Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong
•Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM models incorporating both information sources outperform the models that only use either technical indicators or news sentiments, in both individ...
Saved in:
Published in | Information processing & management Vol. 57; no. 5; p. 102212 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM models incorporating both information sources outperform the models that only use either technical indicators or news sentiments, in both individual stock level and sector level.•Among the four sentiment dictionaries, finance domain specific sentiment dictionary (Loughran-McDonald Financial Dictionary) models the new sentiments better, which brings at most 120% prediction performance improvement, comparing with the other three dictionaries (at most 50%).
Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes. However, how to combine technical indicators from stock prices and news sentiments from textual news articles, and make the prediction model be able to learn sequential information within time series in an intelligent way, is still an unsolved problem. In this paper, we build up a stock prediction system and propose an approach that 1) represents numerical price data by technical indicators via technical analysis, and represents textual news articles by sentiment vectors via sentiment analysis, 2) setup a layered deep learning model to learn the sequential information within market snapshot series which is constructed by the technical indicators and news sentiments, 3) setup a fully connected neural network to make stock predictions. Experiments have been conducted on more than five years of Hong Kong Stock Exchange data using four different sentiment dictionaries, and results show that 1) the proposed approach outperforms the baselines in both validation and test sets using two different evaluation metrics, 2) models incorporating prices and news sentiments outperform models that only use either technical indicators or news sentiments, in both individual stock level and sector level, 3) among the four sentiment dictionaries, finance domain-specific sentiment dictionary (Loughran–McDonald Financial Dictionary) models the news sentiments better, which brings more prediction performance improvements than the other three dictionaries. |
---|---|
AbstractList | •Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM models incorporating both information sources outperform the models that only use either technical indicators or news sentiments, in both individual stock level and sector level.•Among the four sentiment dictionaries, finance domain specific sentiment dictionary (Loughran-McDonald Financial Dictionary) models the new sentiments better, which brings at most 120% prediction performance improvement, comparing with the other three dictionaries (at most 50%).
Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes. However, how to combine technical indicators from stock prices and news sentiments from textual news articles, and make the prediction model be able to learn sequential information within time series in an intelligent way, is still an unsolved problem. In this paper, we build up a stock prediction system and propose an approach that 1) represents numerical price data by technical indicators via technical analysis, and represents textual news articles by sentiment vectors via sentiment analysis, 2) setup a layered deep learning model to learn the sequential information within market snapshot series which is constructed by the technical indicators and news sentiments, 3) setup a fully connected neural network to make stock predictions. Experiments have been conducted on more than five years of Hong Kong Stock Exchange data using four different sentiment dictionaries, and results show that 1) the proposed approach outperforms the baselines in both validation and test sets using two different evaluation metrics, 2) models incorporating prices and news sentiments outperform models that only use either technical indicators or news sentiments, in both individual stock level and sector level, 3) among the four sentiment dictionaries, finance domain-specific sentiment dictionary (Loughran–McDonald Financial Dictionary) models the news sentiments better, which brings more prediction performance improvements than the other three dictionaries. Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes. However, how to combine technical indicators from stock prices and news sentiments from textual news articles, and make the prediction model be able to learn sequential information within time series in an intelligent way, is still an unsolved problem. In this paper, we build up a stock prediction system and propose an approach that 1) represents numerical price data by technical indicators via technical analysis, and represents textual news articles by sentiment vectors via sentiment analysis, 2) setup a layered deep learning model to learn the sequential information within market snapshot series which is constructed by the technical indicators and news sentiments, 3) setup a fully connected neural network to make stock predictions. Experiments have been conducted on more than five years of Hong Kong Stock Exchange data using four different sentiment dictionaries, and results show that 1) the proposed approach outperforms the baselines in both validation and test sets using two different evaluation metrics, 2) models incorporating prices and news sentiments outperform models that only use either technical indicators or news sentiments, in both individual stock level and sector level, 3) among the four sentiment dictionaries, finance domain-specific sentiment dictionary (Loughran–McDonald Financial Dictionary) models the news sentiments better, which brings more prediction performance improvements than the other three dictionaries. |
ArticleNumber | 102212 |
Author | Wang, Wenpeng Li, Xiaodong Wu, Pangjing |
Author_xml | – sequence: 1 givenname: Xiaodong surname: Li fullname: Li, Xiaodong email: xiaodong.c.li@outlook.com – sequence: 2 givenname: Pangjing surname: Wu fullname: Wu, Pangjing – sequence: 3 givenname: Wenpeng surname: Wang fullname: Wang, Wenpeng |
BookMark | eNp9kE1PAjEQhhuDiYD-AG9NPC922t0tqydCVIgkXvTclO6sKR8ttkXjv7cETh64TDPJ-8xMnwHpOe-QkFtgI2BQ369GdrcdccYPPefAL0gfxlIUlZDQI30mWF2UlRRXZBDjijFWVsD7RM2d8WHng07WfdKYvFnTXbAGI9WupQ5_Io3okt3mEmnnwym01WGNKWextSZZ7x7ohBodkfqOznwe9prLNbns9Cbizekdko_np_fprFi8vcynk0VhRAOpELwD3omyrEXV8roGXnMphak14lhXTQsGgDUNl-2ylDVHg6ZZGgk5IcaZGpK749xd8F97jEmt_D64vFLxshQNG4NkOSWPKRN8jAE7ZWzSh-NT0HajgKmDTbVS2aY62FRHm5mEf2SWlBX8nmUejwzmj39bDCoai85kYQFNUq23Z-g_snqN-w |
CitedBy_id | crossref_primary_10_1109_TBDATA_2023_3338011 crossref_primary_10_1177_09718907231173336 crossref_primary_10_1007_s10462_020_09895_6 crossref_primary_10_1109_ACCESS_2021_3090219 crossref_primary_10_1007_s11042_023_14587_8 crossref_primary_10_1109_ACCESS_2023_3285082 crossref_primary_10_1007_s10614_024_10636_y crossref_primary_10_1016_j_ipm_2021_102684 crossref_primary_10_1002_cpe_7467 crossref_primary_10_1007_s10489_024_05894_0 crossref_primary_10_1371_journal_pone_0260132 crossref_primary_10_1155_2022_4646733 crossref_primary_10_37394_23205_2022_21_36 crossref_primary_10_1016_j_ijforecast_2024_11_001 crossref_primary_10_1007_s40998_024_00718_w crossref_primary_10_1016_j_bir_2024_12_009 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1109_ACCESS_2024_3357114 crossref_primary_10_7717_peerj_cs_1156 crossref_primary_10_1016_j_inffus_2022_10_025 crossref_primary_10_1016_j_ribaf_2023_101958 crossref_primary_10_1155_2022_7739087 crossref_primary_10_1007_s00521_022_07234_0 crossref_primary_10_1155_2021_6210627 crossref_primary_10_1016_j_apmrv_2023_10_001 crossref_primary_10_1016_j_mex_2021_101449 crossref_primary_10_33889_IJMEMS_2024_9_4_047 crossref_primary_10_1016_j_ipm_2021_102673 crossref_primary_10_18187_pjsor_v18i3_3915 crossref_primary_10_1142_S0219477524400170 crossref_primary_10_1007_s12559_023_10129_4 crossref_primary_10_1007_s00521_022_07431_x crossref_primary_10_3390_ijfs11030101 crossref_primary_10_1016_j_envc_2021_100325 crossref_primary_10_1016_j_heliyon_2023_e14204 crossref_primary_10_1007_s13369_025_10090_4 crossref_primary_10_1016_j_ipm_2021_102795 crossref_primary_10_1155_2020_6686181 crossref_primary_10_1002_cpe_7642 crossref_primary_10_32604_csse_2022_023617 crossref_primary_10_1016_j_ipm_2022_103151 crossref_primary_10_1007_s13198_021_01074_2 crossref_primary_10_1007_s42952_023_00245_0 crossref_primary_10_3390_e22101162 crossref_primary_10_1109_LSP_2021_3135793 crossref_primary_10_1186_s40854_020_00205_1 crossref_primary_10_1007_s13278_024_01268_z crossref_primary_10_1007_s42488_024_00135_y crossref_primary_10_12677_mos_2024_136568 crossref_primary_10_31590_ejosat_820940 crossref_primary_10_1016_j_ipm_2022_102987 crossref_primary_10_3390_info15120743 crossref_primary_10_1109_ACCESS_2024_3385855 crossref_primary_10_7717_peerj_cs_490 crossref_primary_10_1086_734307 crossref_primary_10_1016_j_neucom_2022_06_106 crossref_primary_10_1016_j_ipm_2023_103358 crossref_primary_10_2478_amso_2023_0004 crossref_primary_10_1016_j_ipm_2022_102991 crossref_primary_10_1016_j_inffus_2023_102165 crossref_primary_10_1007_s10799_024_00417_2 crossref_primary_10_1080_14697688_2022_2130085 crossref_primary_10_1108_IMDS_05_2021_0308 crossref_primary_10_1186_s40854_023_00519_w crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_054 crossref_primary_10_1016_j_eswa_2022_116970 crossref_primary_10_3934_DSFE_2023014 crossref_primary_10_1108_JEIM_08_2020_0348 crossref_primary_10_1016_j_eswa_2021_115470 crossref_primary_10_1142_S0218213024500131 crossref_primary_10_1186_s40537_021_00512_z