A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures
A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. Th...
Saved in:
Published in | Chinese physics letters Vol. 27; no. 1; pp. 198 - 201 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/27/1/016401 |
Cover
Loading…
Abstract | A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range. |
---|---|
AbstractList | A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150 degree C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range. A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range. |
Author | 张瑶 罗先武 季斌 刘树红 吴玉林 许洪元 |
AuthorAffiliation | State Key Laboratory for Hydroscience and Engineering, Tsinghua University, Beijing 100084 |
Author_xml | – sequence: 1 fullname: 张瑶 罗先武 季斌 刘树红 吴玉林 许洪元 |
BookMark | eNqNkUFr2zAUgEVJoWm7n1AQPe0wL3qWLcvsFELbFVoGbUZ7E4r9lGizJUdyNvrv6-DQQzfYToLH94mnT6dk4rxDQi6AfQYm5YyluUg4K55naTGDGQORMTgiUygySHiesQmZvjEn5DTGH4wBSIApwTldbjC0vn5xurUVXehftte99Y7e-xobanx4G7o1vW78b_po210zQtZRTZ9sjfRBuzVSb-iT7jHQJbYdBt3vAsZzcmx0E_HD4Twj36-vlouvyd23m9vF_C6peAl9wjPAOgcpECu2YkJKUxrOswxTI9NCaJ2zzECZylpiKVAKk8q8LkVRcLHihp-Rj-O9XfDbHcZetTZW2DTaod9FBYzLVA68GNAvI1oFH2NAo6rDu_ugbTOgah9X7cOpfTiVFgrUGHew83d2F2yrw8s_PTZ61nf_rXz6U_krqrp6n-DysNnGu_V2-DK10tVPYxtUnDMmgZf8FYi5phU |
CitedBy_id | crossref_primary_10_1016_S1001_6058_16_60638_8 crossref_primary_10_1088_0256_307X_27_9_096401 crossref_primary_10_1007_s11431_015_5969_y crossref_primary_10_1016_j_ijheatmasstransfer_2022_123782 crossref_primary_10_1016_S1001_6058_16_60807_7 crossref_primary_10_7603_s40632_016_0019_x crossref_primary_10_1088_0256_307X_31_8_086401 crossref_primary_10_1007_s10494_018_9993_4 crossref_primary_10_1007_s12206_015_0920_5 crossref_primary_10_1088_0256_307X_29_1_014702 |
Cites_doi | 10.1017/S002211209200003X 10.1115/1.2819150 10.1115/1.3448095 10.2514/1.28730 10.1115/1.2169808 10.1063/1.1721668 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1088/0256-307X/27/1/016401 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures |
EISSN | 1741-3540 |
EndPage | 201 |
ExternalDocumentID | 10_1088_0256_307X_27_1_016401 33008139 |
GroupedDBID | 02O 042 1JI 1PV 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AAPBV AATNI ABHWH ABPTK ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CDYEO CEBXE CJUJL CQIGP CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 UCJ W28 W92 XPP ~02 ~WA 02 MGA UNR -SA -S~ AAYXX ABJNI ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TGP U1G U5K 7U5 8FD AEINN L7M |
ID | FETCH-LOGICAL-c391t-341ed5186eec0b0688f9f3344e2f8276aa504f1928d8e96e86f285d967736b3f3 |
IEDL.DBID | IOP |
ISSN | 0256-307X |
IngestDate | Fri Sep 05 14:38:53 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Tue Jul 01 01:34:45 EDT 2025 Tue Nov 10 14:19:52 EST 2020 Mon May 13 14:49:23 EDT 2019 Fri Nov 25 19:10:27 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-341ed5186eec0b0688f9f3344e2f8276aa504f1928d8e96e86f285d967736b3f3 |
Notes | 11-1959/O4 TV732.4 TQ013.1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1038289676 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | iop_primary_10_1088_0256_307X_27_1_016401 proquest_miscellaneous_1038289676 crossref_citationtrail_10_1088_0256_307X_27_1_016401 chongqing_backfile_33008139 crossref_primary_10_1088_0256_307X_27_1_016401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010 20100101 2010-01-00 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Physics Letters |
PublicationYear | 2010 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Stahl H A (3) 1956; 78 13 14 Rapposelli E (6) 2003 Tani N (5) 2002 Holl J W (4) 1975; 97 Brennen C E (1) 1994 2 ANSYS Inc (10) 2006 8 9 Utturkar Y (7) 2005 Xu J J (11) 2000 Yang C X (12) 1999; 14 |
References_xml | – year: 2003 ident: 6 – year: 2002 ident: 5 – start-page: 223 year: 2000 ident: 11 publication-title: Boiling Heat and Gas-liquid Two Phase Flow – ident: 9 doi: 10.1017/S002211209200003X – ident: 2 doi: 10.1115/1.2819150 – start-page: 142 year: 1994 ident: 1 publication-title: Hydrodynamics of Pumps – volume: 97 start-page: 507 issn: 0098-2202 year: 1975 ident: 4 publication-title: J. Fluids. Eng. doi: 10.1115/1.3448095 – ident: 8 doi: 10.2514/1.28730 – ident: 14 doi: 10.1115/1.2169808 – ident: 13 doi: 10.1063/1.1721668 – year: 2005 ident: 7 – start-page: 178 year: 2006 ident: 10 – volume: 14 start-page: 246 year: 1999 ident: 12 publication-title: J. Therm. Power. Eng. – volume: 78 start-page: 1691 issn: 0021-9223 year: 1956 ident: 3 publication-title: J. Basic. Eng. |
SSID | ssj0011811 |
Score | 1.9644883 |
Snippet | A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during... |
SourceID | proquest crossref iop chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 198 |
SubjectTerms | Cavitation Computational fluid dynamics Computer simulation Depression Hydrofoils Thermodynamics Turbulence Water flow 实验数据 模拟模型 温度范围 热力学模型 生长过程 空化模型 空化流 |
Title | A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures |
URI | http://lib.cqvip.com/qk/84212X/20101/33008139.html http://iopscience.iop.org/0256-307X/27/1/016401 https://www.proquest.com/docview/1038289676 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC5UEHIxiSZkYwwtmEMOs85uz_b0HEVcVPBBVNxb00-zuM5s9pFAfn2q5kWCgvE2DN09TL_qq66u7wPYC9oFE0wcxcF5Oq0SuOacjAwXieWxjTNL-c5n5-L4JjkdDUYr0CjTjYtpvfN38bGM5JNRphOS0T566b19ooQq87XQ9pOzdXJx2UYN0FqVCnlNjSZjB528J1shPoXvRX73A63EP3ZpFT_-aHMuLc7wNVw2eTvVRZP77nJhuvb3YxrH__2ZN7BRo092UE2Xt7Di801YL2-B2vkW-AOG02b2ULhKp54d6p81hzcj0bQJQ4jbvszv2HBS_GJX44daA4yNc6bZ7dh59o2SFlgR2C2C2Rm79gjPK_rm-Tu4GR5dHx5HtQ5DZHnWW0Ro6Lwb9KTw3saGVGpCFjhPEt8Psp8KrQdxEhAqSid9JrwUoS8HLhNpyoXhgb-HtbzI_QdgAd0zncQmtRlRDWrjNGJAw2NjNPp-SQe22xFBO27viZ1KcU7IhWcdSJoxUrb-fVLSmKgylC6lov5V1L-qn6qeqvq3A9222rTi8HiuwhccsLbsk2XU1IUOfP273DNt7jbTSeEKprCMzn2xnCuiqEe3V6Ti4wva24ZX1UUGOg36BGuL2dLvID5amM_lovgDBGz_Zw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61RSBeuCuWchgJHnjY3WSdOM5j1bIqV6mgVffN8llW3SbLHiDx65nJJU5ViLco8ljxjJ2ZsT3fB_AsaBdMMFE_Cs7TbpXANedk33CRWB7ZKLdU7_zuUBycJK8n6WQD9rtamHLe_PoH-FgDBdcqbC7EySF5adoymQwxbY-HhBEVxcO5C5twJSV6Oirje3_UnSWgD6t481qxto7nb10RysKnsjj7jL7jJ2-1iV_02y-78kPjm-DbEdTXT84H65UZ2G-_gDv-7xBvwY0mUGW7tcxt2PDFHbhaXRi1y7vgdxnOsMVF6WpKe7anvzRw34z41WYMo-HuZXHGxrPyK_s4vWjowti0YJqdTp1nH6i-gZWBnWLcu2DHHiP5Gul5eQ9Oxi-P9w76DWVD3_I8XvXRJ3qXxlJ4byNDhDYhD5wniR8FOcqE1mmUBIwqpZM-F16KMJKpy0WWcWF44NuwVZSFvw8sYCank8hkNidUQm2cxnDR8MgYjWli0oOdzkzo8u05AVkpzinI4XkPktZwyjbDJ9KNmapO3aVUpGNFOlajTMWq1nEPBp3YvIb7uEzgORqxa_vHNgoN14MXP7a7pM-n7RxTuNjpBEcXvlwvFaHZY4YsMvHgH_p7AteO9sfq7avDNztwvb7-QHtID2FrtVj7RxhVrczjatF8B7Y2D2c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Thermodynamic+Cavitation+Model+for+Cavitating+Flow+Simulation+in+a+Wide+Range+of+Water+Temperatures&rft.jtitle=Chinese+physics+letters&rft.au=%E5%BC%A0%E7%91%B6+%E7%BD%97%E5%85%88%E6%AD%A6+%E5%AD%A3%E6%96%8C+%E5%88%98%E6%A0%91%E7%BA%A2+%E5%90%B4%E7%8E%89%E6%9E%97+%E8%AE%B8%E6%B4%AA%E5%85%83&rft.date=2010&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=27&rft.issue=1&rft.spage=198&rft.epage=201&rft_id=info:doi/10.1088%2F0256-307X%2F27%2F1%2F016401&rft.externalDocID=33008139 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg |