Predicting drug–disease associations through layer attention graph convolutional network
Abstract Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods f...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance.
Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.
Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances. |
---|---|
AbstractList | Abstract
Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance.
Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.
Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances. Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances. Determining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug-disease associations is of great significance.BACKGROUNDDetermining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug-disease associations is of great significance.In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug-disease association prediction. Specifically, LAGCN first integrates the known drug-disease associations, drug-drug similarities and disease-disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug-disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision-recall curve of 0.3168 and an area under the receiver-operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.RESULTSIn this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug-disease association prediction. Specifically, LAGCN first integrates the known drug-disease associations, drug-drug similarities and disease-disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug-disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision-recall curve of 0.3168 and an area under the receiver-operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset.LAGCN is a useful tool for predicting drug-disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.CONCLUSIONLAGCN is a useful tool for predicting drug-disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances. Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances. |
Author | Xiao, Wenjie Huang, Feng Zhang, Wen Zhao, Xiaohan Yu, Zhouxin |
Author_xml | – sequence: 1 givenname: Zhouxin surname: Yu fullname: Yu, Zhouxin email: yuzhouxin@webmail.hzau.edu.cn – sequence: 2 givenname: Feng surname: Huang fullname: Huang, Feng email: fhuang@mail.hzau.edu.cn – sequence: 3 givenname: Xiaohan surname: Zhao fullname: Zhao, Xiaohan email: zhaoxiaohan@webmail.hzau.edu.cn – sequence: 4 givenname: Wenjie surname: Xiao fullname: Xiao, Wenjie email: xwj0329@uw.edu – sequence: 5 givenname: Wen surname: Zhang fullname: Zhang, Wen email: zhangwen@mail.hzau.edu.cn |
BookMark | eNp9kM1KAzEQgINUsK2efIGAIIKsTTbJpjmK-AcFPejFy5Jks9vU7aYmWaU338E39EnctT0V9DTDzDfDzDcCg8Y1BoBjjC4wEmSirJooJWVKyR4YYsp5QhGjgz7PeMJoRg7AKIQFQiniUzwEL4_eFFZH21Sw8G31_flV2GBkMFCG4LSV0bomwDj3rq3msJZr46GM0TR9A1ZeruZQu-bd1W1fkTVsTPxw_vUQ7JeyDuZoG8fg-eb66eoumT3c3l9dzhJNBI4JYVIbpCmiSGhBeSFIhouCT9OMZEpxwrQmvGAlN0KIkiimODJYpSkq-VRQMgZnm70r795aE2K-tEGbupaNcW3IU8pS1n1LevRkB1241nc3dxQTCFHKKOkovKG0dyF4U-baxl8P0Utb5xjlve28s51vbXcz5zszK2-X0q__oE83tGtX_4I_n_STLQ |
CitedBy_id | crossref_primary_10_1080_17460441_2023_2267020 crossref_primary_10_3390_diagnostics13061143 crossref_primary_10_1089_cmb_2023_0135 crossref_primary_10_1109_JBHI_2024_3483316 crossref_primary_10_1093_bib_bbac463 crossref_primary_10_1093_bib_bbad431 crossref_primary_10_3389_fphar_2024_1337764 crossref_primary_10_1093_bib_bbac340 crossref_primary_10_1093_bib_bbab491 crossref_primary_10_4018_IJISSC_329233 crossref_primary_10_1002_advs_202409130 crossref_primary_10_1016_j_neunet_2024_106779 crossref_primary_10_1093_bib_bbac457 crossref_primary_10_3389_fgene_2022_979815 crossref_primary_10_3390_electronics12020398 crossref_primary_10_1016_j_compbiomed_2024_109403 crossref_primary_10_1007_s40747_024_01674_y crossref_primary_10_1093_bioinformatics_btad357 crossref_primary_10_1109_JBHI_2024_3354953 crossref_primary_10_1016_j_compeleceng_2022_108494 crossref_primary_10_1371_journal_pcbi_1011851 crossref_primary_10_1016_j_compbiomed_2023_106642 crossref_primary_10_1016_j_jmb_2025_169086 crossref_primary_10_1093_bioinformatics_btae692 crossref_primary_10_1109_TCBB_2023_3234331 crossref_primary_10_1016_j_knosys_2023_111329 crossref_primary_10_1155_2021_6690154 crossref_primary_10_1109_TCBB_2023_3302468 crossref_primary_10_1186_s12864_023_09899_w crossref_primary_10_1007_s12539_024_00654_7 crossref_primary_10_1109_TBDATA_2023_3334673 crossref_primary_10_1093_bib_bbac123 crossref_primary_10_1007_s12539_024_00678_z crossref_primary_10_1109_JBHI_2024_3363080 crossref_primary_10_3934_mbe_2023685 crossref_primary_10_1109_TCBB_2023_3274587 crossref_primary_10_1007_s00894_024_06051_7 crossref_primary_10_1186_s12859_024_06032_w crossref_primary_10_1016_j_eswa_2025_126879 crossref_primary_10_1093_bib_bbac596 crossref_primary_10_1016_j_future_2024_107491 crossref_primary_10_1109_TCBB_2023_3339189 crossref_primary_10_1093_bioinformatics_btae349 crossref_primary_10_2174_0115748936288616240212073805 crossref_primary_10_1109_ACCESS_2021_3065280 crossref_primary_10_1016_j_compbiolchem_2024_108320 crossref_primary_10_1007_s10489_023_04936_3 crossref_primary_10_1007_s12539_023_00593_9 crossref_primary_10_1016_j_knosys_2024_111622 crossref_primary_10_1007_s10489_024_05859_3 crossref_primary_10_1016_j_ymeth_2023_07_008 crossref_primary_10_1016_j_ymeth_2024_09_013 crossref_primary_10_1109_JBHI_2023_3328337 crossref_primary_10_1016_j_future_2024_06_010 crossref_primary_10_1016_j_eswa_2024_124152 crossref_primary_10_1109_TCBB_2022_3189879 crossref_primary_10_3389_fphar_2023_1205144 crossref_primary_10_1016_j_jmgm_2024_108783 crossref_primary_10_1186_s12864_024_09998_2 crossref_primary_10_1016_j_engappai_2023_107782 crossref_primary_10_1016_j_jmb_2024_168916 crossref_primary_10_1186_s12859_024_05687_9 crossref_primary_10_3389_fmicb_2022_846915 crossref_primary_10_3389_fgene_2025_1535279 crossref_primary_10_1038_s41598_023_50793_y crossref_primary_10_1109_TETCI_2024_3502414 crossref_primary_10_1021_acs_jcim_2c01060 crossref_primary_10_1007_s00530_024_01325_9 crossref_primary_10_1109_JBHI_2023_3300717 crossref_primary_10_1109_TCBB_2022_3170843 crossref_primary_10_1109_JBHI_2022_3233711 crossref_primary_10_1093_bib_bbac099 crossref_primary_10_1109_TCBB_2022_3222777 crossref_primary_10_1016_j_jmgm_2023_108498 crossref_primary_10_1101_gr_279141_124 crossref_primary_10_1093_bib_bbac403 crossref_primary_10_3390_ijms24032244 crossref_primary_10_1111_exsy_13181 crossref_primary_10_1186_s12859_024_05904_5 crossref_primary_10_1186_s13321_024_00897_y crossref_primary_10_1109_JBHI_2024_3387937 crossref_primary_10_1007_s13755_023_00243_w crossref_primary_10_1109_TCBB_2021_3113122 crossref_primary_10_1186_s12859_022_05053_7 crossref_primary_10_1016_j_isci_2023_107663 crossref_primary_10_1016_j_artmed_2024_102775 crossref_primary_10_1016_j_ymeth_2023_10_014 crossref_primary_10_1007_s00894_024_06087_9 crossref_primary_10_1089_cmb_2023_0078 crossref_primary_10_1021_acs_jcim_4c02385 crossref_primary_10_3389_fgene_2021_657182 crossref_primary_10_3389_fphar_2022_1056605 crossref_primary_10_1080_17460441_2023_2198700 crossref_primary_10_2174_1574893616666211119093100 crossref_primary_10_1016_j_eswa_2023_121855 crossref_primary_10_1186_s12911_022_01807_8 crossref_primary_10_3389_fmed_2022_872214 crossref_primary_10_3389_fphar_2022_908549 crossref_primary_10_1093_bib_bbab467 crossref_primary_10_3389_fgene_2024_1370013 crossref_primary_10_3389_fgene_2023_1271311 crossref_primary_10_1016_j_compbiomed_2024_108376 crossref_primary_10_1109_TCBB_2022_3212051 crossref_primary_10_1109_JBHI_2021_3102186 crossref_primary_10_1109_TCBB_2023_3266232 crossref_primary_10_3389_fphar_2024_1398231 crossref_primary_10_1093_bioinformatics_btab792 crossref_primary_10_1093_bib_bbab581 crossref_primary_10_1093_bib_bbae172 crossref_primary_10_1021_acs_jcim_4c02276 crossref_primary_10_1093_bib_bbab580 crossref_primary_10_1109_ACCESS_2022_3217926 crossref_primary_10_1186_s12859_021_04553_2 crossref_primary_10_1016_j_ins_2024_121360 crossref_primary_10_1093_bib_bbab457 crossref_primary_10_1186_s12967_024_05938_6 crossref_primary_10_1016_j_compbiomed_2022_106289 crossref_primary_10_1016_j_ibmed_2024_100194 crossref_primary_10_1038_s44287_024_00076_z crossref_primary_10_1093_bioinformatics_btad748 crossref_primary_10_1093_bioinformatics_btad747 crossref_primary_10_1109_TCBB_2024_3477313 crossref_primary_10_3390_biom12101497 crossref_primary_10_1093_bib_bbac184 crossref_primary_10_1038_s41598_024_71837_x crossref_primary_10_1007_s12539_023_00600_z crossref_primary_10_1007_s13755_024_00326_2 crossref_primary_10_1186_s12967_024_05893_2 crossref_primary_10_2174_1574893618666230316113621 crossref_primary_10_1016_j_asoc_2024_111763 crossref_primary_10_1093_bib_bbab526 crossref_primary_10_1109_JBHI_2024_3390092 crossref_primary_10_3389_fmicb_2023_1179414 crossref_primary_10_3389_fnins_2022_1124315 crossref_primary_10_1038_s41598_024_56208_w crossref_primary_10_1093_bib_bbac292 crossref_primary_10_1093_bib_bbae231 crossref_primary_10_1109_TCBB_2023_3292883 crossref_primary_10_1093_bib_bbab080 crossref_primary_10_1186_s12911_023_02384_0 crossref_primary_10_3390_cells11243984 crossref_primary_10_1109_JBHI_2024_3372527 crossref_primary_10_1093_bib_bbac054 crossref_primary_10_1038_s41598_024_60756_6 crossref_primary_10_1109_ACCESS_2025_3547594 crossref_primary_10_3389_fnagi_2022_925468 crossref_primary_10_1093_bib_bbab511 crossref_primary_10_1109_JBHI_2024_3360437 crossref_primary_10_1109_TNNLS_2023_3289182 crossref_primary_10_1016_j_knosys_2023_111187 crossref_primary_10_3390_life12020319 crossref_primary_10_1109_TCBB_2021_3081268 crossref_primary_10_1093_bib_bbac080 crossref_primary_10_3389_fphar_2021_799108 crossref_primary_10_1109_JBHI_2023_3335275 crossref_primary_10_1109_JBHI_2023_3336247 crossref_primary_10_1111_jcmm_18571 crossref_primary_10_1186_s12859_024_05893_5 crossref_primary_10_1093_pnasnexus_pgad147 crossref_primary_10_1109_JBHI_2022_3194891 crossref_primary_10_1093_bioinformatics_btac676 crossref_primary_10_1093_bib_bbac518 crossref_primary_10_1109_TCBB_2024_3385423 crossref_primary_10_2174_1574893618666230504143647 crossref_primary_10_1186_s12859_023_05158_7 crossref_primary_10_1093_bioadv_vbad066 crossref_primary_10_1007_s11063_023_11309_x crossref_primary_10_1038_s41598_023_36054_y crossref_primary_10_1089_cmb_2023_0427 crossref_primary_10_3390_ijms24054500 crossref_primary_10_1016_j_compbiomed_2024_108612 crossref_primary_10_3389_fphar_2022_872785 crossref_primary_10_1109_TCBB_2024_3415058 crossref_primary_10_1002_qub2_39 crossref_primary_10_1109_TCBB_2021_3103595 crossref_primary_10_1016_j_compbiolchem_2024_108041 crossref_primary_10_1016_j_future_2024_05_055 crossref_primary_10_1016_j_engappai_2024_109653 crossref_primary_10_1371_journal_pcbi_1011597 crossref_primary_10_1186_s13099_023_00535_2 crossref_primary_10_1186_s12859_022_05073_3 crossref_primary_10_3389_fmicb_2023_1303585 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1186_s12859_022_04911_8 crossref_primary_10_1016_j_ymeth_2023_12_005 crossref_primary_10_3389_fmicb_2021_694534 crossref_primary_10_1007_s10489_022_03839_z crossref_primary_10_1186_s12859_023_05285_1 crossref_primary_10_1093_bib_bbac266 crossref_primary_10_1109_JBHI_2023_3272154 crossref_primary_10_1016_j_crchbi_2023_100042 crossref_primary_10_1155_2022_5852089 crossref_primary_10_1016_j_artmed_2025_103090 crossref_primary_10_3390_biom12111666 crossref_primary_10_1093_bib_bbae550 crossref_primary_10_1016_j_inffus_2024_102563 crossref_primary_10_1186_s12864_023_09380_8 crossref_primary_10_1093_bib_bbab289 crossref_primary_10_1021_acs_jcim_3c00957 crossref_primary_10_1007_s12539_023_00556_0 crossref_primary_10_1016_j_imu_2023_101177 crossref_primary_10_1016_j_crstbi_2023_100122 crossref_primary_10_1093_bib_bbac006 crossref_primary_10_1007_s10115_024_02093_8 crossref_primary_10_3390_electronics13193835 crossref_primary_10_1021_acs_jcim_4c02424 crossref_primary_10_21205_deufmd_2024267619 crossref_primary_10_2174_0115748936276510231123121404 crossref_primary_10_3389_fgene_2022_806842 crossref_primary_10_1016_j_ymeth_2024_08_009 crossref_primary_10_1016_j_compbiomed_2024_108768 crossref_primary_10_1109_TETC_2023_3239949 crossref_primary_10_1186_s12859_022_04796_7 crossref_primary_10_1016_j_ymeth_2022_09_005 crossref_primary_10_1016_j_knosys_2024_112222 crossref_primary_10_1021_acs_jcim_2c01112 crossref_primary_10_3390_e24050610 crossref_primary_10_3390_genes13061097 crossref_primary_10_1186_s12859_022_05069_z crossref_primary_10_1016_j_engappai_2023_105981 crossref_primary_10_1093_bib_bbad247 crossref_primary_10_1109_JBHI_2024_3434439 crossref_primary_10_1109_TCBB_2024_3434399 crossref_primary_10_1007_s12539_022_00514_2 crossref_primary_10_1016_j_artmed_2024_102805 crossref_primary_10_1186_s12859_022_04819_3 crossref_primary_10_3389_fphar_2021_784171 crossref_primary_10_1038_s41598_023_34438_8 |
Cites_doi | 10.1145/3240323.3240381 10.1093/nar/gkt1068 10.1186/s12859-018-2220-4 10.1109/BIBM47256.2019.8983350 10.1093/nar/gkw838 10.1093/bioinformatics/btz965 10.1093/nar/gkq1037 10.1093/bioinformatics/btw770 10.1145/3397271.3401063 10.3389/fchem.2019.00924 10.1016/0277-5379(88)90205-2 10.1093/bioinformatics/bty013 10.1093/bioinformatics/btz418 10.1093/bioinformatics/btu403 10.1111/j.1600-0609.1992.tb01808.x 10.1038/msb.2011.26 10.1038/psp.2014.44 10.1007/s10822-018-0117-y 10.1371/journal.pcbi.1007541 10.1093/bioinformatics/bty294 10.1593/neo.06673 10.1016/j.clbc.2013.02.001 10.1037/1064-1297.10.3.276 10.1371/journal.pone.0028025 10.1063/1.5121900 10.1074/jbc.RA119.007664 10.1081/CNV-200029054 10.1023/A:1008252128623 10.1371/annotation/958d4c23-4f1e-4579-b6ef-8ae1f828b1dd 10.1046/j.1526-4610.2002.02142.x 10.1176/ajp.148.12.1752a 10.1093/bioinformatics/btq241 10.1007/s00280-017-3481-8 10.1007/s00108-005-1504-8 10.1212/01.wnl.0000173035.58682.64 10.1109/WACV.2017.58 10.1176/appi.psy.50.2.162 10.15252/msb.20156651 10.1038/cddis.2015.393 10.1093/bioinformatics/btw228 10.1109/BIBM.2018.8621191 10.1093/bioinformatics/btaa157 10.1371/journal.pone.0111668 10.1016/j.phrs.2011.11.005 10.1016/j.taap.2017.11.020 10.1159/000226045 10.1093/bioinformatics/btaa062 10.1093/bioinformatics/btaa501 10.1145/3331184.3331267 10.18653/v1/2020.acl-main.410 10.1093/bioinformatics/btz182 10.1186/1471-2105-10-326 10.1002/neu.10297 10.1016/j.tips.2019.06.004 10.1093/bioinformatics/btz331 10.1609/aaai.v32i1.11604 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbaa243 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10_1093_bib_bbaa243 10.1093/bib/bbaa243 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-35ace0c40409c947d9361dd782636bb735cc37d5f7e999f3b5b70e1b220f78943 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 03:42:45 EDT 2025 Mon Jun 30 08:48:58 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Tue Jul 01 03:39:31 EDT 2025 Wed Aug 28 03:20:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | graph convolutional network disease drug–disease association prediction layer attention drug |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-35ace0c40409c947d9361dd782636bb735cc37d5f7e999f3b5b70e1b220f78943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2590044543 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2452507834 proquest_journals_2590044543 crossref_citationtrail_10_1093_bib_bbaa243 crossref_primary_10_1093_bib_bbaa243 oup_primary_10_1093_bib_bbaa243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Wittchen (2021072112190605700_ref62) 2006; 47 Bourque (2021072112190605700_ref53) 2009; 50 Chan (2021072112190605700_ref1) 2019; 40 Xuan (2021072112190605700_ref21) 2019; 35 Zickenrott (2021072112190605700_ref7) 2016; 7 Wu (2021072112190605700_ref17) 2016 Yang (2021072112190605700_ref23) 2019; 15 Zhang (2021072112190605700_ref18) 2017 R (2021072112190605700_ref48) 2018 Yang (2021072112190605700_ref12) 2011; 6 Tsai (2021072112190605700_ref56) 2018; 338 Di Costanzo (2021072112190605700_ref71) 2004; 22 Angermueller (2021072112190605700_ref27) 2016; 12 Zhang (2021072112190605700_ref38) 2018 Wang (2021072112190605700_ref65) 2019; 294 Cassidy (2021072112190605700_ref66) 1988; 24 Wang (2021072112190605700_ref8) 2014; 30 Eichborn (2021072112190605700_ref4) 2010; 39 Zhang (2021072112190605700_ref20) 2018; 19 Wang (2021072112190605700_ref13) 2013; 9 Horvath (2021072112190605700_ref61) 2005; 65 Szymanski (2021072112190605700_ref59) 1991; 148 Law (2021072112190605700_ref40) 2014; 42 Zhang (2021072112190605700_ref26) 2020; 36 Zhang (2021072112190605700_ref3) 2020; 36 Wiegers (2021072112190605700_ref5) 2009; 10 Y-A (2021072112190605700_ref33) 2019; 36 Yang (2021072112190605700_ref15) 2019; 29 Yang (2021072112190605700_ref36) 2018 Schlaifer (2021072112190605700_ref58) 1992; 48 Liang (2021072112190605700_ref16) 2017; 33 Wang (2021072112190605700_ref42) 2010; 26 Zitnik (2021072112190605700_ref34) 2018; 34 Kipf (2021072112190605700_ref32) 2017 Smith (2021072112190605700_ref51) 2017 Feldman (2021072112190605700_ref70) 1985; 42 Luo (2021072112190605700_ref10) 2019 Zeng (2021072112190605700_ref29) 2019; 35 Alsafadi (2021072112190605700_ref68) 2013; 13 Luo (2021072112190605700_ref24) 2018; 34 Luo (2021072112190605700_ref9) 2016; 32 Li (2021072112190605700_ref35) 2020; 36 Srivastava (2021072112190605700_ref49) 2014; 15 Xuan (2021072112190605700_ref31) 2019; 8 Glorot (2021072112190605700_ref46) 2010 Jakobsen Falk (2021072112190605700_ref54) 2018; 81 Reynolds (2021072112190605700_ref64) 2004; 58 Wang (2021072112190605700_ref44) 2019 Wang (2021072112190605700_ref6) 2014; 3 Srikiatkhachorn (2021072112190605700_ref57) 2002; 42 Davis (2021072112190605700_ref39) 2017; 45 Kumada (2021072112190605700_ref60) 2005; 37 Yue (2021072112190605700_ref28) 2020 Brady (2021072112190605700_ref63) 2002; 10 Ackerstaff (2021072112190605700_ref69) 2007; 9 Gottlieb (2021072112190605700_ref11) 2011; 7 Vaswani (2021072112190605700_ref37) 2017 Deng (2021072112190605700_ref41) 2020 De Sarro (2021072112190605700_ref55) 2012; 65 Zhu (2021072112190605700_ref50) 2019 Li (2021072112190605700_ref30) 2020; 7 Luo (2021072112190605700_ref2) 2020 He (2021072112190605700_ref45) 2020 Oh (2021072112190605700_ref14) 2014; 9 Li (2021072112190605700_ref52) 2018 Yang (2021072112190605700_ref25) 2019; 35 Clevert (2021072112190605700_ref43) 2016 Hofstra (2021072112190605700_ref67) 1997; 8 Lu (2021072112190605700_ref19) 2018; 32 Zhang (2021072112190605700_ref22) 2014; 2014 Kingma (2021072112190605700_ref47) 2015 |
References_xml | – start-page: 140 volume-title: Proceedings of the 12th ACM Conference on Recommender Systems year: 2018 ident: 2021072112190605700_ref36 article-title: HOP-rec: high-order proximity for implicit recommendation doi: 10.1145/3240323.3240381 – volume: 42 start-page: D1091 year: 2014 ident: 2021072112190605700_ref40 article-title: DrugBank 4.0: shedding new light on drug metabolism publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1068 – volume: 19 start-page: 233 year: 2018 ident: 2021072112190605700_ref20 article-title: Predicting drug-disease associations by using similarity constrained matrix factorization publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2220-4 – start-page: 382 volume-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2019 ident: 2021072112190605700_ref50 article-title: Predicting gene-disease associations via graph embedding and graph convolutional networks doi: 10.1109/BIBM47256.2019.8983350 – volume-title: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2016 ident: 2021072112190605700_ref17 article-title: Semi-supervised graph cut algorithm for drug repositioning by integrating drug, disease and genomic associations – volume: 45 start-page: D972 year: 2017 ident: 2021072112190605700_ref39 article-title: The comparative toxicogenomics database: update 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw838 – volume: 36 start-page: 2538 year: 2020 ident: 2021072112190605700_ref35 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 37 start-page: 257 year: 2005 ident: 2021072112190605700_ref60 article-title: Postoperative complete atrioventricular block induced by carbamazepine in a patient with congenital heart disease publication-title: No To Hattatsu – volume: 39 start-page: D1060 year: 2010 ident: 2021072112190605700_ref4 article-title: PROMISCUOUS: a database for network-based drug-repositioning publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1037 – volume: 33 start-page: 1187 year: 2017 ident: 2021072112190605700_ref16 article-title: LRSSL: predict and interpret drug–disease associations based on data integration using sparse subspace learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw770 – volume-title: SIGIR year: 2020 ident: 2021072112190605700_ref45 article-title: LightGCN: simplifying and powering graph convolution network for recommendation doi: 10.1145/3397271.3401063 – volume: 7 year: 2020 ident: 2021072112190605700_ref30 article-title: Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network publication-title: Front Chem doi: 10.3389/fchem.2019.00924 – year: 2020 ident: 2021072112190605700_ref2 article-title: Biomedical data and computational models for drug repositioning: a comprehensive review publication-title: Brief Bioinform – volume: 8 year: 2019 ident: 2021072112190605700_ref31 article-title: Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations publication-title: Cells – volume: 24 start-page: 935 year: 1988 ident: 2021072112190605700_ref66 article-title: Cardiotoxicity of mitozantrone assessed by stress and resting nuclear ventriculography publication-title: Eur J Cancer Clin Oncol doi: 10.1016/0277-5379(88)90205-2 – volume: 15 start-page: 1929 year: 2014 ident: 2021072112190605700_ref49 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 34 start-page: 1904 year: 2018 ident: 2021072112190605700_ref24 article-title: Computational drug repositioning using low-rank matrix approximation and randomized algorithms publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty013 – volume: 35 start-page: 5191 year: 2019 ident: 2021072112190605700_ref29 article-title: deepDR: a network-based deep learning approach to in silico drug repositioning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz418 – start-page: 249 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics year: 2010 ident: 2021072112190605700_ref46 article-title: Understanding the difficulty of training deep feedforward neural networks – volume-title: International Conference on Learning Representations (ICLR) year: 2015 ident: 2021072112190605700_ref47 article-title: Adam: a method for stochastic optimization – volume: 30 start-page: 2923 year: 2014 ident: 2021072112190605700_ref8 article-title: Drug repositioning by integrating target information through a heterogeneous network model publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu403 – volume: 48 start-page: 274 year: 1992 ident: 2021072112190605700_ref58 article-title: Antiepileptic drug-induced lymphoproliferative disorder associated with acquired C1 esterase inhibitor deficiency and angioedema publication-title: Eur J Haematol doi: 10.1111/j.1600-0609.1992.tb01808.x – volume-title: KDD year: 2018 ident: 2021072112190605700_ref48 article-title: Graph convolutional matrix completion – volume: 7 start-page: 496 year: 2011 ident: 2021072112190605700_ref11 article-title: PREDICT: a method for inferring novel drug indications with application to personalized medicine publication-title: Mol Syst Biol doi: 10.1038/msb.2011.26 – volume: 3 start-page: e146 year: 2014 ident: 2021072112190605700_ref6 article-title: Systematic analysis of new drug indications by drug-gene-disease coherent subnetworks publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1038/psp.2014.44 – volume: 32 start-page: 633 year: 2018 ident: 2021072112190605700_ref19 article-title: DR2DI: a powerful computational tool for predicting novel drug-disease associations publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-018-0117-y – start-page: 5998 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2021072112190605700_ref37 article-title: Attention is all you need – volume: 15 year: 2019 ident: 2021072112190605700_ref23 article-title: Overlap matrix completion for predicting drug-associated indications publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007541 – volume: 34 start-page: i457 year: 2018 ident: 2021072112190605700_ref34 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – volume-title: International Conference on Learning Representations (ICLR) year: 2016 ident: 2021072112190605700_ref43 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) – start-page: 503 volume-title: IEEE International Conference on Bioinformatics and Biomedicine year: 2017 ident: 2021072112190605700_ref18 article-title: Predicting drug-disease associations based on the known association bipartite network – volume: 9 start-page: 222 year: 2007 ident: 2021072112190605700_ref69 article-title: Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line publication-title: Neoplasia doi: 10.1593/neo.06673 – volume: 13 start-page: 401 year: 2013 ident: 2021072112190605700_ref68 article-title: Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers publication-title: Clin Breast Cancer doi: 10.1016/j.clbc.2013.02.001 – volume: 10 start-page: 276 year: 2002 ident: 2021072112190605700_ref63 article-title: Carbamazepine in the treatment of cocaine dependence: subtyping by affective disorder publication-title: Exp Clin Psychopharmacol doi: 10.1037/1064-1297.10.3.276 – volume: 6 year: 2011 ident: 2021072112190605700_ref12 article-title: Systematic drug repositioning based on clinical side-effects publication-title: PLoS One doi: 10.1371/journal.pone.0028025 – volume: 29 start-page: 123109 year: 2019 ident: 2021072112190605700_ref15 article-title: Predicting drug-disease associations with heterogeneous network embedding publication-title: Chaos doi: 10.1063/1.5121900 – volume: 294 start-page: 10006 year: 2019 ident: 2021072112190605700_ref65 article-title: Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents publication-title: J Biol Chem doi: 10.1074/jbc.RA119.007664 – volume: 22 start-page: 331 year: 2004 ident: 2021072112190605700_ref71 article-title: Paclitaxel and mitoxantrone in metastatic breast cancer: a phase II trial of the Italian Oncology Group for Cancer Research publication-title: Cancer Invest doi: 10.1081/CNV-200029054 – volume: 8 start-page: 812 year: 1997 ident: 2021072112190605700_ref67 article-title: Ataxia following docetaxel infusion publication-title: Ann Oncol doi: 10.1023/A:1008252128623 – volume-title: International Conference on Learning Representations (ICLR) year: 2017 ident: 2021072112190605700_ref32 article-title: Semi-supervised classification with graph convolutional networks – volume: 9 year: 2013 ident: 2021072112190605700_ref13 article-title: Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity publication-title: PLoS Comput Biol doi: 10.1371/annotation/958d4c23-4f1e-4579-b6ef-8ae1f828b1dd – volume: 42 start-page: 566 year: 2002 ident: 2021072112190605700_ref57 article-title: 2002 Wolff Award. 5-HT2A receptor activation and nitric oxide synthesis: a possible mechanism determining migraine attacks publication-title: Headache doi: 10.1046/j.1526-4610.2002.02142.x – volume: 148 start-page: 1752 year: 1991 ident: 2021072112190605700_ref59 article-title: Anticholinergic delirium caused by retreatment with clozapine publication-title: Am J Psychiatry doi: 10.1176/ajp.148.12.1752a – volume: 26 start-page: 1644 year: 2010 ident: 2021072112190605700_ref42 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 81 start-page: 183 year: 2018 ident: 2021072112190605700_ref54 article-title: Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-017-3481-8 – volume: 2014 start-page: 1258 year: 2014 ident: 2021072112190605700_ref22 article-title: Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity publication-title: AMIA Annu Symp Proc – volume: 47 start-page: 69 year: 2006 ident: 2021072112190605700_ref62 article-title: Leistungsknick, Thoraxschmerz und Polyserositis bei einem 35-jährigen Patienten mit antikonvulsiver Therapie publication-title: Internist doi: 10.1007/s00108-005-1504-8 – volume: 65 start-page: 650 year: 2005 ident: 2021072112190605700_ref61 article-title: Carbamazepine encephalopathy masquerading as Creutzfeldt–Jakob disease publication-title: Neurology doi: 10.1212/01.wnl.0000173035.58682.64 – start-page: 464 volume-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) year: 2017 ident: 2021072112190605700_ref51 article-title: Cyclical learning rates for training neural networks doi: 10.1109/WACV.2017.58 – volume: 50 start-page: 162 year: 2009 ident: 2021072112190605700_ref53 article-title: Acute tamoxifen-induced depression and its prevention with venlafaxine publication-title: Psychosomatics doi: 10.1176/appi.psy.50.2.162 – volume: 12 start-page: 878 year: 2016 ident: 2021072112190605700_ref27 article-title: Deep learning for computational biology publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – volume: 7 start-page: e2040 year: 2016 ident: 2021072112190605700_ref7 article-title: Prediction of disease-gene-drug relationships following a differential network analysis publication-title: Cell Death Dis doi: 10.1038/cddis.2015.393 – volume: 32 start-page: 2664 year: 2016 ident: 2021072112190605700_ref9 article-title: Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw228 – start-page: 798 volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2018 ident: 2021072112190605700_ref38 article-title: Prediction of drug-disease associations and their effects by signed network-based nonnegative matrix factorization doi: 10.1109/BIBM.2018.8621191 – volume: 36 start-page: 3474 year: 2020 ident: 2021072112190605700_ref3 article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa157 – volume: 9 year: 2014 ident: 2021072112190605700_ref14 article-title: A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions publication-title: PLoS One doi: 10.1371/journal.pone.0111668 – volume: 65 start-page: 285 year: 2012 ident: 2021072112190605700_ref55 article-title: Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice publication-title: Pharmacol Res doi: 10.1016/j.phrs.2011.11.005 – volume: 338 start-page: 182 year: 2018 ident: 2021072112190605700_ref56 article-title: Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2017.11.020 – volume: 42 start-page: 273 year: 1985 ident: 2021072112190605700_ref70 article-title: High-dose 1-beta-D-arabinofuranosylcytosine in advanced breast cancer publication-title: Oncology doi: 10.1159/000226045 – volume: 36 start-page: 2839 year: 2020 ident: 2021072112190605700_ref26 article-title: DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa062 – year: 2020 ident: 2021072112190605700_ref41 article-title: A multimodal deep learning framework for predicting drug-drug interaction events publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa501 – start-page: 165 volume-title: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval year: 2019 ident: 2021072112190605700_ref44 article-title: Neural graph collaborative filtering doi: 10.1145/3331184.3331267 – volume-title: ACL year: 2020 ident: 2021072112190605700_ref28 article-title: Clinical reading comprehension: a thorough analysis of the emrQA dataset doi: 10.18653/v1/2020.acl-main.410 – start-page: 1890 volume-title: IEEE/ACM Trans Comput Biol Bioinform year: 2019 ident: 2021072112190605700_ref10 – volume: 35 start-page: 4108 year: 2019 ident: 2021072112190605700_ref21 article-title: Drug repositioning through integration of prior knowledge and projections of drugs and diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz182 – volume: 10 start-page: 326 year: 2009 ident: 2021072112190605700_ref5 article-title: Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD) publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-326 – volume: 58 start-page: 503 year: 2004 ident: 2021072112190605700_ref64 article-title: Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants publication-title: J Neurobiol doi: 10.1002/neu.10297 – volume: 40 start-page: 592 year: 2019 ident: 2021072112190605700_ref1 article-title: Advancing drug discovery via artificial intelligence publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2019.06.004 – volume: 36 start-page: 851 year: 2019 ident: 2021072112190605700_ref33 article-title: Graph convolution for predicting associations between miRNA and drug resistance publication-title: Bioinformatics – volume: 35 start-page: i455 year: 2019 ident: 2021072112190605700_ref25 article-title: Drug repositioning based on bounded nuclear norm regularization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz331 – volume-title: Thirty-Second AAAI Conference on Artificial Intelligence year: 2018 ident: 2021072112190605700_ref52 article-title: Deeper insights into graph convolutional networks for semi-supervised learning doi: 10.1609/aaai.v32i1.11604 |
SSID | ssj0020781 |
Score | 2.6674101 |
Snippet | Abstract
Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease... Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease... Determining drug-disease associations is an integral part in the process of drug development. However, the identification of drug-disease associations through... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial neural networks Computer applications Convolution Disease Drug development Predictions Similarity |
Title | Predicting drug–disease associations through layer attention graph convolutional network |
URI | https://www.proquest.com/docview/2590044543 https://www.proquest.com/docview/2452507834 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5SELyIT6xWjdCTELq7eZmjiKUIPg4tFC9Lkk1EKFvp4-DN_-A_9JeY2U0rlaLnTAhMHjNhvvk-hNpJ4gxXQhHKNCXMp4wY6iXRXIS30CjlNDQ43z-I3oDdDfkwAmSna0r4inbMq-kYo3XGgNQzhF-gyO8_Dpf_KuCrqZuIJAF299iG92vuSuBZaWZbvL5VSOnuoO2YC-LrevN20YYr99BmrQ75vo-enyZQRQFcMi4m85evj89YTsH6x6lTHKV28EiH9BkDX2aFYMQVFzUGWHk8XmGtskZ9H6BB97Z_0yNRCoFYqtIZoVxbl1gWrpyyislCUZEWRQjvggpjJOXWUllwL13I-Dw13MjEpSbLEi-BYv0QNcpx6Y4QTj1XztjwL5aepVeJzpSx1HlRFCE3S0UTXS78lNvIEw5yFaO8rlfTPDg1j05tovbS-K2mx1hvdh4c_rdFa7EZebxF0zwDSVPGOAxfLIfD-Yeihi7deB5sqsIsyIUc_7vICdrKAJJSoW1bqDGbzN1pyClm5qw6Ud8_ocvU |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+drug%E2%80%93disease+associations+through+layer+attention+graph+convolutional+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Yu%2C+Zhouxin&rft.au=Huang%2C+Feng&rft.au=Zhao%2C+Xiaohan&rft.au=Xiao%2C+Wenjie&rft.date=2021-07-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa243&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |