Prediction of In-Hospital Mortality in Non-ST-Segment Elevation Myocardial Infarction, Based on Interpretable Machine Learning

This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI) patients, and focused on model interpretability using Shapley additive explanations (SHAP). Data were gathered from the Medical Information Mart for...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 8; p. 4226
Main Authors Cao, Mengru, Li, Chunhui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI) patients, and focused on model interpretability using Shapley additive explanations (SHAP). Data were gathered from the Medical Information Mart for Intensive Care—IV database. The synthetic minority over-sampling technique and Edited Nearest Neighbors were used to address class imbalance. Four machine learning algorithms were employed, including Adaptive Boosting (AdaBoost), Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and eXtreme Gradient Boosting (XGBoost). SHAP was utilized to improve transparency and credibility. The all-features RF model demonstrated optimal performance, with an accuracy of 0.8513, precision of 0.9016, and AUC of 0.8903. The SHAP summary plot for the RF model revealed that Acute Physiology Score III, lactate dehydrogenase, and lactate were the three most crucial characteristics, with higher values indicating a greater risk. The study demonstrates the applicability of machine learning, particularly RF, in predicting in-hospital mortality for NSTEMI patients, with the use of SHAP enhancing model interpretability and providing clinicians with clearer insights into feature contributions.
AbstractList This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI) patients, and focused on model interpretability using Shapley additive explanations (SHAP). Data were gathered from the Medical Information Mart for Intensive Care—IV database. The synthetic minority over-sampling technique and Edited Nearest Neighbors were used to address class imbalance. Four machine learning algorithms were employed, including Adaptive Boosting (AdaBoost), Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and eXtreme Gradient Boosting (XGBoost). SHAP was utilized to improve transparency and credibility. The all-features RF model demonstrated optimal performance, with an accuracy of 0.8513, precision of 0.9016, and AUC of 0.8903. The SHAP summary plot for the RF model revealed that Acute Physiology Score III, lactate dehydrogenase, and lactate were the three most crucial characteristics, with higher values indicating a greater risk. The study demonstrates the applicability of machine learning, particularly RF, in predicting in-hospital mortality for NSTEMI patients, with the use of SHAP enhancing model interpretability and providing clinicians with clearer insights into feature contributions.
Audience Academic
Author Cao, Mengru
Li, Chunhui
Author_xml – sequence: 1
  givenname: Mengru
  surname: Cao
  fullname: Cao, Mengru
– sequence: 2
  givenname: Chunhui
  surname: Li
  fullname: Li, Chunhui
BookMark eNptkk1v1DAQhiNUJErpiT9giSOk-CtOfCxVoZF2AanlbE2c8eJV1g6Oi7QXfjtmF9EideYw1vh9H3nkeVmdhBiwql4zeiGEpu9hnllDO8m5eladctqqWkjWnjw6v6jOl2VLS2gmOkZPq19fE47eZh8DiY70ob6Jy-wzTGQdUyk-74kP5HMM9e1dfYubHYZMrif8CQfTeh8tpNEXQx8cpAPqHfkAC46k3PchY5oTZhgmJGuw331AskJIwYfNq-q5g2nB87_1rPr28fru6qZeffnUX12uais0yzW3SgLDtoVWtyPKBrWmdmykg0FZyYTjfIBGoxVWW94w1wwdUoVaoSgacVb1R-4YYWvm5HeQ9iaCN4dGTBsDKXs7oUEcOk6pkJQP0lnQjDvdaVFCN25QhfXmyJpT_HGPSzbbeJ9Ceb4RTEvZaaW6B9UGCtQHF3MCu_OLNZed6BRlisqiunhCVXLEnbflf50v_f8Mb48Gm-KyJHT_hmHU_FkD82gNxG9yIqWy
Cites_doi 10.3109/14017431.2016.1152398
10.1016/j.ijcard.2010.07.008
10.1186/s12872-021-02051-0
10.1007/s00392-020-01691-0
10.1038/s41598-024-64048-x
10.1371/journal.pone.0174944
10.1080/20009666.2021.1930506
10.1016/j.atherosclerosis.2018.08.038
10.1016/j.repc.2016.07.003
10.1093/eurheartj/ehq276
10.1093/ndt/gfl127
10.1093/ehjqcco/qcac067
10.1093/bib/bbad002
10.1136/bmjopen-2022-070237
10.1001/jama.2017.7797
10.1017/S1049023X23006490
10.1055/a-1863-1589
10.1007/s11906-022-01212-6
10.1093/eurheartj/ehp492
10.1155/2016/6901345
10.1038/s41598-021-92362-1
10.1016/S0140-6736(24)00367-2
10.1016/j.cjca.2021.09.004
10.1186/s12872-021-02311-z
10.1007/s10875-024-01806-6
10.1136/jech-2015-205689
10.1371/journal.pone.0298036
10.1186/s12872-022-03025-6
10.1371/journal.pone.0278944
10.1093/eurheartj/ehx393
10.1016/j.cmpb.2022.107080
10.1371/journal.pone.0224502
10.1197/j.aem.2004.10.012
10.1177/1076029613500707
10.1097/MCA.0b013e3283564986
10.1161/JAHA.118.009995
10.1016/j.amjmed.2015.01.044
10.1016/j.ccl.2017.08.003
10.1136/bmjopen-2022-069129
10.1038/s41597-022-01899-x
10.3389/fmed.2024.1362153
10.1016/j.amjmed.2010.07.023
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15084226
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_eeb82003402b4fca912f989333395fb6
A838601604
10_3390_app15084226
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c391t-2c64a1e77a797de45e990cd54fab6c413f22ba59ec3c9c251f5b8e06e96e3fab3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:29:15 EDT 2025
Fri Jul 18 09:41:41 EDT 2025
Thu May 08 04:18:10 EDT 2025
Tue Jun 10 20:53:27 EDT 2025
Tue Jul 01 05:02:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-2c64a1e77a797de45e990cd54fab6c413f22ba59ec3c9c251f5b8e06e96e3fab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/eeb82003402b4fca912f989333395fb6
PQID 3194489668
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_eeb82003402b4fca912f989333395fb6
proquest_journals_3194489668
gale_infotracmisc_A838601604
gale_infotracacademiconefile_A838601604
crossref_primary_10_3390_app15084226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References McManus (ref_6) 2011; 124
Yesilaras (ref_13) 2023; 38
Rahimi (ref_2) 2015; 69
Gatien (ref_42) 2005; 12
Katritsis (ref_10) 2011; 32
Byun (ref_43) 2018; 277
Gul (ref_48) 2012; 23
ref_12
ref_11
Rotenberg (ref_37) 1988; 112
Krishnamurthy (ref_16) 2023; 13
Hedayati (ref_4) 2018; 36
Johnson (ref_27) 2023; 10
ref_19
Silva (ref_29) 2022; 24
Polonski (ref_8) 2011; 152
ref_18
Sawalha (ref_14) 2021; 11
Zhou (ref_30) 2024; 45
Yayla (ref_47) 2016; 50
Cabitza (ref_25) 2017; 318
Li (ref_40) 2023; 13
ref_23
Nadarajah (ref_44) 2022; 9
ref_22
ref_20
ref_28
Liu (ref_21) 2023; 9
Polat (ref_49) 2014; 20
ref_26
Widimsky (ref_5) 2010; 31
Sarkisian (ref_9) 2015; 128
Gomes (ref_34) 2021; 110
ref_36
ref_33
ref_32
ref_31
(ref_45) 2016; 35
Kumar (ref_17) 2021; 13
Akan (ref_15) 2024; 34
Weidner (ref_38) 1982; 106
Naghavi (ref_1) 2024; 403
Bota (ref_46) 2018; 7
Aleksandar (ref_41) 2016; 2016
Petch (ref_24) 2022; 38
Ibanez (ref_3) 2018; 39
Chopannejad (ref_35) 2022; 13
ref_7
Patschan (ref_39) 2006; 21
References_xml – volume: 50
  start-page: 224
  year: 2016
  ident: ref_47
  article-title: Red cell distribution width predicts totally occluded infarct-related artery in NSTEMI
  publication-title: Scand. Cardiovasc. J.
  doi: 10.3109/14017431.2016.1152398
– volume: 152
  start-page: 70
  year: 2011
  ident: ref_8
  article-title: A comparison of ST elevation versus non-ST elevation myocardial infarction outcomes in a large registry database: Are non-ST myocardial infarctions associated with worse long-term prognoses?
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2010.07.008
– ident: ref_32
  doi: 10.1186/s12872-021-02051-0
– ident: ref_26
– volume: 110
  start-page: 343
  year: 2021
  ident: ref_34
  article-title: Machine learning-based risk prediction of intrahospital clinical outcomes in patients undergoing TAVI
  publication-title: Clin. Res. Cardiol.
  doi: 10.1007/s00392-020-01691-0
– ident: ref_7
  doi: 10.1038/s41598-024-64048-x
– ident: ref_20
  doi: 10.1371/journal.pone.0174944
– volume: 11
  start-page: 446
  year: 2021
  ident: ref_14
  article-title: Is the thrombolysis in myocardial infarction (TIMI) score a reliable source in a rural hospital for the management of unstable angina/non-ST elevated myocardial infarctions (UA/NSTEMI)?
  publication-title: J. Community Hosp. Intern. Med. Perspect.
  doi: 10.1080/20009666.2021.1930506
– volume: 277
  start-page: 130
  year: 2018
  ident: ref_43
  article-title: Comparison of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with diabetes mellitus and non-ST-segment elevation myocardial infarction who underwent successful percutaneous coronary intervention
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2018.08.038
– volume: 35
  start-page: 645
  year: 2016
  ident: ref_45
  article-title: Mortality benefit of long-term angiotensin-converting enzyme inhibitors or angiotensin receptor blockers after successful percutaneous coronary intervention in non-ST elevation acute myocardial infarction
  publication-title: Rev. Port. Cardiol.
  doi: 10.1016/j.repc.2016.07.003
– volume: 32
  start-page: 32
  year: 2011
  ident: ref_10
  article-title: Optimal timing of coronary angiography and potential intervention in non-ST-elevation acute coronary syndromes
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehq276
– volume: 21
  start-page: 1549
  year: 2006
  ident: ref_39
  article-title: Acute myocardial infarction in thrombotic microangiopathies--clinical characteristics, risk factors and outcome
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfl127
– volume: 9
  start-page: 8
  year: 2022
  ident: ref_44
  article-title: Cohort profile: The ESC EURObservational Research Programme Non-ST-segment elevation myocardial infraction (NSTEMI) Registry
  publication-title: Eur. Heart J. Qual. Care Clin. Outcomes
  doi: 10.1093/ehjqcco/qcac067
– ident: ref_28
  doi: 10.1093/bib/bbad002
– ident: ref_31
– volume: 13
  start-page: e070237
  year: 2023
  ident: ref_16
  article-title: Comparing the long-term outcomes in chronic coronary syndrome patients with prior ST-segment and non-ST-segment elevation myocardial infarction: Findings from the TIGRIS registry
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2022-070237
– volume: 318
  start-page: 517
  year: 2017
  ident: ref_25
  article-title: Unintended Consequences of Machine Learning in Medicine
  publication-title: JAMA
  doi: 10.1001/jama.2017.7797
– volume: 112
  start-page: 895
  year: 1988
  ident: ref_37
  article-title: The efficiency of lactate dehydrogenase isoenzyme determination for the diagnosis of acute myocardial infarction
  publication-title: Arch. Pathol. Lab. Med.
– volume: 38
  start-page: 740
  year: 2023
  ident: ref_13
  article-title: Comparing TIMI, HEART, and GRACE Risk Scores to Predict Angiographic Severity of Coronary Artery Disease and 30-Day Major Adverse Cardiac Events in Emergency Department Patients with NSTEACS
  publication-title: Prehospital Disaster Med.
  doi: 10.1017/S1049023X23006490
– volume: 13
  start-page: 720
  year: 2022
  ident: ref_35
  article-title: Predicting Major Adverse Cardiovascular Events in Acute Coronary Syndrome: A Scoping Review of Machine Learning Approaches
  publication-title: Appl. Clin. Inform.
  doi: 10.1055/a-1863-1589
– volume: 13
  start-page: e12518
  year: 2021
  ident: ref_17
  article-title: Validity of TIMI Score for Predicting 14-Day Mortality of Non-ST Elevation Myocardial Infarction Patients
  publication-title: Cureus
– volume: 24
  start-page: 523
  year: 2022
  ident: ref_29
  article-title: Machine Learning for Hypertension Prediction: A Systematic Review
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-022-01212-6
– volume: 31
  start-page: 943
  year: 2010
  ident: ref_5
  article-title: Reperfusion therapy for ST elevation acute myocardial infarction in Europe: Description of the current situation in 30 countries
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehp492
– volume: 2016
  start-page: 6901345
  year: 2016
  ident: ref_41
  article-title: Hyperlactatemia and the Outcome of Type 2 Diabetic Patients Suffering Acute Myocardial Infarction
  publication-title: J. Diabetes Res.
  doi: 10.1155/2016/6901345
– ident: ref_23
  doi: 10.1038/s41598-021-92362-1
– volume: 403
  start-page: 2100
  year: 2024
  ident: ref_1
  article-title: Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021
  publication-title: Lancet
  doi: 10.1016/S0140-6736(24)00367-2
– volume: 9
  start-page: 310
  year: 2023
  ident: ref_21
  article-title: Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: A systematic review and meta-analysis
  publication-title: Eur. Heart J. Qual. Care Clin. Outcomes
– volume: 38
  start-page: 204
  year: 2022
  ident: ref_24
  article-title: Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2021.09.004
– ident: ref_19
  doi: 10.1186/s12872-021-02311-z
– volume: 45
  start-page: 12
  year: 2024
  ident: ref_30
  article-title: Machine Learning of Laboratory Data in Predicting 30-Day Mortality for Adult Hemophagocytic Lymphohistiocytosis
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-024-01806-6
– volume: 69
  start-page: 1000
  year: 2015
  ident: ref_2
  article-title: Mortality from heart failure, acute myocardial infarction and other ischaemic heart disease in England and Oxford: A trend study of multiple-cause-coded death certification
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech-2015-205689
– ident: ref_22
  doi: 10.1371/journal.pone.0298036
– volume: 106
  start-page: 375
  year: 1982
  ident: ref_38
  article-title: Laboratory diagnosis of acute myocardial infarct: Usefulness of determination of lactate dehydrogenase (LDH)-1 level and of ratio of LDH-1 to total LDH
  publication-title: Arch. Pathol. Lab. Med.
– ident: ref_18
  doi: 10.1186/s12872-022-03025-6
– ident: ref_11
  doi: 10.1371/journal.pone.0278944
– volume: 39
  start-page: 119
  year: 2018
  ident: ref_3
  article-title: 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC)
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehx393
– ident: ref_33
  doi: 10.1016/j.cmpb.2022.107080
– ident: ref_12
  doi: 10.1371/journal.pone.0224502
– volume: 12
  start-page: 106
  year: 2005
  ident: ref_42
  article-title: Diagnostic performance of venous lactate on arrival at the emergency department for myocardial infarction
  publication-title: Acad. Emerg. Med.
  doi: 10.1197/j.aem.2004.10.012
– volume: 20
  start-page: 577
  year: 2014
  ident: ref_49
  article-title: Relationship Between Red Cell Distribution Width and the GRACE Risk Score with In-Hospital Death in Patients with Acute Coronary Syndrome
  publication-title: Clin. Appl. Thromb. Hemost.
  doi: 10.1177/1076029613500707
– volume: 23
  start-page: 330
  year: 2012
  ident: ref_48
  article-title: The relationship between red blood cell distribution width and the clinical outcomes in non-ST elevation myocardial infarction and unstable angina pectoris: A 3-year follow-up
  publication-title: Coron. Artery Dis.
  doi: 10.1097/MCA.0b013e3283564986
– volume: 34
  start-page: 1
  year: 2024
  ident: ref_15
  article-title: Correlation of osteopontin hormone with TIMI score and cardiac markers in patients with acute coronary syndrome presenting with chest pain
  publication-title: Cardiovasc. J. Afr.
– volume: 7
  start-page: e009995
  year: 2018
  ident: ref_46
  article-title: Albuminuria, Reduced Kidney Function, and the Risk of ST- and non-ST-segment–elevation myocardial infarction
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.009995
– volume: 128
  start-page: 852
  year: 2015
  ident: ref_9
  article-title: Diagnosis of unstable angina pectoris has declined markedly with the advent of more sensitive troponin assays
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2015.01.044
– volume: 36
  start-page: 37
  year: 2018
  ident: ref_4
  article-title: Non-ST-Segment Acute Coronary Syndromes
  publication-title: Cardiol. Clin.
  doi: 10.1016/j.ccl.2017.08.003
– volume: 13
  start-page: e069129
  year: 2023
  ident: ref_40
  article-title: Association of lactate detection with in-hospital mortality in critically ill patients with acute myocardial infarction: A retrospective cohort study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2022-069129
– volume: 10
  start-page: 1
  year: 2023
  ident: ref_27
  article-title: MIMIC-IV, a freely accessible electronic health record dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01899-x
– ident: ref_36
  doi: 10.3389/fmed.2024.1362153
– volume: 124
  start-page: 40
  year: 2011
  ident: ref_6
  article-title: Recent trends in the incidence, treatment, and outcomes of patients with STEMI and NSTEMI
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2010.07.023
SSID ssj0000913810
Score 2.314497
Snippet This study sought to establish machine learning models for forecasting in-hospital mortality in non-ST-segment elevation myocardial infarction (NSTEMI)...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 4226
SubjectTerms Accuracy
Acute coronary syndromes
Algorithms
Analysis
Cholesterol
Data mining
Decision making
Decision trees
Disease
Enzymes
Heart attack
Heart attacks
Hemoglobin
Hospitalization
Hospitals
in-hospital mortality
Kinases
Length of stay
Machine learning
Medical advice systems
Missing data
Mortality
non-ST-elevation myocardial infarction
Patient outcomes
Patients
prediction model
Sampling techniques
Shapley additive explanations
Structured Query Language-SQL
Support vector machines
Taiwan
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BeoEDogVEoCAfKgESFhuv12ufUINSFaREFW2l3izba0dI0W5J0kMv_HZmNk7bHGCPtle78sx4Hp75BuDIeWF0k2rufSG5RJeBe_QiuKqL2vmgjPRUjTydqdNL-eOqusoBt1VOq9yeif1B3XSBYuRfkFXQk0DjXH-9_s2paxTdruYWGo9hD49grQewN57Mzn7eRVkI9VKPik1hXon-Pd0LEwQ6FZDuqKIesf9f53KvbE6ew7NsJbLjDVn34VFsD-DpA-zAA9jPUrliHzN09KcX8OdsSRcvtNmsS-x7y7d9Qdi0t7PR5ma_WjbrWn5-wc_jnIKDbLKIm8gsm96ibiOeWeDLCYWARj-zMeq6huH8fY6iX0Q27TMxI8sgrfOXcHkyufh2ynOHBR5KM1pzEZR0o1jXrjZ1E2UVUTmFppLJeRVQvyUhvKtMDGUwAU2hVHkdCxWNiiWuKV_BoO3a-BqYSqkWTlUNkgmNMuO89KIIKSRRJa_iEI62m22vN0AaFh0Qool9QJMhjIkQd0sI_bof6JZzm4XJxug1JdWh7-tlCs6MRDJoeOFj6GND-EBktCSj66ULLpca4J8S2pU91qUmGJpCDuFwZyXKVtid3jKCzbK9svec-Ob_02_hiaBuwX2ezyEM1sub-A5NmLV_n_n0L-eJ8gM
  priority: 102
  providerName: ProQuest
Title Prediction of In-Hospital Mortality in Non-ST-Segment Elevation Myocardial Infarction, Based on Interpretable Machine Learning
URI https://www.proquest.com/docview/3194489668
https://doaj.org/article/eeb82003402b4fca912f989333395fb6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7S9NIeSh4tdZoYHQJtIKJrrVa7OsbFbhqwCXlAbkLSSiFg1sFxD730t3dGu07sQ-mlV2kEQjOjmZFmvgE4tk7oqo4ldy6TXGLIwB1GEVyVWWmdV1o6qkaeTNX5rby4K-7WWn1RTlgLD9we3NcQXEUJVBjnOBm91QMRNfWIz3NdRJfAttHmrQVT6Q7WA4KuagvykDKj_2CCPqfC0Q0TlJD6_3YfJyMz3oF3nXfIztpd7cJWaPbg7Rpm4B7sdtr4xL50kNEn-_D7ckEfLnTIbB7Zj4av-oGwSfKv0ddmDw2bzht-fcOvwz09CrLRLLQvsmzyC20aycoMF0cUfho9ZUO0cTXD-ZfcRDcLbJIyMAPrwFnv38PteHTz7Zx3nRW4z_VgyYVX0g5CWdpSl3WQRUCj5OtCRuuUR7sWhXC20MHnXnt0gWLhqpCpoFXIkSb_ANvNvAkfgakYS2FVUWsp0RnT1kknMh99FMSe0IPj1WGbxxZAw2DgQTwxazzpwZAY8UxCqNdpAGXBdLJg_iULPfhMbDSkm8uF9bYrMcCdEsqVOavyiuBnMtmDww1K1Cm_Ob0SBNPp9JPBywpjWQwPq4P_sdlP8EZQL-GUBXQI28vFz3CEDs7S9eFVNf7eh9fD0fTyqp8k-w8AqPrX
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQgQI-FAESFhuv9-EDQi00JLSJkJpKvbm2146Qot2SBKFe-En8Rmb20TYHuHWPa-9DnvG8PPMNwK6xQuVFyLi1keQSXQZu0YvgaRZlxrpUSUvVyONJOjyRX0-T0w3409XCUFplJxNrQV1UjmLk75FV0JNA4zz_eP6DU9coOl3tWmg0bHHoL36hy7b8MPqM9H0lxOBg-mnI264C3MWqv-LCpdL0fZaZTGWFl4lHgeyKRAZjU4cyPQhhTaK8i51yqP5DYnMfpV6lPsY5Mb73FtyWMWpyqkwffLmM6RDGZt6PmjJAHI_oFJoA16lcdU3x1f0B_qUFatU2eAD3W5uU7TVMtAUbvtyGe9eQCrdhq5UBS_amBap--xB-f1vQMQ-RllWBjUredSFh49qqRwuffS_ZpCr58ZQf-xmFItnB3DdxYDa-QE1KHDrHhwOuLd19x_ZRsxYMx68yIu3cs3Gd9-lZCwk7ewQnN7Lyj2GzrEr_BFgaQiZMmhTIFGgCKmOlFZELLogk2NT3YLdbbH3ewHZodHeIJvoaTXqwT4S4nEJY2_WNajHT7dbV3tucUvjQ07YyOKP6Iig08_BS9LEevCYyapIIq4Vxpi1swD8lbC29l8c5gd5Esgc7azNxJ7v14Y4RdCtJlvqK75_-f_gl3BlOx0f6aDQ5fAZ3BfUprjOMdmBztfjpn6PxtLIvao5lcHbTW-QvPAIu8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSASCngQxEgYXXjffqAUEMTNZREEW2l3hbba0dI0W6bBKFe-GH8OmZ2vW1zgFv3uPY-5HnbM98A7CktZFa4lGsdRDzCkIFrjCJ4kgap0iaRkaZq5PEkOTqLvpzH5xvwp62FobTKVifWirqoDO2R7yOrYCSBznm273xaxPRw-OniklMHKTppbdtpNCxybK9-Yfi2_Dg6RFq_EWI4OP18xH2HAW5C2VtxYZJI9WyaqlSmhY1ii8rZFHHklE4M6ncnhFaxtCY00qAr4GKd2SCxMrEhzgnxvfdgM6WoqAOb_cFk-u16h4cQN7Ne0BQFhqEM6Eya4NepeHXNDNbdAv5lE2pDN3wMj7yHyg4altqCDVtuw8NbuIXbsOU1wpK987DV75_A7-mCDn2I0KxybFTyticJG9c-Pvr77EfJJlXJT075iZ3RxiQbzG2zK8zGV2hXiV_n-LDD1aW7H1gf7WzBcPwmP1LPLRvXWaCWeYDY2VM4u5O1fwadsirtc2CJc6lQSVwgi6BDKJWOtAiMM07ETie2C3vtYucXDYhHjsEP0SS_RZMu9IkQ11MIebu-US1muRfk3FqdUUIfxt06ckbJnnASnT68JH2sC2-JjDnph9VCGeXLHPBPCWkrP8jCjCBwgqgLu2szUa7N-nDLCLnXK8v8Rgp2_j_8Gu6jeORfR5PjF_BAUNPiOt1oFzqrxU_7Ej2plX7lWZbB97uWkr8nUDSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+In-Hospital+Mortality+in+Non-ST-Segment+Elevation+Myocardial+Infarction%2C+Based+on+Interpretable+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Cao%2C+Mengru&rft.au=Li%2C+Chunhui&rft.date=2025-04-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=8&rft.spage=4226&rft_id=info:doi/10.3390%2Fapp15084226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15084226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon