Prediction of In-Hospital Mortality in Non-ST-Segment Elevation Myocardial Infarction, Based on Interpretable Machine Learning
This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI) patients, and focused on model interpretability using Shapley additive explanations (SHAP). Data were gathered from the Medical Information Mart for...
Saved in:
Published in | Applied sciences Vol. 15; no. 8; p. 4226 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI) patients, and focused on model interpretability using Shapley additive explanations (SHAP). Data were gathered from the Medical Information Mart for Intensive Care—IV database. The synthetic minority over-sampling technique and Edited Nearest Neighbors were used to address class imbalance. Four machine learning algorithms were employed, including Adaptive Boosting (AdaBoost), Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and eXtreme Gradient Boosting (XGBoost). SHAP was utilized to improve transparency and credibility. The all-features RF model demonstrated optimal performance, with an accuracy of 0.8513, precision of 0.9016, and AUC of 0.8903. The SHAP summary plot for the RF model revealed that Acute Physiology Score III, lactate dehydrogenase, and lactate were the three most crucial characteristics, with higher values indicating a greater risk. The study demonstrates the applicability of machine learning, particularly RF, in predicting in-hospital mortality for NSTEMI patients, with the use of SHAP enhancing model interpretability and providing clinicians with clearer insights into feature contributions. |
---|---|
AbstractList | This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI) patients, and focused on model interpretability using Shapley additive explanations (SHAP). Data were gathered from the Medical Information Mart for Intensive Care—IV database. The synthetic minority over-sampling technique and Edited Nearest Neighbors were used to address class imbalance. Four machine learning algorithms were employed, including Adaptive Boosting (AdaBoost), Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and eXtreme Gradient Boosting (XGBoost). SHAP was utilized to improve transparency and credibility. The all-features RF model demonstrated optimal performance, with an accuracy of 0.8513, precision of 0.9016, and AUC of 0.8903. The SHAP summary plot for the RF model revealed that Acute Physiology Score III, lactate dehydrogenase, and lactate were the three most crucial characteristics, with higher values indicating a greater risk. The study demonstrates the applicability of machine learning, particularly RF, in predicting in-hospital mortality for NSTEMI patients, with the use of SHAP enhancing model interpretability and providing clinicians with clearer insights into feature contributions. |
Audience | Academic |
Author | Cao, Mengru Li, Chunhui |
Author_xml | – sequence: 1 givenname: Mengru surname: Cao fullname: Cao, Mengru – sequence: 2 givenname: Chunhui surname: Li fullname: Li, Chunhui |
BookMark | eNptkk1v1DAQhiNUJErpiT9giSOk-CtOfCxVoZF2AanlbE2c8eJV1g6Oi7QXfjtmF9EideYw1vh9H3nkeVmdhBiwql4zeiGEpu9hnllDO8m5eladctqqWkjWnjw6v6jOl2VLS2gmOkZPq19fE47eZh8DiY70ob6Jy-wzTGQdUyk-74kP5HMM9e1dfYubHYZMrif8CQfTeh8tpNEXQx8cpAPqHfkAC46k3PchY5oTZhgmJGuw331AskJIwYfNq-q5g2nB87_1rPr28fru6qZeffnUX12uais0yzW3SgLDtoVWtyPKBrWmdmykg0FZyYTjfIBGoxVWW94w1wwdUoVaoSgacVb1R-4YYWvm5HeQ9iaCN4dGTBsDKXs7oUEcOk6pkJQP0lnQjDvdaVFCN25QhfXmyJpT_HGPSzbbeJ9Ceb4RTEvZaaW6B9UGCtQHF3MCu_OLNZed6BRlisqiunhCVXLEnbflf50v_f8Mb48Gm-KyJHT_hmHU_FkD82gNxG9yIqWy |
Cites_doi | 10.3109/14017431.2016.1152398 10.1016/j.ijcard.2010.07.008 10.1186/s12872-021-02051-0 10.1007/s00392-020-01691-0 10.1038/s41598-024-64048-x 10.1371/journal.pone.0174944 10.1080/20009666.2021.1930506 10.1016/j.atherosclerosis.2018.08.038 10.1016/j.repc.2016.07.003 10.1093/eurheartj/ehq276 10.1093/ndt/gfl127 10.1093/ehjqcco/qcac067 10.1093/bib/bbad002 10.1136/bmjopen-2022-070237 10.1001/jama.2017.7797 10.1017/S1049023X23006490 10.1055/a-1863-1589 10.1007/s11906-022-01212-6 10.1093/eurheartj/ehp492 10.1155/2016/6901345 10.1038/s41598-021-92362-1 10.1016/S0140-6736(24)00367-2 10.1016/j.cjca.2021.09.004 10.1186/s12872-021-02311-z 10.1007/s10875-024-01806-6 10.1136/jech-2015-205689 10.1371/journal.pone.0298036 10.1186/s12872-022-03025-6 10.1371/journal.pone.0278944 10.1093/eurheartj/ehx393 10.1016/j.cmpb.2022.107080 10.1371/journal.pone.0224502 10.1197/j.aem.2004.10.012 10.1177/1076029613500707 10.1097/MCA.0b013e3283564986 10.1161/JAHA.118.009995 10.1016/j.amjmed.2015.01.044 10.1016/j.ccl.2017.08.003 10.1136/bmjopen-2022-069129 10.1038/s41597-022-01899-x 10.3389/fmed.2024.1362153 10.1016/j.amjmed.2010.07.023 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app15084226 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_eeb82003402b4fca912f989333395fb6 A838601604 10_3390_app15084226 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c391t-2c64a1e77a797de45e990cd54fab6c413f22ba59ec3c9c251f5b8e06e96e3fab3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:29:15 EDT 2025 Fri Jul 18 09:41:41 EDT 2025 Thu May 08 04:18:10 EDT 2025 Tue Jun 10 20:53:27 EDT 2025 Tue Jul 01 05:02:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-2c64a1e77a797de45e990cd54fab6c413f22ba59ec3c9c251f5b8e06e96e3fab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/eeb82003402b4fca912f989333395fb6 |
PQID | 3194489668 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eeb82003402b4fca912f989333395fb6 proquest_journals_3194489668 gale_infotracmisc_A838601604 gale_infotracacademiconefile_A838601604 crossref_primary_10_3390_app15084226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | McManus (ref_6) 2011; 124 Yesilaras (ref_13) 2023; 38 Rahimi (ref_2) 2015; 69 Gatien (ref_42) 2005; 12 Katritsis (ref_10) 2011; 32 Byun (ref_43) 2018; 277 Gul (ref_48) 2012; 23 ref_12 ref_11 Rotenberg (ref_37) 1988; 112 Krishnamurthy (ref_16) 2023; 13 Hedayati (ref_4) 2018; 36 Johnson (ref_27) 2023; 10 ref_19 Silva (ref_29) 2022; 24 Polonski (ref_8) 2011; 152 ref_18 Sawalha (ref_14) 2021; 11 Zhou (ref_30) 2024; 45 Yayla (ref_47) 2016; 50 Cabitza (ref_25) 2017; 318 Li (ref_40) 2023; 13 ref_23 Nadarajah (ref_44) 2022; 9 ref_22 ref_20 ref_28 Liu (ref_21) 2023; 9 Polat (ref_49) 2014; 20 ref_26 Widimsky (ref_5) 2010; 31 Sarkisian (ref_9) 2015; 128 Gomes (ref_34) 2021; 110 ref_36 ref_33 ref_32 ref_31 (ref_45) 2016; 35 Kumar (ref_17) 2021; 13 Akan (ref_15) 2024; 34 Weidner (ref_38) 1982; 106 Naghavi (ref_1) 2024; 403 Bota (ref_46) 2018; 7 Aleksandar (ref_41) 2016; 2016 Petch (ref_24) 2022; 38 Ibanez (ref_3) 2018; 39 Chopannejad (ref_35) 2022; 13 ref_7 Patschan (ref_39) 2006; 21 |
References_xml | – volume: 50 start-page: 224 year: 2016 ident: ref_47 article-title: Red cell distribution width predicts totally occluded infarct-related artery in NSTEMI publication-title: Scand. Cardiovasc. J. doi: 10.3109/14017431.2016.1152398 – volume: 152 start-page: 70 year: 2011 ident: ref_8 article-title: A comparison of ST elevation versus non-ST elevation myocardial infarction outcomes in a large registry database: Are non-ST myocardial infarctions associated with worse long-term prognoses? publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2010.07.008 – ident: ref_32 doi: 10.1186/s12872-021-02051-0 – ident: ref_26 – volume: 110 start-page: 343 year: 2021 ident: ref_34 article-title: Machine learning-based risk prediction of intrahospital clinical outcomes in patients undergoing TAVI publication-title: Clin. Res. Cardiol. doi: 10.1007/s00392-020-01691-0 – ident: ref_7 doi: 10.1038/s41598-024-64048-x – ident: ref_20 doi: 10.1371/journal.pone.0174944 – volume: 11 start-page: 446 year: 2021 ident: ref_14 article-title: Is the thrombolysis in myocardial infarction (TIMI) score a reliable source in a rural hospital for the management of unstable angina/non-ST elevated myocardial infarctions (UA/NSTEMI)? publication-title: J. Community Hosp. Intern. Med. Perspect. doi: 10.1080/20009666.2021.1930506 – volume: 277 start-page: 130 year: 2018 ident: ref_43 article-title: Comparison of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with diabetes mellitus and non-ST-segment elevation myocardial infarction who underwent successful percutaneous coronary intervention publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.08.038 – volume: 35 start-page: 645 year: 2016 ident: ref_45 article-title: Mortality benefit of long-term angiotensin-converting enzyme inhibitors or angiotensin receptor blockers after successful percutaneous coronary intervention in non-ST elevation acute myocardial infarction publication-title: Rev. Port. Cardiol. doi: 10.1016/j.repc.2016.07.003 – volume: 32 start-page: 32 year: 2011 ident: ref_10 article-title: Optimal timing of coronary angiography and potential intervention in non-ST-elevation acute coronary syndromes publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehq276 – volume: 21 start-page: 1549 year: 2006 ident: ref_39 article-title: Acute myocardial infarction in thrombotic microangiopathies--clinical characteristics, risk factors and outcome publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfl127 – volume: 9 start-page: 8 year: 2022 ident: ref_44 article-title: Cohort profile: The ESC EURObservational Research Programme Non-ST-segment elevation myocardial infraction (NSTEMI) Registry publication-title: Eur. Heart J. Qual. Care Clin. Outcomes doi: 10.1093/ehjqcco/qcac067 – ident: ref_28 doi: 10.1093/bib/bbad002 – ident: ref_31 – volume: 13 start-page: e070237 year: 2023 ident: ref_16 article-title: Comparing the long-term outcomes in chronic coronary syndrome patients with prior ST-segment and non-ST-segment elevation myocardial infarction: Findings from the TIGRIS registry publication-title: BMJ Open doi: 10.1136/bmjopen-2022-070237 – volume: 318 start-page: 517 year: 2017 ident: ref_25 article-title: Unintended Consequences of Machine Learning in Medicine publication-title: JAMA doi: 10.1001/jama.2017.7797 – volume: 112 start-page: 895 year: 1988 ident: ref_37 article-title: The efficiency of lactate dehydrogenase isoenzyme determination for the diagnosis of acute myocardial infarction publication-title: Arch. Pathol. Lab. Med. – volume: 38 start-page: 740 year: 2023 ident: ref_13 article-title: Comparing TIMI, HEART, and GRACE Risk Scores to Predict Angiographic Severity of Coronary Artery Disease and 30-Day Major Adverse Cardiac Events in Emergency Department Patients with NSTEACS publication-title: Prehospital Disaster Med. doi: 10.1017/S1049023X23006490 – volume: 13 start-page: 720 year: 2022 ident: ref_35 article-title: Predicting Major Adverse Cardiovascular Events in Acute Coronary Syndrome: A Scoping Review of Machine Learning Approaches publication-title: Appl. Clin. Inform. doi: 10.1055/a-1863-1589 – volume: 13 start-page: e12518 year: 2021 ident: ref_17 article-title: Validity of TIMI Score for Predicting 14-Day Mortality of Non-ST Elevation Myocardial Infarction Patients publication-title: Cureus – volume: 24 start-page: 523 year: 2022 ident: ref_29 article-title: Machine Learning for Hypertension Prediction: A Systematic Review publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-022-01212-6 – volume: 31 start-page: 943 year: 2010 ident: ref_5 article-title: Reperfusion therapy for ST elevation acute myocardial infarction in Europe: Description of the current situation in 30 countries publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehp492 – volume: 2016 start-page: 6901345 year: 2016 ident: ref_41 article-title: Hyperlactatemia and the Outcome of Type 2 Diabetic Patients Suffering Acute Myocardial Infarction publication-title: J. Diabetes Res. doi: 10.1155/2016/6901345 – ident: ref_23 doi: 10.1038/s41598-021-92362-1 – volume: 403 start-page: 2100 year: 2024 ident: ref_1 article-title: Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021 publication-title: Lancet doi: 10.1016/S0140-6736(24)00367-2 – volume: 9 start-page: 310 year: 2023 ident: ref_21 article-title: Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: A systematic review and meta-analysis publication-title: Eur. Heart J. Qual. Care Clin. Outcomes – volume: 38 start-page: 204 year: 2022 ident: ref_24 article-title: Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2021.09.004 – ident: ref_19 doi: 10.1186/s12872-021-02311-z – volume: 45 start-page: 12 year: 2024 ident: ref_30 article-title: Machine Learning of Laboratory Data in Predicting 30-Day Mortality for Adult Hemophagocytic Lymphohistiocytosis publication-title: J. Clin. Immunol. doi: 10.1007/s10875-024-01806-6 – volume: 69 start-page: 1000 year: 2015 ident: ref_2 article-title: Mortality from heart failure, acute myocardial infarction and other ischaemic heart disease in England and Oxford: A trend study of multiple-cause-coded death certification publication-title: J. Epidemiol. Community Health doi: 10.1136/jech-2015-205689 – ident: ref_22 doi: 10.1371/journal.pone.0298036 – volume: 106 start-page: 375 year: 1982 ident: ref_38 article-title: Laboratory diagnosis of acute myocardial infarct: Usefulness of determination of lactate dehydrogenase (LDH)-1 level and of ratio of LDH-1 to total LDH publication-title: Arch. Pathol. Lab. Med. – ident: ref_18 doi: 10.1186/s12872-022-03025-6 – ident: ref_11 doi: 10.1371/journal.pone.0278944 – volume: 39 start-page: 119 year: 2018 ident: ref_3 article-title: 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehx393 – ident: ref_33 doi: 10.1016/j.cmpb.2022.107080 – ident: ref_12 doi: 10.1371/journal.pone.0224502 – volume: 12 start-page: 106 year: 2005 ident: ref_42 article-title: Diagnostic performance of venous lactate on arrival at the emergency department for myocardial infarction publication-title: Acad. Emerg. Med. doi: 10.1197/j.aem.2004.10.012 – volume: 20 start-page: 577 year: 2014 ident: ref_49 article-title: Relationship Between Red Cell Distribution Width and the GRACE Risk Score with In-Hospital Death in Patients with Acute Coronary Syndrome publication-title: Clin. Appl. Thromb. Hemost. doi: 10.1177/1076029613500707 – volume: 23 start-page: 330 year: 2012 ident: ref_48 article-title: The relationship between red blood cell distribution width and the clinical outcomes in non-ST elevation myocardial infarction and unstable angina pectoris: A 3-year follow-up publication-title: Coron. Artery Dis. doi: 10.1097/MCA.0b013e3283564986 – volume: 34 start-page: 1 year: 2024 ident: ref_15 article-title: Correlation of osteopontin hormone with TIMI score and cardiac markers in patients with acute coronary syndrome presenting with chest pain publication-title: Cardiovasc. J. Afr. – volume: 7 start-page: e009995 year: 2018 ident: ref_46 article-title: Albuminuria, Reduced Kidney Function, and the Risk of ST- and non-ST-segment–elevation myocardial infarction publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.009995 – volume: 128 start-page: 852 year: 2015 ident: ref_9 article-title: Diagnosis of unstable angina pectoris has declined markedly with the advent of more sensitive troponin assays publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2015.01.044 – volume: 36 start-page: 37 year: 2018 ident: ref_4 article-title: Non-ST-Segment Acute Coronary Syndromes publication-title: Cardiol. Clin. doi: 10.1016/j.ccl.2017.08.003 – volume: 13 start-page: e069129 year: 2023 ident: ref_40 article-title: Association of lactate detection with in-hospital mortality in critically ill patients with acute myocardial infarction: A retrospective cohort study publication-title: BMJ Open doi: 10.1136/bmjopen-2022-069129 – volume: 10 start-page: 1 year: 2023 ident: ref_27 article-title: MIMIC-IV, a freely accessible electronic health record dataset publication-title: Sci. Data doi: 10.1038/s41597-022-01899-x – ident: ref_36 doi: 10.3389/fmed.2024.1362153 – volume: 124 start-page: 40 year: 2011 ident: ref_6 article-title: Recent trends in the incidence, treatment, and outcomes of patients with STEMI and NSTEMI publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2010.07.023 |
SSID | ssj0000913810 |
Score | 2.314497 |
Snippet | This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI)... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4226 |
SubjectTerms | Accuracy Acute coronary syndromes Algorithms Analysis Cholesterol Data mining Decision making Decision trees Disease Enzymes Heart attack Heart attacks Hemoglobin Hospitalization Hospitals in-hospital mortality Kinases Length of stay Machine learning Medical advice systems Missing data Mortality non-ST-elevation myocardial infarction Patient outcomes Patients prediction model Sampling techniques Shapley additive explanations Structured Query Language-SQL Support vector machines Taiwan Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BeoEDogVEoCAfKgESFhuv12ufUINSFaREFW2l3izba0dI0W5J0kMv_HZmNk7bHGCPtle78sx4Hp75BuDIeWF0k2rufSG5RJeBe_QiuKqL2vmgjPRUjTydqdNL-eOqusoBt1VOq9yeif1B3XSBYuRfkFXQk0DjXH-9_s2paxTdruYWGo9hD49grQewN57Mzn7eRVkI9VKPik1hXon-Pd0LEwQ6FZDuqKIesf9f53KvbE6ew7NsJbLjDVn34VFsD-DpA-zAA9jPUrliHzN09KcX8OdsSRcvtNmsS-x7y7d9Qdi0t7PR5ma_WjbrWn5-wc_jnIKDbLKIm8gsm96ibiOeWeDLCYWARj-zMeq6huH8fY6iX0Q27TMxI8sgrfOXcHkyufh2ynOHBR5KM1pzEZR0o1jXrjZ1E2UVUTmFppLJeRVQvyUhvKtMDGUwAU2hVHkdCxWNiiWuKV_BoO3a-BqYSqkWTlUNkgmNMuO89KIIKSRRJa_iEI62m22vN0AaFh0Qool9QJMhjIkQd0sI_bof6JZzm4XJxug1JdWh7-tlCs6MRDJoeOFj6GND-EBktCSj66ULLpca4J8S2pU91qUmGJpCDuFwZyXKVtid3jKCzbK9svec-Ob_02_hiaBuwX2ezyEM1sub-A5NmLV_n_n0L-eJ8gM priority: 102 providerName: ProQuest |
Title | Prediction of In-Hospital Mortality in Non-ST-Segment Elevation Myocardial Infarction, Based on Interpretable Machine Learning |
URI | https://www.proquest.com/docview/3194489668 https://doaj.org/article/eeb82003402b4fca912f989333395fb6 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7S9NIeSh4tdZoYHQJtIKJrrVa7OsbFbhqwCXlAbkLSSiFg1sFxD730t3dGu07sQ-mlV2kEQjOjmZFmvgE4tk7oqo4ldy6TXGLIwB1GEVyVWWmdV1o6qkaeTNX5rby4K-7WWn1RTlgLD9we3NcQXEUJVBjnOBm91QMRNfWIz3NdRJfAttHmrQVT6Q7WA4KuagvykDKj_2CCPqfC0Q0TlJD6_3YfJyMz3oF3nXfIztpd7cJWaPbg7Rpm4B7sdtr4xL50kNEn-_D7ckEfLnTIbB7Zj4av-oGwSfKv0ddmDw2bzht-fcOvwz09CrLRLLQvsmzyC20aycoMF0cUfho9ZUO0cTXD-ZfcRDcLbJIyMAPrwFnv38PteHTz7Zx3nRW4z_VgyYVX0g5CWdpSl3WQRUCj5OtCRuuUR7sWhXC20MHnXnt0gWLhqpCpoFXIkSb_ANvNvAkfgakYS2FVUWsp0RnT1kknMh99FMSe0IPj1WGbxxZAw2DgQTwxazzpwZAY8UxCqNdpAGXBdLJg_iULPfhMbDSkm8uF9bYrMcCdEsqVOavyiuBnMtmDww1K1Cm_Ob0SBNPp9JPBywpjWQwPq4P_sdlP8EZQL-GUBXQI28vFz3CEDs7S9eFVNf7eh9fD0fTyqp8k-w8AqPrX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQgQI-FAESFhuv9-EDQi00JLSJkJpKvbm2146Qot2SBKFe-En8Rmb20TYHuHWPa-9DnvG8PPMNwK6xQuVFyLi1keQSXQZu0YvgaRZlxrpUSUvVyONJOjyRX0-T0w3409XCUFplJxNrQV1UjmLk75FV0JNA4zz_eP6DU9coOl3tWmg0bHHoL36hy7b8MPqM9H0lxOBg-mnI264C3MWqv-LCpdL0fZaZTGWFl4lHgeyKRAZjU4cyPQhhTaK8i51yqP5DYnMfpV6lPsY5Mb73FtyWMWpyqkwffLmM6RDGZt6PmjJAHI_oFJoA16lcdU3x1f0B_qUFatU2eAD3W5uU7TVMtAUbvtyGe9eQCrdhq5UBS_amBap--xB-f1vQMQ-RllWBjUredSFh49qqRwuffS_ZpCr58ZQf-xmFItnB3DdxYDa-QE1KHDrHhwOuLd19x_ZRsxYMx68yIu3cs3Gd9-lZCwk7ewQnN7Lyj2GzrEr_BFgaQiZMmhTIFGgCKmOlFZELLogk2NT3YLdbbH3ewHZodHeIJvoaTXqwT4S4nEJY2_WNajHT7dbV3tucUvjQ07YyOKP6Iig08_BS9LEevCYyapIIq4Vxpi1swD8lbC29l8c5gd5Esgc7azNxJ7v14Y4RdCtJlvqK75_-f_gl3BlOx0f6aDQ5fAZ3BfUprjOMdmBztfjpn6PxtLIvao5lcHbTW-QvPAIu8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSASCngQxEgYXXjffqAUEMTNZREEW2l3hbba0dI0W6bBKFe-GH8OmZ2vW1zgFv3uPY-5HnbM98A7CktZFa4lGsdRDzCkIFrjCJ4kgap0iaRkaZq5PEkOTqLvpzH5xvwp62FobTKVifWirqoDO2R7yOrYCSBznm273xaxPRw-OniklMHKTppbdtpNCxybK9-Yfi2_Dg6RFq_EWI4OP18xH2HAW5C2VtxYZJI9WyaqlSmhY1ii8rZFHHklE4M6ncnhFaxtCY00qAr4GKd2SCxMrEhzgnxvfdgM6WoqAOb_cFk-u16h4cQN7Ne0BQFhqEM6Eya4NepeHXNDNbdAv5lE2pDN3wMj7yHyg4altqCDVtuw8NbuIXbsOU1wpK987DV75_A7-mCDn2I0KxybFTyticJG9c-Pvr77EfJJlXJT075iZ3RxiQbzG2zK8zGV2hXiV_n-LDD1aW7H1gf7WzBcPwmP1LPLRvXWaCWeYDY2VM4u5O1fwadsirtc2CJc6lQSVwgi6BDKJWOtAiMM07ETie2C3vtYucXDYhHjsEP0SS_RZMu9IkQ11MIebu-US1muRfk3FqdUUIfxt06ckbJnnASnT68JH2sC2-JjDnph9VCGeXLHPBPCWkrP8jCjCBwgqgLu2szUa7N-nDLCLnXK8v8Rgp2_j_8Gu6jeORfR5PjF_BAUNPiOt1oFzqrxU_7Ej2plX7lWZbB97uWkr8nUDSE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+In-Hospital+Mortality+in+Non-ST-Segment+Elevation+Myocardial+Infarction%2C+Based+on+Interpretable+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Cao%2C+Mengru&rft.au=Li%2C+Chunhui&rft.date=2025-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=8&rft.spage=4226&rft_id=info:doi/10.3390%2Fapp15084226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15084226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |