Personality Classification from Online Text using Machine Learning Approach
Personality refer to the distinctive set of characteristics of a person that effect their habits, behaviour’s, attitude and pattern of thoughts. Text available on Social Networking sites provide an opportunity to recognize individual’s personality traits automatically. In this proposed work, Machine...
Saved in:
Published in | International journal of advanced computer science & applications Vol. 11; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Personality refer to the distinctive set of characteristics of a person that effect their habits, behaviour’s, attitude and pattern of thoughts. Text available on Social Networking sites provide an opportunity to recognize individual’s personality traits automatically. In this proposed work, Machine Learning Technique, XGBoost classifier is used to predict four personality traits based on Myers- Briggs Type Indicator (MBTI) model, namely Introversion-Extroversion(I-E), iNtuition-Sensing(N-S), Feeling-Thinking(F-T) and Judging-Perceiving(J-P) from input text. Publically available benchmark dataset from Kaggle is used in experiments. The skewness of the dataset is the main issue associated with the prior work, which is minimized by applying Re-sampling technique namely random over-sampling, resulting in better performance. For more exploration of the personality from text, pre-processing techniques including tokenization, word stemming, stop words elimination and feature selection using TF IDF are also exploited. This work provides the basis for developing a personality identification system which could assist organization for recruiting and selecting appropriate personnel and to improve their business by knowing the personality and preferences of their customers. The results obtained by all classifiers across all personality traits is good enough, however, the performance of XGBoost classifier is outstanding by achieving more than 99% precision and accuracy for different traits. |
---|---|
AbstractList | Personality refer to the distinctive set of characteristics of a person that effect their habits, behaviour’s, attitude and pattern of thoughts. Text available on Social Networking sites provide an opportunity to recognize individual’s personality traits automatically. In this proposed work, Machine Learning Technique, XGBoost classifier is used to predict four personality traits based on Myers- Briggs Type Indicator (MBTI) model, namely Introversion-Extroversion(I-E), iNtuition-Sensing(N-S), Feeling-Thinking(F-T) and Judging-Perceiving(J-P) from input text. Publically available benchmark dataset from Kaggle is used in experiments. The skewness of the dataset is the main issue associated with the prior work, which is minimized by applying Re-sampling technique namely random over-sampling, resulting in better performance. For more exploration of the personality from text, pre-processing techniques including tokenization, word stemming, stop words elimination and feature selection using TF IDF are also exploited. This work provides the basis for developing a personality identification system which could assist organization for recruiting and selecting appropriate personnel and to improve their business by knowing the personality and preferences of their customers. The results obtained by all classifiers across all personality traits is good enough, however, the performance of XGBoost classifier is outstanding by achieving more than 99% precision and accuracy for different traits. |
Author | Arif, Areeba Zubair, Muhammad Khan, Alam Sher Ali, Hassan Ahmad, Hussain Khan, Furqan |
Author_xml | – sequence: 1 givenname: Alam Sher surname: Khan fullname: Khan, Alam Sher – sequence: 2 givenname: Hussain surname: Ahmad fullname: Ahmad, Hussain – sequence: 3 givenname: Muhammad surname: Zubair fullname: Zubair, Muhammad – sequence: 4 givenname: Furqan surname: Khan fullname: Khan, Furqan – sequence: 5 givenname: Areeba surname: Arif fullname: Arif, Areeba – sequence: 6 givenname: Hassan surname: Ali fullname: Ali, Hassan |
BookMark | eNp9kMtOwzAQRS0EEqX0D1hEYp1ix3ZSs4siHoWiIlEkdtbYscFV6hQ7lejfkz5WLJjNjK7undGcC3TqW28QuiJ4TBjPxc30qazeynGGMzzGhGDKJydokBGep5wX-HQ_T1KCi49zNIpxifuiIssndICeX02IrYfGddukaiBGZ52GzrU-saFdJXPfOG-Shfnpkk10_jN5Af21k2YGgt8J5Xod2l68RGcWmmhGxz5E7_d3i-oxnc0fplU5SzUVpEupUAUDTGvMmM1qQ6w2VKnc1IqaQmBgWihNC2MFKIAaaptZZnOlNJjC5nSIrg97-7PfGxM7uWw3of8hyiznnHBOC9K72MGlQxtjMFaug1tB2EqC5Z6cPJCTO3LySK6P3f6JadfteXQBXPN_-Bc9yHek |
CitedBy_id | crossref_primary_10_1093_llc_fqac055 crossref_primary_10_3389_fdata_2022_931206 crossref_primary_10_1007_s42001_025_00366_y crossref_primary_10_48084_etasr_7901 crossref_primary_10_1109_ACCESS_2021_3121137 crossref_primary_10_1007_s10462_023_10603_3 crossref_primary_10_3389_fpubh_2022_861062 crossref_primary_10_21015_vtse_v12i3_1864 crossref_primary_10_4018_IJITWE_298654 crossref_primary_10_1016_j_eswa_2022_118318 crossref_primary_10_18517_ijods_4_2_116_135_2023 crossref_primary_10_1109_ACCESS_2021_3121791 crossref_primary_10_3389_fpubh_2022_862497 crossref_primary_10_26634_jfet_18_3_19479 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.14569/IJACSA.2020.0110358 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2156-5570 |
ExternalDocumentID | 10_14569_IJACSA_2020_0110358 |
GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c391t-39b74a03d044f2de1fce3bb6edb3e790a4c9bc37ef9abaadadf2f4f6bbcae7f63 |
IEDL.DBID | BENPR |
ISSN | 2158-107X |
IngestDate | Fri Jul 25 06:57:43 EDT 2025 Tue Jul 01 01:09:59 EDT 2025 Thu Apr 24 23:13:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-39b74a03d044f2de1fce3bb6edb3e790a4c9bc37ef9abaadadf2f4f6bbcae7f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2655155371?pq-origsite=%requestingapplication% |
PQID | 2655155371 |
PQPubID | 5444811 |
ParticipantIDs | proquest_journals_2655155371 crossref_primary_10_14569_IJACSA_2020_0110358 crossref_citationtrail_10_14569_IJACSA_2020_0110358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | West Yorkshire |
PublicationPlace_xml | – name: West Yorkshire |
PublicationTitle | International journal of advanced computer science & applications |
PublicationYear | 2020 |
Publisher | Science and Information (SAI) Organization Limited |
Publisher_xml | – name: Science and Information (SAI) Organization Limited |
SSID | ssj0000392683 |
Score | 2.3034925 |
Snippet | Personality refer to the distinctive set of characteristics of a person that effect their habits, behaviour’s, attitude and pattern of thoughts. Text available... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Classifiers Datasets Extroversion Introversion Machine learning Personality Personality traits Sampling methods |
Title | Personality Classification from Online Text using Machine Learning Approach |
URI | https://www.proquest.com/docview/2655155371 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JTwIxGG0ELl7cjSiSHrxWOm2ZTk9mJCBiIEQh4TaZblwMoOD_t50poBc9z3J4nX7Lm6_vAXCnLTYRwRoR108gJiRGOVMJojqxhHOrTUFdDEdxf8oGs_YsEG7rMFa5jYlFoNZL5TnyFonb3o2E8uhh9YG8a5T_uxosNCqg5kJw4pqv2mN3NH7dsSzYpf-40OJ0qc3rmPJZOD_nCgfReh6knbfUdYkE3_tESL3z-8_89Ds8FzmndwKOQrEI03J1T8GBWZyB460RAwz78hy8jPclNSxsLv0AUIE59OdHYCkoCicuEkM_6T6Hw2KI0sCgrzqHaRAXvwDTXnfS6aPgkoAUFdEGUSE5yzHVmDFLtImsMlTK2GhJDRfYQS-kotxYkcs817m2xDIbS6lyw21ML0F1sVyYKwBVJG1E29gynjCjRUKoTKxWrqpQQhtaB3SLTaaChLh3snjPfCvhEc1KRDOPaBYQrQO0e2pVSmj8c39jC3sWNtQ62y__9d-Xb8Chf1nJkjRAdfP5ZW5d3bCRTVBJek_N8Il8A8MNwco |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFL2isGg3baEgoBS8oEuDY3vieFFVI2CYYRhUiUGaXYhfbKrhNajqT_GN-CYOjw2sWCexopPr-8r1OQDbLjCfceYoj_UEldowWklbUOGKwJUKzteti9FJ3j-TR5POZA7u27MwOFbZ-sTaUbtLiz3yXZ53UI1EqOz31TVF1Sj8u9pKaDRmMfT__8WS7fbXYD9-35-c9w7Ge32aVAWoFTqbUaGNkhUTjkkZuPNZsF4Yk3tnhFeaxVfVxgrlg65MVbnKBR5kyI2xlVchF3HdD7AghdC4o4re4WNPh8VkI6-ZP2MgRdZUNUmn9WKaoncHR929026sSTnbwbArUGf-eTR8GQzqCNf7Cp9Takq6jS0twpyfLsGXVvaBJC_wDYZ_nhJ4Uotq4rhR_YUJnlYhDX0pGUe_T3Cu_oKM6pFNTxKb6wXpJirzZTh7F_RWYH56OfWrQGxmQiY6LEhVSO90wYUpgrMxh7HaebEGosWmtImwHHUz_pZYuCCiZYNoiYiWCdE1oI9PXTWEHW_cv9HCXqbte1s-Gdv665e34GN_PDoujwcnw-_wCRdu-jMbMD-7ufM_YsYyM5u1mRA4f2-7fACsqwED |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personality+Classification+from+Online+Text+using+Machine+Learning+Approach&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Khan%2C+Alam+Sher&rft.au=Ahmad%2C+Hussain&rft.au=Zubair%2C+Muhammad&rft.au=Khan%2C+Furqan&rft.date=2020&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=11&rft.issue=3&rft_id=info:doi/10.14569%2FIJACSA.2020.0110358&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2020_0110358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |