Predicting drug–disease associations through layer attention graph convolutional network

Abstract Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods f...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Yu, Zhouxin, Huang, Feng, Zhao, Xiaohan, Xiao, Wenjie, Zhang, Wen
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.
AbstractList Abstract Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.
Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.
Determining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug-disease associations is of great significance.BACKGROUNDDetermining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug-disease associations is of great significance.In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug-disease association prediction. Specifically, LAGCN first integrates the known drug-disease associations, drug-drug similarities and disease-disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug-disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision-recall curve of 0.3168 and an area under the receiver-operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.RESULTSIn this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug-disease association prediction. Specifically, LAGCN first integrates the known drug-disease associations, drug-drug similarities and disease-disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug-disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision-recall curve of 0.3168 and an area under the receiver-operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.LAGCN is a useful tool for predicting drug-disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.CONCLUSIONLAGCN is a useful tool for predicting drug-disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.
Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.
Author Xiao, Wenjie
Huang, Feng
Zhang, Wen
Zhao, Xiaohan
Yu, Zhouxin
Author_xml – sequence: 1
  givenname: Zhouxin
  surname: Yu
  fullname: Yu, Zhouxin
  email: yuzhouxin@webmail.hzau.edu.cn
– sequence: 2
  givenname: Feng
  surname: Huang
  fullname: Huang, Feng
  email: fhuang@mail.hzau.edu.cn
– sequence: 3
  givenname: Xiaohan
  surname: Zhao
  fullname: Zhao, Xiaohan
  email: zhaoxiaohan@webmail.hzau.edu.cn
– sequence: 4
  givenname: Wenjie
  surname: Xiao
  fullname: Xiao, Wenjie
  email: xwj0329@uw.edu
– sequence: 5
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
  email: zhangwen@mail.hzau.edu.cn
BookMark eNp9kM1KAzEQgINUsK2efIGAIIKsTTbJpjmK-AcFPejFy5Jks9vU7aYmWaU338E39EnctT0V9DTDzDfDzDcCg8Y1BoBjjC4wEmSirJooJWVKyR4YYsp5QhGjgz7PeMJoRg7AKIQFQiniUzwEL4_eFFZH21Sw8G31_flV2GBkMFCG4LSV0bomwDj3rq3msJZr46GM0TR9A1ZeruZQu-bd1W1fkTVsTPxw_vUQ7JeyDuZoG8fg-eb66eoumT3c3l9dzhJNBI4JYVIbpCmiSGhBeSFIhouCT9OMZEpxwrQmvGAlN0KIkiimODJYpSkq-VRQMgZnm70r795aE2K-tEGbupaNcW3IU8pS1n1LevRkB1241nc3dxQTCFHKKOkovKG0dyF4U-baxl8P0Utb5xjlve28s51vbXcz5zszK2-X0q__oE83tGtX_4I_n_STLQ
CitedBy_id crossref_primary_10_1080_17460441_2023_2267020
crossref_primary_10_3390_diagnostics13061143
crossref_primary_10_1089_cmb_2023_0135
crossref_primary_10_1109_JBHI_2024_3483316
crossref_primary_10_1093_bib_bbac463
crossref_primary_10_1093_bib_bbad431
crossref_primary_10_3389_fphar_2024_1337764
crossref_primary_10_1093_bib_bbac340
crossref_primary_10_1093_bib_bbab491
crossref_primary_10_4018_IJISSC_329233
crossref_primary_10_1002_advs_202409130
crossref_primary_10_1016_j_neunet_2024_106779
crossref_primary_10_1093_bib_bbac457
crossref_primary_10_3389_fgene_2022_979815
crossref_primary_10_3390_electronics12020398
crossref_primary_10_1016_j_compbiomed_2024_109403
crossref_primary_10_1007_s40747_024_01674_y
crossref_primary_10_1093_bioinformatics_btad357
crossref_primary_10_1109_JBHI_2024_3354953
crossref_primary_10_1016_j_compeleceng_2022_108494
crossref_primary_10_1371_journal_pcbi_1011851
crossref_primary_10_1016_j_compbiomed_2023_106642
crossref_primary_10_1016_j_jmb_2025_169086
crossref_primary_10_1093_bioinformatics_btae692
crossref_primary_10_1109_TCBB_2023_3234331
crossref_primary_10_1016_j_knosys_2023_111329
crossref_primary_10_1155_2021_6690154
crossref_primary_10_1109_TCBB_2023_3302468
crossref_primary_10_1186_s12864_023_09899_w
crossref_primary_10_1007_s12539_024_00654_7
crossref_primary_10_1109_TBDATA_2023_3334673
crossref_primary_10_1093_bib_bbac123
crossref_primary_10_1007_s12539_024_00678_z
crossref_primary_10_1109_JBHI_2024_3363080
crossref_primary_10_3934_mbe_2023685
crossref_primary_10_1109_TCBB_2023_3274587
crossref_primary_10_1007_s00894_024_06051_7
crossref_primary_10_1186_s12859_024_06032_w
crossref_primary_10_1016_j_eswa_2025_126879
crossref_primary_10_1093_bib_bbac596
crossref_primary_10_1016_j_future_2024_107491
crossref_primary_10_1109_TCBB_2023_3339189
crossref_primary_10_1093_bioinformatics_btae349
crossref_primary_10_2174_0115748936288616240212073805
crossref_primary_10_1109_ACCESS_2021_3065280
crossref_primary_10_1016_j_compbiolchem_2024_108320
crossref_primary_10_1007_s10489_023_04936_3
crossref_primary_10_1007_s12539_023_00593_9
crossref_primary_10_1016_j_knosys_2024_111622
crossref_primary_10_1007_s10489_024_05859_3
crossref_primary_10_1016_j_ymeth_2023_07_008
crossref_primary_10_1016_j_ymeth_2024_09_013
crossref_primary_10_1109_JBHI_2023_3328337
crossref_primary_10_1016_j_future_2024_06_010
crossref_primary_10_1016_j_eswa_2024_124152
crossref_primary_10_1109_TCBB_2022_3189879
crossref_primary_10_3389_fphar_2023_1205144
crossref_primary_10_1016_j_jmgm_2024_108783
crossref_primary_10_1186_s12864_024_09998_2
crossref_primary_10_1016_j_engappai_2023_107782
crossref_primary_10_1016_j_jmb_2024_168916
crossref_primary_10_1186_s12859_024_05687_9
crossref_primary_10_3389_fmicb_2022_846915
crossref_primary_10_3389_fgene_2025_1535279
crossref_primary_10_1038_s41598_023_50793_y
crossref_primary_10_1109_TETCI_2024_3502414
crossref_primary_10_1021_acs_jcim_2c01060
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_1109_JBHI_2023_3300717
crossref_primary_10_1109_TCBB_2022_3170843
crossref_primary_10_1109_JBHI_2022_3233711
crossref_primary_10_1093_bib_bbac099
crossref_primary_10_1109_TCBB_2022_3222777
crossref_primary_10_1016_j_jmgm_2023_108498
crossref_primary_10_1101_gr_279141_124
crossref_primary_10_1093_bib_bbac403
crossref_primary_10_3390_ijms24032244
crossref_primary_10_1111_exsy_13181
crossref_primary_10_1186_s12859_024_05904_5
crossref_primary_10_1186_s13321_024_00897_y
crossref_primary_10_1109_JBHI_2024_3387937
crossref_primary_10_1007_s13755_023_00243_w
crossref_primary_10_1109_TCBB_2021_3113122
crossref_primary_10_1186_s12859_022_05053_7
crossref_primary_10_1016_j_isci_2023_107663
crossref_primary_10_1016_j_artmed_2024_102775
crossref_primary_10_1016_j_ymeth_2023_10_014
crossref_primary_10_1007_s00894_024_06087_9
crossref_primary_10_1089_cmb_2023_0078
crossref_primary_10_1021_acs_jcim_4c02385
crossref_primary_10_3389_fgene_2021_657182
crossref_primary_10_3389_fphar_2022_1056605
crossref_primary_10_1080_17460441_2023_2198700
crossref_primary_10_2174_1574893616666211119093100
crossref_primary_10_1016_j_eswa_2023_121855
crossref_primary_10_1186_s12911_022_01807_8
crossref_primary_10_3389_fmed_2022_872214
crossref_primary_10_3389_fphar_2022_908549
crossref_primary_10_1093_bib_bbab467
crossref_primary_10_3389_fgene_2024_1370013
crossref_primary_10_3389_fgene_2023_1271311
crossref_primary_10_1016_j_compbiomed_2024_108376
crossref_primary_10_1109_TCBB_2022_3212051
crossref_primary_10_1109_JBHI_2021_3102186
crossref_primary_10_1109_TCBB_2023_3266232
crossref_primary_10_3389_fphar_2024_1398231
crossref_primary_10_1093_bioinformatics_btab792
crossref_primary_10_1093_bib_bbab581
crossref_primary_10_1093_bib_bbae172
crossref_primary_10_1021_acs_jcim_4c02276
crossref_primary_10_1093_bib_bbab580
crossref_primary_10_1109_ACCESS_2022_3217926
crossref_primary_10_1186_s12859_021_04553_2
crossref_primary_10_1016_j_ins_2024_121360
crossref_primary_10_1093_bib_bbab457
crossref_primary_10_1186_s12967_024_05938_6
crossref_primary_10_1016_j_compbiomed_2022_106289
crossref_primary_10_1016_j_ibmed_2024_100194
crossref_primary_10_1038_s44287_024_00076_z
crossref_primary_10_1093_bioinformatics_btad748
crossref_primary_10_1093_bioinformatics_btad747
crossref_primary_10_1109_TCBB_2024_3477313
crossref_primary_10_3390_biom12101497
crossref_primary_10_1093_bib_bbac184
crossref_primary_10_1038_s41598_024_71837_x
crossref_primary_10_1007_s12539_023_00600_z
crossref_primary_10_1007_s13755_024_00326_2
crossref_primary_10_1186_s12967_024_05893_2
crossref_primary_10_2174_1574893618666230316113621
crossref_primary_10_1016_j_asoc_2024_111763
crossref_primary_10_1093_bib_bbab526
crossref_primary_10_1109_JBHI_2024_3390092
crossref_primary_10_3389_fmicb_2023_1179414
crossref_primary_10_3389_fnins_2022_1124315
crossref_primary_10_1038_s41598_024_56208_w
crossref_primary_10_1093_bib_bbac292
crossref_primary_10_1093_bib_bbae231
crossref_primary_10_1109_TCBB_2023_3292883
crossref_primary_10_1093_bib_bbab080
crossref_primary_10_1186_s12911_023_02384_0
crossref_primary_10_3390_cells11243984
crossref_primary_10_1109_JBHI_2024_3372527
crossref_primary_10_1093_bib_bbac054
crossref_primary_10_1038_s41598_024_60756_6
crossref_primary_10_1109_ACCESS_2025_3547594
crossref_primary_10_3389_fnagi_2022_925468
crossref_primary_10_1093_bib_bbab511
crossref_primary_10_1109_JBHI_2024_3360437
crossref_primary_10_1109_TNNLS_2023_3289182
crossref_primary_10_1016_j_knosys_2023_111187
crossref_primary_10_3390_life12020319
crossref_primary_10_1109_TCBB_2021_3081268
crossref_primary_10_1093_bib_bbac080
crossref_primary_10_3389_fphar_2021_799108
crossref_primary_10_1109_JBHI_2023_3335275
crossref_primary_10_1109_JBHI_2023_3336247
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1186_s12859_024_05893_5
crossref_primary_10_1093_pnasnexus_pgad147
crossref_primary_10_1109_JBHI_2022_3194891
crossref_primary_10_1093_bioinformatics_btac676
crossref_primary_10_1093_bib_bbac518
crossref_primary_10_1109_TCBB_2024_3385423
crossref_primary_10_2174_1574893618666230504143647
crossref_primary_10_1186_s12859_023_05158_7
crossref_primary_10_1093_bioadv_vbad066
crossref_primary_10_1007_s11063_023_11309_x
crossref_primary_10_1038_s41598_023_36054_y
crossref_primary_10_1089_cmb_2023_0427
crossref_primary_10_3390_ijms24054500
crossref_primary_10_1016_j_compbiomed_2024_108612
crossref_primary_10_3389_fphar_2022_872785
crossref_primary_10_1109_TCBB_2024_3415058
crossref_primary_10_1002_qub2_39
crossref_primary_10_1109_TCBB_2021_3103595
crossref_primary_10_1016_j_compbiolchem_2024_108041
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1016_j_engappai_2024_109653
crossref_primary_10_1371_journal_pcbi_1011597
crossref_primary_10_1186_s13099_023_00535_2
crossref_primary_10_1186_s12859_022_05073_3
crossref_primary_10_3389_fmicb_2023_1303585
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1186_s12859_022_04911_8
crossref_primary_10_1016_j_ymeth_2023_12_005
crossref_primary_10_3389_fmicb_2021_694534
crossref_primary_10_1007_s10489_022_03839_z
crossref_primary_10_1186_s12859_023_05285_1
crossref_primary_10_1093_bib_bbac266
crossref_primary_10_1109_JBHI_2023_3272154
crossref_primary_10_1016_j_crchbi_2023_100042
crossref_primary_10_1155_2022_5852089
crossref_primary_10_1016_j_artmed_2025_103090
crossref_primary_10_3390_biom12111666
crossref_primary_10_1093_bib_bbae550
crossref_primary_10_1016_j_inffus_2024_102563
crossref_primary_10_1186_s12864_023_09380_8
crossref_primary_10_1093_bib_bbab289
crossref_primary_10_1021_acs_jcim_3c00957
crossref_primary_10_1007_s12539_023_00556_0
crossref_primary_10_1016_j_imu_2023_101177
crossref_primary_10_1016_j_crstbi_2023_100122
crossref_primary_10_1093_bib_bbac006
crossref_primary_10_1007_s10115_024_02093_8
crossref_primary_10_3390_electronics13193835
crossref_primary_10_1021_acs_jcim_4c02424
crossref_primary_10_21205_deufmd_2024267619
crossref_primary_10_2174_0115748936276510231123121404
crossref_primary_10_3389_fgene_2022_806842
crossref_primary_10_1016_j_ymeth_2024_08_009
crossref_primary_10_1016_j_compbiomed_2024_108768
crossref_primary_10_1109_TETC_2023_3239949
crossref_primary_10_1186_s12859_022_04796_7
crossref_primary_10_1016_j_ymeth_2022_09_005
crossref_primary_10_1016_j_knosys_2024_112222
crossref_primary_10_1021_acs_jcim_2c01112
crossref_primary_10_3390_e24050610
crossref_primary_10_3390_genes13061097
crossref_primary_10_1186_s12859_022_05069_z
crossref_primary_10_1016_j_engappai_2023_105981
crossref_primary_10_1093_bib_bbad247
crossref_primary_10_1109_JBHI_2024_3434439
crossref_primary_10_1109_TCBB_2024_3434399
crossref_primary_10_1007_s12539_022_00514_2
crossref_primary_10_1016_j_artmed_2024_102805
crossref_primary_10_1186_s12859_022_04819_3
crossref_primary_10_3389_fphar_2021_784171
crossref_primary_10_1038_s41598_023_34438_8
Cites_doi 10.1145/3240323.3240381
10.1093/nar/gkt1068
10.1186/s12859-018-2220-4
10.1109/BIBM47256.2019.8983350
10.1093/nar/gkw838
10.1093/bioinformatics/btz965
10.1093/nar/gkq1037
10.1093/bioinformatics/btw770
10.1145/3397271.3401063
10.3389/fchem.2019.00924
10.1016/0277-5379(88)90205-2
10.1093/bioinformatics/bty013
10.1093/bioinformatics/btz418
10.1093/bioinformatics/btu403
10.1111/j.1600-0609.1992.tb01808.x
10.1038/msb.2011.26
10.1038/psp.2014.44
10.1007/s10822-018-0117-y
10.1371/journal.pcbi.1007541
10.1093/bioinformatics/bty294
10.1593/neo.06673
10.1016/j.clbc.2013.02.001
10.1037/1064-1297.10.3.276
10.1371/journal.pone.0028025
10.1063/1.5121900
10.1074/jbc.RA119.007664
10.1081/CNV-200029054
10.1023/A:1008252128623
10.1371/annotation/958d4c23-4f1e-4579-b6ef-8ae1f828b1dd
10.1046/j.1526-4610.2002.02142.x
10.1176/ajp.148.12.1752a
10.1093/bioinformatics/btq241
10.1007/s00280-017-3481-8
10.1007/s00108-005-1504-8
10.1212/01.wnl.0000173035.58682.64
10.1109/WACV.2017.58
10.1176/appi.psy.50.2.162
10.15252/msb.20156651
10.1038/cddis.2015.393
10.1093/bioinformatics/btw228
10.1109/BIBM.2018.8621191
10.1093/bioinformatics/btaa157
10.1371/journal.pone.0111668
10.1016/j.phrs.2011.11.005
10.1016/j.taap.2017.11.020
10.1159/000226045
10.1093/bioinformatics/btaa062
10.1093/bioinformatics/btaa501
10.1145/3331184.3331267
10.18653/v1/2020.acl-main.410
10.1093/bioinformatics/btz182
10.1186/1471-2105-10-326
10.1002/neu.10297
10.1016/j.tips.2019.06.004
10.1093/bioinformatics/btz331
10.1609/aaai.v32i1.11604
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbaa243
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbaa243
10.1093/bib/bbaa243
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-35ace0c40409c947d9361dd782636bb735cc37d5f7e999f3b5b70e1b220f78943
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 03:42:45 EDT 2025
Mon Jun 30 08:48:58 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Wed Aug 28 03:20:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords graph convolutional network
disease
drug–disease association prediction
layer attention
drug
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-35ace0c40409c947d9361dd782636bb735cc37d5f7e999f3b5b70e1b220f78943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2590044543
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2452507834
proquest_journals_2590044543
crossref_citationtrail_10_1093_bib_bbaa243
crossref_primary_10_1093_bib_bbaa243
oup_primary_10_1093_bib_bbaa243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wittchen (2021072112190605700_ref62) 2006; 47
Bourque (2021072112190605700_ref53) 2009; 50
Chan (2021072112190605700_ref1) 2019; 40
Xuan (2021072112190605700_ref21) 2019; 35
Zickenrott (2021072112190605700_ref7) 2016; 7
Wu (2021072112190605700_ref17) 2016
Yang (2021072112190605700_ref23) 2019; 15
Zhang (2021072112190605700_ref18) 2017
R (2021072112190605700_ref48) 2018
Yang (2021072112190605700_ref12) 2011; 6
Tsai (2021072112190605700_ref56) 2018; 338
Di Costanzo (2021072112190605700_ref71) 2004; 22
Angermueller (2021072112190605700_ref27) 2016; 12
Zhang (2021072112190605700_ref38) 2018
Wang (2021072112190605700_ref65) 2019; 294
Cassidy (2021072112190605700_ref66) 1988; 24
Wang (2021072112190605700_ref8) 2014; 30
Eichborn (2021072112190605700_ref4) 2010; 39
Zhang (2021072112190605700_ref20) 2018; 19
Wang (2021072112190605700_ref13) 2013; 9
Horvath (2021072112190605700_ref61) 2005; 65
Szymanski (2021072112190605700_ref59) 1991; 148
Law (2021072112190605700_ref40) 2014; 42
Zhang (2021072112190605700_ref26) 2020; 36
Zhang (2021072112190605700_ref3) 2020; 36
Wiegers (2021072112190605700_ref5) 2009; 10
Y-A (2021072112190605700_ref33) 2019; 36
Yang (2021072112190605700_ref15) 2019; 29
Yang (2021072112190605700_ref36) 2018
Schlaifer (2021072112190605700_ref58) 1992; 48
Liang (2021072112190605700_ref16) 2017; 33
Wang (2021072112190605700_ref42) 2010; 26
Zitnik (2021072112190605700_ref34) 2018; 34
Kipf (2021072112190605700_ref32) 2017
Smith (2021072112190605700_ref51) 2017
Feldman (2021072112190605700_ref70) 1985; 42
Luo (2021072112190605700_ref10) 2019
Zeng (2021072112190605700_ref29) 2019; 35
Alsafadi (2021072112190605700_ref68) 2013; 13
Luo (2021072112190605700_ref24) 2018; 34
Luo (2021072112190605700_ref9) 2016; 32
Li (2021072112190605700_ref35) 2020; 36
Srivastava (2021072112190605700_ref49) 2014; 15
Xuan (2021072112190605700_ref31) 2019; 8
Glorot (2021072112190605700_ref46) 2010
Jakobsen Falk (2021072112190605700_ref54) 2018; 81
Reynolds (2021072112190605700_ref64) 2004; 58
Wang (2021072112190605700_ref44) 2019
Wang (2021072112190605700_ref6) 2014; 3
Srikiatkhachorn (2021072112190605700_ref57) 2002; 42
Davis (2021072112190605700_ref39) 2017; 45
Kumada (2021072112190605700_ref60) 2005; 37
Yue (2021072112190605700_ref28) 2020
Brady (2021072112190605700_ref63) 2002; 10
Ackerstaff (2021072112190605700_ref69) 2007; 9
Gottlieb (2021072112190605700_ref11) 2011; 7
Vaswani (2021072112190605700_ref37) 2017
Deng (2021072112190605700_ref41) 2020
De Sarro (2021072112190605700_ref55) 2012; 65
Zhu (2021072112190605700_ref50) 2019
Li (2021072112190605700_ref30) 2020; 7
Luo (2021072112190605700_ref2) 2020
He (2021072112190605700_ref45) 2020
Oh (2021072112190605700_ref14) 2014; 9
Li (2021072112190605700_ref52) 2018
Yang (2021072112190605700_ref25) 2019; 35
Clevert (2021072112190605700_ref43) 2016
Hofstra (2021072112190605700_ref67) 1997; 8
Lu (2021072112190605700_ref19) 2018; 32
Zhang (2021072112190605700_ref22) 2014; 2014
Kingma (2021072112190605700_ref47) 2015
References_xml – start-page: 140
  volume-title: Proceedings of the 12th ACM Conference on Recommender Systems
  year: 2018
  ident: 2021072112190605700_ref36
  article-title: HOP-rec: high-order proximity for implicit recommendation
  doi: 10.1145/3240323.3240381
– volume: 42
  start-page: D1091
  year: 2014
  ident: 2021072112190605700_ref40
  article-title: DrugBank 4.0: shedding new light on drug metabolism
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1068
– volume: 19
  start-page: 233
  year: 2018
  ident: 2021072112190605700_ref20
  article-title: Predicting drug-disease associations by using similarity constrained matrix factorization
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2220-4
– start-page: 382
  volume-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2019
  ident: 2021072112190605700_ref50
  article-title: Predicting gene-disease associations via graph embedding and graph convolutional networks
  doi: 10.1109/BIBM47256.2019.8983350
– volume-title: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2016
  ident: 2021072112190605700_ref17
  article-title: Semi-supervised graph cut algorithm for drug repositioning by integrating drug, disease and genomic associations
– volume: 45
  start-page: D972
  year: 2017
  ident: 2021072112190605700_ref39
  article-title: The comparative toxicogenomics database: update 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw838
– volume: 36
  start-page: 2538
  year: 2020
  ident: 2021072112190605700_ref35
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 37
  start-page: 257
  year: 2005
  ident: 2021072112190605700_ref60
  article-title: Postoperative complete atrioventricular block induced by carbamazepine in a patient with congenital heart disease
  publication-title: No To Hattatsu
– volume: 39
  start-page: D1060
  year: 2010
  ident: 2021072112190605700_ref4
  article-title: PROMISCUOUS: a database for network-based drug-repositioning
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1037
– volume: 33
  start-page: 1187
  year: 2017
  ident: 2021072112190605700_ref16
  article-title: LRSSL: predict and interpret drug–disease associations based on data integration using sparse subspace learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw770
– volume-title: SIGIR
  year: 2020
  ident: 2021072112190605700_ref45
  article-title: LightGCN: simplifying and powering graph convolution network for recommendation
  doi: 10.1145/3397271.3401063
– volume: 7
  year: 2020
  ident: 2021072112190605700_ref30
  article-title: Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network
  publication-title: Front Chem
  doi: 10.3389/fchem.2019.00924
– year: 2020
  ident: 2021072112190605700_ref2
  article-title: Biomedical data and computational models for drug repositioning: a comprehensive review
  publication-title: Brief Bioinform
– volume: 8
  year: 2019
  ident: 2021072112190605700_ref31
  article-title: Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations
  publication-title: Cells
– volume: 24
  start-page: 935
  year: 1988
  ident: 2021072112190605700_ref66
  article-title: Cardiotoxicity of mitozantrone assessed by stress and resting nuclear ventriculography
  publication-title: Eur J Cancer Clin Oncol
  doi: 10.1016/0277-5379(88)90205-2
– volume: 15
  start-page: 1929
  year: 2014
  ident: 2021072112190605700_ref49
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 1904
  year: 2018
  ident: 2021072112190605700_ref24
  article-title: Computational drug repositioning using low-rank matrix approximation and randomized algorithms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty013
– volume: 35
  start-page: 5191
  year: 2019
  ident: 2021072112190605700_ref29
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz418
– start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: 2021072112190605700_ref46
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2015
  ident: 2021072112190605700_ref47
  article-title: Adam: a method for stochastic optimization
– volume: 30
  start-page: 2923
  year: 2014
  ident: 2021072112190605700_ref8
  article-title: Drug repositioning by integrating target information through a heterogeneous network model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu403
– volume: 48
  start-page: 274
  year: 1992
  ident: 2021072112190605700_ref58
  article-title: Antiepileptic drug-induced lymphoproliferative disorder associated with acquired C1 esterase inhibitor deficiency and angioedema
  publication-title: Eur J Haematol
  doi: 10.1111/j.1600-0609.1992.tb01808.x
– volume-title: KDD
  year: 2018
  ident: 2021072112190605700_ref48
  article-title: Graph convolutional matrix completion
– volume: 7
  start-page: 496
  year: 2011
  ident: 2021072112190605700_ref11
  article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.26
– volume: 3
  start-page: e146
  year: 2014
  ident: 2021072112190605700_ref6
  article-title: Systematic analysis of new drug indications by drug-gene-disease coherent subnetworks
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1038/psp.2014.44
– volume: 32
  start-page: 633
  year: 2018
  ident: 2021072112190605700_ref19
  article-title: DR2DI: a powerful computational tool for predicting novel drug-disease associations
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-018-0117-y
– start-page: 5998
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2021072112190605700_ref37
  article-title: Attention is all you need
– volume: 15
  year: 2019
  ident: 2021072112190605700_ref23
  article-title: Overlap matrix completion for predicting drug-associated indications
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007541
– volume: 34
  start-page: i457
  year: 2018
  ident: 2021072112190605700_ref34
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2016
  ident: 2021072112190605700_ref43
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– start-page: 503
  volume-title: IEEE International Conference on Bioinformatics and Biomedicine
  year: 2017
  ident: 2021072112190605700_ref18
  article-title: Predicting drug-disease associations based on the known association bipartite network
– volume: 9
  start-page: 222
  year: 2007
  ident: 2021072112190605700_ref69
  article-title: Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line
  publication-title: Neoplasia
  doi: 10.1593/neo.06673
– volume: 13
  start-page: 401
  year: 2013
  ident: 2021072112190605700_ref68
  article-title: Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers
  publication-title: Clin Breast Cancer
  doi: 10.1016/j.clbc.2013.02.001
– volume: 10
  start-page: 276
  year: 2002
  ident: 2021072112190605700_ref63
  article-title: Carbamazepine in the treatment of cocaine dependence: subtyping by affective disorder
  publication-title: Exp Clin Psychopharmacol
  doi: 10.1037/1064-1297.10.3.276
– volume: 6
  year: 2011
  ident: 2021072112190605700_ref12
  article-title: Systematic drug repositioning based on clinical side-effects
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028025
– volume: 29
  start-page: 123109
  year: 2019
  ident: 2021072112190605700_ref15
  article-title: Predicting drug-disease associations with heterogeneous network embedding
  publication-title: Chaos
  doi: 10.1063/1.5121900
– volume: 294
  start-page: 10006
  year: 2019
  ident: 2021072112190605700_ref65
  article-title: Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA119.007664
– volume: 22
  start-page: 331
  year: 2004
  ident: 2021072112190605700_ref71
  article-title: Paclitaxel and mitoxantrone in metastatic breast cancer: a phase II trial of the Italian Oncology Group for Cancer Research
  publication-title: Cancer Invest
  doi: 10.1081/CNV-200029054
– volume: 8
  start-page: 812
  year: 1997
  ident: 2021072112190605700_ref67
  article-title: Ataxia following docetaxel infusion
  publication-title: Ann Oncol
  doi: 10.1023/A:1008252128623
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2017
  ident: 2021072112190605700_ref32
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 9
  year: 2013
  ident: 2021072112190605700_ref13
  article-title: Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity
  publication-title: PLoS Comput Biol
  doi: 10.1371/annotation/958d4c23-4f1e-4579-b6ef-8ae1f828b1dd
– volume: 42
  start-page: 566
  year: 2002
  ident: 2021072112190605700_ref57
  article-title: 2002 Wolff Award. 5-HT2A receptor activation and nitric oxide synthesis: a possible mechanism determining migraine attacks
  publication-title: Headache
  doi: 10.1046/j.1526-4610.2002.02142.x
– volume: 148
  start-page: 1752
  year: 1991
  ident: 2021072112190605700_ref59
  article-title: Anticholinergic delirium caused by retreatment with clozapine
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.148.12.1752a
– volume: 26
  start-page: 1644
  year: 2010
  ident: 2021072112190605700_ref42
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 81
  start-page: 183
  year: 2018
  ident: 2021072112190605700_ref54
  article-title: Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-017-3481-8
– volume: 2014
  start-page: 1258
  year: 2014
  ident: 2021072112190605700_ref22
  article-title: Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity
  publication-title: AMIA Annu Symp Proc
– volume: 47
  start-page: 69
  year: 2006
  ident: 2021072112190605700_ref62
  article-title: Leistungsknick, Thoraxschmerz und Polyserositis bei einem 35-jährigen Patienten mit antikonvulsiver Therapie
  publication-title: Internist
  doi: 10.1007/s00108-005-1504-8
– volume: 65
  start-page: 650
  year: 2005
  ident: 2021072112190605700_ref61
  article-title: Carbamazepine encephalopathy masquerading as Creutzfeldt–Jakob disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000173035.58682.64
– start-page: 464
  volume-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
  year: 2017
  ident: 2021072112190605700_ref51
  article-title: Cyclical learning rates for training neural networks
  doi: 10.1109/WACV.2017.58
– volume: 50
  start-page: 162
  year: 2009
  ident: 2021072112190605700_ref53
  article-title: Acute tamoxifen-induced depression and its prevention with venlafaxine
  publication-title: Psychosomatics
  doi: 10.1176/appi.psy.50.2.162
– volume: 12
  start-page: 878
  year: 2016
  ident: 2021072112190605700_ref27
  article-title: Deep learning for computational biology
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– volume: 7
  start-page: e2040
  year: 2016
  ident: 2021072112190605700_ref7
  article-title: Prediction of disease-gene-drug relationships following a differential network analysis
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2015.393
– volume: 32
  start-page: 2664
  year: 2016
  ident: 2021072112190605700_ref9
  article-title: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw228
– start-page: 798
  volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2018
  ident: 2021072112190605700_ref38
  article-title: Prediction of drug-disease associations and their effects by signed network-based nonnegative matrix factorization
  doi: 10.1109/BIBM.2018.8621191
– volume: 36
  start-page: 3474
  year: 2020
  ident: 2021072112190605700_ref3
  article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa157
– volume: 9
  year: 2014
  ident: 2021072112190605700_ref14
  article-title: A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111668
– volume: 65
  start-page: 285
  year: 2012
  ident: 2021072112190605700_ref55
  article-title: Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2011.11.005
– volume: 338
  start-page: 182
  year: 2018
  ident: 2021072112190605700_ref56
  article-title: Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2017.11.020
– volume: 42
  start-page: 273
  year: 1985
  ident: 2021072112190605700_ref70
  article-title: High-dose 1-beta-D-arabinofuranosylcytosine in advanced breast cancer
  publication-title: Oncology
  doi: 10.1159/000226045
– volume: 36
  start-page: 2839
  year: 2020
  ident: 2021072112190605700_ref26
  article-title: DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa062
– year: 2020
  ident: 2021072112190605700_ref41
  article-title: A multimodal deep learning framework for predicting drug-drug interaction events
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa501
– start-page: 165
  volume-title: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
  year: 2019
  ident: 2021072112190605700_ref44
  article-title: Neural graph collaborative filtering
  doi: 10.1145/3331184.3331267
– volume-title: ACL
  year: 2020
  ident: 2021072112190605700_ref28
  article-title: Clinical reading comprehension: a thorough analysis of the emrQA dataset
  doi: 10.18653/v1/2020.acl-main.410
– start-page: 1890
  volume-title: IEEE/ACM Trans Comput Biol Bioinform
  year: 2019
  ident: 2021072112190605700_ref10
– volume: 35
  start-page: 4108
  year: 2019
  ident: 2021072112190605700_ref21
  article-title: Drug repositioning through integration of prior knowledge and projections of drugs and diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz182
– volume: 10
  start-page: 326
  year: 2009
  ident: 2021072112190605700_ref5
  article-title: Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD)
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-326
– volume: 58
  start-page: 503
  year: 2004
  ident: 2021072112190605700_ref64
  article-title: Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants
  publication-title: J Neurobiol
  doi: 10.1002/neu.10297
– volume: 40
  start-page: 592
  year: 2019
  ident: 2021072112190605700_ref1
  article-title: Advancing drug discovery via artificial intelligence
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2019.06.004
– volume: 36
  start-page: 851
  year: 2019
  ident: 2021072112190605700_ref33
  article-title: Graph convolution for predicting associations between miRNA and drug resistance
  publication-title: Bioinformatics
– volume: 35
  start-page: i455
  year: 2019
  ident: 2021072112190605700_ref25
  article-title: Drug repositioning based on bounded nuclear norm regularization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz331
– volume-title: Thirty-Second AAAI Conference on Artificial Intelligence
  year: 2018
  ident: 2021072112190605700_ref52
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
  doi: 10.1609/aaai.v32i1.11604
SSID ssj0020781
Score 2.6674101
Snippet Abstract Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease...
Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease...
Determining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Computer applications
Convolution
Disease
Drug development
Predictions
Similarity
Title Predicting drug–disease associations through layer attention graph convolutional network
URI https://www.proquest.com/docview/2590044543
https://www.proquest.com/docview/2452507834
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5SELyIT6xWjdCTELq7eZmjiKUIPg4tFC9Lkk1EKFvp4-DN_-A_9JeY2U0rlaLnTAhMHjNhvvk-hNpJ4gxXQhHKNCXMp4wY6iXRXIS30CjlNDQ43z-I3oDdDfkwAmSna0r4inbMq-kYo3XGgNQzhF-gyO8_Dpf_KuCrqZuIJAF299iG92vuSuBZaWZbvL5VSOnuoO2YC-LrevN20YYr99BmrQ75vo-enyZQRQFcMi4m85evj89YTsH6x6lTHKV28EiH9BkDX2aFYMQVFzUGWHk8XmGtskZ9H6BB97Z_0yNRCoFYqtIZoVxbl1gWrpyyislCUZEWRQjvggpjJOXWUllwL13I-Dw13MjEpSbLEi-BYv0QNcpx6Y4QTj1XztjwL5aepVeJzpSx1HlRFCE3S0UTXS78lNvIEw5yFaO8rlfTPDg1j05tovbS-K2mx1hvdh4c_rdFa7EZebxF0zwDSVPGOAxfLIfD-Yeihi7deB5sqsIsyIUc_7vICdrKAJJSoW1bqDGbzN1pyClm5qw6Ud8_ocvU
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+drug%E2%80%93disease+associations+through+layer+attention+graph+convolutional+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Yu%2C+Zhouxin&rft.au=Huang%2C+Feng&rft.au=Zhao%2C+Xiaohan&rft.au=Xiao%2C+Wenjie&rft.date=2021-07-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa243&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon