Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)

•The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to neighbor roads unlike existing GCNs.•The present study was focused on devising a GCN model that mimic true propagation patterns of traffic.•...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 114; pp. 189 - 204
Main Authors Yu, Byeonghyeop, Lee, Yongjin, Sohn, Keemin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to neighbor roads unlike existing GCNs.•The present study was focused on devising a GCN model that mimic true propagation patterns of traffic.•The proposed model shows promise for application to a real-time traffic forecasting system. The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation.
AbstractList •The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to neighbor roads unlike existing GCNs.•The present study was focused on devising a GCN model that mimic true propagation patterns of traffic.•The proposed model shows promise for application to a real-time traffic forecasting system. The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation.
Author Sohn, Keemin
Lee, Yongjin
Yu, Byeonghyeop
Author_xml – sequence: 1
  givenname: Byeonghyeop
  surname: Yu
  fullname: Yu, Byeonghyeop
  email: yuruka@daum.net
  organization: Department of Urban Engineering, Chung–Ang University, Seoul, Korea, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
– sequence: 2
  givenname: Yongjin
  surname: Lee
  fullname: Lee, Yongjin
  email: solarone@etri.re.kr
  organization: KSB Convergence Research Department, ETRI, Daejeon, Republic of Korea
– sequence: 3
  givenname: Keemin
  surname: Sohn
  fullname: Sohn, Keemin
  email: kmsohn@cau.ac.kr
  organization: Department of Urban Engineering, Chung–Ang University, Seoul, Korea, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
BookMark eNp9kD1LBDEQhoMoeJ7-ALuUWuw62b3cbrCSwy8QbRTsQi6ZaM4zWZKo-BP812bVyuKql2HmGXifPbLtg0dCDhnUDNj8ZFXnqOsGGqihqYG1W2TC-k5UTcvFNpmAmPcVCHjcJXsprQCACd5NyNdFiKhVys4_0RiUoTkqa52maUA0iS4_qQ4-OYNxPFERVfVRprJX2YUq4-sQolpTgwN6g147LJRKaGjwVNGnqIbn8cd7WL8Vwpdbj2_xJ_JHiC_06HJxe7xPdqxaJzz4yyl5uDi_X1xVN3eX14uzm0q3guWqQbEUzABvZr3lSsys7ed8xtvWGKF7bhVfAu9sv2yUEYJ1mlnV2nnHZ71hoNspYb9_dQwpRbRyiO5VxU_JQI4u5UoWl3J0KaGRxWVhun-Mdnms74stt95Inv6SWCq9O4wyFUFeo3HFe5YmuA30N2x8k74
CitedBy_id crossref_primary_10_1016_j_physa_2024_129598
crossref_primary_10_1007_s10489_022_03753_4
crossref_primary_10_1016_j_inffus_2023_102078
crossref_primary_10_1109_ACCESS_2022_3222561
crossref_primary_10_3390_rs13101919
crossref_primary_10_1007_s10845_024_02490_4
crossref_primary_10_1016_j_aei_2025_103213
crossref_primary_10_1109_MITS_2022_3207831
crossref_primary_10_1007_s00500_022_07025_8
crossref_primary_10_1109_TITS_2023_3325817
crossref_primary_10_1109_TITS_2020_3000761
crossref_primary_10_1016_j_neucom_2023_126765
crossref_primary_10_1016_j_chaos_2022_112405
crossref_primary_10_1016_j_trc_2021_103526
crossref_primary_10_1016_j_jag_2023_103238
crossref_primary_10_1016_j_ins_2022_03_074
crossref_primary_10_1109_TITS_2021_3108939
crossref_primary_10_20965_jaciii_2024_p0552
crossref_primary_10_1108_JICV_06_2022_0021
crossref_primary_10_1109_ACCESS_2025_3541774
crossref_primary_10_1016_j_energy_2024_130684
crossref_primary_10_1007_s11227_024_06539_2
crossref_primary_10_1109_ACCESS_2023_3333938
crossref_primary_10_1109_TITS_2021_3083957
crossref_primary_10_1080_15472450_2022_2048655
crossref_primary_10_1016_j_ijfatigue_2023_107722
crossref_primary_10_1016_j_knosys_2024_112295
crossref_primary_10_1016_j_knosys_2023_111184
crossref_primary_10_1007_s11227_021_04041_7
crossref_primary_10_1016_j_engappai_2025_110074
crossref_primary_10_1155_2021_4097149
crossref_primary_10_1016_j_engappai_2024_108301
crossref_primary_10_1109_TITS_2023_3314402
crossref_primary_10_1109_TITS_2024_3364759
crossref_primary_10_1049_iet_its_2020_0410
crossref_primary_10_1177_03611981241248160
crossref_primary_10_3390_ijgi10070485
crossref_primary_10_3390_s24154796
crossref_primary_10_1016_j_is_2023_102318
crossref_primary_10_1109_ACCESS_2023_3324035
crossref_primary_10_2139_ssrn_4065482
crossref_primary_10_3390_rs14020303
crossref_primary_10_1142_S2424922X24500013
crossref_primary_10_1016_j_engappai_2024_109898
crossref_primary_10_3390_app14031253
crossref_primary_10_1186_s13677_023_00576_7
crossref_primary_10_1109_TITS_2022_3199160
crossref_primary_10_1016_j_trc_2023_104205
crossref_primary_10_3934_mbe_2022592
crossref_primary_10_3390_app14198847
crossref_primary_10_1007_s12239_024_00036_4
crossref_primary_10_3390_rs15153878
crossref_primary_10_1109_ACCESS_2022_3223046
crossref_primary_10_1016_j_scs_2023_104445
crossref_primary_10_1016_j_chemosphere_2023_139071
crossref_primary_10_1155_2023_8256907
crossref_primary_10_1016_j_eswa_2021_115992
crossref_primary_10_1109_ACCESS_2023_3282545
crossref_primary_10_1016_j_eng_2024_04_020
crossref_primary_10_1007_s12083_024_01792_x
crossref_primary_10_1016_j_apr_2021_101197
crossref_primary_10_1016_j_trd_2024_104331
crossref_primary_10_1016_j_eswa_2023_121548
crossref_primary_10_1061_JTEPBS_0000744
crossref_primary_10_1016_j_neucom_2024_128175
crossref_primary_10_1007_s10489_024_06218_y
crossref_primary_10_1016_j_knosys_2023_110591
crossref_primary_10_1016_j_asoc_2022_108497
crossref_primary_10_1016_j_trc_2023_104032
crossref_primary_10_1515_jisys_2023_0229
crossref_primary_10_1016_j_enbuild_2022_112229
crossref_primary_10_1016_j_knosys_2020_106592
crossref_primary_10_1109_OJITS_2023_3260624
crossref_primary_10_1109_TBDATA_2022_3156366
crossref_primary_10_3390_s22197179
crossref_primary_10_1109_TITS_2021_3090851
crossref_primary_10_1109_JIOT_2023_3290401
crossref_primary_10_1016_j_energy_2022_126034
crossref_primary_10_1007_s11227_024_06823_1
crossref_primary_10_3390_ijgi12120496
crossref_primary_10_1109_ACCESS_2021_3100261
crossref_primary_10_1061_JTEPBS_TEENG_7451
crossref_primary_10_1016_j_energy_2023_127875
crossref_primary_10_3390_land12101897
crossref_primary_10_1016_j_heliyon_2023_e19927
crossref_primary_10_1109_TVT_2024_3462708
crossref_primary_10_1080_01441647_2024_2408840
crossref_primary_10_1016_j_trc_2023_104263
crossref_primary_10_3390_ijgi10070455
crossref_primary_10_1016_j_renene_2024_122191
crossref_primary_10_1109_ACCESS_2024_3462509
crossref_primary_10_1109_TGRS_2021_3063255
crossref_primary_10_1016_j_engappai_2023_107665
crossref_primary_10_1049_iet_its_2019_0873
crossref_primary_10_1016_j_engappai_2024_109154
crossref_primary_10_1016_j_apenergy_2024_124236
crossref_primary_10_1109_TNSE_2021_3137381
crossref_primary_10_1186_s40537_024_01043_z
crossref_primary_10_1016_j_trc_2024_104953
crossref_primary_10_1109_TITS_2024_3447611
crossref_primary_10_1016_j_eswa_2022_117921
crossref_primary_10_1016_j_trc_2023_104414
crossref_primary_10_3390_su16010190
crossref_primary_10_1109_TITS_2021_3069234
crossref_primary_10_1002_ett_4789
crossref_primary_10_1016_j_mlwa_2022_100441
crossref_primary_10_3390_electronics9111800
crossref_primary_10_1016_j_ins_2024_120215
crossref_primary_10_2139_ssrn_4467370
crossref_primary_10_1145_3690649
crossref_primary_10_1016_j_jbi_2022_104058
crossref_primary_10_1109_TITS_2021_3136161
crossref_primary_10_1016_j_trc_2024_104804
crossref_primary_10_1016_j_physa_2022_127959
crossref_primary_10_1109_TITS_2021_3095095
crossref_primary_10_1109_TITS_2022_3185503
crossref_primary_10_1109_TITS_2023_3323379
crossref_primary_10_1016_j_dsp_2022_103419
crossref_primary_10_1109_ACCESS_2022_3150852
crossref_primary_10_1016_j_aap_2024_107801
crossref_primary_10_1016_j_ins_2023_119144
crossref_primary_10_1016_j_trc_2020_102877
crossref_primary_10_1177_03611981211012003
crossref_primary_10_1016_j_trc_2020_102912
crossref_primary_10_1109_TITS_2022_3168865
crossref_primary_10_3390_ijgi13010027
crossref_primary_10_1016_j_trc_2022_103921
crossref_primary_10_3390_s22207994
crossref_primary_10_1109_TITS_2023_3324983
crossref_primary_10_1109_JIOT_2023_3317639
crossref_primary_10_1016_j_dsp_2022_103643
crossref_primary_10_1016_j_isprsjprs_2023_03_008
crossref_primary_10_1155_2023_2941035
crossref_primary_10_3390_su16020607
crossref_primary_10_1007_s00521_021_06111_6
crossref_primary_10_1109_MITS_2023_3265808
crossref_primary_10_1016_j_trc_2023_104358
crossref_primary_10_1109_TVT_2023_3239054
crossref_primary_10_1007_s10994_024_06711_y
crossref_primary_10_1016_j_engappai_2023_106044
crossref_primary_10_3390_app132111822
crossref_primary_10_1080_21680566_2023_2240533
crossref_primary_10_1109_MITS_2021_3116156
crossref_primary_10_1016_j_trc_2021_103185
Cites_doi 10.1061/9780784479896.026
10.24963/ijcai.2018/505
10.1080/15472450902858368
10.3390/s19051227
10.1007/978-3-319-46487-9_43
10.1109/CVPR.2017.632
10.1016/S0968-090X(03)00004-4
10.1016/j.trc.2015.09.008
10.1109/ACCESS.2017.2787696
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1109/ICCV.2017.244
10.1109/TITS.2018.2857224
10.1109/TNN.2008.2005605
10.1109/TVT.2018.2885366
10.1109/TITS.2019.2950416
10.1109/INFOCOM.2019.8737631
10.1109/TVT.2018.2890726
10.1016/j.trc.2018.04.019
10.1007/s11116-015-9592-3
10.1109/TITS.2014.2311123
10.1016/j.trc.2017.10.016
10.1016/j.cageo.2004.05.012
10.1109/TITS.2019.2935152
10.1109/CVPR.2016.264
10.1109/CVPR.2017.19
10.1016/j.trc.2017.09.019
10.1007/978-3-319-46493-0_19
10.1016/j.trc.2015.03.014
10.3390/s17071501
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2020.02.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 204
ExternalDocumentID 10_1016_j_trc_2020_02_013
S0968090X19312434
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c391t-2e9b91d05248f5a94ff8654533dd9c85fa5b057f8b2ad9917c1fa3f67548d10c3
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Tue Jul 01 01:45:11 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
Fri Feb 23 02:48:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph convolutional neural network (GCN)
Traffic management
Spatio-temporal dependencies
Traffic state forecasting
Generative adversarial framework
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-2e9b91d05248f5a94ff8654533dd9c85fa5b057f8b2ad9917c1fa3f67548d10c3
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_trc_2020_02_013
crossref_citationtrail_10_1016_j_trc_2020_02_013
elsevier_sciencedirect_doi_10_1016_j_trc_2020_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV 2017, Venice, Italy, pp. 2223–2232.
Chang, Sohn (b0035) 2015; 168
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0145) 2009; 20
Yang, Yao, Yang, Zhang (b0185) 2016; 65
Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein GAN. arXiv:1701.07875 [stat.ML].
Chandra, Al-Deek (b0030) 2009; 13
Dell’Orco, Marinelli (b0050) 2017; 85
Lei, K., Qin, M., Bai, B., Zhang, G., Yang, M., 2019. GCN-GAN: A non-linear temporal link prediction model for weighted dynamic networks. IEEE INFOCOM 2019, Paris, France, pp. 388–396.
Lv, Duan, Kang, Li, Wang (b0125) 2015; 16
Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.-Y., 2018. GaAN: gated attention networks for learning on large and spatiotemporal graphs. UAI 2018, Monterey, California, USA.
Tan, H., Xuan, X., Wu, Y., Zhong, Z., Ran, B., 2016. A comparison of traffic flow prediction methods based on DBN. CICTP 2016, Shanghai, China, pp. 273–283.
Genders, W., Razavi, S., 2016. Using a deep reinforcement learning agent for traffic signal control. arXiv:1611.01142 [cs.LG].
Kamarianakis, Prastacos (b0085) 2005; 31
Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T., 2015. Visually indicated sounds. CVPR 2016, Nevada, Las Vegas, pp. 2405–2413.
Liang, Du, Wang, Han (b0115) 2019; 68
Williams, Hoel (b0175) 2003; 129
Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. ICLR 2017, Toulon, France.
Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H., 2018. T-GCN: A temporal graph convolutional network for traffic prediction. arXiv:1811.05320 [cs, LG].
Mai, T., Ghosh, B., Wilson, S., 2012. Multivariate short-term traffic flow forecasting using bayesian vector autoregressive moving average model. TRB 91st Annual Meeting, Washington, D.C.
Gafni, O., Wolf, L., Taigman, Y., 2019. Vid2Game: controllable characters extracted from real-world videos. arXiv:1904.08379 [cs.LG].
Huang, Song, Hong, Xie (b0070) 2014; 15
Lin, Dai, Li, Wang (b0120) 2019; 20
Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2013. Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014, Banff, Canada.
Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2018. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. arXiv:1802.07007 [cs, LG].
Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. arXiv:1705.02699 [cs.LG].
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2016. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017, Honolulu, Hawaii, pp. 1125–1134.
Stathopoulos, Karlaftis (b0155) 2003; 11
Jo, Yu, Jeon, Sohn (b0080) 2018; 68
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2017. Graph attention networks. ICLR 2018, Vancouver, Canada.
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W., 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 [cs.CV].
Baek, Sohn (b0015) 2016; 43
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., n.d. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958.
Cao, Zhong, Zhou, Wang, Zhu, Zhang (b0025) 2018; 6
Yu, B., Yin, H., Zhu, Z., 2017. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework For Traffic Forecasting. arXiv:1709.04875 [cs, LG].
Gori, M., Monfardini, G., Scarselli, F., 2005. A new model for learning in graph domains. IJCNN 2005, Montreal, Canada, 729–734.
Ke, Zheng, Yang, Xiqun (b0090) 2017; 85
Lee, Roh, Shin, Sohn (bib216) 2019; 19
Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2017, Barcelona, Spain, 3844–3852.
Zhang, Yao, Zhang, Zheng (b0205) 2018; 92
Xie, S., Huang, X., Tu, Z., 2015. Top-down learning for structured labeling with convolutional pseudoprior. ECCV 2016, Amsterdam, Netherlands, pp. 302–317.
Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs.CV].
Ma, Tao, Wang, Yu, Wang (b0135) 2015; 54
Abu-El-Haija, Perozzi, Al-Rfou, Alemi (b0005) 2017
Li, C., Wand, M., 2016. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. ECCV 2016, Amsterdam, Netherlands.
10.1016/j.trc.2020.02.013_b0075
10.1016/j.trc.2020.02.013_b0130
Yang (10.1016/j.trc.2020.02.013_b0185) 2016; 65
10.1016/j.trc.2020.02.013_b0010
Dell’Orco (10.1016/j.trc.2020.02.013_b0050) 2017; 85
Huang (10.1016/j.trc.2020.02.013_b0070) 2014; 15
Williams (10.1016/j.trc.2020.02.013_b0175) 2003; 129
10.1016/j.trc.2020.02.013_b0055
10.1016/j.trc.2020.02.013_b0110
10.1016/j.trc.2020.02.013_b0210
10.1016/j.trc.2020.02.013_b0215
Stathopoulos (10.1016/j.trc.2020.02.013_b0155) 2003; 11
Cao (10.1016/j.trc.2020.02.013_b0025) 2018; 6
Lv (10.1016/j.trc.2020.02.013_b0125) 2015; 16
Scarselli (10.1016/j.trc.2020.02.013_b0145) 2009; 20
Ke (10.1016/j.trc.2020.02.013_b0090) 2017; 85
Kamarianakis (10.1016/j.trc.2020.02.013_b0085) 2005; 31
Abu-El-Haija (10.1016/j.trc.2020.02.013_b0005) 2017
10.1016/j.trc.2020.02.013_b0190
Chang (10.1016/j.trc.2020.02.013_b0035) 2015; 168
10.1016/j.trc.2020.02.013_b0170
10.1016/j.trc.2020.02.013_b0095
10.1016/j.trc.2020.02.013_b0150
10.1016/j.trc.2020.02.013_b0195
10.1016/j.trc.2020.02.013_b0020
10.1016/j.trc.2020.02.013_b0065
Ma (10.1016/j.trc.2020.02.013_b0135) 2015; 54
10.1016/j.trc.2020.02.013_b0165
10.1016/j.trc.2020.02.013_b0045
10.1016/j.trc.2020.02.013_b0100
Lin (10.1016/j.trc.2020.02.013_b0120) 2019; 20
Zhang (10.1016/j.trc.2020.02.013_b0205) 2018; 92
10.1016/j.trc.2020.02.013_b0200
10.1016/j.trc.2020.02.013_b0105
Liang (10.1016/j.trc.2020.02.013_b0115) 2019; 68
Jo (10.1016/j.trc.2020.02.013_b0080) 2018; 68
Chandra (10.1016/j.trc.2020.02.013_b0030) 2009; 13
Lee (10.1016/j.trc.2020.02.013_bib216) 2019; 19
10.1016/j.trc.2020.02.013_b0180
10.1016/j.trc.2020.02.013_b0060
10.1016/j.trc.2020.02.013_b0160
10.1016/j.trc.2020.02.013_b0040
Baek (10.1016/j.trc.2020.02.013_b0015) 2016; 43
10.1016/j.trc.2020.02.013_b0140
References_xml – volume: 11
  start-page: 121
  year: 2003
  end-page: 135
  ident: b0155
  article-title: A multivariate state space approach for urban traffic flow modeling and prediction
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., n.d. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958.
– reference: Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein GAN. arXiv:1701.07875 [stat.ML].
– volume: 85
  start-page: 591
  year: 2017
  end-page: 608
  ident: b0090
  article-title: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Lei, K., Qin, M., Bai, B., Zhang, G., Yang, M., 2019. GCN-GAN: A non-linear temporal link prediction model for weighted dynamic networks. IEEE INFOCOM 2019, Paris, France, pp. 388–396.
– volume: 20
  start-page: 2395
  year: 2019
  end-page: 2400
  ident: b0120
  article-title: Pattern sensitive prediction of traffic flow based on generative adversarial framework
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 129
  start-page: 664
  year: 2003
  end-page: 672
  ident: b0175
  article-title: L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
  publication-title: J. Transport. Eng.
– reference: Tan, H., Xuan, X., Wu, Y., Zhong, Z., Ran, B., 2016. A comparison of traffic flow prediction methods based on DBN. CICTP 2016, Shanghai, China, pp. 273–283.
– reference: Gori, M., Monfardini, G., Scarselli, F., 2005. A new model for learning in graph domains. IJCNN 2005, Montreal, Canada, 729–734.
– volume: 13
  start-page: 53
  year: 2009
  end-page: 72
  ident: b0030
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: Journal of Intelligent Transportation Systems
– reference: Gafni, O., Wolf, L., Taigman, Y., 2019. Vid2Game: controllable characters extracted from real-world videos. arXiv:1904.08379 [cs.LG].
– volume: 168
  start-page: 23
  year: 2015
  end-page: 33
  ident: b0035
  article-title: Commuter dependence on expressways when travelling to work
  publication-title: Proc. Inst. Civil Eng. – Transp.
– reference: Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV 2017, Venice, Italy, pp. 2223–2232.
– volume: 92
  start-page: 76
  year: 2018
  end-page: 89
  ident: b0205
  article-title: Estimating metro passengers’ path choices by combining self-reported revealed preference and smart card data
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2018. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. arXiv:1802.07007 [cs, LG].
– volume: 85
  start-page: 168
  year: 2017
  end-page: 183
  ident: b0050
  article-title: Modeling the dynamic effect of information on drivers’ choice behavior in the context of an Advanced Traveler Information System
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Xie, S., Huang, X., Tu, Z., 2015. Top-down learning for structured labeling with convolutional pseudoprior. ECCV 2016, Amsterdam, Netherlands, pp. 302–317.
– reference: Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H., 2018. T-GCN: A temporal graph convolutional network for traffic prediction. arXiv:1811.05320 [cs, LG].
– reference: Li, C., Wand, M., 2016. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. ECCV 2016, Amsterdam, Netherlands.
– volume: 31
  start-page: 119
  year: 2005
  end-page: 133
  ident: b0085
  article-title: Space-time modeling of traffic flow
  publication-title: Comput. Geosci.
– reference: Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. ICLR 2017, Toulon, France.
– reference: Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T., 2015. Visually indicated sounds. CVPR 2016, Nevada, Las Vegas, pp. 2405–2413.
– reference: Yu, B., Yin, H., Zhu, Z., 2017. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework For Traffic Forecasting. arXiv:1709.04875 [cs, LG].
– volume: 68
  start-page: 1188
  year: 2018
  end-page: 1197
  ident: b0080
  article-title: Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies
  publication-title: IEEE Trans. Vehic. Technol.
– reference: Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2017. Graph attention networks. ICLR 2018, Vancouver, Canada.
– volume: 16
  start-page: 865
  year: 2015
  end-page: 873
  ident: b0125
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– reference: Genders, W., Razavi, S., 2016. Using a deep reinforcement learning agent for traffic signal control. arXiv:1611.01142 [cs.LG].
– volume: 15
  start-page: 2191
  year: 2014
  end-page: 2201
  ident: b0070
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEEE Trans. Intell. Transport.
– reference: Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.-Y., 2018. GaAN: gated attention networks for learning on large and spatiotemporal graphs. UAI 2018, Monterey, California, USA.
– volume: 43
  start-page: 623
  year: 2016
  end-page: 641
  ident: b0015
  article-title: An investigation into passenger preference for express trains during peak hours
  publication-title: Transportation
– reference: Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2013. Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014, Banff, Canada.
– volume: 19
  start-page: 1227
  year: 2019
  ident: bib216
  article-title: Image-based learning to measure the space mean speed on a stretch of road without the need to tag images with labels
  publication-title: Sensors
– reference: Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs.CV].
– start-page: 9197
  year: 2017
  end-page: 9207
  ident: b0005
  article-title: Watch Your Step: Learning Node Embeddings via Graph Attention
  publication-title: Advances NIPS 2018
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b0145
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
– volume: 68
  start-page: 1243
  year: 2019
  end-page: 1253
  ident: b0115
  article-title: A deep reinforcement learning network for traffic light cycle control
  publication-title: IEEE Trans. Vehic. Technol.
– reference: Mai, T., Ghosh, B., Wilson, S., 2012. Multivariate short-term traffic flow forecasting using bayesian vector autoregressive moving average model. TRB 91st Annual Meeting, Washington, D.C.
– volume: 6
  start-page: 5276
  year: 2018
  end-page: 5289
  ident: b0025
  article-title: Interactive temporal recurrent convolution network for traffic prediction in data centers
  publication-title: IEEE Access
– reference: Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2017, Barcelona, Spain, 3844–3852.
– reference: Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W., 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 [cs.CV].
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: b0135
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 65
  start-page: 190
  year: 2016
  end-page: 204
  ident: b0185
  article-title: Modeling the charging and route choice behavior of BEV drivers
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2016. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017, Honolulu, Hawaii, pp. 1125–1134.
– reference: Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. arXiv:1705.02699 [cs.LG].
– ident: 10.1016/j.trc.2020.02.013_b0130
– ident: 10.1016/j.trc.2020.02.013_b0160
  doi: 10.1061/9780784479896.026
– ident: 10.1016/j.trc.2020.02.013_b0190
  doi: 10.24963/ijcai.2018/505
– volume: 13
  start-page: 53
  issue: 2
  year: 2009
  ident: 10.1016/j.trc.2020.02.013_b0030
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: Journal of Intelligent Transportation Systems
  doi: 10.1080/15472450902858368
– volume: 19
  start-page: 1227
  issue: 5
  year: 2019
  ident: 10.1016/j.trc.2020.02.013_bib216
  article-title: Image-based learning to measure the space mean speed on a stretch of road without the need to tag images with labels
  publication-title: Sensors
  doi: 10.3390/s19051227
– ident: 10.1016/j.trc.2020.02.013_b0110
  doi: 10.1007/978-3-319-46487-9_43
– ident: 10.1016/j.trc.2020.02.013_b0075
  doi: 10.1109/CVPR.2017.632
– volume: 11
  start-page: 121
  issue: 2
  year: 2003
  ident: 10.1016/j.trc.2020.02.013_b0155
  article-title: A multivariate state space approach for urban traffic flow modeling and prediction
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/S0968-090X(03)00004-4
– volume: 65
  start-page: 190
  year: 2016
  ident: 10.1016/j.trc.2020.02.013_b0185
  article-title: Modeling the charging and route choice behavior of BEV drivers
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.09.008
– ident: 10.1016/j.trc.2020.02.013_b0165
– ident: 10.1016/j.trc.2020.02.013_b0060
– ident: 10.1016/j.trc.2020.02.013_b0010
– volume: 6
  start-page: 5276
  year: 2018
  ident: 10.1016/j.trc.2020.02.013_b0025
  article-title: Interactive temporal recurrent convolution network for traffic prediction in data centers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2787696
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  ident: 10.1016/j.trc.2020.02.013_b0175
  article-title: L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– ident: 10.1016/j.trc.2020.02.013_b0215
  doi: 10.1109/ICCV.2017.244
– volume: 20
  start-page: 2395
  issue: 6
  year: 2019
  ident: 10.1016/j.trc.2020.02.013_b0120
  article-title: Pattern sensitive prediction of traffic flow based on generative adversarial framework
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2018.2857224
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.trc.2020.02.013_b0145
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– ident: 10.1016/j.trc.2020.02.013_b0095
– ident: 10.1016/j.trc.2020.02.013_b0045
– volume: 68
  start-page: 1188
  issue: 2
  year: 2018
  ident: 10.1016/j.trc.2020.02.013_b0080
  article-title: Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies
  publication-title: IEEE Trans. Vehic. Technol.
  doi: 10.1109/TVT.2018.2885366
– volume: 168
  start-page: 23
  issue: 1
  year: 2015
  ident: 10.1016/j.trc.2020.02.013_b0035
  article-title: Commuter dependence on expressways when travelling to work
  publication-title: Proc. Inst. Civil Eng. – Transp.
– ident: 10.1016/j.trc.2020.02.013_b0020
– ident: 10.1016/j.trc.2020.02.013_b0150
– start-page: 9197
  year: 2017
  ident: 10.1016/j.trc.2020.02.013_b0005
  article-title: Watch Your Step: Learning Node Embeddings via Graph Attention
– ident: 10.1016/j.trc.2020.02.013_b0040
  doi: 10.1109/TITS.2019.2950416
– ident: 10.1016/j.trc.2020.02.013_b0105
  doi: 10.1109/INFOCOM.2019.8737631
– volume: 68
  start-page: 1243
  issue: 2
  year: 2019
  ident: 10.1016/j.trc.2020.02.013_b0115
  article-title: A deep reinforcement learning network for traffic light cycle control
  publication-title: IEEE Trans. Vehic. Technol.
  doi: 10.1109/TVT.2018.2890726
– ident: 10.1016/j.trc.2020.02.013_b0055
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: 10.1016/j.trc.2020.02.013_b0125
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– ident: 10.1016/j.trc.2020.02.013_b0200
– volume: 92
  start-page: 76
  year: 2018
  ident: 10.1016/j.trc.2020.02.013_b0205
  article-title: Estimating metro passengers’ path choices by combining self-reported revealed preference and smart card data
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2018.04.019
– volume: 43
  start-page: 623
  issue: 4
  year: 2016
  ident: 10.1016/j.trc.2020.02.013_b0015
  article-title: An investigation into passenger preference for express trains during peak hours
  publication-title: Transportation
  doi: 10.1007/s11116-015-9592-3
– volume: 15
  start-page: 2191
  issue: 5
  year: 2014
  ident: 10.1016/j.trc.2020.02.013_b0070
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEEE Trans. Intell. Transport.
  doi: 10.1109/TITS.2014.2311123
– volume: 85
  start-page: 591
  year: 2017
  ident: 10.1016/j.trc.2020.02.013_b0090
  article-title: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.10.016
– volume: 31
  start-page: 119
  issue: 2
  year: 2005
  ident: 10.1016/j.trc.2020.02.013_b0085
  article-title: Space-time modeling of traffic flow
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.05.012
– ident: 10.1016/j.trc.2020.02.013_b0210
  doi: 10.1109/TITS.2019.2935152
– ident: 10.1016/j.trc.2020.02.013_b0140
  doi: 10.1109/CVPR.2016.264
– ident: 10.1016/j.trc.2020.02.013_b0170
– ident: 10.1016/j.trc.2020.02.013_b0065
– ident: 10.1016/j.trc.2020.02.013_b0100
  doi: 10.1109/CVPR.2017.19
– volume: 85
  start-page: 168
  year: 2017
  ident: 10.1016/j.trc.2020.02.013_b0050
  article-title: Modeling the dynamic effect of information on drivers’ choice behavior in the context of an Advanced Traveler Information System
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.09.019
– ident: 10.1016/j.trc.2020.02.013_b0180
  doi: 10.1007/978-3-319-46493-0_19
– volume: 54
  start-page: 187
  year: 2015
  ident: 10.1016/j.trc.2020.02.013_b0135
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.014
– ident: 10.1016/j.trc.2020.02.013_b0195
  doi: 10.3390/s17071501
SSID ssj0001957
Score 2.6445842
Snippet •The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Generative adversarial framework
Graph convolutional neural network (GCN)
Spatio-temporal dependencies
Traffic management
Traffic state forecasting
Title Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)
URI https://dx.doi.org/10.1016/j.trc.2020.02.013
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQHxlgcGQAq1Yye1R1QBBUQXqNQt8iOWilBbtQHEws6_5pw4PCRgYIouubMi38n3xTl_h9CB04YZwmykcqkiTrmLBDMJiJq2Bbfgdr_fcdNLu31-NUgGDdSpz8L4ssqw9ldrerlahzutMJutyXDYugXwLYgkA4AgkKSY5wTlvO2j_OT1s8yDyortE5T9nsSg_rNZ1ngVU89iGJOStpOyn3PTl3xzvoKWA1DEp9W7rKJGPmqihfoc8ayJlr5QCa6hN99j06iZr2LG07GyuJgqTw-BZxNIUDOsX7AJzTm9igKwGD2DBM-9c6LAUfWA67a4MBlgBUnO4vEIK1xSW_sxnkK0gq5nwywvZS05Przo9I7WUf_87K7TjUKbhcgwSYsozqWW1JIk5sIlSnLnRArAijFrpRGJU4kGVOeEjpUFONk21Cnm4EuDC0uJYRtobjQe5ZsIi9i4VHELqBEGoFakhmspbaoNkYynW4jUE5yZwEHuW2E8ZHWx2X0GPsm8TzISZ-CTLXT8YTKpCDj-Uua117JvUZRBgvjdbPt_Zjto0UtV-eMumiumj_keQJRC75cxuI_mTy-vu713dxLnYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeqpaHoA_qQw8UKVo7doJ9RKvCUmAvgLQ3y49YAqHd1W4K6k_gXzNOHEQl4MApcjxjRR5r5os9_gbgZ7COO8p9ZiplMsFEyCR3BTYtO5DCo9njfsf5qBxeiT_jYrwEg-4uTEyrTL6_9emNt05v-mk2-7Pr6_4Fgm9JFR0jBMEgxcUyrER2qqIHK4cnp8PRk0NmqiX8RPm4LTHuDjebNK96HokMc9owdzL-cnh6FnKOPsHHhBXJYfs5n2GpmqzDaneVeLEOH56xCW7AQyyz6cwiJjKT-dR4Us9NZIggixnGqAWx_4hL9TmjiEG8mN1jC_ujfbJEU3VLusq4OB-ohXHOk-mEGNKwW8cx7tKCRdlIiNk8mnRysnc8GP3ahKuj35eDYZYqLWSOK1ZneaWsYp4WuZChMEqEIEvEVpx7r5wsgiksArsgbW48IsoDx4LhAX82hPSMOr4Fvcl0Um0DkbkLpREegSMOwLwsnbBK-dI6qrgod4B2E6xdoiGP1TBudZdvdqPRJjraRNNco012YP9JZdZycLwlLDqr6f8WksYY8bral_ep_YDV4eX5mT47GZ1-hbXY02ZDfoNePf9bfUfEUtvdtCIfAWlC6hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+road+traffic+speeds+by+considering+area-wide+spatio-temporal+dependencies+based+on+a+graph+convolutional+neural+network+%28GCN%29&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Yu%2C+Byeonghyeop&rft.au=Lee%2C+Yongjin&rft.au=Sohn%2C+Keemin&rft.date=2020-05-01&rft.issn=0968-090X&rft.volume=114&rft.spage=189&rft.epage=204&rft_id=info:doi/10.1016%2Fj.trc.2020.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2020_02_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon