Use of the bootstrap technique with small training sets for computer-aided diagnosis in breast ultrasound
The purpose of this study was to test the efficacy of using small training sets in computer-aided diagnostic systems (CAD) and to increase the capabilities of ultrasound (US) technology in the differential diagnosis of solid breast tumors. A total of 263 sonographic images of solid breast nodules, i...
Saved in:
Published in | Ultrasound in medicine & biology Vol. 28; no. 7; pp. 897 - 902 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.07.2002
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The purpose of this study was to test the efficacy of using small training sets in computer-aided diagnostic systems (CAD) and to increase the capabilities of ultrasound (US) technology in the differential diagnosis of solid breast tumors. A total of 263 sonographic images of solid breast nodules, including 129 malignancies and 134 benign nodules, were evaluated by using a bootstrap technique with 10 original training samples. Texture parameters of a region-of-interest (ROI) were resampled with a bootstrap technique and a decision-tree model was used to classify the tumor as benign or malignant. The accuracy was 87.07% (229 of 263 tumors), the sensitivity was 95.35% (123 of 129), the specificity was 79.10% (106 of 134), the positive predictive value was 81.46% (123 of 151), and the negative predictive value was 94.64% (106 of 112). This analysis method provides a second opinion for physicians with high accuracy. The new method shows a potential to be useful in future application of CAD, especially when a large database cannot be obtained for training or a newly developed ultrasonic system has smaller sets of samples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/S0301-5629(02)00528-8 |