 Cheng (ref_47) 2015; 43 Rizvi (ref_3) 2015; 15 ref_29 Nauck (ref_36) 2016; 39 Ofori (ref_58) 2017; 7 Mantovani (ref_61) 2017; 5 Peeters (ref_63) 2015; 38 Wang (ref_55) 2018; 31 Romaine (ref_7) 2015; 101 Zhang (ref_50) 2016; 8 Guo (ref_45) 2018; 17 Qun (ref_21) 2016; 254 Zaccagnini (ref_67) 2014; 21 Shang (ref_11) 2015; 29 Ye (ref_22) 2015; 36 Jia (ref_26) 2017; 42 Fasanaro (ref_66) 2008; 283 Lee (ref_64) 2015; 6 Suzuki (ref_20) 2017; 161 Andrikou (ref_40) 2019; 60 ref_79 Song (ref_76) 2008; 13 Vickers (ref_56) 2013; 57 Allain (ref_83) 1974; 20 Toth (ref_39) 2015; 6 Devlin (ref_27) 2011; 63 Li (ref_78) 2017; 23 Diao (ref_69) 2017; 81 Yaribeygi (ref_77) 2018; 87 Rizzo (ref_43) 2009; 18 Rizzo (ref_48) 2014; 13 Kim (ref_62) 2019; 21 Mikhailidis (ref_37) 2017; 75 Regazzi (ref_9) 2018; 22 Jiang (ref_24) 2018; 22 Xu (ref_31) 2018; 195 Nagele (ref_84) 1984; 22 Cheung (ref_65) 2019; 42 ref_82 Wang (ref_12) 2015; 466 Eken (ref_68) 2017; 120 Sachinidis (ref_4) 2020; 111 Zhang (ref_30) 2019; 7 Poirier (ref_18) 2006; 26 Guan (ref_28) 2019; 2019 Rawal (ref_72) 2014; 13 Buse (ref_35) 2020; 63 Duan (ref_2) 2019; 98 Rizzo (ref_41) 2014; 20 Rizzo (ref_71) 2018; 1864 Cianflone (ref_1) 2019; 286 Zampetaki (ref_34) 2010; 107 Bostjancic (ref_15) 2009; 27 Zheng (ref_60) 2018; 18 Harms (ref_19) 2013; 19 Ding (ref_46) 2019; 33 Brennan (ref_8) 2017; 66 Li (ref_14) 2011; 412 Sun (ref_17) 2014; 63 |
References_xml | – volume: 254 start-page: 184 year: 2016 ident: ref_21 article-title: miRNA-27b modulates endothelial cell angiogenesis by directly targeting Naa15 in atherogenesis publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2016.10.007 – volume: 38 start-page: 495 year: 2015 ident: ref_63 article-title: The risk of colorectal cancer in patients with type 2 diabetes: Associations with treatment stage and obesity publication-title: Diabetes Care doi: 10.2337/dc14-1175 – volume: 15 start-page: 1391 year: 2015 ident: ref_3 article-title: Liraglutide improves carotid intima-media thickness in patients with type 2 diabetes and non-alcoholic fatty liver disease: An 8-month prospective pilot study publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.2015.1067299 – volume: 17 start-page: 8316 year: 2018 ident: ref_45 article-title: Liraglutide reduces hepatic glucolipotoxicityinduced liver cell apoptosis through NRF2 signaling in Zucker diabetic fatty rats publication-title: Mol. Med. Rep. – volume: 60 start-page: 347 year: 2019 ident: ref_40 article-title: GLP-1 receptor agonists and cardiovascular outcome trials: An update publication-title: Hell. J. Cardiol. doi: 10.1016/j.hjc.2018.11.008 – volume: 98 start-page: e17860 year: 2019 ident: ref_2 article-title: Cardiovascular outcomes of liraglutide in patients with type 2 diabetes: A systematic review and meta-analysis publication-title: Medicine doi: 10.1097/MD.0000000000017860 – volume: 14 start-page: 88 year: 2016 ident: ref_73 article-title: Is Targeting microRNAs the Philosopher’s Stone for Vascular Disease? publication-title: Curr. Vasc. Pharmacol. doi: 10.2174/1570161113666150401101603 – volume: 13 start-page: 49 year: 2014 ident: ref_48 article-title: Liraglutide decreases carotid intima-media thickness in patients with type 2 diabetes: 8-Month prospective pilot study publication-title: Cardiovasc. Diabetol. doi: 10.1186/1475-2840-13-49 – volume: 375 start-page: 311 year: 2016 ident: ref_42 article-title: Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1603827 – volume: 18 start-page: 3077 year: 2018 ident: ref_60 article-title: MicroRNA130a inhibits the proliferation, migration and invasive ability of hepatocellular carcinoma cells by downregulating Rhokinase 2 publication-title: Mol. Med. Rep. – volume: 20 start-page: 470 year: 1974 ident: ref_83 article-title: Enzymatic determination of total serum cholesterol publication-title: Clin. Chem. doi: 10.1093/clinchem/20.4.470 – volume: 19 start-page: 139 year: 2008 ident: ref_33 article-title: Endothelial dysfunction and carotid lesions are strong predictors of clinical events in patients with early stages of atherosclerosis: A 24-month follow-up study publication-title: Coron. Artery Dis. doi: 10.1097/MCA.0b013e3282f3fbde – volume: 8 start-page: 60280 year: 2017 ident: ref_25 article-title: Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients publication-title: Oncotarget doi: 10.18632/oncotarget.19941 – volume: 7 start-page: e6567 year: 2019 ident: ref_30 article-title: A glucagon-like peptide-1 analog, liraglutide, ameliorates endothelial dysfunction through miRNAs to inhibit apoptosis in rats publication-title: PeerJ doi: 10.7717/peerj.6567 – volume: 31 start-page: 251 year: 2018 ident: ref_55 article-title: Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5 publication-title: Hum. Cell doi: 10.1007/s13577-018-0208-z – volume: 283 start-page: 15878 year: 2008 ident: ref_66 article-title: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800731200 – volume: 122 start-page: 124 year: 2010 ident: ref_75 article-title: MicroRNA-210 as a novel therapy for treatment of ischemic heart disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.928424 – volume: 286 start-page: 17 year: 2019 ident: ref_1 article-title: Microvascular and macrovascular effects of liraglutide publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2019.02.041 – volume: 100 start-page: 603 year: 2015 ident: ref_44 article-title: Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes: A prospective pilot study publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2014-2291 – volume: 141 start-page: 1202 year: 2018 ident: ref_5 article-title: MicroRNA publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2017.08.034 – volume: 15 start-page: 162 year: 2016 ident: ref_49 article-title: Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: An 18-month prospective study publication-title: Cardiovasc. Diabetol. doi: 10.1186/s12933-016-0480-8 – volume: 81 start-page: 1712 year: 2017 ident: ref_69 article-title: MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2017.1343118 – volume: 7 start-page: 1984 year: 2015 ident: ref_23 article-title: MicroRNA-130a expression is decreased in Xinjiang Uygur patients with type 2 diabetes mellitus publication-title: Am. J. Transl. Res. – volume: 20 start-page: 247 year: 2019 ident: ref_51 article-title: New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis publication-title: Redox Biol. doi: 10.1016/j.redox.2018.09.025 – volume: 288 start-page: 34394 year: 2013 ident: ref_52 article-title: MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.514372 – volume: 57 start-page: 533 year: 2013 ident: ref_56 article-title: MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia publication-title: Hepatology doi: 10.1002/hep.25846 – volume: 8 start-page: 2650 year: 2016 ident: ref_50 article-title: Circulating MiRNA biomarkers serve as a fingerprint for diabetic atherosclerosis publication-title: Am. J. Transl. Res. – ident: ref_54 doi: 10.4238/gmr.15027784 – volume: 87 start-page: 48 year: 2018 ident: ref_77 article-title: MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment publication-title: Metabolism doi: 10.1016/j.metabol.2018.07.001 – volume: 161 start-page: 417 year: 2017 ident: ref_20 article-title: Regulation of TGF-beta-mediated endothelial-mesenchymal transition by microRNA-27 publication-title: J. Biochem. doi: 10.1093/jb/mvx017 – volume: 29 start-page: 1243 year: 2015 ident: ref_11 article-title: Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic beta-Cells publication-title: Mol. Endocrinol. doi: 10.1210/me.2014-1335 – volume: 67 start-page: 945 year: 2016 ident: ref_16 article-title: Circulating miR-130a, miR-27b, and miR-210 in Patients With Peripheral Artery Disease and Their Potential Relationship With Oxidative Stress publication-title: Angiology doi: 10.1177/0003319716638242 – volume: 63 start-page: 94 year: 2011 ident: ref_27 article-title: miR-210: More than a silent player in hypoxia publication-title: IUBMB Life doi: 10.1002/iub.427 – volume: 195 start-page: 87 year: 2018 ident: ref_31 article-title: Liraglutide regulates the viability of pancreatic alpha-cells and pancreatic beta-cells through cAMP-PKA signal pathway publication-title: Life Sci. doi: 10.1016/j.lfs.2017.12.012 – volume: 107 start-page: 810 year: 2010 ident: ref_34 article-title: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.226357 – volume: 6 start-page: 33269 year: 2015 ident: ref_64 article-title: Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.5037 – volume: 2019 start-page: 4727283 year: 2019 ident: ref_28 article-title: Effect of Hypoxia-Induced MicroRNA-210 Expression on Cardiovascular Disease and the Underlying Mechanism publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/4727283 – volume: 21 start-page: 882 year: 2019 ident: ref_62 article-title: MicroRNA-130a modulates a radiosensitivity of rectal cancer by targeting SOX4 publication-title: Neoplasia doi: 10.1016/j.neo.2019.07.005 – volume: 15 start-page: 467 year: 2015 ident: ref_6 article-title: MicroRNA Therapeutics: The Next Magic Bullet? publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557515666150324123208 – volume: 26 start-page: 968 year: 2006 ident: ref_18 article-title: Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000216787.85457.f3 – volume: 42 start-page: 808 year: 2017 ident: ref_26 article-title: Predictive Effects of Circulating miR-221, miR-130a and miR-155 for Coronary Heart Disease: A Multi-Ethnic Study in China publication-title: Cell. Physiol. Biochem. doi: 10.1159/000478071 – volume: 13 start-page: 3 year: 2017 ident: ref_32 article-title: Chronic Complications of Diabetes Mellitus: A Mini Review publication-title: Curr. Diabetes Rev. doi: 10.2174/1573399812666151016101622 – volume: 33 start-page: 267 year: 2019 ident: ref_46 article-title: Liraglutide prevents beta-cell apoptosis via inactivation of NOX2 and its related signaling pathway publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2018.12.013 – volume: 101 start-page: 921 year: 2015 ident: ref_7 article-title: MicroRNAs in cardiovascular disease: An introduction for clinicians publication-title: Heart doi: 10.1136/heartjnl-2013-305402 – volume: 5 start-page: 270 year: 2017 ident: ref_61 article-title: Type 2 diabetes mellitus and risk of hepatocellular carcinoma: Spotlight on nonalcoholic fatty liver disease publication-title: Ann. Transl. Med. doi: 10.21037/atm.2017.04.41 – volume: 1864 start-page: 2814 year: 2018 ident: ref_71 article-title: GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.05.012 – volume: 22 start-page: 153 year: 2018 ident: ref_9 article-title: MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2018.1420168 – volume: 13 start-page: 366 year: 2015 ident: ref_74 article-title: Editorial: microRNAs: Potential Targets for the Treatment of Cardiovascular Disease publication-title: Curr. Vasc. Pharmacol. doi: 10.2174/157016111303150707103801 – volume: 75 start-page: 307 year: 2017 ident: ref_37 article-title: Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation publication-title: Nutr. Rev. doi: 10.1093/nutrit/nux014 – ident: ref_79 doi: 10.3390/nu9111168 – ident: ref_82 – volume: 9 start-page: 719 year: 2018 ident: ref_13 article-title: Glucagon Like Peptide 1 and MicroRNA in Metabolic Diseases: Focusing on GLP1 Action on miRNAs publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2018.00719 – volume: 21 start-page: 1177 year: 2014 ident: ref_67 article-title: Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5206 – volume: 119 start-page: 2439 year: 2012 ident: ref_53 article-title: Angiogenesis is controlled by miR-27b associated with endothelial tip cells publication-title: Blood doi: 10.1182/blood-2012-01-403642 – volume: 36 start-page: 712 year: 2015 ident: ref_22 article-title: MicroRNA-130a Targets MAP3K12 to Modulate Diabetic Endothelial Progenitor Cell Function publication-title: Cell. Physiol. Biochem. doi: 10.1159/000430132 – volume: 39 start-page: 1501 year: 2016 ident: ref_36 article-title: Once-Daily Liraglutide Versus Lixisenatide as Add-on to Metformin in Type 2 Diabetes: A 26-Week Randomized Controlled Clinical Trial publication-title: Diabetes Care doi: 10.2337/dc15-2479 – volume: 7 start-page: 44986 year: 2017 ident: ref_58 article-title: Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell publication-title: Sci. Rep. doi: 10.1038/srep44986 – volume: 42 start-page: 1769 year: 2019 ident: ref_65 article-title: Diabetes Increases Risk of Gastric Cancer After Helicobacter pylori Eradication: A Territory-Wide Study With Propensity Score Analysis publication-title: Diabetes Care doi: 10.2337/dc19-0437 – volume: 13 start-page: 44 year: 2014 ident: ref_72 article-title: Cardiovascular microRNAs: As modulators and diagnostic biomarkers of diabetic heart disease publication-title: Cardiovasc. Diabetol. doi: 10.1186/1475-2840-13-44 – volume: 66 start-page: 2266 year: 2017 ident: ref_8 article-title: Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis publication-title: Diabetes doi: 10.2337/db16-1405 – volume: 412 start-page: 66 year: 2011 ident: ref_14 article-title: Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2010.09.029 – volume: 23 start-page: 5410 year: 2017 ident: ref_78 article-title: Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Alters Bone Marrow Exosome-Mediated miRNA Signal Pathways in Ovariectomized Rats with Type 2 Diabetes publication-title: Med. Sci. Monit. doi: 10.12659/MSM.906603 – volume: 17 start-page: 5202 year: 2018 ident: ref_57 article-title: Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression publication-title: Mol. Med. Rep. – volume: 114 start-page: 31 year: 2019 ident: ref_10 article-title: Elucidating the contributory role of microRNA to cardiovascular diseases (a review) publication-title: Vascul. Pharmacol. doi: 10.1016/j.vph.2018.10.010 – volume: 111 start-page: 154343 year: 2020 ident: ref_4 article-title: Cardiovascular outcomes trials with incretin-based medications: A critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors publication-title: Metabolism doi: 10.1016/j.metabol.2020.154343 – volume: 22 start-page: 8454 year: 2018 ident: ref_24 article-title: miRNA-130a improves cardiac function by down-regulating TNF-alpha expression in a rat model of heart failure publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 43 start-page: 259 year: 2015 ident: ref_47 article-title: Liraglutide attenuates myocardial ischemia/reperfusion injury possibly through reducing cardiomyocytes apoptosis and oxidation in rats publication-title: Zhonghua Xin Xue Guan Bing Za Zhi – ident: ref_29 doi: 10.1371/journal.pone.0173576 – volume: 91 start-page: 33 year: 2012 ident: ref_59 article-title: MicroRNA modulation in obesity and periodontitis publication-title: J. Dent. Res. doi: 10.1177/0022034511425045 – volume: 22 start-page: 165 year: 1984 ident: ref_84 article-title: Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency publication-title: J. Clin. Chem. Clin. Biochem. – volume: 14 start-page: 422 year: 2018 ident: ref_38 article-title: Natural approaches in metabolic syndrome management publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2017.68717 – volume: 466 start-page: 33 year: 2015 ident: ref_12 article-title: GLP-1 contributes to increases in PGC-1alpha expression by downregulating miR-23a to reduce apoptosis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.08.092 – volume: 63 start-page: 221 year: 2020 ident: ref_35 article-title: 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) publication-title: Diabetologia doi: 10.1007/s00125-019-05039-w – volume: 31 start-page: 217 year: 1985 ident: ref_85 article-title: Comparison of improved precipitation methods for quantification of high-density lipoprotein cholesterol publication-title: Clin. Chem. doi: 10.1093/clinchem/31.2.217 – volume: 6 start-page: 299 year: 2015 ident: ref_39 article-title: Bergamot Reduces Plasma Lipids, Atherogenic Small Dense LDL, and Subclinical Atherosclerosis in Subjects with Moderate Hypercholesterolemia: A 6 Months Prospective Study publication-title: Front. Pharmacol. – volume: 20 start-page: 4953 year: 2014 ident: ref_41 article-title: Incretin-based therapies, glucometabolic health and endovascular inflammation publication-title: Curr. Pharm. Des. doi: 10.2174/1381612819666131206102255 – volume: 19 start-page: 1252 year: 2013 ident: ref_19 article-title: Brown and beige fat: Development, function and therapeutic potential publication-title: Nat. Med. doi: 10.1038/nm.3361 – volume: 13 start-page: 383 year: 2008 ident: ref_76 article-title: Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes publication-title: Apoptosis doi: 10.1007/s10495-008-0181-1 – volume: 120 start-page: 633 year: 2017 ident: ref_68 article-title: MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.309318 – volume: 18 start-page: 1495 year: 2009 ident: ref_43 article-title: Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analogues and DPP-4-inhibitors publication-title: Expert Opin. Investig. Drugs doi: 10.1517/14728220903241633 – volume: 37 start-page: 2999 year: 2016 ident: ref_80 article-title: 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehw272 – volume: 27 start-page: 255 year: 2009 ident: ref_15 article-title: MicroRNA microarray expression profiling in human myocardial infarction publication-title: Dis. Markers doi: 10.1155/2009/641082 – volume: 63 start-page: 272 year: 2014 ident: ref_17 article-title: MiR-27 orchestrates the transcriptional regulation of brown adipogenesis publication-title: Metabolism: Clin. Exp. doi: 10.1016/j.metabol.2013.10.004 – volume: 46 start-page: 1659 year: 2018 ident: ref_70 article-title: Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 63 start-page: 2889 year: 2014 ident: ref_81 article-title: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.11.002 |
SSID | ssj0000605701 |
Score | 2.245156 |
Snippet | Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 391 |
SubjectTerms | Angiogenesis Apoptosis Atherosclerosis Biomarkers Blood pressure cardiometabolic risk Cardiovascular disease Cell growth Cholesterol Diabetes Diabetes mellitus (non-insulin dependent) Endothelial cells epigenetic Epigenetics Gene expression Glucose Heart attacks Hemoglobin Homeostasis Ischemia liraglutide Metabolic disorders Metformin MicroRNAs miRNA Mortality Oxidative stress Polymerase chain reaction Post-transcription Risk factors Serum levels Triglycerides type-2 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEG3EkxfRVdlRV0oQvWxj0p1MeryNoog4gywreAv9qQNORkzm4C_wb1uVxGFyEC9ekyYfXVXd73VeXjN2JLX2cUgjbtPM8YRkrkY4yRErpD6QAZuldcjRuH99n9w8pA9LW32RJqyxB2467lRgwmAxU-pEiRfaWJkZM8C8C9L2laXRF-e8JTLVjMGIQ6K4cWmUyOtPp77CXqWrkCd6Zxaqzfo7CLOrj1yacK422HqLFGHYPOEmW_HFL7Y1LJAlT9_gGGrtZr0ovsXebyev-pGSyHnAkieluS8BB4L5FG5JF1TCLMCI1Hf_xkMuMvMXOE4sGnThgCMjg0kBd43Jagm0OgtEUUFAq5kpYUTendW8PIMhjGd4Tbh8IS9P-g0SGhfkbXZ_dfn_4pq3Wyxwi71QcekkGW7FXmnkPQ7pikN8kgrdD8FGaoD4z4lBCEr1ExUHSXBB6DiJlVeIFYLcYavFrPC_GWilXYZhV0LbxHijDYIDr9KgDO0bI3qMf3Z5blv_cdoG4zlHHkIhyrsh6rGTRfuXxnnjy5bnFMFFK3LMrg9gHuVtHuXf5VGP7X_GP2_LuMyRPasBmfTjPQ4Xp7EA6auKLvxsjm2Q4CbEAmWPZZ286TxQ90wxeaqtvLMUAXqU7f7EG-yxNUGLAbWYZZ-tVq9z_wcRU2UO6uL4AH3KEXc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BeuGCgIIIFDRICC6sau_a8YYLSlGqCjVRVVGpN2s_SyRih9g58Av428zYm4APcLVXtrUzO_ve7PgNY2-l1j4NecJtXjieUZmrEU5yxAq5DyTAZikPuVhOLm6yL7f5bUy4NbGsch8Tu0Dtaks58lMkMmpKeunpp80PTl2j6HQ1ttC4z44wBCs1Ykdn8-XV9SHLkiBaL5K0V2uUyO9P177F2UVH7LTRB7tRJ9o_QJrDOsm_Np7zR-xhRIww6038mN3z1RN2PKuQLa9_wjvoaji75Pgx-3W52uo7cibnAZc-VZz7BjAg7NZwSfVBDdQBFlSFd72ccVGYD8Bxg9GgKwccmRmsKrjqxVYboCwtEFUFAbF2poEFaXi2u-YjzGBZ4zNhviFNT_odEno15Kfs5nz-9fMFj60WuMVZaLl0koS3Uq808h-HtMUhTsmFnoRgEzVFHOjENASlJplKgyTYIHSapcorxAxBPmOjqq78cwZaaVeg-ZXQNjPeaIMgwas8KEP9Y8SY8f2UlzbqkFM7jO8l8hEyUTk00Zi9P4zf9Aoc_xx5RhY8jCLl7O5Cvb0r40IsBQYg3BwoFCWZF9pYWRgzxTgWpJ0oO2Yne_uXcTk35R_nG7M3h9u4EOl0RVe-3uEYJLoZsUE5ZsXAbwYfNLxTrb51kt5FjkA9KV78_-Uv2QNBdL8rVzlho3a7868QE7XmdXT837s5C1s priority: 102 providerName: ProQuest |
Title | Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect |
URI | https://www.proquest.com/docview/2548904361 https://www.proquest.com/docview/2448406663 https://pubmed.ncbi.nlm.nih.gov/PMC7599907 https://doaj.org/article/2794467510104e2abc37bb9488f3c68c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZbC6Mvo103lq0LNxjby7TZkhwrg1LSkVJGE0pZoG9GsqU20Nhd7ED7C_a3d2c76Qzdy15j2Q660933XS7fMfZBGuNCHwU8jeKMK2pztSKTHLFC5DwJsKVUh5xMB6cz9eMyunzof2o3sHyU2tE8qdny5svdr_sjPPCHxDiRsn9duAo3DH2rljt_yrYxK8U0zWDSQv0mKiMyCcJGt_GR23bYM6T2iJ-U6qSoWsm_Az-7zZN_ZaOTXfa8hZEwauy-x564_AXbH-VIoRf38BHqxs66Yr7Pfp_Nl-aKPCxzgPGA2tBdCRglVgs4o6ahEgoPE2rNu5iOuIjtZ-CYdQyYPAOOdA3mOZw3CqwlUOkWiL-CgLahpoQJCXtWq_IbjGBa4DNhfEtCn_QfSWgkkl-y2cn45_dT3s5f4CluSMVlJkmNK3TaICnKkMtkCF4iYQbep4EeIjjMxNB7rQdKh14SlhAmVKF2GoGEl6_YVl7k7jUDo00Wo09oYVJlnTUWbeR05LWloTKix_h6y5O0FSenGRk3CZIUslbStVaPfdqsv21kOf658pgsuFlFctr1B8XyKmlPZyIwKmHGoPgUKCeMTWVs7RCDm5fpQKc9drC2f7J20QSptR6Sgj--4_3mMp5O-snF5K5Y4Rpkv4ooouyxuOM3nS_UvZLPr2ud7zhC9B7Eb_77zrdsR1B5oG5vOWBb1XLl3iGGqmyfbR-Pp-cX_boG0a-Pyh8qcR1A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2V9AAXRCmIQIFB4uPCqvauHa-REEohVUoTq6paqTd3be-WSMQOsSPUX8C_4Td2xnYCPsCtV3tlW57ZmXnj5zeMvZZaG9f6Dk_9IOMe0VwTkUmOtYJvLAmwpdSHnEaD8bn39cK_2GK_1__CEK1yHRPrQJ0VKfXI9xHIqJD00t1Pix-cpkbR19X1CI3GLY7N9U-EbOXHoy9o3zdCHI7OPo95O1WApzJ0Ky4zSRpTrlEaS_0MK_QMU7Iv9MDa1FEhljyZCK1VauAp10rKkEK7nquMwvRoJV73DtvGJ3FEj20fjKKT001Xx0F0EDhuow4pZejsz02F1kTHr7XYO9mvHhLQqWy7vMy_Et3hA3a_rVBh2LjUDtsy-UO2O8wRnc-v4S3UnNG6Gb_Lfk1mS31FzpsZwFBDDHdTAgag1RwmxEcqobAwJdbfaTTkIkjeA8eEpkHnGXBEgjDL4aQRdy2BusJA0BgEtFydEqakGVqtyg8whKjAa8JoQRqi9PslNOrLj9j5rRjhMevlRW6eMNBKZwG6mxI69RKT6ASLEqN8qxKaVyP6jK9feZy2uuc0fuN7jPiHTBR3TdRn7zbrF43ixz9XHpAFN6tIqbs-UCyv4nbjxwIDHiYjCn2OZ4ROUhkkSYhx08p0oNI-21vbP27DRxn_cfY-e7U5jRufvubo3BQrXIPA2iP0Kfss6PhN54G6Z_LZt1pCPPARGDjB0__f_CW7Oz6bTuLJUXT8jN0T1GqoqTJ7rFctV-Y51mNV8qLdBMAub3vf3QDqqkUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2VVEJcEKUgDAUGiY8Lq9i7drxGQiiliVqaRFFFpd7ctb1bIhE7xIlQfwH_iV_XGdsJ-AC3Xu2VbXlmZ-aNn98w9lpqbTwbuDwNwoz7RHNNRCY51gqBsSTAllIfcjzpHZ_7Xy6Cix32e_MvDNEqNzGxCtRZkVKPvItARkWkl-51bUOLmB4NPy1-cJogRV9aN-M0ahc5Ndc_Eb6VH0-O0NZvhBgOvn4-5s2EAZ7KyFtxmUnSm_KM0lj2Z1itZ5ieA6F71qauirD8yURkrVI9X3lWUrYU2vM9ZRSmSivxunfYbkioqMN2DweT6dm2w-MiUghdr1aKlDJyu3OzQsviJqh02VuZsBoY0Kpy2xzNv5Le8AG731Sr0K_da4_tmPwh2-_niNTn1_AWKv5o1ZjfZ79Gs6W-IkfODGDYIba7KQGD0XoOI-ImlVBYGBMD8GzS5yJM3gPH5KZB5xlwRIUwy2FaC72WQB1iIJgMAhreTglj0g9drcsP0IdJgdeEwYL0ROlXTKiVmB-x81sxwmPWyYvcPGGglc5CdD0ldOonJtEJFihGBVYlNLtGOIxvXnmcNhroNIrje4xYiEwUt03ksHfb9Yta_eOfKw_JgttVpNpdHSiWV3ETBGKBwQ8TE4VB1zdCJ6kMkyTCGGpl2lOpww429o-bUFLGfxzfYa-2pzEI0JcdnZtijWsQZPuERKXDwpbftB6ofSaffavkxMMAQYIbPv3_zV-yu7jf4tHJ5PQZuyeo61CxZg5YZ7Vcm-dYmq2SF80eAHZ529vuBiiESUU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liraglutide+Increases+Serum+Levels+of+MicroRNA-27b%2C+-130a+and+-210+in+Patients+with+Type+2+Diabetes+Mellitus%3A+A+Novel+Epigenetic+Effect&rft.jtitle=Metabolites&rft.au=Giglio%2C+Rosaria+Vincenza&rft.au=Nikolic%2C+Dragana&rft.au=Volti%2C+Giovanni+Li&rft.au=Stoian%2C+Anca+Pantea&rft.date=2020-09-30&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=10&rft.issue=10&rft_id=info:doi/10.3390%2Fmetabo10100391&rft_id=info%3Apmid%2F33008044&rft.externalDocID=PMC7599907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |