Androgen inhibits neurotransmitter turnover in the medial prefrontal cortex of the rat following exposure to a novel environment

Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibil...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 751; no. 1; pp. 131 - 138
Main Authors Handa, Robert J, Hejna, George M, Lorens, Stanley A
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 14.03.1997
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 β-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli.© 1997 Elsevier Science B.V. All rights reserved.
AbstractList Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 β-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli.© 1997 Elsevier Science B.V. All rights reserved.
Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 beta-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli.
Author Lorens, Stanley A
Hejna, George M
Handa, Robert J
Author_xml – sequence: 1
  givenname: Robert J
  surname: Handa
  fullname: Handa, Robert J
  organization: Departments of Cell Biology, Neurobiology and Anatomy, Loyola University, Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
– sequence: 2
  givenname: George M
  surname: Hejna
  fullname: Hejna, George M
  organization: Departments of Cell Biology, Neurobiology and Anatomy, Loyola University, Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
– sequence: 3
  givenname: Stanley A
  surname: Lorens
  fullname: Lorens, Stanley A
  organization: Department of Pharmacology, Loyola University, Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9098576$$D View this record in MEDLINE/PubMed
BookMark eNqFUctKJDEUDYOirc4nCFmJs6gxj6qkshJp1BkQZqGuQzp1SyNVSZukWt3Np5t-4NbVvZfzuHDOEdrzwQNCp5T8poSKi3tCiKhapfi5Er8I5aqu5A80o61klWA12UOzL8ohOkrppZycK3KADhRRbSPFDP2_8l0MT-Cx889u4XLCHqYYcjQ-jS5niDhP0YdVWZzH-RnwCJ0zA15G6GPwuaw2xAzvOPQbPJqM-zAM4c35Jwzvy5CmCDgHbPDaaMDgV65IR_D5BO33ZkjwczeP0ePN9cP8T3X37_bv_OquslzRXHHGCFFEcCONqUljjGTcdh0YYRTjDGQjG8uhY0bAou2sYD2FTtQNFQ2vKT9GZ1vfZQyvE6SsR5csDIPxEKakZatorYrpd0TatIpIKQqx2RJtDCmVMPQyutHED02JXlekNxXpdf5aCb2pSMuiO909mBYlyi_VrpOCX25xKHGsHESdrANvS-oRbNZdcN98-ARuzaV_
CitedBy_id crossref_primary_10_1016_j_neuropharm_2013_06_026
crossref_primary_10_1016_j_physbeh_2010_01_008
crossref_primary_10_1177_0305735618795030
crossref_primary_10_1016_j_bbr_2014_10_024
crossref_primary_10_1016_j_paid_2014_01_011
crossref_primary_10_1016_j_yhbeh_2005_11_003
crossref_primary_10_1016_S0149_7634_03_00034_4
crossref_primary_10_1073_pnas_0807423106
crossref_primary_10_1093_cercor_bhq083
crossref_primary_10_1111_j_1469_8986_2008_00714_x
crossref_primary_10_1162_jocn_2009_21389
crossref_primary_10_1016_j_bbr_2006_08_037
crossref_primary_10_1016_j_bbr_2004_05_032
crossref_primary_10_1016_j_psyneuen_2023_106413
crossref_primary_10_1016_S0197_4580_02_00004_0
crossref_primary_10_1016_j_yhbeh_2017_02_006
crossref_primary_10_11605_j_pnrs_201802007
crossref_primary_10_1111_adb_12270
crossref_primary_10_1016_j_tox_2013_03_007
crossref_primary_10_1016_j_chemosphere_2017_04_113
crossref_primary_10_1016_j_neuroscience_2014_12_032
crossref_primary_10_1080_13685530601183537
crossref_primary_10_3389_fpsyg_2015_01044
crossref_primary_10_1177_107385849900500412
crossref_primary_10_1016_j_bandc_2014_11_006
crossref_primary_10_1016_j_mce_2020_110947
crossref_primary_10_1162_jocn_a_00445
crossref_primary_10_3389_fnbeh_2021_737960
crossref_primary_10_1021_tx500534x
crossref_primary_10_1016_j_psyneuen_2021_105238
crossref_primary_10_1016_j_neuroscience_2024_07_001
crossref_primary_10_1134_S1819712416040140
crossref_primary_10_1016_S0006_8993_00_03261_3
Cites_doi 10.1210/endo-129-5-2503
10.1210/endo-73-2-253
10.1016/0006-8993(81)90192-X
10.1111/j.1365-2826.1994.tb00592.x
10.1038/263242a0
10.1016/0165-0173(84)90018-3
10.1002/cne.902470307
10.1007/BF00229650
10.1016/0006-8993(90)90903-O
10.1016/0006-8993(88)90701-9
10.1210/endo.136.8.7628354
10.1073/pnas.93.3.1325
10.1016/0304-3940(93)90565-3
10.1007/BF00243840
10.1523/JNEUROSCI.14-04-01963.1994
10.1037/0735-7044.108.5.883
10.1007/BF00318360
10.1016/S0149-7634(05)80157-5
10.1016/B978-0-12-571131-9.50012-8
10.1016/0306-4522(94)00331-X
10.1111/j.1749-6632.1969.tb12983.x
10.1016/0028-3932(93)90104-8
10.1016/0022-3956(92)90040-U
10.1016/0306-4522(96)00219-9
10.1002/cne.901510204
10.1016/0006-8993(78)90173-7
10.1016/0197-4580(90)90047-4
10.1523/JNEUROSCI.13-09-03839.1993
10.1016/0022-4731(77)90063-2
10.1016/0006-8993(94)90901-6
10.1016/0006-8993(74)90947-0
10.1210/endo.131.3.1324155
10.1097/00002826-199202001-00940
10.1016/0006-8993(93)90077-Z
10.1002/cne.902940107
10.1159/000398028
10.1161/01.HYP.9.6.576
10.1016/0168-0102(94)90063-9
10.1016/0960-0760(93)90253-S
10.1016/0166-2236(94)90054-X
10.1016/S0163-1047(05)80065-2
10.1016/0091-3057(95)02064-0
10.1016/0165-3806(90)90191-Z
10.1016/0306-4530(94)90017-5
10.1006/hbeh.1994.1044
10.1016/0091-3057(93)90324-M
10.1016/0031-9384(94)90018-3
10.1016/0091-3057(94)90220-8
10.1210/endo-126-2-1112
10.1210/endo-117-6-2471
10.1016/0924-9338(96)80298-7
10.1210/endo-87-4-779
ContentType Journal Article
Copyright 1997 Elsevier Science B.V.
Copyright_xml – notice: 1997 Elsevier Science B.V.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1016/S0006-8993(96)01394-7
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-6240
EndPage 138
ExternalDocumentID 10_1016_S0006_8993_96_01394_7
9098576
S0006899396013947
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: AA08696
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
41~
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEVXI
AFCTW
AFKWA
AFMIJ
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
VH1
WUQ
X7M
XPP
Z5R
ZGI
~G-
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFJKZ
CITATION
7TK
7X8
ID FETCH-LOGICAL-c391t-322009063a7aa405aa723cddea6a9232e7575c3ed2a6eb8dc62f1ed6451653413
IEDL.DBID .~1
ISSN 0006-8993
IngestDate Fri Oct 25 23:04:53 EDT 2024
Fri Oct 25 04:46:51 EDT 2024
Thu Sep 26 15:51:11 EDT 2024
Sat Sep 28 08:37:44 EDT 2024
Fri Feb 23 02:30:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 3,4-Dihydroxyphenylalanine
3-Methoxy-4-hydroxyphenylglycol
Dihydrotestosterone
Dopamine
Serotonin
Homovanillic acid
Estrogen
Norepinephrine
Prefrontal cortex
High-performance liquid chromatography
Hydroxyindole acetic acid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-322009063a7aa405aa723cddea6a9232e7575c3ed2a6eb8dc62f1ed6451653413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 9098576
PQID 15890776
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_78914972
proquest_miscellaneous_15890776
crossref_primary_10_1016_S0006_8993_96_01394_7
pubmed_primary_9098576
elsevier_sciencedirect_doi_10_1016_S0006_8993_96_01394_7
PublicationCentury 1900
PublicationDate 1997-03-14
PublicationDateYYYYMMDD 1997-03-14
PublicationDate_xml – month: 03
  year: 1997
  text: 1997-03-14
  day: 14
PublicationDecade 1990
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Brain research
PublicationTitleAlternate Brain Res
PublicationYear 1997
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References 95 (1993) 15–27.
87 (1970) 779–786.
57 (1990) 119–127.
Pitman, London, 1982.
Kawahara, H., Yoshida, M., Yokoo, H., Nishi, M. and Tanaka, M., Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis
Gaskin, J.H. and Kitay, J.I., Adrenocortical function in the hamster: sex differences and effects of gonadal hormones
Finlay, J.M., Zigmond, M.J. and Abercrombie, E.D., Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam
21 (1994 1–11.
93 (1996) 1325–1329.
Dennenberg, V.H., Open field behavior in the rat — what does it mean?
60 (1992) 8–16.
Granon, S., Vidal, C., Thinus-Blanc, C., Changeux, J.P. and Poucet, B., Working memory, response selection and effortful processing in rats with medial prefrontal lesions
81 (1974) 325–331.
Viau, V. and Meaney, M.J., Basal and stress hypothalamic-pituitary-adrenal activity in cycling and ovariectomized-steroid treated rats
Wong, M. and Moss, R.L., Patch-clamp analysis of direct steroidal modulation of glutamate receptor-channels
31 (1975) 295–319.
O'Keefe, J.A. and Handa, R.J., Transient elevation of estrogen receptors in the neonatal rat hippocampus
17 (1994) 265–268.
142 (1978) 1–24.
Pfaff, D.W. and Keiner, M., Atlas of estradiol-concentrating cells in the central nervous system of the female rat
136 (1995) 3213–3221.
Sar, M. and Stumpf, W.E., Distribution of androgen target cells in rat forebrain and pituitary after 3H]-dihydrotestosterone administration
46 (1993) 101–109.
10 (1995) 217–227.
Lorens, S.A., Hata, N., Handa, R.J., Van de Kar, L.D., Guschwan, M., Goral, J., Lee, J.M., Hamilton, M.E., Bethea, C.L. and Clancy Jr., J., Neurochemical, endocrine and immunological responses to stress in young and old Fischer 344 male rats
Feldon, J. and Weiner, I., From an animal model of an attentional deficit towards new insights into the pathophysiology of schizophrenia
Hafner, H., Epidemiology of schizophrenia — the disease model of schizophrenia in the light of current epidemiological knowledge
73 (1963) 253–260.
129 (1993) 2503–2511.
8 (1977) 1131–1135.
Handa, R.J., Nunley, K.A., Lorens, S.A., Louie, J.P., McGivern, R.F. and Bollnow, M.R., Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and footshock stressors
53 (1996) 641–647.
61 (1994) 123–131.
14 (1990) 22–33.
Lisciotto, C.A. and Morrell, J.I., Androgen concentrating neurons of the forebrain project to the midbrain in rats
Chiba, A.A., Kesner, R.P. and Reynolds, A.M., Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex
642 (1994) 20–28.
159 (1969) 852–859.
Burgess, L.H. and Handa, R.J., Estrogen alters adrenocorticotropic hormone and corticosterone secretion and glucocorticoid receptor mediated function
Kerr, J.E., Beck, S.E. and Handa, R.J., Androgens selectively modulate c-fos mRNA induction in the rat hippocampus following novelty
Simerly, R.B., Chang, C., Muramatsu, M. and Swanson, L.W., Distribution of androgen and estrogen receptor mRNA containing cells in the rat brain
Boussard, D. and Wise, S.P., Primate frontal cortex: neuronal activity following attentional versus intentional cues
151 (1973) 121–158.
6 (1994) 347–355.
9 (1987) 576–581.
Winn, P., Schizophrenia research moves to the prefrontal cortex
247 (1986) 364–382.
Funahashi, S. and Kubota, K., Working memory and prefrontal cortex
28 (1994b) 464–476.
Swanson, L.W., A direct projection from Ammon's horn to prefrontal cortex in the rat
Handa, R.J., Burgess, L.H., Kerr, J.E. and O'Keefe, J.A., Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis
217 (1981) 150–154.
Kitay, J.I., Pituitary adrenal function in the rat after gonadectomy and gonadal hormone replacement
Handa, R.J., Cross, M.K., George, M., Gordon, B.H., Burgess, L.H., Cabrera, T.M., Hata, N., Campbell, D.B. and Lorens, S.A., The neuroendocrine response to novelty stress in young and old male F344 rats: effects of subchronic d-fenluramine treatment
65 (1986) 176–181.
Lipska, B.K., Jaskiw, G.E. and Weinberger, D.R., The effects of combined prefrontal cortical and hippocampal damage on dopamine-related behaviors in rats
457 (1988) 310–321.
Karger, Basel, 1975, pp. 104–119.
Stumpf, W.E., Sar, M. and Keefer, D.A., Atlas of estrogen target cells in rat brain. In
126 (1990) 1112–1124.
19 (1994) 373–385.
55 (1994a) 117–124.
263 (1976) 242–244.
Fahrbach, S.E., Morrell, J.I. and Pfaff, D.W., Identification of medial preoptic neurons that concentrate estradiol and project to the midbrain in the rat
48 (1994) 1053–1057.
Silva, M.G., Boyle, MA., Finger, S., Numan, B., Bouzrara, A.A. and Almli, C.R., Behavioral effects of large and small lesions of the rat medial frontal cortex
624 (1993) 188–198.
44 (1993) 481–498.
31 (1993) 1367–1378.
Paxinos, G. and Watson, C.
162 (1993) 81–84.
McGraw Hill, New York, 1971.
Shughrue, P.J., Stumpf, W.E., MacLusky, N.J., Zielinski, J.E. and Hochberg, R.B., Developmental changes in estrogen receptors in mouse cerebral cortex between birth and postweaning: studied by autoradiography with 11 β-methoxy-16 alpha 125I]Iodoestradiol
516 (1990) 107–112.
Kerr, J.E., Allore, R.J., Beck, S.E. and Handa, R.J., Localization and hormonal regulation of androgen receptor (AR) and AR messenger RNA in the rat hippocampus
Oades, R.D.
14 (1994) 1963–1977.
Jakab, R.L., Horvath, T.L., Leranth, C., Harada, N. and Naftolin, F., Aromatase immunoreactivity in the rat brain: gonadectomy-sensitive hypothalamic nuerons and an unresponsive `limbic ring' of the lateral septum-bed nucleus-amygdala complex
66 (1995) 21–34.
13 (1993) 3839–3847.
Murphy, B.L., Arnsten, A.F., Goldman-Rakic, P.S. and Roth, R.H., Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys
64 (1995) 619–628.
Roselli, C.E., Horton, L.E. and Resko, J.A., Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system
Gattaz, W.F., Behrens, S., DeVry, J. and Hafner, H., Estradiol inhibits dopamine mediated behavior in rats — an animal model of sex specific differences in schizophrenia
Van Bockstaele, E.J., Biswas, A. and Pickel, V.M., Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens
280 (1995) 561–574.
Ruit, K.G. and Neafsey, E.J., Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats
131 (1993) 1261–1269.
Academic Press, New York, 1982.
11 (1990) 139–150.
Lindvall, O., Bjorklund, A., Moore, R. and Stenevi, U., Mesencephalic dopamine neurons projecting to neocortex
8 (1984) 65–98.
Diorio, D., Viau, V. and Meaney, M.J., The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress
74 (1996) 757–766.
Kolb, B., Functions of the frontal cortex of the rat: a comparative review.
108 (1994) 883–891.
Oades, R.D. and Schepker, R., Serum gonadal steroid hormones in young schizophrenic patients
Sokolowski, J.D. and Salamone, J.D., Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat
ffrench-Mullen, J.M.H., Danks, P. and Spence, K.T., Neurosteroids modulate calcium currents in hippocampal CA1 neurons via a pertussis toxin-sensitive G-protein-coupled mechanism
Knight, R.T., Grabowecky, M.F. and Scabini, D., Role of human prefrontal cortex in attention control
294 (1990) 76–95.
117 (1985) 2471–2479.
Lindvall, O., Bjorklund, A. and Divac, I., Organization of catecholamine neurons projecting to the frontal cortex in the rat
Szilagyi, J.E., Taylor, A.A. and Skinner, J.E., Cryoblockade of the ventromedial frontal cortex reverses hypertension in the rat
Foidart, A., Harada, N. and Balthazart, J., Aromatase immunoreactive cells are present in mouse brain areas that are known to express high levels of aromatase activity
Van Haaren, F., Van Hest, A. and Heinsbroek, R.P.W., Behavioral differences between male and female rats: effects of gonadal horomones on learning and memory
Naftolin, F., Ryan, K.J., Davies, I.J., Reddy, V.V., Flores, F., Petro, Z., Kuhn, M., White, R.J., Takaoka, Y. and Wolin, L., The formation of estrogens by central neuroendocrine tissues
26 (1992) 345–366.
Handa, R.J., George, M., Gordon, B.H., Campbell, D.B. and Lorens, S.A., Responses to novelty stress in female F344 rats: effects of age and d-Fenfluramine treatment
Thierry, A.M., Tassin, J.P., Blanc, G. and Glowinski, J., Selective activation of the mesocortical DA system by stress
Morris, R.G., Ahmed, S., Syed, G.M. and Toone, B.K., Neural correlates of planning ability: frontal lobe activation during the Tower of London test
Winer, B.J.
10.1016/S0006-8993(96)01394-7_BIB3
10.1016/S0006-8993(96)01394-7_BIB2
10.1016/S0006-8993(96)01394-7_BIB1
10.1016/S0006-8993(96)01394-7_BIB14
10.1016/S0006-8993(96)01394-7_BIB13
10.1016/S0006-8993(96)01394-7_BIB12
10.1016/S0006-8993(96)01394-7_BIB56
10.1016/S0006-8993(96)01394-7_BIB11
10.1016/S0006-8993(96)01394-7_BIB55
10.1016/S0006-8993(96)01394-7_BIB10
10.1016/S0006-8993(96)01394-7_BIB54
10.1016/S0006-8993(96)01394-7_BIB53
10.1016/S0006-8993(96)01394-7_BIB52
10.1016/S0006-8993(96)01394-7_BIB51
10.1016/S0006-8993(96)01394-7_BIB7
10.1016/S0006-8993(96)01394-7_BIB6
10.1016/S0006-8993(96)01394-7_BIB5
10.1016/S0006-8993(96)01394-7_BIB4
10.1016/S0006-8993(96)01394-7_BIB19
10.1016/S0006-8993(96)01394-7_BIB18
10.1016/S0006-8993(96)01394-7_BIB17
10.1016/S0006-8993(96)01394-7_BIB9
10.1016/S0006-8993(96)01394-7_BIB16
10.1016/S0006-8993(96)01394-7_BIB8
10.1016/S0006-8993(96)01394-7_BIB15
10.1016/S0006-8993(96)01394-7_BIB25
10.1016/S0006-8993(96)01394-7_BIB24
10.1016/S0006-8993(96)01394-7_BIB23
10.1016/S0006-8993(96)01394-7_BIB22
10.1016/S0006-8993(96)01394-7_BIB21
10.1016/S0006-8993(96)01394-7_BIB20
10.1016/S0006-8993(96)01394-7_BIB29
10.1016/S0006-8993(96)01394-7_BIB28
10.1016/S0006-8993(96)01394-7_BIB27
10.1016/S0006-8993(96)01394-7_BIB26
10.1016/S0006-8993(96)01394-7_BIB36
10.1016/S0006-8993(96)01394-7_BIB35
10.1016/S0006-8993(96)01394-7_BIB34
10.1016/S0006-8993(96)01394-7_BIB33
10.1016/S0006-8993(96)01394-7_BIB32
10.1016/S0006-8993(96)01394-7_BIB31
10.1016/S0006-8993(96)01394-7_BIB30
10.1016/S0006-8993(96)01394-7_BIB39
10.1016/S0006-8993(96)01394-7_BIB38
10.1016/S0006-8993(96)01394-7_BIB37
10.1016/S0006-8993(96)01394-7_BIB50
10.1016/S0006-8993(96)01394-7_BIB47
10.1016/S0006-8993(96)01394-7_BIB46
10.1016/S0006-8993(96)01394-7_BIB45
10.1016/S0006-8993(96)01394-7_BIB44
10.1016/S0006-8993(96)01394-7_BIB43
10.1016/S0006-8993(96)01394-7_BIB42
10.1016/S0006-8993(96)01394-7_BIB41
10.1016/S0006-8993(96)01394-7_BIB40
10.1016/S0006-8993(96)01394-7_BIB49
10.1016/S0006-8993(96)01394-7_BIB48
References_xml – ident: 10.1016/S0006-8993(96)01394-7_BIB53
  doi: 10.1210/endo-129-5-2503
– ident: 10.1016/S0006-8993(96)01394-7_BIB24
  doi: 10.1210/endo-73-2-253
– ident: 10.1016/S0006-8993(96)01394-7_BIB48
  doi: 10.1016/0006-8993(81)90192-X
– ident: 10.1016/S0006-8993(96)01394-7_BIB56
  doi: 10.1111/j.1365-2826.1994.tb00592.x
– ident: 10.1016/S0006-8993(96)01394-7_BIB50
  doi: 10.1038/263242a0
– ident: 10.1016/S0006-8993(96)01394-7_BIB26
  doi: 10.1016/0165-0173(84)90018-3
– ident: 10.1016/S0006-8993(96)01394-7_BIB6
  doi: 10.1002/cne.902470307
– ident: 10.1016/S0006-8993(96)01394-7_BIB2
  doi: 10.1007/BF00229650
– ident: 10.1016/S0006-8993(96)01394-7_BIB25
– ident: 10.1016/S0006-8993(96)01394-7_BIB30
  doi: 10.1016/0006-8993(90)90903-O
– ident: 10.1016/S0006-8993(96)01394-7_BIB41
  doi: 10.1016/0006-8993(88)90701-9
– ident: 10.1016/S0006-8993(96)01394-7_BIB22
  doi: 10.1210/endo.136.8.7628354
– ident: 10.1016/S0006-8993(96)01394-7_BIB33
  doi: 10.1073/pnas.93.3.1325
– ident: 10.1016/S0006-8993(96)01394-7_BIB21
  doi: 10.1016/0304-3940(93)90565-3
– ident: 10.1016/S0006-8993(96)01394-7_BIB44
  doi: 10.1007/BF00243840
– ident: 10.1016/S0006-8993(96)01394-7_BIB8
  doi: 10.1523/JNEUROSCI.14-04-01963.1994
– ident: 10.1016/S0006-8993(96)01394-7_BIB14
  doi: 10.1037/0735-7044.108.5.883
– ident: 10.1016/S0006-8993(96)01394-7_BIB10
  doi: 10.1007/BF00318360
– ident: 10.1016/S0006-8993(96)01394-7_BIB35
– ident: 10.1016/S0006-8993(96)01394-7_BIB51
  doi: 10.1016/S0149-7634(05)80157-5
– ident: 10.1016/S0006-8993(96)01394-7_BIB34
  doi: 10.1016/B978-0-12-571131-9.50012-8
– ident: 10.1016/S0006-8993(96)01394-7_BIB9
  doi: 10.1016/0306-4522(94)00331-X
– ident: 10.1016/S0006-8993(96)01394-7_BIB4
  doi: 10.1111/j.1749-6632.1969.tb12983.x
– ident: 10.1016/S0006-8993(96)01394-7_BIB32
  doi: 10.1016/0028-3932(93)90104-8
– ident: 10.1016/S0006-8993(96)01394-7_BIB7
  doi: 10.1016/0022-3956(92)90040-U
– ident: 10.1016/S0006-8993(96)01394-7_BIB23
  doi: 10.1016/0306-4522(96)00219-9
– ident: 10.1016/S0006-8993(96)01394-7_BIB39
  doi: 10.1002/cne.901510204
– ident: 10.1016/S0006-8993(96)01394-7_BIB28
  doi: 10.1016/0006-8993(78)90173-7
– ident: 10.1016/S0006-8993(96)01394-7_BIB31
  doi: 10.1016/0197-4580(90)90047-4
– ident: 10.1016/S0006-8993(96)01394-7_BIB5
  doi: 10.1523/JNEUROSCI.13-09-03839.1993
– ident: 10.1016/S0006-8993(96)01394-7_BIB42
  doi: 10.1016/0022-4731(77)90063-2
– ident: 10.1016/S0006-8993(96)01394-7_BIB46
  doi: 10.1016/0006-8993(94)90901-6
– ident: 10.1016/S0006-8993(96)01394-7_BIB27
  doi: 10.1016/0006-8993(74)90947-0
– ident: 10.1016/S0006-8993(96)01394-7_BIB1
  doi: 10.1210/endo.131.3.1324155
– ident: 10.1016/S0006-8993(96)01394-7_BIB13
  doi: 10.1097/00002826-199202001-00940
– ident: 10.1016/S0006-8993(96)01394-7_BIB52
  doi: 10.1016/0006-8993(93)90077-Z
– ident: 10.1016/S0006-8993(96)01394-7_BIB45
  doi: 10.1002/cne.902940107
– ident: 10.1016/S0006-8993(96)01394-7_BIB47
  doi: 10.1159/000398028
– ident: 10.1016/S0006-8993(96)01394-7_BIB49
  doi: 10.1161/01.HYP.9.6.576
– ident: 10.1016/S0006-8993(96)01394-7_BIB38
– ident: 10.1016/S0006-8993(96)01394-7_BIB11
  doi: 10.1016/0168-0102(94)90063-9
– ident: 10.1016/S0006-8993(96)01394-7_BIB20
  doi: 10.1016/0960-0760(93)90253-S
– ident: 10.1016/S0006-8993(96)01394-7_BIB55
  doi: 10.1016/0166-2236(94)90054-X
– ident: 10.1016/S0006-8993(96)01394-7_BIB3
  doi: 10.1016/S0163-1047(05)80065-2
– ident: 10.1016/S0006-8993(96)01394-7_BIB19
  doi: 10.1016/0091-3057(95)02064-0
– ident: 10.1016/S0006-8993(96)01394-7_BIB37
  doi: 10.1016/0165-3806(90)90191-Z
– ident: 10.1016/S0006-8993(96)01394-7_BIB36
  doi: 10.1016/0306-4530(94)90017-5
– ident: 10.1016/S0006-8993(96)01394-7_BIB18
  doi: 10.1006/hbeh.1994.1044
– ident: 10.1016/S0006-8993(96)01394-7_BIB16
  doi: 10.1016/0091-3057(93)90324-M
– ident: 10.1016/S0006-8993(96)01394-7_BIB17
  doi: 10.1016/0031-9384(94)90018-3
– ident: 10.1016/S0006-8993(96)01394-7_BIB29
  doi: 10.1016/0091-3057(94)90220-8
– ident: 10.1016/S0006-8993(96)01394-7_BIB43
  doi: 10.1210/endo-126-2-1112
– ident: 10.1016/S0006-8993(96)01394-7_BIB54
– ident: 10.1016/S0006-8993(96)01394-7_BIB40
  doi: 10.1210/endo-117-6-2471
– ident: 10.1016/S0006-8993(96)01394-7_BIB15
  doi: 10.1016/0924-9338(96)80298-7
– ident: 10.1016/S0006-8993(96)01394-7_BIB12
  doi: 10.1210/endo-87-4-779
SSID ssj0003390
Score 1.7464613
Snippet Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 131
SubjectTerms 3,4-Dihydroxyphenylacetic Acid - metabolism
3,4-Dihydroxyphenylalanine
3-Methoxy-4-hydroxyphenylglycol
Animals
Behavior, Animal - physiology
Chromatography, High Pressure Liquid
Dihydrotestosterone
Dihydrotestosterone - pharmacology
Dihydroxyphenylalanine - metabolism
Dopamine
Dopamine - metabolism
Estrogen
Exploratory Behavior - physiology
High-performance liquid chromatography
Homovanillic acid
Homovanillic Acid - metabolism
Hydroxyindole acetic acid
Hydroxyindoleacetic Acid - metabolism
Male
Methoxyhydroxyphenylglycol - metabolism
Neurotransmitter Agents - metabolism
Norepinephrine
Norepinephrine - metabolism
Prefrontal cortex
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Rats
Rats, Inbred F344
Serotonin
Serotonin - metabolism
Title Androgen inhibits neurotransmitter turnover in the medial prefrontal cortex of the rat following exposure to a novel environment
URI https://dx.doi.org/10.1016/S0006-8993(96)01394-7
https://www.ncbi.nlm.nih.gov/pubmed/9098576
https://search.proquest.com/docview/15890776
https://search.proquest.com/docview/78914972
Volume 751
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXHpBBYq65WsOqCoHw-bLSY6rFWiBFlUVSNwsr9cRkSBZQRBwQfx03jjZbntYVeopUeJYlmc888Z5MxZiP55AUZzJJXx9KOMi68uxTWKJSMLYBPYw9mTMHxdqdBWfXSfXS2I4y4VhWmVn-1ub7q119-Som82jaVlyjm9fIVqIgMEBY2LOKOdiW9Dpw9c5zSOK2n0Wjpy59TyLp-3BP_yWqwPfiUwX-adF-NP7oZOPYrUDkDRox7gmlly1LjYGFYLnuxf6Sp7S6ffKN8Qb0xVrqAiV1U05LpsH8vUrG3ZQdyUn8hBcTsU0TjQhgEFqU0loipFxbQPcWubjPlNd-PfQGCqgPPUTnB6552nNe4zU1GSIO7qlP3LnPomrk-PL4Uh2Ry5IG-VBI7G8AboAW0xqDLCcMWkYWZhAowygYOhSwDsbuUlolBtnE6vCInATxcf9JuwQN8VyVVfusyBgGT5CIjLWphw1ZomyhckKBIiBBQzricPZROtpW1lDzylnTLdjyehcaS8ZnfZENhOH_ktFNKz_vz7dm4lPY_nwPxFTufrxQQdJlnNFo8Ut0ixHFJmGPbHZyv33aPN-niFc-_L_49oSH9pyuJEM4m2x3Nw_uh2AnGa867V4V6wMhr--_-Tr6fno4h3WIfnG
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALopSKBUrngBAc3O7mw06OVUW1QNtTK_Vmeb2OiESTFU1FuSB-Om-cbJceVkjcIsexLM945o3zZkz0NptDUYIrFXx9orKqGKuZzzOFSML5HPYwi2TM0zM9vcg-X-aXG3S0zIURWuVg-3ubHq310HIwrObBoq4lx3esES2kwOCAMZl5QA8zqZ8Fpd7_teJ5pGl_0CKhs3RfpfH0Q8TG96X-EEdRZp2DWgdAoyM6fkpPBgTJh_0kt2gjNM9o-7BB9Hz1k99x5HTGw_Jt-i18xRY6wnXztZ7V3TXHApadeKirWjJ5GD6nER4nujDQIPe5JLzAzKS4AR69EHJvua3ie6gMV9Ce9ge8HofbRSuHjNy17FgG-sZ_Jc89p4vjj-dHUzXcuaB8Wk46hf0N1AXc4oxzAHPOmST1sIFOO2DBJBjgO5-GeeJ0mBVzr5NqEuZa7vvNxSPu0GbTNuEFMcCM3CGROu-NhI1Frn3ligoR4sQDh41of7nQdtGX1rArzpnw7UQyttQ2SsaaERVLcdh7OmJh_v_16d5SfBb7R36KuCa0N9d2khellDRa38MUJcJIk4xop5f73WzLcVkgXnv5__Pao0fT89MTe_Lp7MsretzXxk3VOHtNm933m7ALxNPN3kSN_gPu1_nS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Androgen+inhibits+neurotransmitter+turnover+in+the+medial+prefrontal+cortex+of+the+rat+following+exposure+to+a+novel+environment&rft.jtitle=Brain+research&rft.au=Handa%2C+R+J&rft.au=Hejna%2C+G+M&rft.au=Lorens%2C+S+A&rft.date=1997-03-14&rft.issn=0006-8993&rft.volume=751&rft.issue=1&rft.spage=131&rft_id=info:doi/10.1016%2FS0006-8993%2896%2901394-7&rft_id=info%3Apmid%2F9098576&rft.externalDocID=9098576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8993&client=summon