Androgen inhibits neurotransmitter turnover in the medial prefrontal cortex of the rat following exposure to a novel environment
Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibil...
Saved in:
Published in | Brain research Vol. 751; no. 1; pp. 131 - 138 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
14.03.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 β-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli.© 1997 Elsevier Science B.V. All rights reserved. |
---|---|
AbstractList | Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 β-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli.© 1997 Elsevier Science B.V. All rights reserved. Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 beta-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli. |
Author | Lorens, Stanley A Hejna, George M Handa, Robert J |
Author_xml | – sequence: 1 givenname: Robert J surname: Handa fullname: Handa, Robert J organization: Departments of Cell Biology, Neurobiology and Anatomy, Loyola University, Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA – sequence: 2 givenname: George M surname: Hejna fullname: Hejna, George M organization: Departments of Cell Biology, Neurobiology and Anatomy, Loyola University, Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA – sequence: 3 givenname: Stanley A surname: Lorens fullname: Lorens, Stanley A organization: Department of Pharmacology, Loyola University, Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9098576$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctKJDEUDYOirc4nCFmJs6gxj6qkshJp1BkQZqGuQzp1SyNVSZukWt3Np5t-4NbVvZfzuHDOEdrzwQNCp5T8poSKi3tCiKhapfi5Er8I5aqu5A80o61klWA12UOzL8ohOkrppZycK3KADhRRbSPFDP2_8l0MT-Cx889u4XLCHqYYcjQ-jS5niDhP0YdVWZzH-RnwCJ0zA15G6GPwuaw2xAzvOPQbPJqM-zAM4c35Jwzvy5CmCDgHbPDaaMDgV65IR_D5BO33ZkjwczeP0ePN9cP8T3X37_bv_OquslzRXHHGCFFEcCONqUljjGTcdh0YYRTjDGQjG8uhY0bAou2sYD2FTtQNFQ2vKT9GZ1vfZQyvE6SsR5csDIPxEKakZatorYrpd0TatIpIKQqx2RJtDCmVMPQyutHED02JXlekNxXpdf5aCb2pSMuiO909mBYlyi_VrpOCX25xKHGsHESdrANvS-oRbNZdcN98-ARuzaV_ |
CitedBy_id | crossref_primary_10_1016_j_neuropharm_2013_06_026 crossref_primary_10_1016_j_physbeh_2010_01_008 crossref_primary_10_1177_0305735618795030 crossref_primary_10_1016_j_bbr_2014_10_024 crossref_primary_10_1016_j_paid_2014_01_011 crossref_primary_10_1016_j_yhbeh_2005_11_003 crossref_primary_10_1016_S0149_7634_03_00034_4 crossref_primary_10_1073_pnas_0807423106 crossref_primary_10_1093_cercor_bhq083 crossref_primary_10_1111_j_1469_8986_2008_00714_x crossref_primary_10_1162_jocn_2009_21389 crossref_primary_10_1016_j_bbr_2006_08_037 crossref_primary_10_1016_j_bbr_2004_05_032 crossref_primary_10_1016_j_psyneuen_2023_106413 crossref_primary_10_1016_S0197_4580_02_00004_0 crossref_primary_10_1016_j_yhbeh_2017_02_006 crossref_primary_10_11605_j_pnrs_201802007 crossref_primary_10_1111_adb_12270 crossref_primary_10_1016_j_tox_2013_03_007 crossref_primary_10_1016_j_chemosphere_2017_04_113 crossref_primary_10_1016_j_neuroscience_2014_12_032 crossref_primary_10_1080_13685530601183537 crossref_primary_10_3389_fpsyg_2015_01044 crossref_primary_10_1177_107385849900500412 crossref_primary_10_1016_j_bandc_2014_11_006 crossref_primary_10_1016_j_mce_2020_110947 crossref_primary_10_1162_jocn_a_00445 crossref_primary_10_3389_fnbeh_2021_737960 crossref_primary_10_1021_tx500534x crossref_primary_10_1016_j_psyneuen_2021_105238 crossref_primary_10_1016_j_neuroscience_2024_07_001 crossref_primary_10_1134_S1819712416040140 crossref_primary_10_1016_S0006_8993_00_03261_3 |
Cites_doi | 10.1210/endo-129-5-2503 10.1210/endo-73-2-253 10.1016/0006-8993(81)90192-X 10.1111/j.1365-2826.1994.tb00592.x 10.1038/263242a0 10.1016/0165-0173(84)90018-3 10.1002/cne.902470307 10.1007/BF00229650 10.1016/0006-8993(90)90903-O 10.1016/0006-8993(88)90701-9 10.1210/endo.136.8.7628354 10.1073/pnas.93.3.1325 10.1016/0304-3940(93)90565-3 10.1007/BF00243840 10.1523/JNEUROSCI.14-04-01963.1994 10.1037/0735-7044.108.5.883 10.1007/BF00318360 10.1016/S0149-7634(05)80157-5 10.1016/B978-0-12-571131-9.50012-8 10.1016/0306-4522(94)00331-X 10.1111/j.1749-6632.1969.tb12983.x 10.1016/0028-3932(93)90104-8 10.1016/0022-3956(92)90040-U 10.1016/0306-4522(96)00219-9 10.1002/cne.901510204 10.1016/0006-8993(78)90173-7 10.1016/0197-4580(90)90047-4 10.1523/JNEUROSCI.13-09-03839.1993 10.1016/0022-4731(77)90063-2 10.1016/0006-8993(94)90901-6 10.1016/0006-8993(74)90947-0 10.1210/endo.131.3.1324155 10.1097/00002826-199202001-00940 10.1016/0006-8993(93)90077-Z 10.1002/cne.902940107 10.1159/000398028 10.1161/01.HYP.9.6.576 10.1016/0168-0102(94)90063-9 10.1016/0960-0760(93)90253-S 10.1016/0166-2236(94)90054-X 10.1016/S0163-1047(05)80065-2 10.1016/0091-3057(95)02064-0 10.1016/0165-3806(90)90191-Z 10.1016/0306-4530(94)90017-5 10.1006/hbeh.1994.1044 10.1016/0091-3057(93)90324-M 10.1016/0031-9384(94)90018-3 10.1016/0091-3057(94)90220-8 10.1210/endo-126-2-1112 10.1210/endo-117-6-2471 10.1016/0924-9338(96)80298-7 10.1210/endo-87-4-779 |
ContentType | Journal Article |
Copyright | 1997 Elsevier Science B.V. |
Copyright_xml | – notice: 1997 Elsevier Science B.V. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
DOI | 10.1016/S0006-8993(96)01394-7 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 138 |
ExternalDocumentID | 10_1016_S0006_8993_96_01394_7 9098576 S0006899396013947 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: AA08696 |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEVXI AFCTW AFKWA AFMIJ AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SNS SPCBC SSN SSZ T5K VH1 WUQ X7M XPP Z5R ZGI ~G- AAXKI AKRWK CGR CUY CVF ECM EIF NPM AAYXX AFJKZ CITATION 7TK 7X8 |
ID | FETCH-LOGICAL-c391t-322009063a7aa405aa723cddea6a9232e7575c3ed2a6eb8dc62f1ed6451653413 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 |
IngestDate | Fri Oct 25 23:04:53 EDT 2024 Fri Oct 25 04:46:51 EDT 2024 Thu Sep 26 15:51:11 EDT 2024 Sat Sep 28 08:37:44 EDT 2024 Fri Feb 23 02:30:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 3,4-Dihydroxyphenylalanine 3-Methoxy-4-hydroxyphenylglycol Dihydrotestosterone Dopamine Serotonin Homovanillic acid Estrogen Norepinephrine Prefrontal cortex High-performance liquid chromatography Hydroxyindole acetic acid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-322009063a7aa405aa723cddea6a9232e7575c3ed2a6eb8dc62f1ed6451653413 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 9098576 |
PQID | 15890776 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_78914972 proquest_miscellaneous_15890776 crossref_primary_10_1016_S0006_8993_96_01394_7 pubmed_primary_9098576 elsevier_sciencedirect_doi_10_1016_S0006_8993_96_01394_7 |
PublicationCentury | 1900 |
PublicationDate | 1997-03-14 |
PublicationDateYYYYMMDD | 1997-03-14 |
PublicationDate_xml | – month: 03 year: 1997 text: 1997-03-14 day: 14 |
PublicationDecade | 1990 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 1997 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | 95 (1993) 15–27. 87 (1970) 779–786. 57 (1990) 119–127. Pitman, London, 1982. Kawahara, H., Yoshida, M., Yokoo, H., Nishi, M. and Tanaka, M., Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis Gaskin, J.H. and Kitay, J.I., Adrenocortical function in the hamster: sex differences and effects of gonadal hormones Finlay, J.M., Zigmond, M.J. and Abercrombie, E.D., Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam 21 (1994 1–11. 93 (1996) 1325–1329. Dennenberg, V.H., Open field behavior in the rat — what does it mean? 60 (1992) 8–16. Granon, S., Vidal, C., Thinus-Blanc, C., Changeux, J.P. and Poucet, B., Working memory, response selection and effortful processing in rats with medial prefrontal lesions 81 (1974) 325–331. Viau, V. and Meaney, M.J., Basal and stress hypothalamic-pituitary-adrenal activity in cycling and ovariectomized-steroid treated rats Wong, M. and Moss, R.L., Patch-clamp analysis of direct steroidal modulation of glutamate receptor-channels 31 (1975) 295–319. O'Keefe, J.A. and Handa, R.J., Transient elevation of estrogen receptors in the neonatal rat hippocampus 17 (1994) 265–268. 142 (1978) 1–24. Pfaff, D.W. and Keiner, M., Atlas of estradiol-concentrating cells in the central nervous system of the female rat 136 (1995) 3213–3221. Sar, M. and Stumpf, W.E., Distribution of androgen target cells in rat forebrain and pituitary after 3H]-dihydrotestosterone administration 46 (1993) 101–109. 10 (1995) 217–227. Lorens, S.A., Hata, N., Handa, R.J., Van de Kar, L.D., Guschwan, M., Goral, J., Lee, J.M., Hamilton, M.E., Bethea, C.L. and Clancy Jr., J., Neurochemical, endocrine and immunological responses to stress in young and old Fischer 344 male rats Feldon, J. and Weiner, I., From an animal model of an attentional deficit towards new insights into the pathophysiology of schizophrenia Hafner, H., Epidemiology of schizophrenia — the disease model of schizophrenia in the light of current epidemiological knowledge 73 (1963) 253–260. 129 (1993) 2503–2511. 8 (1977) 1131–1135. Handa, R.J., Nunley, K.A., Lorens, S.A., Louie, J.P., McGivern, R.F. and Bollnow, M.R., Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and footshock stressors 53 (1996) 641–647. 61 (1994) 123–131. 14 (1990) 22–33. Lisciotto, C.A. and Morrell, J.I., Androgen concentrating neurons of the forebrain project to the midbrain in rats Chiba, A.A., Kesner, R.P. and Reynolds, A.M., Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex 642 (1994) 20–28. 159 (1969) 852–859. Burgess, L.H. and Handa, R.J., Estrogen alters adrenocorticotropic hormone and corticosterone secretion and glucocorticoid receptor mediated function Kerr, J.E., Beck, S.E. and Handa, R.J., Androgens selectively modulate c-fos mRNA induction in the rat hippocampus following novelty Simerly, R.B., Chang, C., Muramatsu, M. and Swanson, L.W., Distribution of androgen and estrogen receptor mRNA containing cells in the rat brain Boussard, D. and Wise, S.P., Primate frontal cortex: neuronal activity following attentional versus intentional cues 151 (1973) 121–158. 6 (1994) 347–355. 9 (1987) 576–581. Winn, P., Schizophrenia research moves to the prefrontal cortex 247 (1986) 364–382. Funahashi, S. and Kubota, K., Working memory and prefrontal cortex 28 (1994b) 464–476. Swanson, L.W., A direct projection from Ammon's horn to prefrontal cortex in the rat Handa, R.J., Burgess, L.H., Kerr, J.E. and O'Keefe, J.A., Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis 217 (1981) 150–154. Kitay, J.I., Pituitary adrenal function in the rat after gonadectomy and gonadal hormone replacement Handa, R.J., Cross, M.K., George, M., Gordon, B.H., Burgess, L.H., Cabrera, T.M., Hata, N., Campbell, D.B. and Lorens, S.A., The neuroendocrine response to novelty stress in young and old male F344 rats: effects of subchronic d-fenluramine treatment 65 (1986) 176–181. Lipska, B.K., Jaskiw, G.E. and Weinberger, D.R., The effects of combined prefrontal cortical and hippocampal damage on dopamine-related behaviors in rats 457 (1988) 310–321. Karger, Basel, 1975, pp. 104–119. Stumpf, W.E., Sar, M. and Keefer, D.A., Atlas of estrogen target cells in rat brain. In 126 (1990) 1112–1124. 19 (1994) 373–385. 55 (1994a) 117–124. 263 (1976) 242–244. Fahrbach, S.E., Morrell, J.I. and Pfaff, D.W., Identification of medial preoptic neurons that concentrate estradiol and project to the midbrain in the rat 48 (1994) 1053–1057. Silva, M.G., Boyle, MA., Finger, S., Numan, B., Bouzrara, A.A. and Almli, C.R., Behavioral effects of large and small lesions of the rat medial frontal cortex 624 (1993) 188–198. 44 (1993) 481–498. 31 (1993) 1367–1378. Paxinos, G. and Watson, C. 162 (1993) 81–84. McGraw Hill, New York, 1971. Shughrue, P.J., Stumpf, W.E., MacLusky, N.J., Zielinski, J.E. and Hochberg, R.B., Developmental changes in estrogen receptors in mouse cerebral cortex between birth and postweaning: studied by autoradiography with 11 β-methoxy-16 alpha 125I]Iodoestradiol 516 (1990) 107–112. Kerr, J.E., Allore, R.J., Beck, S.E. and Handa, R.J., Localization and hormonal regulation of androgen receptor (AR) and AR messenger RNA in the rat hippocampus Oades, R.D. 14 (1994) 1963–1977. Jakab, R.L., Horvath, T.L., Leranth, C., Harada, N. and Naftolin, F., Aromatase immunoreactivity in the rat brain: gonadectomy-sensitive hypothalamic nuerons and an unresponsive `limbic ring' of the lateral septum-bed nucleus-amygdala complex 66 (1995) 21–34. 13 (1993) 3839–3847. Murphy, B.L., Arnsten, A.F., Goldman-Rakic, P.S. and Roth, R.H., Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys 64 (1995) 619–628. Roselli, C.E., Horton, L.E. and Resko, J.A., Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system Gattaz, W.F., Behrens, S., DeVry, J. and Hafner, H., Estradiol inhibits dopamine mediated behavior in rats — an animal model of sex specific differences in schizophrenia Van Bockstaele, E.J., Biswas, A. and Pickel, V.M., Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens 280 (1995) 561–574. Ruit, K.G. and Neafsey, E.J., Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats 131 (1993) 1261–1269. Academic Press, New York, 1982. 11 (1990) 139–150. Lindvall, O., Bjorklund, A., Moore, R. and Stenevi, U., Mesencephalic dopamine neurons projecting to neocortex 8 (1984) 65–98. Diorio, D., Viau, V. and Meaney, M.J., The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress 74 (1996) 757–766. Kolb, B., Functions of the frontal cortex of the rat: a comparative review. 108 (1994) 883–891. Oades, R.D. and Schepker, R., Serum gonadal steroid hormones in young schizophrenic patients Sokolowski, J.D. and Salamone, J.D., Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat ffrench-Mullen, J.M.H., Danks, P. and Spence, K.T., Neurosteroids modulate calcium currents in hippocampal CA1 neurons via a pertussis toxin-sensitive G-protein-coupled mechanism Knight, R.T., Grabowecky, M.F. and Scabini, D., Role of human prefrontal cortex in attention control 294 (1990) 76–95. 117 (1985) 2471–2479. Lindvall, O., Bjorklund, A. and Divac, I., Organization of catecholamine neurons projecting to the frontal cortex in the rat Szilagyi, J.E., Taylor, A.A. and Skinner, J.E., Cryoblockade of the ventromedial frontal cortex reverses hypertension in the rat Foidart, A., Harada, N. and Balthazart, J., Aromatase immunoreactive cells are present in mouse brain areas that are known to express high levels of aromatase activity Van Haaren, F., Van Hest, A. and Heinsbroek, R.P.W., Behavioral differences between male and female rats: effects of gonadal horomones on learning and memory Naftolin, F., Ryan, K.J., Davies, I.J., Reddy, V.V., Flores, F., Petro, Z., Kuhn, M., White, R.J., Takaoka, Y. and Wolin, L., The formation of estrogens by central neuroendocrine tissues 26 (1992) 345–366. Handa, R.J., George, M., Gordon, B.H., Campbell, D.B. and Lorens, S.A., Responses to novelty stress in female F344 rats: effects of age and d-Fenfluramine treatment Thierry, A.M., Tassin, J.P., Blanc, G. and Glowinski, J., Selective activation of the mesocortical DA system by stress Morris, R.G., Ahmed, S., Syed, G.M. and Toone, B.K., Neural correlates of planning ability: frontal lobe activation during the Tower of London test Winer, B.J. 10.1016/S0006-8993(96)01394-7_BIB3 10.1016/S0006-8993(96)01394-7_BIB2 10.1016/S0006-8993(96)01394-7_BIB1 10.1016/S0006-8993(96)01394-7_BIB14 10.1016/S0006-8993(96)01394-7_BIB13 10.1016/S0006-8993(96)01394-7_BIB12 10.1016/S0006-8993(96)01394-7_BIB56 10.1016/S0006-8993(96)01394-7_BIB11 10.1016/S0006-8993(96)01394-7_BIB55 10.1016/S0006-8993(96)01394-7_BIB10 10.1016/S0006-8993(96)01394-7_BIB54 10.1016/S0006-8993(96)01394-7_BIB53 10.1016/S0006-8993(96)01394-7_BIB52 10.1016/S0006-8993(96)01394-7_BIB51 10.1016/S0006-8993(96)01394-7_BIB7 10.1016/S0006-8993(96)01394-7_BIB6 10.1016/S0006-8993(96)01394-7_BIB5 10.1016/S0006-8993(96)01394-7_BIB4 10.1016/S0006-8993(96)01394-7_BIB19 10.1016/S0006-8993(96)01394-7_BIB18 10.1016/S0006-8993(96)01394-7_BIB17 10.1016/S0006-8993(96)01394-7_BIB9 10.1016/S0006-8993(96)01394-7_BIB16 10.1016/S0006-8993(96)01394-7_BIB8 10.1016/S0006-8993(96)01394-7_BIB15 10.1016/S0006-8993(96)01394-7_BIB25 10.1016/S0006-8993(96)01394-7_BIB24 10.1016/S0006-8993(96)01394-7_BIB23 10.1016/S0006-8993(96)01394-7_BIB22 10.1016/S0006-8993(96)01394-7_BIB21 10.1016/S0006-8993(96)01394-7_BIB20 10.1016/S0006-8993(96)01394-7_BIB29 10.1016/S0006-8993(96)01394-7_BIB28 10.1016/S0006-8993(96)01394-7_BIB27 10.1016/S0006-8993(96)01394-7_BIB26 10.1016/S0006-8993(96)01394-7_BIB36 10.1016/S0006-8993(96)01394-7_BIB35 10.1016/S0006-8993(96)01394-7_BIB34 10.1016/S0006-8993(96)01394-7_BIB33 10.1016/S0006-8993(96)01394-7_BIB32 10.1016/S0006-8993(96)01394-7_BIB31 10.1016/S0006-8993(96)01394-7_BIB30 10.1016/S0006-8993(96)01394-7_BIB39 10.1016/S0006-8993(96)01394-7_BIB38 10.1016/S0006-8993(96)01394-7_BIB37 10.1016/S0006-8993(96)01394-7_BIB50 10.1016/S0006-8993(96)01394-7_BIB47 10.1016/S0006-8993(96)01394-7_BIB46 10.1016/S0006-8993(96)01394-7_BIB45 10.1016/S0006-8993(96)01394-7_BIB44 10.1016/S0006-8993(96)01394-7_BIB43 10.1016/S0006-8993(96)01394-7_BIB42 10.1016/S0006-8993(96)01394-7_BIB41 10.1016/S0006-8993(96)01394-7_BIB40 10.1016/S0006-8993(96)01394-7_BIB49 10.1016/S0006-8993(96)01394-7_BIB48 |
References_xml | – ident: 10.1016/S0006-8993(96)01394-7_BIB53 doi: 10.1210/endo-129-5-2503 – ident: 10.1016/S0006-8993(96)01394-7_BIB24 doi: 10.1210/endo-73-2-253 – ident: 10.1016/S0006-8993(96)01394-7_BIB48 doi: 10.1016/0006-8993(81)90192-X – ident: 10.1016/S0006-8993(96)01394-7_BIB56 doi: 10.1111/j.1365-2826.1994.tb00592.x – ident: 10.1016/S0006-8993(96)01394-7_BIB50 doi: 10.1038/263242a0 – ident: 10.1016/S0006-8993(96)01394-7_BIB26 doi: 10.1016/0165-0173(84)90018-3 – ident: 10.1016/S0006-8993(96)01394-7_BIB6 doi: 10.1002/cne.902470307 – ident: 10.1016/S0006-8993(96)01394-7_BIB2 doi: 10.1007/BF00229650 – ident: 10.1016/S0006-8993(96)01394-7_BIB25 – ident: 10.1016/S0006-8993(96)01394-7_BIB30 doi: 10.1016/0006-8993(90)90903-O – ident: 10.1016/S0006-8993(96)01394-7_BIB41 doi: 10.1016/0006-8993(88)90701-9 – ident: 10.1016/S0006-8993(96)01394-7_BIB22 doi: 10.1210/endo.136.8.7628354 – ident: 10.1016/S0006-8993(96)01394-7_BIB33 doi: 10.1073/pnas.93.3.1325 – ident: 10.1016/S0006-8993(96)01394-7_BIB21 doi: 10.1016/0304-3940(93)90565-3 – ident: 10.1016/S0006-8993(96)01394-7_BIB44 doi: 10.1007/BF00243840 – ident: 10.1016/S0006-8993(96)01394-7_BIB8 doi: 10.1523/JNEUROSCI.14-04-01963.1994 – ident: 10.1016/S0006-8993(96)01394-7_BIB14 doi: 10.1037/0735-7044.108.5.883 – ident: 10.1016/S0006-8993(96)01394-7_BIB10 doi: 10.1007/BF00318360 – ident: 10.1016/S0006-8993(96)01394-7_BIB35 – ident: 10.1016/S0006-8993(96)01394-7_BIB51 doi: 10.1016/S0149-7634(05)80157-5 – ident: 10.1016/S0006-8993(96)01394-7_BIB34 doi: 10.1016/B978-0-12-571131-9.50012-8 – ident: 10.1016/S0006-8993(96)01394-7_BIB9 doi: 10.1016/0306-4522(94)00331-X – ident: 10.1016/S0006-8993(96)01394-7_BIB4 doi: 10.1111/j.1749-6632.1969.tb12983.x – ident: 10.1016/S0006-8993(96)01394-7_BIB32 doi: 10.1016/0028-3932(93)90104-8 – ident: 10.1016/S0006-8993(96)01394-7_BIB7 doi: 10.1016/0022-3956(92)90040-U – ident: 10.1016/S0006-8993(96)01394-7_BIB23 doi: 10.1016/0306-4522(96)00219-9 – ident: 10.1016/S0006-8993(96)01394-7_BIB39 doi: 10.1002/cne.901510204 – ident: 10.1016/S0006-8993(96)01394-7_BIB28 doi: 10.1016/0006-8993(78)90173-7 – ident: 10.1016/S0006-8993(96)01394-7_BIB31 doi: 10.1016/0197-4580(90)90047-4 – ident: 10.1016/S0006-8993(96)01394-7_BIB5 doi: 10.1523/JNEUROSCI.13-09-03839.1993 – ident: 10.1016/S0006-8993(96)01394-7_BIB42 doi: 10.1016/0022-4731(77)90063-2 – ident: 10.1016/S0006-8993(96)01394-7_BIB46 doi: 10.1016/0006-8993(94)90901-6 – ident: 10.1016/S0006-8993(96)01394-7_BIB27 doi: 10.1016/0006-8993(74)90947-0 – ident: 10.1016/S0006-8993(96)01394-7_BIB1 doi: 10.1210/endo.131.3.1324155 – ident: 10.1016/S0006-8993(96)01394-7_BIB13 doi: 10.1097/00002826-199202001-00940 – ident: 10.1016/S0006-8993(96)01394-7_BIB52 doi: 10.1016/0006-8993(93)90077-Z – ident: 10.1016/S0006-8993(96)01394-7_BIB45 doi: 10.1002/cne.902940107 – ident: 10.1016/S0006-8993(96)01394-7_BIB47 doi: 10.1159/000398028 – ident: 10.1016/S0006-8993(96)01394-7_BIB49 doi: 10.1161/01.HYP.9.6.576 – ident: 10.1016/S0006-8993(96)01394-7_BIB38 – ident: 10.1016/S0006-8993(96)01394-7_BIB11 doi: 10.1016/0168-0102(94)90063-9 – ident: 10.1016/S0006-8993(96)01394-7_BIB20 doi: 10.1016/0960-0760(93)90253-S – ident: 10.1016/S0006-8993(96)01394-7_BIB55 doi: 10.1016/0166-2236(94)90054-X – ident: 10.1016/S0006-8993(96)01394-7_BIB3 doi: 10.1016/S0163-1047(05)80065-2 – ident: 10.1016/S0006-8993(96)01394-7_BIB19 doi: 10.1016/0091-3057(95)02064-0 – ident: 10.1016/S0006-8993(96)01394-7_BIB37 doi: 10.1016/0165-3806(90)90191-Z – ident: 10.1016/S0006-8993(96)01394-7_BIB36 doi: 10.1016/0306-4530(94)90017-5 – ident: 10.1016/S0006-8993(96)01394-7_BIB18 doi: 10.1006/hbeh.1994.1044 – ident: 10.1016/S0006-8993(96)01394-7_BIB16 doi: 10.1016/0091-3057(93)90324-M – ident: 10.1016/S0006-8993(96)01394-7_BIB17 doi: 10.1016/0031-9384(94)90018-3 – ident: 10.1016/S0006-8993(96)01394-7_BIB29 doi: 10.1016/0091-3057(94)90220-8 – ident: 10.1016/S0006-8993(96)01394-7_BIB43 doi: 10.1210/endo-126-2-1112 – ident: 10.1016/S0006-8993(96)01394-7_BIB54 – ident: 10.1016/S0006-8993(96)01394-7_BIB40 doi: 10.1210/endo-117-6-2471 – ident: 10.1016/S0006-8993(96)01394-7_BIB15 doi: 10.1016/0924-9338(96)80298-7 – ident: 10.1016/S0006-8993(96)01394-7_BIB12 doi: 10.1210/endo-87-4-779 |
SSID | ssj0003390 |
Score | 1.7464613 |
Snippet | Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 131 |
SubjectTerms | 3,4-Dihydroxyphenylacetic Acid - metabolism 3,4-Dihydroxyphenylalanine 3-Methoxy-4-hydroxyphenylglycol Animals Behavior, Animal - physiology Chromatography, High Pressure Liquid Dihydrotestosterone Dihydrotestosterone - pharmacology Dihydroxyphenylalanine - metabolism Dopamine Dopamine - metabolism Estrogen Exploratory Behavior - physiology High-performance liquid chromatography Homovanillic acid Homovanillic Acid - metabolism Hydroxyindole acetic acid Hydroxyindoleacetic Acid - metabolism Male Methoxyhydroxyphenylglycol - metabolism Neurotransmitter Agents - metabolism Norepinephrine Norepinephrine - metabolism Prefrontal cortex Prefrontal Cortex - drug effects Prefrontal Cortex - metabolism Rats Rats, Inbred F344 Serotonin Serotonin - metabolism |
Title | Androgen inhibits neurotransmitter turnover in the medial prefrontal cortex of the rat following exposure to a novel environment |
URI | https://dx.doi.org/10.1016/S0006-8993(96)01394-7 https://www.ncbi.nlm.nih.gov/pubmed/9098576 https://search.proquest.com/docview/15890776 https://search.proquest.com/docview/78914972 |
Volume | 751 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXHpBBYq65WsOqCoHw-bLSY6rFWiBFlUVSNwsr9cRkSBZQRBwQfx03jjZbntYVeopUeJYlmc888Z5MxZiP55AUZzJJXx9KOMi68uxTWKJSMLYBPYw9mTMHxdqdBWfXSfXS2I4y4VhWmVn-1ub7q119-Som82jaVlyjm9fIVqIgMEBY2LOKOdiW9Dpw9c5zSOK2n0Wjpy59TyLp-3BP_yWqwPfiUwX-adF-NP7oZOPYrUDkDRox7gmlly1LjYGFYLnuxf6Sp7S6ffKN8Qb0xVrqAiV1U05LpsH8vUrG3ZQdyUn8hBcTsU0TjQhgEFqU0loipFxbQPcWubjPlNd-PfQGCqgPPUTnB6552nNe4zU1GSIO7qlP3LnPomrk-PL4Uh2Ry5IG-VBI7G8AboAW0xqDLCcMWkYWZhAowygYOhSwDsbuUlolBtnE6vCInATxcf9JuwQN8VyVVfusyBgGT5CIjLWphw1ZomyhckKBIiBBQzricPZROtpW1lDzylnTLdjyehcaS8ZnfZENhOH_ktFNKz_vz7dm4lPY_nwPxFTufrxQQdJlnNFo8Ut0ixHFJmGPbHZyv33aPN-niFc-_L_49oSH9pyuJEM4m2x3Nw_uh2AnGa867V4V6wMhr--_-Tr6fno4h3WIfnG |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALopSKBUrngBAc3O7mw06OVUW1QNtTK_Vmeb2OiESTFU1FuSB-Om-cbJceVkjcIsexLM945o3zZkz0NptDUYIrFXx9orKqGKuZzzOFSML5HPYwi2TM0zM9vcg-X-aXG3S0zIURWuVg-3ubHq310HIwrObBoq4lx3esES2kwOCAMZl5QA8zqZ8Fpd7_teJ5pGl_0CKhs3RfpfH0Q8TG96X-EEdRZp2DWgdAoyM6fkpPBgTJh_0kt2gjNM9o-7BB9Hz1k99x5HTGw_Jt-i18xRY6wnXztZ7V3TXHApadeKirWjJ5GD6nER4nujDQIPe5JLzAzKS4AR69EHJvua3ie6gMV9Ce9ge8HofbRSuHjNy17FgG-sZ_Jc89p4vjj-dHUzXcuaB8Wk46hf0N1AXc4oxzAHPOmST1sIFOO2DBJBjgO5-GeeJ0mBVzr5NqEuZa7vvNxSPu0GbTNuEFMcCM3CGROu-NhI1Frn3ligoR4sQDh41of7nQdtGX1rArzpnw7UQyttQ2SsaaERVLcdh7OmJh_v_16d5SfBb7R36KuCa0N9d2khellDRa38MUJcJIk4xop5f73WzLcVkgXnv5__Pao0fT89MTe_Lp7MsretzXxk3VOHtNm933m7ALxNPN3kSN_gPu1_nS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Androgen+inhibits+neurotransmitter+turnover+in+the+medial+prefrontal+cortex+of+the+rat+following+exposure+to+a+novel+environment&rft.jtitle=Brain+research&rft.au=Handa%2C+R+J&rft.au=Hejna%2C+G+M&rft.au=Lorens%2C+S+A&rft.date=1997-03-14&rft.issn=0006-8993&rft.volume=751&rft.issue=1&rft.spage=131&rft_id=info:doi/10.1016%2FS0006-8993%2896%2901394-7&rft_id=info%3Apmid%2F9098576&rft.externalDocID=9098576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8993&client=summon |