crossref_primary_10_32604_cmc_2024_039232 crossref_primary_10_1016_j_ins_2024_121561 crossref_primary_10_1109_TASLP_2023_3304473 crossref_primary_10_1108_JFRA_06_2024_0384 crossref_primary_10_1155_2021_9094032 crossref_primary_10_1051_shsconf_202418102011 crossref_primary_10_3233_JIFS_221919 crossref_primary_10_1109_TIT_2024_3376751 crossref_primary_10_2174_1872212118666230303154251 crossref_primary_10_1016_j_patcog_2025_111593 crossref_primary_10_1016_j_techfore_2024_123270 crossref_primary_10_1515_snde_2021_0032 crossref_primary_10_1007_s13369_022_07444_7 crossref_primary_10_1016_j_ipm_2020_102314 crossref_primary_10_1016_j_ipm_2021_102613 crossref_primary_10_1007_s00500_024_09899_2 crossref_primary_10_2478_amns_2024_1847 crossref_primary_10_1140_epjds_s13688_025_00535_z crossref_primary_10_1109_ACCESS_2025_3543741 crossref_primary_10_1016_j_ipm_2023_103293 crossref_primary_10_3390_math8091441 crossref_primary_10_4018_IJFSA_355246 crossref_primary_10_1155_2022_2427389 crossref_primary_10_1007_s10258_023_00246_1 crossref_primary_10_1371_journal_pone_0282234 crossref_primary_10_1016_j_frl_2022_103025 crossref_primary_10_1109_ACCESS_2024_3511613 crossref_primary_10_1016_j_knosys_2025_113054 crossref_primary_10_1155_2022_1113023 crossref_primary_10_1007_s11135_023_01673_0 crossref_primary_10_1007_s12559_021_09820_1 crossref_primary_10_1080_00207543_2023_2217286 crossref_primary_10_1145_3611311 crossref_primary_10_32604_csse_2022_017685 crossref_primary_10_1016_j_procs_2024_08_198 crossref_primary_10_1109_ACCESS_2024_3369033 crossref_primary_10_1016_j_eswa_2024_123522 crossref_primary_10_1016_j_ipm_2022_103187 crossref_primary_10_35784_acs_2023_30 crossref_primary_10_1016_j_eswa_2022_119020 crossref_primary_10_3390_info13100466 crossref_primary_10_1142_S2010495222500038 crossref_primary_10_1016_j_compeleceng_2024_109302 crossref_primary_10_1016_j_nlp_2025_100125 crossref_primary_10_1155_2020_8894757 crossref_primary_10_1177_01655515231171361 crossref_primary_10_1007_s11403_024_00431_1 crossref_primary_10_1007_s43546_023_00497_2 crossref_primary_10_1109_ACCESS_2020_3029860 crossref_primary_10_32604_csse_2023_033247 crossref_primary_10_1016_j_jretconser_2021_102790 crossref_primary_10_1016_j_dajour_2024_100422 crossref_primary_10_1080_00051144_2023_2217602 crossref_primary_10_1016_j_eswa_2024_124129 crossref_primary_10_3390_axioms12090835 crossref_primary_10_1007_s12559_023_10240_6 crossref_primary_10_1007_s40747_022_00658_0 crossref_primary_10_1016_j_eswa_2024_125739 crossref_primary_10_3390_math10132234 crossref_primary_10_1108_DTA_10_2019_0180 crossref_primary_10_1155_2021_5049179 crossref_primary_10_1109_ACCESS_2020_3041084 crossref_primary_10_17671_gazibtd_1106017 crossref_primary_10_1016_j_eswa_2022_117239 crossref_primary_10_1016_j_najef_2024_102159 crossref_primary_10_7717_peerj_cs_2542 crossref_primary_10_1016_j_jcomm_2024_100438 crossref_primary_10_4018_IJSWIS_367280 crossref_primary_10_1177_00368504241275370 crossref_primary_10_1016_j_eswa_2024_125299 crossref_primary_10_1016_j_ipm_2023_103435 crossref_primary_10_1007_s00521_024_10418_5 crossref_primary_10_1007_s10799_024_00439_w crossref_primary_10_1016_j_knosys_2022_108742 crossref_primary_10_1007_s10614_024_10567_8 crossref_primary_10_1016_j_eswa_2021_115715 crossref_primary_10_1016_j_knosys_2021_107119 crossref_primary_10_1016_j_ipm_2021_102494 crossref_primary_10_20525_ijrbs_v13i4_3274 crossref_primary_10_1108_IJAIM_02_2024_0073 crossref_primary_10_1007_s12559_021_09824_x crossref_primary_10_1016_j_renene_2024_120873 crossref_primary_10_1016_j_eswa_2022_119125 crossref_primary_10_7717_peerj_cs_982 crossref_primary_10_1016_j_cbrev_2023_100108 crossref_primary_10_1109_ACCESS_2023_3259901 crossref_primary_10_1002_sam_11582 crossref_primary_10_1016_j_ipm_2021_102819 crossref_primary_10_1016_j_eswa_2025_127243 crossref_primary_10_1080_1331677X_2022_2106271 crossref_primary_10_21511_imfi_21_1__2024_21 crossref_primary_10_1007_s11042_024_20274_z crossref_primary_10_1109_ACCESS_2020_3030226 crossref_primary_10_1080_03081079_2024_2409748 crossref_primary_10_1007_s40031_021_00583_9 crossref_primary_10_1016_j_frl_2023_104304 crossref_primary_10_1109_ACCESS_2022_3202960 crossref_primary_10_3390_electronics11203414 crossref_primary_10_3390_math10142437 |
Cites_doi | 10.1109/ACCESS.2018.2881689 10.1016/j.ipm.2018.12.002 10.1111/j.1540-6261.2007.01232.x 10.1016/j.ipm.2013.12.002 10.1007/s00521-014-1550-z 10.1007/s00521-018-3415-3 10.1016/j.jocs.2010.12.007 10.1016/j.ejor.2017.11.054 10.1016/j.ipm.2009.05.001 10.1007/s12559-018-9609-2 10.1109/TKDE.2018.2854193 10.1016/j.eswa.2015.07.052 10.1162/089976600300015015 10.1109/MIS.2015.1 10.1111/j.1540-6261.2010.01625.x 10.1111/j.1540-6261.1970.tb00518.x 10.1111/j.1540-6261.2008.01362.x 10.1016/j.neucom.2014.04.043 10.1016/j.knosys.2014.04.022 10.1007/s10586-017-0803-x 10.1016/j.neucom.2014.11.078 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Pergamon Press Inc. Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Sep 2020 |
DBID | AAYXX CITATION E3H F2A |
DOI | 10.1016/j.ipm.2020.102212 |
DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
DatabaseTitleList | Library and Information Science Abstracts (LISA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1873-5371 |
ExternalDocumentID | 10_1016_j_ipm_2020_102212 S0306457319307952 |
GeographicLocations | Hong Kong China China |
GeographicLocations_xml | – name: Hong Kong China – name: China |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH E3H EFKBS F2A |
ID | FETCH-LOGICAL-c391t-32f12f344635d2661262773c6aee8a59d1c1109927db4762ecec9bc71c6a38463 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Fri Jul 25 08:26:54 EDT 2025 Tue Jul 01 00:44:33 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Fri Feb 23 02:50:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning 99-00 Stock prediction News sentiment analysis 00-01 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-32f12f344635d2661262773c6aee8a59d1c1109927db4762ecec9bc71c6a38463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2443908170 |
PQPubID | 46166 |
ParticipantIDs | proquest_journals_2443908170 crossref_citationtrail_10_1016_j_ipm_2020_102212 crossref_primary_10_1016_j_ipm_2020_102212 elsevier_sciencedirect_doi_10_1016_j_ipm_2020_102212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Akita, Yoshihara, Matsubara, Uehara (bib0002) 2016 Tetlock, Saar-Tsechansky, Macskassy (bib0039) 2008; 63 Junqué De Fortuny, De Smedt, Martens, Daelemans (bib0020) 2014; 50 Malkiel, Fama (bib0031) 1970; 25 Baltas, Jessop, Jones, Lancetti (bib0004) 2014 Hutto, Gilbert (bib0017) 2014 Wu, Su, Yu, Chang (bib0041) 2012 Cambria, Poria, Hazarika, Kwok (bib0006) 2018 Aiolli, Donini (bib0001) 2015; 169 Fischer, Krauss (bib0011) 2018; 270 Hopfield (bib0015) 1982; 79 Tetlock (bib0038) 2007; 62 Li, Wang, Dong, Wang, Deng, Zhu (bib0024) 2011 Hochreiter, Schmidhuber (bib0013) 1997; 9 Baccianella, Esuli, Sebastiani (bib0003) 2010; 10 Shi, Member, Teng, Wang, Zhang, Binder (bib0037) 2019; 31 Holcroft, Winter, Jessop, Antrobus, Wu, Baltas, Gerken (bib0014) 2016 Schumaker, Chen (bib0035) 2009; 45 Zhang, Xu, Xue (bib0045) 2017; 20 Gers, Schmidhuber, Cummins (bib0012) 2000; 12 Tieleman, Hinton, Srivastava, Swersky (bib0040) 2012 Yu, Kang, Park (bib0043) 2019; 56 Zhang, Tan (bib0046) 2018 Deng, Mitsubuchi, Shioda, Shimada, Sakurai (bib0009) 2011 Xiong, Nichols, Shen (bib0042) 2015; 2 Li, Xie, Wang, Cai, Cao, Wang, Deng (bib0028) 2016; 27 Nelson, Pereira, De Oliveira (bib0032) 2017; 2017-May Sehgal, Song (bib0036) 2007 Bollen, Mao, Zeng (bib0005) 2011; 2 Ratto, Merello, Oneto, Ma, Malandri, Cambria (bib0034) 2018 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Malandri, Xing, Orsenigo, Vercellis, Cambria (bib0030) 2018; 10 Chen, Zhou, Dai (bib0007) 2015 Nguyen, Shirai, Velcin (bib0033) 2015; 42 . Hu, Liu, Bian, Liu, Liu (bib0016) 2018 Li, Liao (bib0021) 2018; 2017-Octob Loughran, McDonald (bib0029) 2011; 66 Ding, Zhang, Liu, Duan (bib0010) 2015 Li, Xie, Chen, Wang, Deng (bib0025) 2014; 69 Li, Xie, Song, Zhu, Li, Wang (bib0027) 2015; 30 Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. Li, Xie, Lau, Wong, Wang (bib0026) 2018; 6 Jozefowicz, Zaremba, Sutskever (bib0019) 2015 Stone, Dunphy, Smith, Ogilvie (bib0018) 1966; 4 Li, Cao, Pan (bib0022) 2019; 31 Li, Huang, Deng, Zhu (bib0023) 2014; 142 Aiolli (10.1016/j.ipm.2020.102212_bib0001) 2015; 169 Nguyen (10.1016/j.ipm.2020.102212_bib0033) 2015; 42 Li (10.1016/j.ipm.2020.102212_bib0024) 2011 Cambria (10.1016/j.ipm.2020.102212_bib0006) 2018 Xiong (10.1016/j.ipm.2020.102212_sbref0041) 2015; 2 Baltas (10.1016/j.ipm.2020.102212_bib0004) 2014 10.1016/j.ipm.2020.102212_bib0008 Sehgal (10.1016/j.ipm.2020.102212_bib0036) 2007 Tieleman (10.1016/j.ipm.2020.102212_bib0040) 2012 Hopfield (10.1016/j.ipm.2020.102212_bib0015) 1982; 79 Hu (10.1016/j.ipm.2020.102212_bib0016) 2018 Nelson (10.1016/j.ipm.2020.102212_bib0032) 2017; 2017-May Tetlock (10.1016/j.ipm.2020.102212_bib0039) 2008; 63 10.1016/j.ipm.2020.102212_bib0044 Akita (10.1016/j.ipm.2020.102212_bib0002) 2016 Hochreiter (10.1016/j.ipm.2020.102212_bib0013) 1997; 9 Holcroft (10.1016/j.ipm.2020.102212_bib0014) 2016 Jozefowicz (10.1016/j.ipm.2020.102212_bib0019) 2015 Shi (10.1016/j.ipm.2020.102212_bib0037) 2019; 31 Loughran (10.1016/j.ipm.2020.102212_bib0029) 2011; 66 Ratto (10.1016/j.ipm.2020.102212_bib0034) 2018 Li (10.1016/j.ipm.2020.102212_bib0026) 2018; 6 Fischer (10.1016/j.ipm.2020.102212_bib0011) 2018; 270 Junqué De Fortuny (10.1016/j.ipm.2020.102212_bib0020) 2014; 50 Malandri (10.1016/j.ipm.2020.102212_bib0030) 2018; 10 Bollen (10.1016/j.ipm.2020.102212_bib0005) 2011; 2 Stone (10.1016/j.ipm.2020.102212_bib0018) 1966; 4 Li (10.1016/j.ipm.2020.102212_bib0027) 2015; 30 Zhang (10.1016/j.ipm.2020.102212_bib0045) 2017; 20 Li (10.1016/j.ipm.2020.102212_bib0022) 2019; 31 Hutto (10.1016/j.ipm.2020.102212_bib0017) 2014 Ding (10.1016/j.ipm.2020.102212_bib0010) 2015 Zhang (10.1016/j.ipm.2020.102212_bib0046) 2018 Wu (10.1016/j.ipm.2020.102212_bib0041) 2012 Li (10.1016/j.ipm.2020.102212_bib0021) 2018; 2017-Octob Schumaker (10.1016/j.ipm.2020.102212_bib0035) 2009; 45 Li (10.1016/j.ipm.2020.102212_bib0025) 2014; 69 Baccianella (10.1016/j.ipm.2020.102212_bib0003) 2010; 10 Deng (10.1016/j.ipm.2020.102212_bib0009) 2011 Tetlock (10.1016/j.ipm.2020.102212_bib0038) 2007; 62 Chen (10.1016/j.ipm.2020.102212_bib0007) 2015 Malkiel (10.1016/j.ipm.2020.102212_bib0031) 1970; 25 Gers (10.1016/j.ipm.2020.102212_bib0012) 2000; 12 Li (10.1016/j.ipm.2020.102212_bib0028) 2016; 27 Li (10.1016/j.ipm.2020.102212_bib0023) 2014; 142 Yu (10.1016/j.ipm.2020.102212_bib0043) 2019; 56 |
References_xml | – year: 2014 ident: bib0004 article-title: Investment strategies and textual analysis signals publication-title: Technical Report – year: 2014 ident: bib0017 article-title: Vader: A parsimonious rule-based model for sentiment analysis of social media text – volume: 142 start-page: 228 year: 2014 end-page: 238 ident: bib0023 article-title: Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information publication-title: Neurocomputing – volume: 270 start-page: 654 year: 2018 end-page: 669 ident: bib0011 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European Journal of Operational Research – volume: 10 start-page: 1167 year: 2018 end-page: 1176 ident: bib0030 article-title: Public mood–driven asset allocation: The importance of financial sentiment in portfolio management publication-title: Cognitive Computation – start-page: 1795 year: 2018 end-page: 1802 ident: bib0006 article-title: SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings – start-page: 800 year: 2011 end-page: 807 ident: bib0009 article-title: Combining technical analysis with sentiment analysis for stock price prediction – volume: 45 start-page: 571 year: 2009 end-page: 583 ident: bib0035 article-title: A quantitative stock prediction system based on financial news publication-title: Information Processing & Management – start-page: 614 year: 2018 end-page: 623 ident: bib0046 article-title: Deep stock ranker: A LSTM neural network model for stock selection publication-title: International conference on data mining and big data – volume: 66 start-page: 35 year: 2011 end-page: 65 ident: bib0029 article-title: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks publication-title: The Journal of Finance – volume: 56 start-page: 721 year: 2019 end-page: 732 ident: bib0043 article-title: Information availability and return volatility in the bitcoin market: Analyzing differences of user opinion and interest publication-title: Information Processing & Management – start-page: 2823 year: 2015 end-page: 2824 ident: bib0007 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market – volume: 31 start-page: 5989 year: 2019 end-page: 6000 ident: bib0022 article-title: Market impact analysis via deep learned architectures publication-title: Neural Computing and Applications – start-page: 2090 year: 2018 end-page: 2096 ident: bib0034 article-title: Ensemble of technical analysis and machine learning for market trend prediction – volume: 25 start-page: 383 year: 1970 end-page: 417 ident: bib0031 article-title: Efficient capital markets: A review of theory and empirical work publication-title: The Journal of Finance – volume: 30 start-page: 26 year: 2015 end-page: 34 ident: bib0027 article-title: Does summarization help stock prediction? A news impact analysis publication-title: IEEE Intelligent Systems – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: bib0012 article-title: Learning to Forget: Continual Prediction with LSTM publication-title: Neural Computation – volume: 2017-May start-page: 1419 year: 2017 end-page: 1426 ident: bib0032 article-title: Stock market’s price movement prediction with LSTM neural networks publication-title: Proceedings of the international joint conference on neural networks – start-page: 2327 year: 2015 end-page: 2333 ident: bib0010 article-title: Deep learning for event-driven stock prediction publication-title: Proceedings of the 24th international conference on artificial intelligence – volume: 50 start-page: 426 year: 2014 end-page: 441 ident: bib0020 article-title: Evaluating and understanding text-based stock price prediction models publication-title: Information Processing & Management – volume: 27 start-page: 67 year: 2016 end-page: 78 ident: bib0028 article-title: Empirical analysis: stock market prediction via extreme learning machine publication-title: Neural Computing and Applications – volume: 31 start-page: 1094 year: 2019 end-page: 1108 ident: bib0037 article-title: DeepClue : Visual interpretation of text-based deep stock prediction publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2012 ident: bib0041 article-title: Stock price predication using combinational features from sentimental analysis of stock news and technical analysis of trading information publication-title: International proceedings of economics development and research – volume: 9 year: 1997 ident: bib0013 article-title: Long short-term memory – start-page: 279 year: 2011 end-page: 293 ident: bib0024 article-title: Improving stock market prediction by integrating both market news and stock prices publication-title: International conference on database and expert systems applications – volume: 4 year: 1966 ident: bib0018 article-title: The general inquirer: A computer approach to content analysis – volume: 69 start-page: 14 year: 2014 end-page: 23 ident: bib0025 article-title: News impact on stock price return via sentiment analysis publication-title: Knowledge-Based Systems – volume: 169 start-page: 215 year: 2015 end-page: 224 ident: bib0001 article-title: EasyMKL: A scalable multiple kernel learning algorithm – year: 2016 ident: bib0014 article-title: R advice getting started with random forests publication-title: Technical Report – volume: 2017-Octob start-page: 74 year: 2018 end-page: 78 ident: bib0021 article-title: A comparative study on trend forecasting approach for stock price time series publication-title: Proceedings of the international conference on anti-counterfeiting, security and identification, asid – volume: 2 start-page: 0 year: 2015 end-page: 5 ident: bib0042 article-title: Deep learning stock volatility with Google domestic trends – volume: 6 start-page: 73110 year: 2018 end-page: 73118 ident: bib0026 article-title: Stock prediction via sentimental transfer learning publication-title: IEEE Access – volume: 63 start-page: 1437 year: 2008 end-page: 1467 ident: bib0039 article-title: More than words: Quantifying language to measure firms’ fundamentals publication-title: The Journal of Finance – reference: Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. – start-page: 2342 year: 2015 end-page: 2350 ident: bib0019 article-title: An empirical exploration of recurrent network architectures publication-title: International conference on machine learning – reference: . – volume: 20 start-page: 789 year: 2017 end-page: 803 ident: bib0045 article-title: Model and forecast stock market behavior integrating investor sentiment analysis and transaction data publication-title: Cluster Computing – start-page: 261 year: 2018 end-page: 269 ident: bib0016 article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction publication-title: WSDM ’18 – start-page: 1 year: 2016 end-page: 6 ident: bib0002 article-title: Deep learning for stock prediction using numerical and textual information – volume: 10 start-page: 2200 year: 2010 end-page: 2204 ident: bib0003 article-title: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining – volume: 42 start-page: 9603 year: 2015 end-page: 9611 ident: bib0033 article-title: Sentiment analysis on social media for stock movement prediction publication-title: Expert Systems with Applications – reference: Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: bib0015 article-title: Neural networks and physical systems with emergent collective computational abilities – start-page: 21 year: 2007 end-page: 26 ident: bib0036 article-title: Sops: stock prediction using web sentiment – volume: 62 start-page: 1139 year: 2007 end-page: 1168 ident: bib0038 article-title: Giving content to investor sentiment: The role of media in the stock market publication-title: The Journal of Finance – year: 2012 ident: bib0040 article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Networks for Machine Learning – volume: 2 start-page: 1 year: 2011 end-page: 8 ident: bib0005 article-title: Twitter mood predicts the stock market publication-title: Journal of Computational Science – start-page: 1 year: 2016 ident: 10.1016/j.ipm.2020.102212_bib0002 article-title: Deep learning for stock prediction using numerical and textual information – year: 2014 ident: 10.1016/j.ipm.2020.102212_bib0004 article-title: Investment strategies and textual analysis signals – volume: 6 start-page: 73110 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0026 article-title: Stock prediction via sentimental transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2881689 – volume: 56 start-page: 721 issue: 3 year: 2019 ident: 10.1016/j.ipm.2020.102212_bib0043 article-title: Information availability and return volatility in the bitcoin market: Analyzing differences of user opinion and interest publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.12.002 – volume: 9 year: 1997 ident: 10.1016/j.ipm.2020.102212_bib0013 – volume: 2017-May start-page: 1419 year: 2017 ident: 10.1016/j.ipm.2020.102212_bib0032 article-title: Stock market’s price movement prediction with LSTM neural networks – volume: 62 start-page: 1139 issue: 3 year: 2007 ident: 10.1016/j.ipm.2020.102212_bib0038 article-title: Giving content to investor sentiment: The role of media in the stock market publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.2007.01232.x – volume: 50 start-page: 426 issue: 2 year: 2014 ident: 10.1016/j.ipm.2020.102212_bib0020 article-title: Evaluating and understanding text-based stock price prediction models publication-title: Information Processing & Management doi: 10.1016/j.ipm.2013.12.002 – start-page: 614 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0046 article-title: Deep stock ranker: A LSTM neural network model for stock selection – volume: 27 start-page: 67 year: 2016 ident: 10.1016/j.ipm.2020.102212_bib0028 article-title: Empirical analysis: stock market prediction via extreme learning machine publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1550-z – volume: 31 start-page: 5989 year: 2019 ident: 10.1016/j.ipm.2020.102212_bib0022 article-title: Market impact analysis via deep learned architectures publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3415-3 – volume: 2 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.ipm.2020.102212_bib0005 article-title: Twitter mood predicts the stock market publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2010.12.007 – volume: 270 start-page: 654 issue: 2 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0011 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.11.054 – year: 2016 ident: 10.1016/j.ipm.2020.102212_bib0014 article-title: R advice getting started with random forests – volume: 45 start-page: 571 issue: 5 year: 2009 ident: 10.1016/j.ipm.2020.102212_bib0035 article-title: A quantitative stock prediction system based on financial news publication-title: Information Processing & Management doi: 10.1016/j.ipm.2009.05.001 – volume: 10 start-page: 1167 issue: 6 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0030 article-title: Public mood–driven asset allocation: The importance of financial sentiment in portfolio management publication-title: Cognitive Computation doi: 10.1007/s12559-018-9609-2 – volume: 10 start-page: 2200 year: 2010 ident: 10.1016/j.ipm.2020.102212_bib0003 article-title: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining – volume: 31 start-page: 1094 year: 2019 ident: 10.1016/j.ipm.2020.102212_bib0037 article-title: DeepClue : Visual interpretation of text-based deep stock prediction publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2854193 – year: 2012 ident: 10.1016/j.ipm.2020.102212_bib0040 article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Networks for Machine Learning – year: 2012 ident: 10.1016/j.ipm.2020.102212_bib0041 article-title: Stock price predication using combinational features from sentimental analysis of stock news and technical analysis of trading information – start-page: 2090 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0034 article-title: Ensemble of technical analysis and machine learning for market trend prediction – year: 2014 ident: 10.1016/j.ipm.2020.102212_bib0017 article-title: Vader: A parsimonious rule-based model for sentiment analysis of social media text – ident: 10.1016/j.ipm.2020.102212_bib0044 – volume: 4 year: 1966 ident: 10.1016/j.ipm.2020.102212_bib0018 – volume: 42 start-page: 9603 issue: 24 year: 2015 ident: 10.1016/j.ipm.2020.102212_bib0033 article-title: Sentiment analysis on social media for stock movement prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.07.052 – volume: 12 start-page: 2451 year: 2000 ident: 10.1016/j.ipm.2020.102212_bib0012 article-title: Learning to Forget: Continual Prediction with LSTM publication-title: Neural Computation doi: 10.1162/089976600300015015 – start-page: 2342 year: 2015 ident: 10.1016/j.ipm.2020.102212_bib0019 article-title: An empirical exploration of recurrent network architectures – volume: 2017-Octob start-page: 74 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0021 article-title: A comparative study on trend forecasting approach for stock price time series – volume: 79 start-page: 2554 year: 1982 ident: 10.1016/j.ipm.2020.102212_bib0015 – volume: 30 start-page: 26 issue: 3 year: 2015 ident: 10.1016/j.ipm.2020.102212_bib0027 article-title: Does summarization help stock prediction? A news impact analysis publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2015.1 – ident: 10.1016/j.ipm.2020.102212_bib0008 – volume: 66 start-page: 35 issue: 1 year: 2011 ident: 10.1016/j.ipm.2020.102212_bib0029 article-title: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.2010.01625.x – volume: 2 start-page: 0 year: 2015 ident: 10.1016/j.ipm.2020.102212_sbref0041 article-title: Deep learning stock volatility with Google domestic trends – start-page: 1795 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0006 article-title: SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings – start-page: 261 year: 2018 ident: 10.1016/j.ipm.2020.102212_bib0016 article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction – volume: 25 start-page: 383 issue: 2 year: 1970 ident: 10.1016/j.ipm.2020.102212_bib0031 article-title: Efficient capital markets: A review of theory and empirical work publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1970.tb00518.x – volume: 63 start-page: 1437 issue: 3 year: 2008 ident: 10.1016/j.ipm.2020.102212_bib0039 article-title: More than words: Quantifying language to measure firms’ fundamentals publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.2008.01362.x – start-page: 2327 year: 2015 ident: 10.1016/j.ipm.2020.102212_bib0010 article-title: Deep learning for event-driven stock prediction – start-page: 2823 year: 2015 ident: 10.1016/j.ipm.2020.102212_bib0007 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market – start-page: 800 year: 2011 ident: 10.1016/j.ipm.2020.102212_bib0009 article-title: Combining technical analysis with sentiment analysis for stock price prediction – volume: 142 start-page: 228 year: 2014 ident: 10.1016/j.ipm.2020.102212_bib0023 article-title: Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.043 – volume: 69 start-page: 14 year: 2014 ident: 10.1016/j.ipm.2020.102212_bib0025 article-title: News impact on stock price return via sentiment analysis publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.04.022 – start-page: 279 year: 2011 ident: 10.1016/j.ipm.2020.102212_bib0024 article-title: Improving stock market prediction by integrating both market news and stock prices – start-page: 21 year: 2007 ident: 10.1016/j.ipm.2020.102212_bib0036 article-title: Sops: stock prediction using web sentiment – volume: 20 start-page: 789 year: 2017 ident: 10.1016/j.ipm.2020.102212_bib0045 article-title: Model and forecast stock market behavior integrating investor sentiment analysis and transaction data publication-title: Cluster Computing doi: 10.1007/s10586-017-0803-x – volume: 169 start-page: 215 year: 2015 ident: 10.1016/j.ipm.2020.102212_bib0001 article-title: EasyMKL: A scalable multiple kernel learning algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.078 |
SSID | ssj0004512 |
Score | 2.6409829 |
Snippet | •Based on both technical indicators and news sentiments, the LSTM models outperform the MKL and the SVM in both prediction accuracy and F1 score.•The LSTM... Stock prediction via market data analysis is an attractive research topic. Both stock prices and news articles have been employed in the prediction processes.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102212 |
SubjectTerms | Data analysis Data mining Deep learning Dictionaries Indicators Machine learning Neural networks News News sentiment analysis Prediction models Predictions Prices Pricing Securities markets Sentiment analysis Stock exchanges Stock prediction Stock prices Test sets |
Title | Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong |
URI | https://dx.doi.org/10.1016/j.ipm.2020.102212 https://www.proquest.com/docview/2443908170 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXryIT6y2JQfxIKxtHvvyVoqltdiLFnoLu0kW6qMttl797c5ks6KCPXhZyDIZlslk5lsy84WQC5kbFoWZCWQueCATCVsqjnRgAMxqi1c9uEba-0k0nMq7WTirkX7VC4NllT72lzHdRWv_puOt2VnN550HRLsyjMGHwE_TEOOwlDF6-fUH-8YYzvxJQhSgdHWy6Wq85itsRueOwIAz_ldu-hWlXeoZ7JM9jxlpr_ysA1Kzi0PS8h0H9JL6liI0MfV79YioETJUOpZiyE4UMJ5-piukEFrTbGEowmmKnUeO3n9NQYUXenWN0CCLZzio9Ib2qIZsR5cFHS5B2Rgex2Q6uH3sDwN_m0KgRco2geAF44WA3z8RGkzLPOJxLHSUWZtkYWqYRvbRlMcmBzNyq61Ocx0zkBCAUsQJqS-WC3tKaJJamCALY5HM3tq8sCaB1TU6M90kZw3SreyotKcaxxsvXlRVU_akwPQKTa9K0zfI1deUVcmzsU1YVoujfjiLgjywbVqzWkjld-paAbwRaRdpCs_-p_Wc7OKorDtrkvrm7d22AKhs8rbzxDbZ6Y3Gw8kn4ejmDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAXxFMMNsgBcUCqtibpi9s0MXXscWGTdovaJJXGY6vY-P_YbYoAiR247NDZVuU49lfF_kLIjUi163uJdkTKmSNCAVsq8JWjAcwqg1c9FIO0k6kfz8XjwlvUSL-ahcG2Spv7y5xeZGv7pGO92cmXy84Tol3hBRBDEKeRB3m4gexUXp00esNRPP1GGu7awwTfQYXqcLNo81rmOI_OCg4D5rK_ytOvRF1Un8EhObCwkfbKNzsiNbM6Jm07dEBvqZ0qQi9Tu11PiBwiSWVBVAwFigLMUy80RxahDU1WmiKipjh8VDD8byiYsEJvxSw0yOIxDhq9pz2qoODRdUbjNRgbwc8pmQ8eZv3YsRcqOIpH7tbhLHNZxuELkHsaKzPzWRBw5SfGhIkXaVchAWnEAp0KyJJGGRWlKnBBggNQ4WekvlqvzDmhYWRAQWTaIJ-9MWlmdAgLrFWiu2HqNkm38qNUlm0cL714lVVb2bME10t0vSxd3yR3Xyp5SbWxS1hUiyN_xIuEUrBLrVUtpLSbdSMB4fCoi0yFF_-zek324tlkLMfD6eiS7OM_ZRtai9S37x-mDbhlm17ZuPwEzWrovw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+stock+prices+and+news+sentiments+for+stock+market+prediction%3A+A+case+of+Hong+Kong&rft.jtitle=Information+processing+%26+management&rft.au=Li%2C+Xiaodong&rft.au=Wu%2C+Pangjing&rft.au=Wang%2C+Wenpeng&rft.date=2020-09-01&rft.issn=0306-4573&rft.volume=57&rft.issue=5&rft.spage=102212&rft_id=info:doi/10.1016%2Fj.ipm.2020.102212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipm_2020_102212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |