Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong

•Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM models incorporating both information sources outperform the models that only use either technical indicators or news sentiments, in both individ...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 57; no. 5; p. 102212
Main Authors Li, Xiaodong, Wu, Pangjing, Wang, Wenpeng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM models incorporating both information sources outperform the models that only use either technical indicators or news sentiments, in both individual stock level and sector level.•Among the four sentiment dictionaries, finance domain specific sentiment dictionary (Loughran-McDonald Financial Dictionary) models the new sentiments better, which brings at most 120% prediction performance improvement, comparing with the other three dictionaries (at most 50%). Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes. However, how to combine technical indicators from stock prices and news sentiments from textual news articles, and make the prediction model be able to learn sequential information within time series in an intelligent way, is still an unsolved problem. In this paper, we build up a stock prediction system and propose an approach that 1) represents numerical price data by technical indicators via technical analysis, and represents textual news articles by sentiment vectors via sentiment analysis, 2) setup a layered deep learning model to learn the sequential information within market snapshot series which is constructed by the technical indicators and news sentiments, 3) setup a fully connected neural network to make stock predictions. Experiments have been conducted on more than five years of Hong Kong Stock Exchange data using four different sentiment dictionaries, and results show that 1) the proposed approach outperforms the baselines in both validation and test sets using two different evaluation metrics, 2) models incorporating prices and news sentiments outperform models that only use either technical indicators or news sentiments, in both individual stock level and sector level, 3) among the four sentiment dictionaries, finance domain-specific sentiment dictionary (Loughran–McDonald Financial Dictionary) models the news sentiments better, which brings more prediction performance improvements than the other three dictionaries.
AbstractList •Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM models incorporating both information sources outperform the models that only use either technical indicators or news sentiments, in both individual stock level and sector level.•Among the four sentiment dictionaries, finance domain specific sentiment dictionary (Loughran-McDonald Financial Dictionary) models the new sentiments better, which brings at most 120% prediction performance improvement, comparing with the other three dictionaries (at most 50%). Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes. However, how to combine technical indicators from stock prices and news sentiments from textual news articles, and make the prediction model be able to learn sequential information within time series in an intelligent way, is still an unsolved problem. In this paper, we build up a stock prediction system and propose an approach that 1) represents numerical price data by technical indicators via technical analysis, and represents textual news articles by sentiment vectors via sentiment analysis, 2) setup a layered deep learning model to learn the sequential information within market snapshot series which is constructed by the technical indicators and news sentiments, 3) setup a fully connected neural network to make stock predictions. Experiments have been conducted on more than five years of Hong Kong Stock Exchange data using four different sentiment dictionaries, and results show that 1) the proposed approach outperforms the baselines in both validation and test sets using two different evaluation metrics, 2) models incorporating prices and news sentiments outperform models that only use either technical indicators or news sentiments, in both individual stock level and sector level, 3) among the four sentiment dictionaries, finance domain-specific sentiment dictionary (Loughran–McDonald Financial Dictionary) models the news sentiments better, which brings more prediction performance improvements than the other three dictionaries.
Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes. However, how to combine technical indicators from stock prices and news sentiments from textual news articles, and make the prediction model be able to learn sequential information within time series in an intelligent way, is still an unsolved problem. In this paper, we build up a stock prediction system and propose an approach that 1) represents numerical price data by technical indicators via technical analysis, and represents textual news articles by sentiment vectors via sentiment analysis, 2) setup a layered deep learning model to learn the sequential information within market snapshot series which is constructed by the technical indicators and news sentiments, 3) setup a fully connected neural network to make stock predictions. Experiments have been conducted on more than five years of Hong Kong Stock Exchange data using four different sentiment dictionaries, and results show that 1) the proposed approach outperforms the baselines in both validation and test sets using two different evaluation metrics, 2) models incorporating prices and news sentiments outperform models that only use either technical indicators or news sentiments, in both individual stock level and sector level, 3) among the four sentiment dictionaries, finance domain-specific sentiment dictionary (Loughran–McDonald Financial Dictionary) models the news sentiments better, which brings more prediction performance improvements than the other three dictionaries.
ArticleNumber 102212
Author Wang, Wenpeng
Li, Xiaodong
Wu, Pangjing
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Li
  fullname: Li, Xiaodong
  email: xiaodong.c.li@outlook.com
– sequence: 2
  givenname: Pangjing
  surname: Wu
  fullname: Wu, Pangjing
– sequence: 3
  givenname: Wenpeng
  surname: Wang
  fullname: Wang, Wenpeng
BookMark eNp9kE1PAjEQhhuDiYD-AG9NPC922t0tqydCVIgkXvTclO6sKR8ttkXjv7cETh64TDPJ-8xMnwHpOe-QkFtgI2BQ369GdrcdccYPPefAL0gfxlIUlZDQI30mWF2UlRRXZBDjijFWVsD7RM2d8WHng07WfdKYvFnTXbAGI9WupQ5_Io3okt3mEmnnwym01WGNKWextSZZ7x7ohBodkfqOznwe9prLNbns9Cbizekdko_np_fprFi8vcynk0VhRAOpELwD3omyrEXV8roGXnMphak14lhXTQsGgDUNl-2ylDVHg6ZZGgk5IcaZGpK749xd8F97jEmt_D64vFLxshQNG4NkOSWPKRN8jAE7ZWzSh-NT0HajgKmDTbVS2aY62FRHm5mEf2SWlBX8nmUejwzmj39bDCoai85kYQFNUq23Z-g_snqN-w
CitedBy_id crossref_primary_10_1109_TBDATA_2023_3338011
crossref_primary_10_1177_09718907231173336
crossref_primary_10_1007_s10462_020_09895_6
crossref_primary_10_1109_ACCESS_2021_3090219
crossref_primary_10_1007_s11042_023_14587_8
crossref_primary_10_1109_ACCESS_2023_3285082
crossref_primary_10_1007_s10614_024_10636_y
crossref_primary_10_1016_j_ipm_2021_102684
crossref_primary_10_1002_cpe_7467
crossref_primary_10_1007_s10489_024_05894_0
crossref_primary_10_1371_journal_pone_0260132
crossref_primary_10_1155_2022_4646733
crossref_primary_10_37394_23205_2022_21_36
crossref_primary_10_1016_j_ijforecast_2024_11_001
crossref_primary_10_1007_s40998_024_00718_w
crossref_primary_10_1016_j_bir_2024_12_009
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1109_ACCESS_2024_3357114
crossref_primary_10_7717_peerj_cs_1156
crossref_primary_10_1016_j_inffus_2022_10_025
crossref_primary_10_1016_j_ribaf_2023_101958
crossref_primary_10_1155_2022_7739087
crossref_primary_10_1007_s00521_022_07234_0
crossref_primary_10_1155_2021_6210627
crossref_primary_10_1016_j_apmrv_2023_10_001
crossref_primary_10_1016_j_mex_2021_101449
crossref_primary_10_33889_IJMEMS_2024_9_4_047
crossref_primary_10_1016_j_ipm_2021_102673
crossref_primary_10_18187_pjsor_v18i3_3915
crossref_primary_10_1142_S0219477524400170
crossref_primary_10_1007_s12559_023_10129_4
crossref_primary_10_1007_s00521_022_07431_x
crossref_primary_10_3390_ijfs11030101
crossref_primary_10_1016_j_envc_2021_100325
crossref_primary_10_1016_j_heliyon_2023_e14204
crossref_primary_10_1007_s13369_025_10090_4
crossref_primary_10_1016_j_ipm_2021_102795
crossref_primary_10_1155_2020_6686181
crossref_primary_10_1002_cpe_7642
crossref_primary_10_32604_csse_2022_023617
crossref_primary_10_1016_j_ipm_2022_103151
crossref_primary_10_1007_s13198_021_01074_2
crossref_primary_10_1007_s42952_023_00245_0
crossref_primary_10_3390_e22101162
crossref_primary_10_1109_LSP_2021_3135793
crossref_primary_10_1186_s40854_020_00205_1
crossref_primary_10_1007_s13278_024_01268_z
crossref_primary_10_1007_s42488_024_00135_y
crossref_primary_10_12677_mos_2024_136568
crossref_primary_10_31590_ejosat_820940
crossref_primary_10_1016_j_ipm_2022_102987
crossref_primary_10_3390_info15120743
crossref_primary_10_1109_ACCESS_2024_3385855
crossref_primary_10_7717_peerj_cs_490
crossref_primary_10_1086_734307
crossref_primary_10_1016_j_neucom_2022_06_106
crossref_primary_10_1016_j_ipm_2023_103358
crossref_primary_10_2478_amso_2023_0004
crossref_primary_10_1016_j_ipm_2022_102991
crossref_primary_10_1016_j_inffus_2023_102165
crossref_primary_10_1007_s10799_024_00417_2
crossref_primary_10_1080_14697688_2022_2130085
crossref_primary_10_1108_IMDS_05_2021_0308
crossref_primary_10_1186_s40854_023_00519_w
crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_054
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_3934_DSFE_2023014
crossref_primary_10_1108_JEIM_08_2020_0348
crossref_primary_10_1016_j_eswa_2021_115470
crossref_primary_10_1142_S0218213024500131
crossref_primary_10_1186_s40537_021_00512_z
crossref_primary_10_32604_cmc_2024_039232
crossref_primary_10_1016_j_ins_2024_121561
crossref_primary_10_1109_TASLP_2023_3304473
crossref_primary_10_1108_JFRA_06_2024_0384
crossref_primary_10_1155_2021_9094032
crossref_primary_10_1051_shsconf_202418102011
crossref_primary_10_3233_JIFS_221919
crossref_primary_10_1109_TIT_2024_3376751
crossref_primary_10_2174_1872212118666230303154251
crossref_primary_10_1016_j_patcog_2025_111593
crossref_primary_10_1016_j_techfore_2024_123270
crossref_primary_10_1515_snde_2021_0032
crossref_primary_10_1007_s13369_022_07444_7
crossref_primary_10_1016_j_ipm_2020_102314
crossref_primary_10_1016_j_ipm_2021_102613
crossref_primary_10_1007_s00500_024_09899_2
crossref_primary_10_2478_amns_2024_1847
crossref_primary_10_1140_epjds_s13688_025_00535_z
crossref_primary_10_1109_ACCESS_2025_3543741
crossref_primary_10_1016_j_ipm_2023_103293
crossref_primary_10_3390_math8091441
crossref_primary_10_4018_IJFSA_355246
crossref_primary_10_1155_2022_2427389
crossref_primary_10_1007_s10258_023_00246_1
crossref_primary_10_1371_journal_pone_0282234
crossref_primary_10_1016_j_frl_2022_103025
crossref_primary_10_1109_ACCESS_2024_3511613
crossref_primary_10_1016_j_knosys_2025_113054
crossref_primary_10_1155_2022_1113023
crossref_primary_10_1007_s11135_023_01673_0
crossref_primary_10_1007_s12559_021_09820_1
crossref_primary_10_1080_00207543_2023_2217286
crossref_primary_10_1145_3611311
crossref_primary_10_32604_csse_2022_017685
crossref_primary_10_1016_j_procs_2024_08_198
crossref_primary_10_1109_ACCESS_2024_3369033
crossref_primary_10_1016_j_eswa_2024_123522
crossref_primary_10_1016_j_ipm_2022_103187
crossref_primary_10_35784_acs_2023_30
crossref_primary_10_1016_j_eswa_2022_119020
crossref_primary_10_3390_info13100466
crossref_primary_10_1142_S2010495222500038
crossref_primary_10_1016_j_compeleceng_2024_109302
crossref_primary_10_1016_j_nlp_2025_100125
crossref_primary_10_1155_2020_8894757
crossref_primary_10_1177_01655515231171361
crossref_primary_10_1007_s11403_024_00431_1
crossref_primary_10_1007_s43546_023_00497_2
crossref_primary_10_1109_ACCESS_2020_3029860
crossref_primary_10_32604_csse_2023_033247
crossref_primary_10_1016_j_jretconser_2021_102790
crossref_primary_10_1016_j_dajour_2024_100422
crossref_primary_10_1080_00051144_2023_2217602
crossref_primary_10_1016_j_eswa_2024_124129
crossref_primary_10_3390_axioms12090835
crossref_primary_10_1007_s12559_023_10240_6
crossref_primary_10_1007_s40747_022_00658_0
crossref_primary_10_1016_j_eswa_2024_125739
crossref_primary_10_3390_math10132234
crossref_primary_10_1108_DTA_10_2019_0180
crossref_primary_10_1155_2021_5049179
crossref_primary_10_1109_ACCESS_2020_3041084
crossref_primary_10_17671_gazibtd_1106017
crossref_primary_10_1016_j_eswa_2022_117239
crossref_primary_10_1016_j_najef_2024_102159
crossref_primary_10_7717_peerj_cs_2542
crossref_primary_10_1016_j_jcomm_2024_100438
crossref_primary_10_4018_IJSWIS_367280
crossref_primary_10_1177_00368504241275370
crossref_primary_10_1016_j_eswa_2024_125299
crossref_primary_10_1016_j_ipm_2023_103435
crossref_primary_10_1007_s00521_024_10418_5
crossref_primary_10_1007_s10799_024_00439_w
crossref_primary_10_1016_j_knosys_2022_108742
crossref_primary_10_1007_s10614_024_10567_8
crossref_primary_10_1016_j_eswa_2021_115715
crossref_primary_10_1016_j_knosys_2021_107119
crossref_primary_10_1016_j_ipm_2021_102494
crossref_primary_10_20525_ijrbs_v13i4_3274
crossref_primary_10_1108_IJAIM_02_2024_0073
crossref_primary_10_1007_s12559_021_09824_x
crossref_primary_10_1016_j_renene_2024_120873
crossref_primary_10_1016_j_eswa_2022_119125
crossref_primary_10_7717_peerj_cs_982
crossref_primary_10_1016_j_cbrev_2023_100108
crossref_primary_10_1109_ACCESS_2023_3259901
crossref_primary_10_1002_sam_11582
crossref_primary_10_1016_j_ipm_2021_102819
crossref_primary_10_1016_j_eswa_2025_127243
crossref_primary_10_1080_1331677X_2022_2106271
crossref_primary_10_21511_imfi_21_1__2024_21
crossref_primary_10_1007_s11042_024_20274_z
crossref_primary_10_1109_ACCESS_2020_3030226
crossref_primary_10_1080_03081079_2024_2409748
crossref_primary_10_1007_s40031_021_00583_9
crossref_primary_10_1016_j_frl_2023_104304
crossref_primary_10_1109_ACCESS_2022_3202960
crossref_primary_10_3390_electronics11203414
crossref_primary_10_3390_math10142437
Cites_doi 10.1109/ACCESS.2018.2881689
10.1016/j.ipm.2018.12.002
10.1111/j.1540-6261.2007.01232.x
10.1016/j.ipm.2013.12.002
10.1007/s00521-014-1550-z
10.1007/s00521-018-3415-3
10.1016/j.jocs.2010.12.007
10.1016/j.ejor.2017.11.054
10.1016/j.ipm.2009.05.001
10.1007/s12559-018-9609-2
10.1109/TKDE.2018.2854193
10.1016/j.eswa.2015.07.052
10.1162/089976600300015015
10.1109/MIS.2015.1
10.1111/j.1540-6261.2010.01625.x
10.1111/j.1540-6261.1970.tb00518.x
10.1111/j.1540-6261.2008.01362.x
10.1016/j.neucom.2014.04.043
10.1016/j.knosys.2014.04.022
10.1007/s10586-017-0803-x
10.1016/j.neucom.2014.11.078
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Pergamon Press Inc. Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Sep 2020
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2020.102212
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList
Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
ExternalDocumentID 10_1016_j_ipm_2020_102212
S0306457319307952
GeographicLocations Hong Kong China
China
GeographicLocations_xml – name: Hong Kong China
– name: China
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
E3H
EFKBS
F2A
ID FETCH-LOGICAL-c391t-32f12f344635d2661262773c6aee8a59d1c1109927db4762ecec9bc71c6a38463
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Fri Jul 25 08:26:54 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Fri Feb 23 02:50:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
99-00
Stock prediction
News sentiment analysis
00-01
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-32f12f344635d2661262773c6aee8a59d1c1109927db4762ecec9bc71c6a38463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2443908170
PQPubID 46166
ParticipantIDs proquest_journals_2443908170
crossref_citationtrail_10_1016_j_ipm_2020_102212
crossref_primary_10_1016_j_ipm_2020_102212
elsevier_sciencedirect_doi_10_1016_j_ipm_2020_102212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Akita, Yoshihara, Matsubara, Uehara (bib0002) 2016
Tetlock, Saar-Tsechansky, Macskassy (bib0039) 2008; 63
Junqué De Fortuny, De Smedt, Martens, Daelemans (bib0020) 2014; 50
Malkiel, Fama (bib0031) 1970; 25
Baltas, Jessop, Jones, Lancetti (bib0004) 2014
Hutto, Gilbert (bib0017) 2014
Wu, Su, Yu, Chang (bib0041) 2012
Cambria, Poria, Hazarika, Kwok (bib0006) 2018
Aiolli, Donini (bib0001) 2015; 169
Fischer, Krauss (bib0011) 2018; 270
Hopfield (bib0015) 1982; 79
Tetlock (bib0038) 2007; 62
Li, Wang, Dong, Wang, Deng, Zhu (bib0024) 2011
Hochreiter, Schmidhuber (bib0013) 1997; 9
Baccianella, Esuli, Sebastiani (bib0003) 2010; 10
Shi, Member, Teng, Wang, Zhang, Binder (bib0037) 2019; 31
Holcroft, Winter, Jessop, Antrobus, Wu, Baltas, Gerken (bib0014) 2016
Schumaker, Chen (bib0035) 2009; 45
Zhang, Xu, Xue (bib0045) 2017; 20
Gers, Schmidhuber, Cummins (bib0012) 2000; 12
Tieleman, Hinton, Srivastava, Swersky (bib0040) 2012
Yu, Kang, Park (bib0043) 2019; 56
Zhang, Tan (bib0046) 2018
Deng, Mitsubuchi, Shioda, Shimada, Sakurai (bib0009) 2011
Xiong, Nichols, Shen (bib0042) 2015; 2
Li, Xie, Wang, Cai, Cao, Wang, Deng (bib0028) 2016; 27
Nelson, Pereira, De Oliveira (bib0032) 2017; 2017-May
Sehgal, Song (bib0036) 2007
Bollen, Mao, Zeng (bib0005) 2011; 2
Ratto, Merello, Oneto, Ma, Malandri, Cambria (bib0034) 2018
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.
Malandri, Xing, Orsenigo, Vercellis, Cambria (bib0030) 2018; 10
Chen, Zhou, Dai (bib0007) 2015
Nguyen, Shirai, Velcin (bib0033) 2015; 42
.
Hu, Liu, Bian, Liu, Liu (bib0016) 2018
Li, Liao (bib0021) 2018; 2017-Octob
Loughran, McDonald (bib0029) 2011; 66
Ding, Zhang, Liu, Duan (bib0010) 2015
Li, Xie, Chen, Wang, Deng (bib0025) 2014; 69
Li, Xie, Song, Zhu, Li, Wang (bib0027) 2015; 30
Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization.
Li, Xie, Lau, Wong, Wang (bib0026) 2018; 6
Jozefowicz, Zaremba, Sutskever (bib0019) 2015
Stone, Dunphy, Smith, Ogilvie (bib0018) 1966; 4
Li, Cao, Pan (bib0022) 2019; 31
Li, Huang, Deng, Zhu (bib0023) 2014; 142
Aiolli (10.1016/j.ipm.2020.102212_bib0001) 2015; 169
Nguyen (10.1016/j.ipm.2020.102212_bib0033) 2015; 42
Li (10.1016/j.ipm.2020.102212_bib0024) 2011
Cambria (10.1016/j.ipm.2020.102212_bib0006) 2018
Xiong (10.1016/j.ipm.2020.102212_sbref0041) 2015; 2
Baltas (10.1016/j.ipm.2020.102212_bib0004) 2014
10.1016/j.ipm.2020.102212_bib0008
Sehgal (10.1016/j.ipm.2020.102212_bib0036) 2007
Tieleman (10.1016/j.ipm.2020.102212_bib0040) 2012
Hopfield (10.1016/j.ipm.2020.102212_bib0015) 1982; 79
Hu (10.1016/j.ipm.2020.102212_bib0016) 2018
Nelson (10.1016/j.ipm.2020.102212_bib0032) 2017; 2017-May
Tetlock (10.1016/j.ipm.2020.102212_bib0039) 2008; 63
10.1016/j.ipm.2020.102212_bib0044
Akita (10.1016/j.ipm.2020.102212_bib0002) 2016
Hochreiter (10.1016/j.ipm.2020.102212_bib0013) 1997; 9
Holcroft (10.1016/j.ipm.2020.102212_bib0014) 2016
Jozefowicz (10.1016/j.ipm.2020.102212_bib0019) 2015
Shi (10.1016/j.ipm.2020.102212_bib0037) 2019; 31
Loughran (10.1016/j.ipm.2020.102212_bib0029) 2011; 66
Ratto (10.1016/j.ipm.2020.102212_bib0034) 2018
Li (10.1016/j.ipm.2020.102212_bib0026) 2018; 6
Fischer (10.1016/j.ipm.2020.102212_bib0011) 2018; 270
Junqué De Fortuny (10.1016/j.ipm.2020.102212_bib0020) 2014; 50
Malandri (10.1016/j.ipm.2020.102212_bib0030) 2018; 10
Bollen (10.1016/j.ipm.2020.102212_bib0005) 2011; 2
Stone (10.1016/j.ipm.2020.102212_bib0018) 1966; 4
Li (10.1016/j.ipm.2020.102212_bib0027) 2015; 30
Zhang (10.1016/j.ipm.2020.102212_bib0045) 2017; 20
Li (10.1016/j.ipm.2020.102212_bib0022) 2019; 31
Hutto (10.1016/j.ipm.2020.102212_bib0017) 2014
Ding (10.1016/j.ipm.2020.102212_bib0010) 2015
Zhang (10.1016/j.ipm.2020.102212_bib0046) 2018
Wu (10.1016/j.ipm.2020.102212_bib0041) 2012
Li (10.1016/j.ipm.2020.102212_bib0021) 2018; 2017-Octob
Schumaker (10.1016/j.ipm.2020.102212_bib0035) 2009; 45
Li (10.1016/j.ipm.2020.102212_bib0025) 2014; 69
Baccianella (10.1016/j.ipm.2020.102212_bib0003) 2010; 10
Deng (10.1016/j.ipm.2020.102212_bib0009) 2011
Tetlock (10.1016/j.ipm.2020.102212_bib0038) 2007; 62
Chen (10.1016/j.ipm.2020.102212_bib0007) 2015
Malkiel (10.1016/j.ipm.2020.102212_bib0031) 1970; 25
Gers (10.1016/j.ipm.2020.102212_bib0012) 2000; 12
Li (10.1016/j.ipm.2020.102212_bib0028) 2016; 27
Li (10.1016/j.ipm.2020.102212_bib0023) 2014; 142
Yu (10.1016/j.ipm.2020.102212_bib0043) 2019; 56
References_xml – year: 2014
  ident: bib0004
  article-title: Investment strategies and textual analysis signals
  publication-title: Technical Report
– year: 2014
  ident: bib0017
  article-title: Vader: A parsimonious rule-based model for sentiment analysis of social media text
– volume: 142
  start-page: 228
  year: 2014
  end-page: 238
  ident: bib0023
  article-title: Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information
  publication-title: Neurocomputing
– volume: 270
  start-page: 654
  year: 2018
  end-page: 669
  ident: bib0011
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 1167
  year: 2018
  end-page: 1176
  ident: bib0030
  article-title: Public mood–driven asset allocation: The importance of financial sentiment in portfolio management
  publication-title: Cognitive Computation
– start-page: 1795
  year: 2018
  end-page: 1802
  ident: bib0006
  article-title: SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings
– start-page: 800
  year: 2011
  end-page: 807
  ident: bib0009
  article-title: Combining technical analysis with sentiment analysis for stock price prediction
– volume: 45
  start-page: 571
  year: 2009
  end-page: 583
  ident: bib0035
  article-title: A quantitative stock prediction system based on financial news
  publication-title: Information Processing & Management
– start-page: 614
  year: 2018
  end-page: 623
  ident: bib0046
  article-title: Deep stock ranker: A LSTM neural network model for stock selection
  publication-title: International conference on data mining and big data
– volume: 66
  start-page: 35
  year: 2011
  end-page: 65
  ident: bib0029
  article-title: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks
  publication-title: The Journal of Finance
– volume: 56
  start-page: 721
  year: 2019
  end-page: 732
  ident: bib0043
  article-title: Information availability and return volatility in the bitcoin market: Analyzing differences of user opinion and interest
  publication-title: Information Processing & Management
– start-page: 2823
  year: 2015
  end-page: 2824
  ident: bib0007
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
– volume: 31
  start-page: 5989
  year: 2019
  end-page: 6000
  ident: bib0022
  article-title: Market impact analysis via deep learned architectures
  publication-title: Neural Computing and Applications
– start-page: 2090
  year: 2018
  end-page: 2096
  ident: bib0034
  article-title: Ensemble of technical analysis and machine learning for market trend prediction
– volume: 25
  start-page: 383
  year: 1970
  end-page: 417
  ident: bib0031
  article-title: Efficient capital markets: A review of theory and empirical work
  publication-title: The Journal of Finance
– volume: 30
  start-page: 26
  year: 2015
  end-page: 34
  ident: bib0027
  article-title: Does summarization help stock prediction? A news impact analysis
  publication-title: IEEE Intelligent Systems
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: bib0012
  article-title: Learning to Forget: Continual Prediction with LSTM
  publication-title: Neural Computation
– volume: 2017-May
  start-page: 1419
  year: 2017
  end-page: 1426
  ident: bib0032
  article-title: Stock market’s price movement prediction with LSTM neural networks
  publication-title: Proceedings of the international joint conference on neural networks
– start-page: 2327
  year: 2015
  end-page: 2333
  ident: bib0010
  article-title: Deep learning for event-driven stock prediction
  publication-title: Proceedings of the 24th international conference on artificial intelligence
– volume: 50
  start-page: 426
  year: 2014
  end-page: 441
  ident: bib0020
  article-title: Evaluating and understanding text-based stock price prediction models
  publication-title: Information Processing & Management
– volume: 27
  start-page: 67
  year: 2016
  end-page: 78
  ident: bib0028
  article-title: Empirical analysis: stock market prediction via extreme learning machine
  publication-title: Neural Computing and Applications
– volume: 31
  start-page: 1094
  year: 2019
  end-page: 1108
  ident: bib0037
  article-title: DeepClue : Visual interpretation of text-based deep stock prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2012
  ident: bib0041
  article-title: Stock price predication using combinational features from sentimental analysis of stock news and technical analysis of trading information
  publication-title: International proceedings of economics development and research
– volume: 9
  year: 1997
  ident: bib0013
  article-title: Long short-term memory
– start-page: 279
  year: 2011
  end-page: 293
  ident: bib0024
  article-title: Improving stock market prediction by integrating both market news and stock prices
  publication-title: International conference on database and expert systems applications
– volume: 4
  year: 1966
  ident: bib0018
  article-title: The general inquirer: A computer approach to content analysis
– volume: 69
  start-page: 14
  year: 2014
  end-page: 23
  ident: bib0025
  article-title: News impact on stock price return via sentiment analysis
  publication-title: Knowledge-Based Systems
– volume: 169
  start-page: 215
  year: 2015
  end-page: 224
  ident: bib0001
  article-title: EasyMKL: A scalable multiple kernel learning algorithm
– year: 2016
  ident: bib0014
  article-title: R advice getting started with random forests
  publication-title: Technical Report
– volume: 2017-Octob
  start-page: 74
  year: 2018
  end-page: 78
  ident: bib0021
  article-title: A comparative study on trend forecasting approach for stock price time series
  publication-title: Proceedings of the international conference on anti-counterfeiting, security and identification, asid
– volume: 2
  start-page: 0
  year: 2015
  end-page: 5
  ident: bib0042
  article-title: Deep learning stock volatility with Google domestic trends
– volume: 6
  start-page: 73110
  year: 2018
  end-page: 73118
  ident: bib0026
  article-title: Stock prediction via sentimental transfer learning
  publication-title: IEEE Access
– volume: 63
  start-page: 1437
  year: 2008
  end-page: 1467
  ident: bib0039
  article-title: More than words: Quantifying language to measure firms’ fundamentals
  publication-title: The Journal of Finance
– reference: Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.
– start-page: 2342
  year: 2015
  end-page: 2350
  ident: bib0019
  article-title: An empirical exploration of recurrent network architectures
  publication-title: International conference on machine learning
– reference: .
– volume: 20
  start-page: 789
  year: 2017
  end-page: 803
  ident: bib0045
  article-title: Model and forecast stock market behavior integrating investor sentiment analysis and transaction data
  publication-title: Cluster Computing
– start-page: 261
  year: 2018
  end-page: 269
  ident: bib0016
  article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction
  publication-title: WSDM ’18
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0002
  article-title: Deep learning for stock prediction using numerical and textual information
– volume: 10
  start-page: 2200
  year: 2010
  end-page: 2204
  ident: bib0003
  article-title: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
– volume: 42
  start-page: 9603
  year: 2015
  end-page: 9611
  ident: bib0033
  article-title: Sentiment analysis on social media for stock movement prediction
  publication-title: Expert Systems with Applications
– reference: Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization.
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: bib0015
  article-title: Neural networks and physical systems with emergent collective computational abilities
– start-page: 21
  year: 2007
  end-page: 26
  ident: bib0036
  article-title: Sops: stock prediction using web sentiment
– volume: 62
  start-page: 1139
  year: 2007
  end-page: 1168
  ident: bib0038
  article-title: Giving content to investor sentiment: The role of media in the stock market
  publication-title: The Journal of Finance
– year: 2012
  ident: bib0040
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Networks for Machine Learning
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0005
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computational Science
– start-page: 1
  year: 2016
  ident: 10.1016/j.ipm.2020.102212_bib0002
  article-title: Deep learning for stock prediction using numerical and textual information
– year: 2014
  ident: 10.1016/j.ipm.2020.102212_bib0004
  article-title: Investment strategies and textual analysis signals
– volume: 6
  start-page: 73110
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0026
  article-title: Stock prediction via sentimental transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881689
– volume: 56
  start-page: 721
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2020.102212_bib0043
  article-title: Information availability and return volatility in the bitcoin market: Analyzing differences of user opinion and interest
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.12.002
– volume: 9
  year: 1997
  ident: 10.1016/j.ipm.2020.102212_bib0013
– volume: 2017-May
  start-page: 1419
  year: 2017
  ident: 10.1016/j.ipm.2020.102212_bib0032
  article-title: Stock market’s price movement prediction with LSTM neural networks
– volume: 62
  start-page: 1139
  issue: 3
  year: 2007
  ident: 10.1016/j.ipm.2020.102212_bib0038
  article-title: Giving content to investor sentiment: The role of media in the stock market
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2007.01232.x
– volume: 50
  start-page: 426
  issue: 2
  year: 2014
  ident: 10.1016/j.ipm.2020.102212_bib0020
  article-title: Evaluating and understanding text-based stock price prediction models
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2013.12.002
– start-page: 614
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0046
  article-title: Deep stock ranker: A LSTM neural network model for stock selection
– volume: 27
  start-page: 67
  year: 2016
  ident: 10.1016/j.ipm.2020.102212_bib0028
  article-title: Empirical analysis: stock market prediction via extreme learning machine
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1550-z
– volume: 31
  start-page: 5989
  year: 2019
  ident: 10.1016/j.ipm.2020.102212_bib0022
  article-title: Market impact analysis via deep learned architectures
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3415-3
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ipm.2020.102212_bib0005
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2010.12.007
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0011
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.11.054
– year: 2016
  ident: 10.1016/j.ipm.2020.102212_bib0014
  article-title: R advice getting started with random forests
– volume: 45
  start-page: 571
  issue: 5
  year: 2009
  ident: 10.1016/j.ipm.2020.102212_bib0035
  article-title: A quantitative stock prediction system based on financial news
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2009.05.001
– volume: 10
  start-page: 1167
  issue: 6
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0030
  article-title: Public mood–driven asset allocation: The importance of financial sentiment in portfolio management
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-018-9609-2
– volume: 10
  start-page: 2200
  year: 2010
  ident: 10.1016/j.ipm.2020.102212_bib0003
  article-title: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
– volume: 31
  start-page: 1094
  year: 2019
  ident: 10.1016/j.ipm.2020.102212_bib0037
  article-title: DeepClue : Visual interpretation of text-based deep stock prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2854193
– year: 2012
  ident: 10.1016/j.ipm.2020.102212_bib0040
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Networks for Machine Learning
– year: 2012
  ident: 10.1016/j.ipm.2020.102212_bib0041
  article-title: Stock price predication using combinational features from sentimental analysis of stock news and technical analysis of trading information
– start-page: 2090
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0034
  article-title: Ensemble of technical analysis and machine learning for market trend prediction
– year: 2014
  ident: 10.1016/j.ipm.2020.102212_bib0017
  article-title: Vader: A parsimonious rule-based model for sentiment analysis of social media text
– ident: 10.1016/j.ipm.2020.102212_bib0044
– volume: 4
  year: 1966
  ident: 10.1016/j.ipm.2020.102212_bib0018
– volume: 42
  start-page: 9603
  issue: 24
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_bib0033
  article-title: Sentiment analysis on social media for stock movement prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.07.052
– volume: 12
  start-page: 2451
  year: 2000
  ident: 10.1016/j.ipm.2020.102212_bib0012
  article-title: Learning to Forget: Continual Prediction with LSTM
  publication-title: Neural Computation
  doi: 10.1162/089976600300015015
– start-page: 2342
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_bib0019
  article-title: An empirical exploration of recurrent network architectures
– volume: 2017-Octob
  start-page: 74
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0021
  article-title: A comparative study on trend forecasting approach for stock price time series
– volume: 79
  start-page: 2554
  year: 1982
  ident: 10.1016/j.ipm.2020.102212_bib0015
– volume: 30
  start-page: 26
  issue: 3
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_bib0027
  article-title: Does summarization help stock prediction? A news impact analysis
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2015.1
– ident: 10.1016/j.ipm.2020.102212_bib0008
– volume: 66
  start-page: 35
  issue: 1
  year: 2011
  ident: 10.1016/j.ipm.2020.102212_bib0029
  article-title: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2010.01625.x
– volume: 2
  start-page: 0
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_sbref0041
  article-title: Deep learning stock volatility with Google domestic trends
– start-page: 1795
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0006
  article-title: SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings
– start-page: 261
  year: 2018
  ident: 10.1016/j.ipm.2020.102212_bib0016
  article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction
– volume: 25
  start-page: 383
  issue: 2
  year: 1970
  ident: 10.1016/j.ipm.2020.102212_bib0031
  article-title: Efficient capital markets: A review of theory and empirical work
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1970.tb00518.x
– volume: 63
  start-page: 1437
  issue: 3
  year: 2008
  ident: 10.1016/j.ipm.2020.102212_bib0039
  article-title: More than words: Quantifying language to measure firms’ fundamentals
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2008.01362.x
– start-page: 2327
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_bib0010
  article-title: Deep learning for event-driven stock prediction
– start-page: 2823
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_bib0007
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
– start-page: 800
  year: 2011
  ident: 10.1016/j.ipm.2020.102212_bib0009
  article-title: Combining technical analysis with sentiment analysis for stock price prediction
– volume: 142
  start-page: 228
  year: 2014
  ident: 10.1016/j.ipm.2020.102212_bib0023
  article-title: Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.043
– volume: 69
  start-page: 14
  year: 2014
  ident: 10.1016/j.ipm.2020.102212_bib0025
  article-title: News impact on stock price return via sentiment analysis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.04.022
– start-page: 279
  year: 2011
  ident: 10.1016/j.ipm.2020.102212_bib0024
  article-title: Improving stock market prediction by integrating both market news and stock prices
– start-page: 21
  year: 2007
  ident: 10.1016/j.ipm.2020.102212_bib0036
  article-title: Sops: stock prediction using web sentiment
– volume: 20
  start-page: 789
  year: 2017
  ident: 10.1016/j.ipm.2020.102212_bib0045
  article-title: Model and forecast stock market behavior integrating investor sentiment analysis and transaction data
  publication-title: Cluster Computing
  doi: 10.1007/s10586-017-0803-x
– volume: 169
  start-page: 215
  year: 2015
  ident: 10.1016/j.ipm.2020.102212_bib0001
  article-title: EasyMKL: A scalable multiple kernel learning algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.078
SSID ssj0004512
Score 2.6409829
Snippet •Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM...
Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102212
SubjectTerms Data analysis
Data mining
Deep learning
Dictionaries
Indicators
Machine learning
Neural networks
News
News sentiment analysis
Prediction models
Predictions
Prices
Pricing
Securities markets
Sentiment analysis
Stock exchanges
Stock prediction
Stock prices
Test sets
Title Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong
URI https://dx.doi.org/10.1016/j.ipm.2020.102212
https://www.proquest.com/docview/2443908170
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXryIT6y2JQfxIKxtHvvyVoqltdiLFnoLu0kW6qMttl797c5ks6KCPXhZyDIZlslk5lsy84WQC5kbFoWZCWQueCATCVsqjnRgAMxqi1c9uEba-0k0nMq7WTirkX7VC4NllT72lzHdRWv_puOt2VnN550HRLsyjMGHwE_TEOOwlDF6-fUH-8YYzvxJQhSgdHWy6Wq85itsRueOwIAz_ldu-hWlXeoZ7JM9jxlpr_ysA1Kzi0PS8h0H9JL6liI0MfV79YioETJUOpZiyE4UMJ5-piukEFrTbGEowmmKnUeO3n9NQYUXenWN0CCLZzio9Ib2qIZsR5cFHS5B2Rgex2Q6uH3sDwN_m0KgRco2geAF44WA3z8RGkzLPOJxLHSUWZtkYWqYRvbRlMcmBzNyq61Ocx0zkBCAUsQJqS-WC3tKaJJamCALY5HM3tq8sCaB1TU6M90kZw3SreyotKcaxxsvXlRVU_akwPQKTa9K0zfI1deUVcmzsU1YVoujfjiLgjywbVqzWkjld-paAbwRaRdpCs_-p_Wc7OKorDtrkvrm7d22AKhs8rbzxDbZ6Y3Gw8kn4ejmDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAXxFMMNsgBcUCqtibpi9s0MXXscWGTdovaJJXGY6vY-P_YbYoAiR247NDZVuU49lfF_kLIjUi163uJdkTKmSNCAVsq8JWjAcwqg1c9FIO0k6kfz8XjwlvUSL-ahcG2Spv7y5xeZGv7pGO92cmXy84Tol3hBRBDEKeRB3m4gexUXp00esNRPP1GGu7awwTfQYXqcLNo81rmOI_OCg4D5rK_ytOvRF1Un8EhObCwkfbKNzsiNbM6Jm07dEBvqZ0qQi9Tu11PiBwiSWVBVAwFigLMUy80RxahDU1WmiKipjh8VDD8byiYsEJvxSw0yOIxDhq9pz2qoODRdUbjNRgbwc8pmQ8eZv3YsRcqOIpH7tbhLHNZxuELkHsaKzPzWRBw5SfGhIkXaVchAWnEAp0KyJJGGRWlKnBBggNQ4WekvlqvzDmhYWRAQWTaIJ-9MWlmdAgLrFWiu2HqNkm38qNUlm0cL714lVVb2bME10t0vSxd3yR3Xyp5SbWxS1hUiyN_xIuEUrBLrVUtpLSbdSMB4fCoi0yFF_-zek324tlkLMfD6eiS7OM_ZRtai9S37x-mDbhlm17ZuPwEzWrovw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+stock+prices+and+news+sentiments+for+stock+market+prediction%3A+A+case+of+Hong+Kong&rft.jtitle=Information+processing+%26+management&rft.au=Li%2C+Xiaodong&rft.au=Wu%2C+Pangjing&rft.au=Wang%2C+Wenpeng&rft.date=2020-09-01&rft.issn=0306-4573&rft.volume=57&rft.issue=5&rft.spage=102212&rft_id=info:doi/10.1016%2Fj.ipm.2020.102212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipm_2020_102212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon