A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures

A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. Th...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 27; no. 1; pp. 198 - 201
Main Author 张瑶 罗先武 季斌 刘树红 吴玉林 许洪元
Format Journal Article
LanguageEnglish
Published IOP Publishing 2010
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/27/1/016401

Cover

Loading…
Abstract A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range.
AbstractList A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150 degree C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range.
A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range.
Author 张瑶 罗先武 季斌 刘树红 吴玉林 许洪元
AuthorAffiliation State Key Laboratory for Hydroscience and Engineering, Tsinghua University, Beijing 100084
Author_xml – sequence: 1
  fullname: 张瑶 罗先武 季斌 刘树红 吴玉林 许洪元
BookMark eNqNkUFr2zAUgEVJoWm7n1AQPe0wL3qWLcvsFELbFVoGbUZ7E4r9lGizJUdyNvrv6-DQQzfYToLH94mnT6dk4rxDQi6AfQYm5YyluUg4K55naTGDGQORMTgiUygySHiesQmZvjEn5DTGH4wBSIApwTldbjC0vn5xurUVXehftte99Y7e-xobanx4G7o1vW78b_po210zQtZRTZ9sjfRBuzVSb-iT7jHQJbYdBt3vAsZzcmx0E_HD4Twj36-vlouvyd23m9vF_C6peAl9wjPAOgcpECu2YkJKUxrOswxTI9NCaJ2zzECZylpiKVAKk8q8LkVRcLHihp-Rj-O9XfDbHcZetTZW2DTaod9FBYzLVA68GNAvI1oFH2NAo6rDu_ugbTOgah9X7cOpfTiVFgrUGHew83d2F2yrw8s_PTZ61nf_rXz6U_krqrp6n-DysNnGu_V2-DK10tVPYxtUnDMmgZf8FYi5phU
CitedBy_id crossref_primary_10_1016_S1001_6058_16_60638_8
crossref_primary_10_1088_0256_307X_27_9_096401
crossref_primary_10_1007_s11431_015_5969_y
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123782
crossref_primary_10_1016_S1001_6058_16_60807_7
crossref_primary_10_7603_s40632_016_0019_x
crossref_primary_10_1088_0256_307X_31_8_086401
crossref_primary_10_1007_s10494_018_9993_4
crossref_primary_10_1007_s12206_015_0920_5
crossref_primary_10_1088_0256_307X_29_1_014702
Cites_doi 10.1017/S002211209200003X
10.1115/1.2819150
10.1115/1.3448095
10.2514/1.28730
10.1115/1.2169808
10.1063/1.1721668
ContentType Journal Article
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/0256-307X/27/1/016401
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures
EISSN 1741-3540
EndPage 201
ExternalDocumentID 10_1088_0256_307X_27_1_016401
33008139
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AAPBV
AATNI
ABHWH
ABPTK
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CDYEO
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
W92
XPP
~02
~WA
02
MGA
UNR
-SA
-S~
AAYXX
ABJNI
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
7U5
8FD
AEINN
L7M
ID FETCH-LOGICAL-c391t-341ed5186eec0b0688f9f3344e2f8276aa504f1928d8e96e86f285d967736b3f3
IEDL.DBID IOP
ISSN 0256-307X
IngestDate Fri Sep 05 14:38:53 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Tue Jul 01 01:34:45 EDT 2025
Tue Nov 10 14:19:52 EST 2020
Mon May 13 14:49:23 EDT 2019
Fri Nov 25 19:10:27 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-341ed5186eec0b0688f9f3344e2f8276aa504f1928d8e96e86f285d967736b3f3
Notes 11-1959/O4
TV732.4
TQ013.1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1038289676
PQPubID 23500
PageCount 4
ParticipantIDs iop_primary_10_1088_0256_307X_27_1_016401
proquest_miscellaneous_1038289676
crossref_citationtrail_10_1088_0256_307X_27_1_016401
chongqing_backfile_33008139
crossref_primary_10_1088_0256_307X_27_1_016401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010
20100101
2010-01-00
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2010
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Stahl H A (3) 1956; 78
13
14
Rapposelli E (6) 2003
Tani N (5) 2002
Holl J W (4) 1975; 97
Brennen C E (1) 1994
2
ANSYS Inc (10) 2006
8
9
Utturkar Y (7) 2005
Xu J J (11) 2000
Yang C X (12) 1999; 14
References_xml – year: 2003
  ident: 6
– year: 2002
  ident: 5
– start-page: 223
  year: 2000
  ident: 11
  publication-title: Boiling Heat and Gas-liquid Two Phase Flow
– ident: 9
  doi: 10.1017/S002211209200003X
– ident: 2
  doi: 10.1115/1.2819150
– start-page: 142
  year: 1994
  ident: 1
  publication-title: Hydrodynamics of Pumps
– volume: 97
  start-page: 507
  issn: 0098-2202
  year: 1975
  ident: 4
  publication-title: J. Fluids. Eng.
  doi: 10.1115/1.3448095
– ident: 8
  doi: 10.2514/1.28730
– ident: 14
  doi: 10.1115/1.2169808
– ident: 13
  doi: 10.1063/1.1721668
– year: 2005
  ident: 7
– start-page: 178
  year: 2006
  ident: 10
– volume: 14
  start-page: 246
  year: 1999
  ident: 12
  publication-title: J. Therm. Power. Eng.
– volume: 78
  start-page: 1691
  issn: 0021-9223
  year: 1956
  ident: 3
  publication-title: J. Basic. Eng.
SSID ssj0011811
Score 1.9644883
Snippet A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during...
SourceID proquest
crossref
iop
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 198
SubjectTerms Cavitation
Computational fluid dynamics
Computer simulation
Depression
Hydrofoils
Thermodynamics
Turbulence
Water flow
实验数据
模拟模型
温度范围
热力学模型
生长过程
空化模型
空化流
Title A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures
URI http://lib.cqvip.com/qk/84212X/20101/33008139.html
http://iopscience.iop.org/0256-307X/27/1/016401
https://www.proquest.com/docview/1038289676
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC5UEHIxiSZkYwwtmEMOs85uz_b0HEVcVPBBVNxb00-zuM5s9pFAfn2q5kWCgvE2DN09TL_qq66u7wPYC9oFE0wcxcF5Oq0SuOacjAwXieWxjTNL-c5n5-L4JjkdDUYr0CjTjYtpvfN38bGM5JNRphOS0T566b19ooQq87XQ9pOzdXJx2UYN0FqVCnlNjSZjB528J1shPoXvRX73A63EP3ZpFT_-aHMuLc7wNVw2eTvVRZP77nJhuvb3YxrH__2ZN7BRo092UE2Xt7Di801YL2-B2vkW-AOG02b2ULhKp54d6p81hzcj0bQJQ4jbvszv2HBS_GJX44daA4yNc6bZ7dh59o2SFlgR2C2C2Rm79gjPK_rm-Tu4GR5dHx5HtQ5DZHnWW0Ro6Lwb9KTw3saGVGpCFjhPEt8Psp8KrQdxEhAqSid9JrwUoS8HLhNpyoXhgb-HtbzI_QdgAd0zncQmtRlRDWrjNGJAw2NjNPp-SQe22xFBO27viZ1KcU7IhWcdSJoxUrb-fVLSmKgylC6lov5V1L-qn6qeqvq3A9222rTi8HiuwhccsLbsk2XU1IUOfP273DNt7jbTSeEKprCMzn2xnCuiqEe3V6Ti4wva24ZX1UUGOg36BGuL2dLvID5amM_lovgDBGz_Zw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61RSBeuCuWchgJHnjY3WSdOM5j1bIqV6mgVffN8llW3SbLHiDx65nJJU5ViLco8ljxjJ2ZsT3fB_AsaBdMMFE_Cs7TbpXANedk33CRWB7ZKLdU7_zuUBycJK8n6WQD9rtamHLe_PoH-FgDBdcqbC7EySF5adoymQwxbY-HhBEVxcO5C5twJSV6Oirje3_UnSWgD6t481qxto7nb10RysKnsjj7jL7jJ2-1iV_02y-78kPjm-DbEdTXT84H65UZ2G-_gDv-7xBvwY0mUGW7tcxt2PDFHbhaXRi1y7vgdxnOsMVF6WpKe7anvzRw34z41WYMo-HuZXHGxrPyK_s4vWjowti0YJqdTp1nH6i-gZWBnWLcu2DHHiP5Gul5eQ9Oxi-P9w76DWVD3_I8XvXRJ3qXxlJ4byNDhDYhD5wniR8FOcqE1mmUBIwqpZM-F16KMJKpy0WWcWF44NuwVZSFvw8sYCank8hkNidUQm2cxnDR8MgYjWli0oOdzkzo8u05AVkpzinI4XkPktZwyjbDJ9KNmapO3aVUpGNFOlajTMWq1nEPBp3YvIb7uEzgORqxa_vHNgoN14MXP7a7pM-n7RxTuNjpBEcXvlwvFaHZY4YsMvHgH_p7AteO9sfq7avDNztwvb7-QHtID2FrtVj7RxhVrczjatF8B7Y2D2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Thermodynamic+Cavitation+Model+for+Cavitating+Flow+Simulation+in+a+Wide+Range+of+Water+Temperatures&rft.jtitle=Chinese+physics+letters&rft.au=%E5%BC%A0%E7%91%B6+%E7%BD%97%E5%85%88%E6%AD%A6+%E5%AD%A3%E6%96%8C+%E5%88%98%E6%A0%91%E7%BA%A2+%E5%90%B4%E7%8E%89%E6%9E%97+%E8%AE%B8%E6%B4%AA%E5%85%83&rft.date=2010&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=27&rft.issue=1&rft.spage=198&rft.epage=201&rft_id=info:doi/10.1088%2F0256-307X%2F27%2F1%2F016401&rft.externalDocID=33008139
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg