Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)
•The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to neighbor roads unlike existing GCNs.•The present study was focused on devising a GCN model that mimic true propagation patterns of traffic.•...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 114; pp. 189 - 204 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to neighbor roads unlike existing GCNs.•The present study was focused on devising a GCN model that mimic true propagation patterns of traffic.•The proposed model shows promise for application to a real-time traffic forecasting system.
The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation. |
---|---|
AbstractList | •The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to neighbor roads unlike existing GCNs.•The present study was focused on devising a GCN model that mimic true propagation patterns of traffic.•The proposed model shows promise for application to a real-time traffic forecasting system.
The traffic state in an urban transportation network is determined via spatio-temporal traffic propagation. In early traffic forecasting studies, time-series models were adopted to accommodate autocorrelations between traffic states. The incorporation of spatial correlations into the forecasting of traffic states, however, involved a computational burden. Deep learning technologies were recently introduced to traffic forecasting in order to accommodate the spatio-temporal dependencies among traffic states. In the present study, we devised a novel graph-based neural network that expanded the existing graph convolutional neural network (GCN). The proposed model allowed us to differentiate the intensity of connecting to neighbor roads, unlike existing GCNs that give equal weight to each neighbor road. A plausible model architecture that mimicked real traffic propagation was established based on the graph convolution. The domain knowledge was efficiently incorporated into a neural network architecture. The present study also employed a generative adversarial framework to ensure that a forecasted traffic state could be as realistic as possible considering the joint probabilistic density of real traffic states. The forecasting performance of the proposed model surpassed that of the original GCN model, and the estimated adjacency matrices revealed the hidden nature of real traffic propagation. |
Author | Sohn, Keemin Lee, Yongjin Yu, Byeonghyeop |
Author_xml | – sequence: 1 givenname: Byeonghyeop surname: Yu fullname: Yu, Byeonghyeop email: yuruka@daum.net organization: Department of Urban Engineering, Chung–Ang University, Seoul, Korea, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea – sequence: 2 givenname: Yongjin surname: Lee fullname: Lee, Yongjin email: solarone@etri.re.kr organization: KSB Convergence Research Department, ETRI, Daejeon, Republic of Korea – sequence: 3 givenname: Keemin surname: Sohn fullname: Sohn, Keemin email: kmsohn@cau.ac.kr organization: Department of Urban Engineering, Chung–Ang University, Seoul, Korea, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea |
BookMark | eNp9kD1LBDEQhoMoeJ7-ALuUWuw62b3cbrCSwy8QbRTsQi6ZaM4zWZKo-BP812bVyuKql2HmGXifPbLtg0dCDhnUDNj8ZFXnqOsGGqihqYG1W2TC-k5UTcvFNpmAmPcVCHjcJXsprQCACd5NyNdFiKhVys4_0RiUoTkqa52maUA0iS4_qQ4-OYNxPFERVfVRprJX2YUq4-sQolpTgwN6g147LJRKaGjwVNGnqIbn8cd7WL8Vwpdbj2_xJ_JHiC_06HJxe7xPdqxaJzz4yyl5uDi_X1xVN3eX14uzm0q3guWqQbEUzABvZr3lSsys7ed8xtvWGKF7bhVfAu9sv2yUEYJ1mlnV2nnHZ71hoNspYb9_dQwpRbRyiO5VxU_JQI4u5UoWl3J0KaGRxWVhun-Mdnms74stt95Inv6SWCq9O4wyFUFeo3HFe5YmuA30N2x8k74 |
CitedBy_id | crossref_primary_10_1016_j_physa_2024_129598 crossref_primary_10_1007_s10489_022_03753_4 crossref_primary_10_1016_j_inffus_2023_102078 crossref_primary_10_1109_ACCESS_2022_3222561 crossref_primary_10_3390_rs13101919 crossref_primary_10_1007_s10845_024_02490_4 crossref_primary_10_1016_j_aei_2025_103213 crossref_primary_10_1109_MITS_2022_3207831 crossref_primary_10_1007_s00500_022_07025_8 crossref_primary_10_1109_TITS_2023_3325817 crossref_primary_10_1109_TITS_2020_3000761 crossref_primary_10_1016_j_neucom_2023_126765 crossref_primary_10_1016_j_chaos_2022_112405 crossref_primary_10_1016_j_trc_2021_103526 crossref_primary_10_1016_j_jag_2023_103238 crossref_primary_10_1016_j_ins_2022_03_074 crossref_primary_10_1109_TITS_2021_3108939 crossref_primary_10_20965_jaciii_2024_p0552 crossref_primary_10_1108_JICV_06_2022_0021 crossref_primary_10_1109_ACCESS_2025_3541774 crossref_primary_10_1016_j_energy_2024_130684 crossref_primary_10_1007_s11227_024_06539_2 crossref_primary_10_1109_ACCESS_2023_3333938 crossref_primary_10_1109_TITS_2021_3083957 crossref_primary_10_1080_15472450_2022_2048655 crossref_primary_10_1016_j_ijfatigue_2023_107722 crossref_primary_10_1016_j_knosys_2024_112295 crossref_primary_10_1016_j_knosys_2023_111184 crossref_primary_10_1007_s11227_021_04041_7 crossref_primary_10_1016_j_engappai_2025_110074 crossref_primary_10_1155_2021_4097149 crossref_primary_10_1016_j_engappai_2024_108301 crossref_primary_10_1109_TITS_2023_3314402 crossref_primary_10_1109_TITS_2024_3364759 crossref_primary_10_1049_iet_its_2020_0410 crossref_primary_10_1177_03611981241248160 crossref_primary_10_3390_ijgi10070485 crossref_primary_10_3390_s24154796 crossref_primary_10_1016_j_is_2023_102318 crossref_primary_10_1109_ACCESS_2023_3324035 crossref_primary_10_2139_ssrn_4065482 crossref_primary_10_3390_rs14020303 crossref_primary_10_1142_S2424922X24500013 crossref_primary_10_1016_j_engappai_2024_109898 crossref_primary_10_3390_app14031253 crossref_primary_10_1186_s13677_023_00576_7 crossref_primary_10_1109_TITS_2022_3199160 crossref_primary_10_1016_j_trc_2023_104205 crossref_primary_10_3934_mbe_2022592 crossref_primary_10_3390_app14198847 crossref_primary_10_1007_s12239_024_00036_4 crossref_primary_10_3390_rs15153878 crossref_primary_10_1109_ACCESS_2022_3223046 crossref_primary_10_1016_j_scs_2023_104445 crossref_primary_10_1016_j_chemosphere_2023_139071 crossref_primary_10_1155_2023_8256907 crossref_primary_10_1016_j_eswa_2021_115992 crossref_primary_10_1109_ACCESS_2023_3282545 crossref_primary_10_1016_j_eng_2024_04_020 crossref_primary_10_1007_s12083_024_01792_x crossref_primary_10_1016_j_apr_2021_101197 crossref_primary_10_1016_j_trd_2024_104331 crossref_primary_10_1016_j_eswa_2023_121548 crossref_primary_10_1061_JTEPBS_0000744 crossref_primary_10_1016_j_neucom_2024_128175 crossref_primary_10_1007_s10489_024_06218_y crossref_primary_10_1016_j_knosys_2023_110591 crossref_primary_10_1016_j_asoc_2022_108497 crossref_primary_10_1016_j_trc_2023_104032 crossref_primary_10_1515_jisys_2023_0229 crossref_primary_10_1016_j_enbuild_2022_112229 crossref_primary_10_1016_j_knosys_2020_106592 crossref_primary_10_1109_OJITS_2023_3260624 crossref_primary_10_1109_TBDATA_2022_3156366 crossref_primary_10_3390_s22197179 crossref_primary_10_1109_TITS_2021_3090851 crossref_primary_10_1109_JIOT_2023_3290401 crossref_primary_10_1016_j_energy_2022_126034 crossref_primary_10_1007_s11227_024_06823_1 crossref_primary_10_3390_ijgi12120496 crossref_primary_10_1109_ACCESS_2021_3100261 crossref_primary_10_1061_JTEPBS_TEENG_7451 crossref_primary_10_1016_j_energy_2023_127875 crossref_primary_10_3390_land12101897 crossref_primary_10_1016_j_heliyon_2023_e19927 crossref_primary_10_1109_TVT_2024_3462708 crossref_primary_10_1080_01441647_2024_2408840 crossref_primary_10_1016_j_trc_2023_104263 crossref_primary_10_3390_ijgi10070455 crossref_primary_10_1016_j_renene_2024_122191 crossref_primary_10_1109_ACCESS_2024_3462509 crossref_primary_10_1109_TGRS_2021_3063255 crossref_primary_10_1016_j_engappai_2023_107665 crossref_primary_10_1049_iet_its_2019_0873 crossref_primary_10_1016_j_engappai_2024_109154 crossref_primary_10_1016_j_apenergy_2024_124236 crossref_primary_10_1109_TNSE_2021_3137381 crossref_primary_10_1186_s40537_024_01043_z crossref_primary_10_1016_j_trc_2024_104953 crossref_primary_10_1109_TITS_2024_3447611 crossref_primary_10_1016_j_eswa_2022_117921 crossref_primary_10_1016_j_trc_2023_104414 crossref_primary_10_3390_su16010190 crossref_primary_10_1109_TITS_2021_3069234 crossref_primary_10_1002_ett_4789 crossref_primary_10_1016_j_mlwa_2022_100441 crossref_primary_10_3390_electronics9111800 crossref_primary_10_1016_j_ins_2024_120215 crossref_primary_10_2139_ssrn_4467370 crossref_primary_10_1145_3690649 crossref_primary_10_1016_j_jbi_2022_104058 crossref_primary_10_1109_TITS_2021_3136161 crossref_primary_10_1016_j_trc_2024_104804 crossref_primary_10_1016_j_physa_2022_127959 crossref_primary_10_1109_TITS_2021_3095095 crossref_primary_10_1109_TITS_2022_3185503 crossref_primary_10_1109_TITS_2023_3323379 crossref_primary_10_1016_j_dsp_2022_103419 crossref_primary_10_1109_ACCESS_2022_3150852 crossref_primary_10_1016_j_aap_2024_107801 crossref_primary_10_1016_j_ins_2023_119144 crossref_primary_10_1016_j_trc_2020_102877 crossref_primary_10_1177_03611981211012003 crossref_primary_10_1016_j_trc_2020_102912 crossref_primary_10_1109_TITS_2022_3168865 crossref_primary_10_3390_ijgi13010027 crossref_primary_10_1016_j_trc_2022_103921 crossref_primary_10_3390_s22207994 crossref_primary_10_1109_TITS_2023_3324983 crossref_primary_10_1109_JIOT_2023_3317639 crossref_primary_10_1016_j_dsp_2022_103643 crossref_primary_10_1016_j_isprsjprs_2023_03_008 crossref_primary_10_1155_2023_2941035 crossref_primary_10_3390_su16020607 crossref_primary_10_1007_s00521_021_06111_6 crossref_primary_10_1109_MITS_2023_3265808 crossref_primary_10_1016_j_trc_2023_104358 crossref_primary_10_1109_TVT_2023_3239054 crossref_primary_10_1007_s10994_024_06711_y crossref_primary_10_1016_j_engappai_2023_106044 crossref_primary_10_3390_app132111822 crossref_primary_10_1080_21680566_2023_2240533 crossref_primary_10_1109_MITS_2021_3116156 crossref_primary_10_1016_j_trc_2021_103185 |
Cites_doi | 10.1061/9780784479896.026 10.24963/ijcai.2018/505 10.1080/15472450902858368 10.3390/s19051227 10.1007/978-3-319-46487-9_43 10.1109/CVPR.2017.632 10.1016/S0968-090X(03)00004-4 10.1016/j.trc.2015.09.008 10.1109/ACCESS.2017.2787696 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1109/ICCV.2017.244 10.1109/TITS.2018.2857224 10.1109/TNN.2008.2005605 10.1109/TVT.2018.2885366 10.1109/TITS.2019.2950416 10.1109/INFOCOM.2019.8737631 10.1109/TVT.2018.2890726 10.1016/j.trc.2018.04.019 10.1007/s11116-015-9592-3 10.1109/TITS.2014.2311123 10.1016/j.trc.2017.10.016 10.1016/j.cageo.2004.05.012 10.1109/TITS.2019.2935152 10.1109/CVPR.2016.264 10.1109/CVPR.2017.19 10.1016/j.trc.2017.09.019 10.1007/978-3-319-46493-0_19 10.1016/j.trc.2015.03.014 10.3390/s17071501 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2020.02.013 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 204 |
ExternalDocumentID | 10_1016_j_trc_2020_02_013 S0968090X19312434 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c391t-2e9b91d05248f5a94ff8654533dd9c85fa5b057f8b2ad9917c1fa3f67548d10c3 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Tue Jul 01 01:45:11 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Fri Feb 23 02:48:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph convolutional neural network (GCN) Traffic management Spatio-temporal dependencies Traffic state forecasting Generative adversarial framework |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-2e9b91d05248f5a94ff8654533dd9c85fa5b057f8b2ad9917c1fa3f67548d10c3 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_trc_2020_02_013 crossref_citationtrail_10_1016_j_trc_2020_02_013 elsevier_sciencedirect_doi_10_1016_j_trc_2020_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV 2017, Venice, Italy, pp. 2223–2232. Chang, Sohn (b0035) 2015; 168 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0145) 2009; 20 Yang, Yao, Yang, Zhang (b0185) 2016; 65 Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein GAN. arXiv:1701.07875 [stat.ML]. Chandra, Al-Deek (b0030) 2009; 13 Dell’Orco, Marinelli (b0050) 2017; 85 Lei, K., Qin, M., Bai, B., Zhang, G., Yang, M., 2019. GCN-GAN: A non-linear temporal link prediction model for weighted dynamic networks. IEEE INFOCOM 2019, Paris, France, pp. 388–396. Lv, Duan, Kang, Li, Wang (b0125) 2015; 16 Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.-Y., 2018. GaAN: gated attention networks for learning on large and spatiotemporal graphs. UAI 2018, Monterey, California, USA. Tan, H., Xuan, X., Wu, Y., Zhong, Z., Ran, B., 2016. A comparison of traffic flow prediction methods based on DBN. CICTP 2016, Shanghai, China, pp. 273–283. Genders, W., Razavi, S., 2016. Using a deep reinforcement learning agent for traffic signal control. arXiv:1611.01142 [cs.LG]. Kamarianakis, Prastacos (b0085) 2005; 31 Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T., 2015. Visually indicated sounds. CVPR 2016, Nevada, Las Vegas, pp. 2405–2413. Liang, Du, Wang, Han (b0115) 2019; 68 Williams, Hoel (b0175) 2003; 129 Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. ICLR 2017, Toulon, France. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H., 2018. T-GCN: A temporal graph convolutional network for traffic prediction. arXiv:1811.05320 [cs, LG]. Mai, T., Ghosh, B., Wilson, S., 2012. Multivariate short-term traffic flow forecasting using bayesian vector autoregressive moving average model. TRB 91st Annual Meeting, Washington, D.C. Gafni, O., Wolf, L., Taigman, Y., 2019. Vid2Game: controllable characters extracted from real-world videos. arXiv:1904.08379 [cs.LG]. Huang, Song, Hong, Xie (b0070) 2014; 15 Lin, Dai, Li, Wang (b0120) 2019; 20 Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2013. Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014, Banff, Canada. Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2018. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. arXiv:1802.07007 [cs, LG]. Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. arXiv:1705.02699 [cs.LG]. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2016. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017, Honolulu, Hawaii, pp. 1125–1134. Stathopoulos, Karlaftis (b0155) 2003; 11 Jo, Yu, Jeon, Sohn (b0080) 2018; 68 Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2017. Graph attention networks. ICLR 2018, Vancouver, Canada. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W., 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 [cs.CV]. Baek, Sohn (b0015) 2016; 43 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., n.d. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958. Cao, Zhong, Zhou, Wang, Zhu, Zhang (b0025) 2018; 6 Yu, B., Yin, H., Zhu, Z., 2017. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework For Traffic Forecasting. arXiv:1709.04875 [cs, LG]. Gori, M., Monfardini, G., Scarselli, F., 2005. A new model for learning in graph domains. IJCNN 2005, Montreal, Canada, 729–734. Ke, Zheng, Yang, Xiqun (b0090) 2017; 85 Lee, Roh, Shin, Sohn (bib216) 2019; 19 Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2017, Barcelona, Spain, 3844–3852. Zhang, Yao, Zhang, Zheng (b0205) 2018; 92 Xie, S., Huang, X., Tu, Z., 2015. Top-down learning for structured labeling with convolutional pseudoprior. ECCV 2016, Amsterdam, Netherlands, pp. 302–317. Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs.CV]. Ma, Tao, Wang, Yu, Wang (b0135) 2015; 54 Abu-El-Haija, Perozzi, Al-Rfou, Alemi (b0005) 2017 Li, C., Wand, M., 2016. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. ECCV 2016, Amsterdam, Netherlands. 10.1016/j.trc.2020.02.013_b0075 10.1016/j.trc.2020.02.013_b0130 Yang (10.1016/j.trc.2020.02.013_b0185) 2016; 65 10.1016/j.trc.2020.02.013_b0010 Dell’Orco (10.1016/j.trc.2020.02.013_b0050) 2017; 85 Huang (10.1016/j.trc.2020.02.013_b0070) 2014; 15 Williams (10.1016/j.trc.2020.02.013_b0175) 2003; 129 10.1016/j.trc.2020.02.013_b0055 10.1016/j.trc.2020.02.013_b0110 10.1016/j.trc.2020.02.013_b0210 10.1016/j.trc.2020.02.013_b0215 Stathopoulos (10.1016/j.trc.2020.02.013_b0155) 2003; 11 Cao (10.1016/j.trc.2020.02.013_b0025) 2018; 6 Lv (10.1016/j.trc.2020.02.013_b0125) 2015; 16 Scarselli (10.1016/j.trc.2020.02.013_b0145) 2009; 20 Ke (10.1016/j.trc.2020.02.013_b0090) 2017; 85 Kamarianakis (10.1016/j.trc.2020.02.013_b0085) 2005; 31 Abu-El-Haija (10.1016/j.trc.2020.02.013_b0005) 2017 10.1016/j.trc.2020.02.013_b0190 Chang (10.1016/j.trc.2020.02.013_b0035) 2015; 168 10.1016/j.trc.2020.02.013_b0170 10.1016/j.trc.2020.02.013_b0095 10.1016/j.trc.2020.02.013_b0150 10.1016/j.trc.2020.02.013_b0195 10.1016/j.trc.2020.02.013_b0020 10.1016/j.trc.2020.02.013_b0065 Ma (10.1016/j.trc.2020.02.013_b0135) 2015; 54 10.1016/j.trc.2020.02.013_b0165 10.1016/j.trc.2020.02.013_b0045 10.1016/j.trc.2020.02.013_b0100 Lin (10.1016/j.trc.2020.02.013_b0120) 2019; 20 Zhang (10.1016/j.trc.2020.02.013_b0205) 2018; 92 10.1016/j.trc.2020.02.013_b0200 10.1016/j.trc.2020.02.013_b0105 Liang (10.1016/j.trc.2020.02.013_b0115) 2019; 68 Jo (10.1016/j.trc.2020.02.013_b0080) 2018; 68 Chandra (10.1016/j.trc.2020.02.013_b0030) 2009; 13 Lee (10.1016/j.trc.2020.02.013_bib216) 2019; 19 10.1016/j.trc.2020.02.013_b0180 10.1016/j.trc.2020.02.013_b0060 10.1016/j.trc.2020.02.013_b0160 10.1016/j.trc.2020.02.013_b0040 Baek (10.1016/j.trc.2020.02.013_b0015) 2016; 43 10.1016/j.trc.2020.02.013_b0140 |
References_xml | – volume: 11 start-page: 121 year: 2003 end-page: 135 ident: b0155 article-title: A multivariate state space approach for urban traffic flow modeling and prediction publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., n.d. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958. – reference: Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein GAN. arXiv:1701.07875 [stat.ML]. – volume: 85 start-page: 591 year: 2017 end-page: 608 ident: b0090 article-title: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Lei, K., Qin, M., Bai, B., Zhang, G., Yang, M., 2019. GCN-GAN: A non-linear temporal link prediction model for weighted dynamic networks. IEEE INFOCOM 2019, Paris, France, pp. 388–396. – volume: 20 start-page: 2395 year: 2019 end-page: 2400 ident: b0120 article-title: Pattern sensitive prediction of traffic flow based on generative adversarial framework publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 129 start-page: 664 year: 2003 end-page: 672 ident: b0175 article-title: L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results publication-title: J. Transport. Eng. – reference: Tan, H., Xuan, X., Wu, Y., Zhong, Z., Ran, B., 2016. A comparison of traffic flow prediction methods based on DBN. CICTP 2016, Shanghai, China, pp. 273–283. – reference: Gori, M., Monfardini, G., Scarselli, F., 2005. A new model for learning in graph domains. IJCNN 2005, Montreal, Canada, 729–734. – volume: 13 start-page: 53 year: 2009 end-page: 72 ident: b0030 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: Journal of Intelligent Transportation Systems – reference: Gafni, O., Wolf, L., Taigman, Y., 2019. Vid2Game: controllable characters extracted from real-world videos. arXiv:1904.08379 [cs.LG]. – volume: 168 start-page: 23 year: 2015 end-page: 33 ident: b0035 article-title: Commuter dependence on expressways when travelling to work publication-title: Proc. Inst. Civil Eng. – Transp. – reference: Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV 2017, Venice, Italy, pp. 2223–2232. – volume: 92 start-page: 76 year: 2018 end-page: 89 ident: b0205 article-title: Estimating metro passengers’ path choices by combining self-reported revealed preference and smart card data publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2018. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. arXiv:1802.07007 [cs, LG]. – volume: 85 start-page: 168 year: 2017 end-page: 183 ident: b0050 article-title: Modeling the dynamic effect of information on drivers’ choice behavior in the context of an Advanced Traveler Information System publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Xie, S., Huang, X., Tu, Z., 2015. Top-down learning for structured labeling with convolutional pseudoprior. ECCV 2016, Amsterdam, Netherlands, pp. 302–317. – reference: Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H., 2018. T-GCN: A temporal graph convolutional network for traffic prediction. arXiv:1811.05320 [cs, LG]. – reference: Li, C., Wand, M., 2016. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. ECCV 2016, Amsterdam, Netherlands. – volume: 31 start-page: 119 year: 2005 end-page: 133 ident: b0085 article-title: Space-time modeling of traffic flow publication-title: Comput. Geosci. – reference: Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. ICLR 2017, Toulon, France. – reference: Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T., 2015. Visually indicated sounds. CVPR 2016, Nevada, Las Vegas, pp. 2405–2413. – reference: Yu, B., Yin, H., Zhu, Z., 2017. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework For Traffic Forecasting. arXiv:1709.04875 [cs, LG]. – volume: 68 start-page: 1188 year: 2018 end-page: 1197 ident: b0080 article-title: Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies publication-title: IEEE Trans. Vehic. Technol. – reference: Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y., 2017. Graph attention networks. ICLR 2018, Vancouver, Canada. – volume: 16 start-page: 865 year: 2015 end-page: 873 ident: b0125 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transport. Syst. – reference: Genders, W., Razavi, S., 2016. Using a deep reinforcement learning agent for traffic signal control. arXiv:1611.01142 [cs.LG]. – volume: 15 start-page: 2191 year: 2014 end-page: 2201 ident: b0070 article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning publication-title: IEEE Trans. Intell. Transport. – reference: Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.-Y., 2018. GaAN: gated attention networks for learning on large and spatiotemporal graphs. UAI 2018, Monterey, California, USA. – volume: 43 start-page: 623 year: 2016 end-page: 641 ident: b0015 article-title: An investigation into passenger preference for express trains during peak hours publication-title: Transportation – reference: Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2013. Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014, Banff, Canada. – volume: 19 start-page: 1227 year: 2019 ident: bib216 article-title: Image-based learning to measure the space mean speed on a stretch of road without the need to tag images with labels publication-title: Sensors – reference: Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs.CV]. – start-page: 9197 year: 2017 end-page: 9207 ident: b0005 article-title: Watch Your Step: Learning Node Embeddings via Graph Attention publication-title: Advances NIPS 2018 – volume: 20 start-page: 61 year: 2009 end-page: 80 ident: b0145 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. – volume: 68 start-page: 1243 year: 2019 end-page: 1253 ident: b0115 article-title: A deep reinforcement learning network for traffic light cycle control publication-title: IEEE Trans. Vehic. Technol. – reference: Mai, T., Ghosh, B., Wilson, S., 2012. Multivariate short-term traffic flow forecasting using bayesian vector autoregressive moving average model. TRB 91st Annual Meeting, Washington, D.C. – volume: 6 start-page: 5276 year: 2018 end-page: 5289 ident: b0025 article-title: Interactive temporal recurrent convolution network for traffic prediction in data centers publication-title: IEEE Access – reference: Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2017, Barcelona, Spain, 3844–3852. – reference: Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W., 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 [cs.CV]. – volume: 54 start-page: 187 year: 2015 end-page: 197 ident: b0135 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transport. Res. Part C: Emerg. Technol. – volume: 65 start-page: 190 year: 2016 end-page: 204 ident: b0185 article-title: Modeling the charging and route choice behavior of BEV drivers publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2016. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017, Honolulu, Hawaii, pp. 1125–1134. – reference: Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. arXiv:1705.02699 [cs.LG]. – ident: 10.1016/j.trc.2020.02.013_b0130 – ident: 10.1016/j.trc.2020.02.013_b0160 doi: 10.1061/9780784479896.026 – ident: 10.1016/j.trc.2020.02.013_b0190 doi: 10.24963/ijcai.2018/505 – volume: 13 start-page: 53 issue: 2 year: 2009 ident: 10.1016/j.trc.2020.02.013_b0030 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: Journal of Intelligent Transportation Systems doi: 10.1080/15472450902858368 – volume: 19 start-page: 1227 issue: 5 year: 2019 ident: 10.1016/j.trc.2020.02.013_bib216 article-title: Image-based learning to measure the space mean speed on a stretch of road without the need to tag images with labels publication-title: Sensors doi: 10.3390/s19051227 – ident: 10.1016/j.trc.2020.02.013_b0110 doi: 10.1007/978-3-319-46487-9_43 – ident: 10.1016/j.trc.2020.02.013_b0075 doi: 10.1109/CVPR.2017.632 – volume: 11 start-page: 121 issue: 2 year: 2003 ident: 10.1016/j.trc.2020.02.013_b0155 article-title: A multivariate state space approach for urban traffic flow modeling and prediction publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/S0968-090X(03)00004-4 – volume: 65 start-page: 190 year: 2016 ident: 10.1016/j.trc.2020.02.013_b0185 article-title: Modeling the charging and route choice behavior of BEV drivers publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.09.008 – ident: 10.1016/j.trc.2020.02.013_b0165 – ident: 10.1016/j.trc.2020.02.013_b0060 – ident: 10.1016/j.trc.2020.02.013_b0010 – volume: 6 start-page: 5276 year: 2018 ident: 10.1016/j.trc.2020.02.013_b0025 article-title: Interactive temporal recurrent convolution network for traffic prediction in data centers publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2787696 – volume: 129 start-page: 664 issue: 6 year: 2003 ident: 10.1016/j.trc.2020.02.013_b0175 article-title: L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – ident: 10.1016/j.trc.2020.02.013_b0215 doi: 10.1109/ICCV.2017.244 – volume: 20 start-page: 2395 issue: 6 year: 2019 ident: 10.1016/j.trc.2020.02.013_b0120 article-title: Pattern sensitive prediction of traffic flow based on generative adversarial framework publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2018.2857224 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.trc.2020.02.013_b0145 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – ident: 10.1016/j.trc.2020.02.013_b0095 – ident: 10.1016/j.trc.2020.02.013_b0045 – volume: 68 start-page: 1188 issue: 2 year: 2018 ident: 10.1016/j.trc.2020.02.013_b0080 article-title: Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies publication-title: IEEE Trans. Vehic. Technol. doi: 10.1109/TVT.2018.2885366 – volume: 168 start-page: 23 issue: 1 year: 2015 ident: 10.1016/j.trc.2020.02.013_b0035 article-title: Commuter dependence on expressways when travelling to work publication-title: Proc. Inst. Civil Eng. – Transp. – ident: 10.1016/j.trc.2020.02.013_b0020 – ident: 10.1016/j.trc.2020.02.013_b0150 – start-page: 9197 year: 2017 ident: 10.1016/j.trc.2020.02.013_b0005 article-title: Watch Your Step: Learning Node Embeddings via Graph Attention – ident: 10.1016/j.trc.2020.02.013_b0040 doi: 10.1109/TITS.2019.2950416 – ident: 10.1016/j.trc.2020.02.013_b0105 doi: 10.1109/INFOCOM.2019.8737631 – volume: 68 start-page: 1243 issue: 2 year: 2019 ident: 10.1016/j.trc.2020.02.013_b0115 article-title: A deep reinforcement learning network for traffic light cycle control publication-title: IEEE Trans. Vehic. Technol. doi: 10.1109/TVT.2018.2890726 – ident: 10.1016/j.trc.2020.02.013_b0055 – volume: 16 start-page: 865 issue: 2 year: 2015 ident: 10.1016/j.trc.2020.02.013_b0125 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transport. Syst. – ident: 10.1016/j.trc.2020.02.013_b0200 – volume: 92 start-page: 76 year: 2018 ident: 10.1016/j.trc.2020.02.013_b0205 article-title: Estimating metro passengers’ path choices by combining self-reported revealed preference and smart card data publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2018.04.019 – volume: 43 start-page: 623 issue: 4 year: 2016 ident: 10.1016/j.trc.2020.02.013_b0015 article-title: An investigation into passenger preference for express trains during peak hours publication-title: Transportation doi: 10.1007/s11116-015-9592-3 – volume: 15 start-page: 2191 issue: 5 year: 2014 ident: 10.1016/j.trc.2020.02.013_b0070 article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning publication-title: IEEE Trans. Intell. Transport. doi: 10.1109/TITS.2014.2311123 – volume: 85 start-page: 591 year: 2017 ident: 10.1016/j.trc.2020.02.013_b0090 article-title: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.10.016 – volume: 31 start-page: 119 issue: 2 year: 2005 ident: 10.1016/j.trc.2020.02.013_b0085 article-title: Space-time modeling of traffic flow publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.05.012 – ident: 10.1016/j.trc.2020.02.013_b0210 doi: 10.1109/TITS.2019.2935152 – ident: 10.1016/j.trc.2020.02.013_b0140 doi: 10.1109/CVPR.2016.264 – ident: 10.1016/j.trc.2020.02.013_b0170 – ident: 10.1016/j.trc.2020.02.013_b0065 – ident: 10.1016/j.trc.2020.02.013_b0100 doi: 10.1109/CVPR.2017.19 – volume: 85 start-page: 168 year: 2017 ident: 10.1016/j.trc.2020.02.013_b0050 article-title: Modeling the dynamic effect of information on drivers’ choice behavior in the context of an Advanced Traveler Information System publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.09.019 – ident: 10.1016/j.trc.2020.02.013_b0180 doi: 10.1007/978-3-319-46493-0_19 – volume: 54 start-page: 187 year: 2015 ident: 10.1016/j.trc.2020.02.013_b0135 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.03.014 – ident: 10.1016/j.trc.2020.02.013_b0195 doi: 10.3390/s17071501 |
SSID | ssj0001957 |
Score | 2.6445842 |
Snippet | •The present study proposed a novel graph convolution model to forecast future traffic speeds.•The proposed model differentiated the intensity of connecting to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 189 |
SubjectTerms | Generative adversarial framework Graph convolutional neural network (GCN) Spatio-temporal dependencies Traffic management Traffic state forecasting |
Title | Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN) |
URI | https://dx.doi.org/10.1016/j.trc.2020.02.013 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQHxlgcGQAq1Yye1R1QBBUQXqNQt8iOWilBbtQHEws6_5pw4PCRgYIouubMi38n3xTl_h9CB04YZwmykcqkiTrmLBDMJiJq2Bbfgdr_fcdNLu31-NUgGDdSpz8L4ssqw9ldrerlahzutMJutyXDYugXwLYgkA4AgkKSY5wTlvO2j_OT1s8yDyortE5T9nsSg_rNZ1ngVU89iGJOStpOyn3PTl3xzvoKWA1DEp9W7rKJGPmqihfoc8ayJlr5QCa6hN99j06iZr2LG07GyuJgqTw-BZxNIUDOsX7AJzTm9igKwGD2DBM-9c6LAUfWA67a4MBlgBUnO4vEIK1xSW_sxnkK0gq5nwywvZS05Przo9I7WUf_87K7TjUKbhcgwSYsozqWW1JIk5sIlSnLnRArAijFrpRGJU4kGVOeEjpUFONk21Cnm4EuDC0uJYRtobjQe5ZsIi9i4VHELqBEGoFakhmspbaoNkYynW4jUE5yZwEHuW2E8ZHWx2X0GPsm8TzISZ-CTLXT8YTKpCDj-Uua117JvUZRBgvjdbPt_Zjto0UtV-eMumiumj_keQJRC75cxuI_mTy-vu713dxLnYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeqpaHoA_qQw8UKVo7doJ9RKvCUmAvgLQ3y49YAqHd1W4K6k_gXzNOHEQl4MApcjxjRR5r5os9_gbgZ7COO8p9ZiplMsFEyCR3BTYtO5DCo9njfsf5qBxeiT_jYrwEg-4uTEyrTL6_9emNt05v-mk2-7Pr6_4Fgm9JFR0jBMEgxcUyrER2qqIHK4cnp8PRk0NmqiX8RPm4LTHuDjebNK96HokMc9owdzL-cnh6FnKOPsHHhBXJYfs5n2GpmqzDaneVeLEOH56xCW7AQyyz6cwiJjKT-dR4Us9NZIggixnGqAWx_4hL9TmjiEG8mN1jC_ujfbJEU3VLusq4OB-ohXHOk-mEGNKwW8cx7tKCRdlIiNk8mnRysnc8GP3ahKuj35eDYZYqLWSOK1ZneaWsYp4WuZChMEqEIEvEVpx7r5wsgiksArsgbW48IsoDx4LhAX82hPSMOr4Fvcl0Um0DkbkLpREegSMOwLwsnbBK-dI6qrgod4B2E6xdoiGP1TBudZdvdqPRJjraRNNco012YP9JZdZycLwlLDqr6f8WksYY8bral_ep_YDV4eX5mT47GZ1-hbXY02ZDfoNePf9bfUfEUtvdtCIfAWlC6hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+road+traffic+speeds+by+considering+area-wide+spatio-temporal+dependencies+based+on+a+graph+convolutional+neural+network+%28GCN%29&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Yu%2C+Byeonghyeop&rft.au=Lee%2C+Yongjin&rft.au=Sohn%2C+Keemin&rft.date=2020-05-01&rft.issn=0968-090X&rft.volume=114&rft.spage=189&rft.epage=204&rft_id=info:doi/10.1016%2Fj.trc.2020.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2020_02_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |