Coaxial microneedle-electrode for multichannel and local-differential recordings of neuronal activity

•We fabricated a <10-μm diameter coaxial microneedle-electrode.•Applications include multichannel and local-differential neuronal recordings.•LFP and unit-activity were recorded from the mouse’s cortex in vivo.•SNR and firing rate were increased by the local-differential recording. Electrophysiol...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 320; p. 128442
Main Authors Idogawa, Shinnosuke, Yamashita, Koji, Kubota, Yoshihiro, Sawahata, Hirohito, Sanda, Rioki, Yamagiwa, Shota, Numano, Rika, Koida, Kowa, Kawano, Takeshi
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.10.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We fabricated a <10-μm diameter coaxial microneedle-electrode.•Applications include multichannel and local-differential neuronal recordings.•LFP and unit-activity were recorded from the mouse’s cortex in vivo.•SNR and firing rate were increased by the local-differential recording. Electrophysiological recording requires low invasive electrode geometry in the tissue and high-quality signal acquisitions. Here we propose a <10-μm diameter coaxial cable–inspired needle electrode, which consists of a core electrode in the needle surrounded by another shell electrode. The neuronal recording capability of these electrodes was confirmed by multichannel recording of a mouse cortex in vivo. Given that the shell electrode played the role of a reference electrode, the coaxial electrode also enabled a differential recording at the local area within the tissue. Compared to the recording without the referenced shell electrode, the differential recording demonstrated a twofold higher signal-to-noise ratio, while the firing rate increased. These results suggest that the coaxial microneedle-electrode will provide high-quality neuronal signals in electrophysiological recordings including ex vivo and in vitro applications, similar to the in vivo recording.
AbstractList •We fabricated a <10-μm diameter coaxial microneedle-electrode.•Applications include multichannel and local-differential neuronal recordings.•LFP and unit-activity were recorded from the mouse’s cortex in vivo.•SNR and firing rate were increased by the local-differential recording. Electrophysiological recording requires low invasive electrode geometry in the tissue and high-quality signal acquisitions. Here we propose a <10-μm diameter coaxial cable–inspired needle electrode, which consists of a core electrode in the needle surrounded by another shell electrode. The neuronal recording capability of these electrodes was confirmed by multichannel recording of a mouse cortex in vivo. Given that the shell electrode played the role of a reference electrode, the coaxial electrode also enabled a differential recording at the local area within the tissue. Compared to the recording without the referenced shell electrode, the differential recording demonstrated a twofold higher signal-to-noise ratio, while the firing rate increased. These results suggest that the coaxial microneedle-electrode will provide high-quality neuronal signals in electrophysiological recordings including ex vivo and in vitro applications, similar to the in vivo recording.
Electrophysiological recording requires low invasive electrode geometry in the tissue and high-quality signal acquisitions. Here we propose a <10-μm diameter coaxial cable–inspired needle electrode, which consists of a core electrode in the needle surrounded by another shell electrode. The neuronal recording capability of these electrodes was confirmed by multichannel recording of a mouse cortex in vivo. Given that the shell electrode played the role of a reference electrode, the coaxial electrode also enabled a differential recording at the local area within the tissue. Compared to the recording without the referenced shell electrode, the differential recording demonstrated a twofold higher signal-to-noise ratio, while the firing rate increased. These results suggest that the coaxial microneedle-electrode will provide high-quality neuronal signals in electrophysiological recordings including ex vivo and in vitro applications, similar to the in vivo recording.
ArticleNumber 128442
Author Numano, Rika
Yamashita, Koji
Koida, Kowa
Yamagiwa, Shota
Idogawa, Shinnosuke
Kubota, Yoshihiro
Sawahata, Hirohito
Sanda, Rioki
Kawano, Takeshi
Author_xml – sequence: 1
  givenname: Shinnosuke
  surname: Idogawa
  fullname: Idogawa, Shinnosuke
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 2
  givenname: Koji
  surname: Yamashita
  fullname: Yamashita, Koji
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 3
  givenname: Yoshihiro
  surname: Kubota
  fullname: Kubota, Yoshihiro
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 4
  givenname: Hirohito
  surname: Sawahata
  fullname: Sawahata, Hirohito
  organization: Department of Industrial Engineering, Mechanical and Control Engineering Course, National Institute of Technology, Ibaraki College, Ibaraki, 312-8508, Japan
– sequence: 5
  givenname: Rioki
  surname: Sanda
  fullname: Sanda, Rioki
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 6
  givenname: Shota
  surname: Yamagiwa
  fullname: Yamagiwa, Shota
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 7
  givenname: Rika
  surname: Numano
  fullname: Numano, Rika
  organization: Department of Applied Chemistry and Life science, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 8
  givenname: Kowa
  surname: Koida
  fullname: Koida, Kowa
  organization: Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
– sequence: 9
  givenname: Takeshi
  surname: Kawano
  fullname: Kawano, Takeshi
  email: kawano@ee.tut.ac.jp
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
BookMark eNp9UMtOwzAQtFCRKIUP4BaJc4pfeVicUMVLqsQFzpZjr8FRahc7qejf4yqcOa12d2Y0M5do4YMHhG4IXhNM6rt-nXy3ppjmnbac0zO0JG3DSoabZoGWWNCq5BhXF-gypR5jzFmNlwg2Qf04NRQ7p2OWBDNACQPoMQYDhQ2x2E3D6PSX8h6GQnlTDEGroTTOWojgxxM7gg7ROP-ZimALD1PWymelR3dw4_EKnVs1JLj-myv08fT4vnkpt2_Pr5uHbamZIGNJdUVsR6HirdWEtaRR2lCtqGhIV1NhG85AiEZXvKZGABdWdYwbrNpWUM7ZCt3OuvsYvidIo-zDFLOTJPO7rVtW0SajyIzKiVOKYOU-up2KR0mwPLUpe5nblKc25dxm5tzPHMj2Dw6iTNqB12Bczj5KE9w_7F_HP3_s
CitedBy_id crossref_primary_10_1016_j_snb_2020_129423
crossref_primary_10_1126_sciadv_adn7202
crossref_primary_10_1038_s41528_022_00219_y
Cites_doi 10.1038/nmat2745
10.1016/S0006-8993(03)03023-3
10.1002/adma.201102378
10.1063/1.3178556
10.1038/nature24636
10.1109/TBCAS.2016.2646901
10.1109/LED.2011.2120590
10.1016/j.snb.2017.11.152
10.1109/TNSRE.2011.2109399
10.1002/jbm.b.31223
10.1109/TBCAS.2019.2942450
10.1109/TBME.2006.886934
10.1016/j.bios.2010.10.014
10.1002/smll.201600172
10.1016/S0165-0270(99)00113-2
10.1016/j.biomaterials.2013.03.007
10.1038/srep35806
10.1038/srep04868
10.1038/nmat3468
10.1016/j.bios.2009.12.037
10.1016/j.snb.2014.09.048
10.1109/TED.2003.822473
10.3389/fnana.2011.00029
10.1038/nrn3241
10.1002/adfm.200801473
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Oct 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Oct 1, 2020
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2020.128442
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2020_128442
S0925400520307875
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c391t-2c51fb2e548fc13817acd2ca2971b629f743e997c5462d9e49fab34d0a8892443
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Thu Oct 10 16:35:04 EDT 2024
Thu Sep 26 16:55:56 EDT 2024
Fri Feb 23 02:41:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microelectrode
Multichannel recording
Neural recording
Differential recording
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-2c51fb2e548fc13817acd2ca2971b629f743e997c5462d9e49fab34d0a8892443
PQID 2448683527
PQPubID 2047454
ParticipantIDs proquest_journals_2448683527
crossref_primary_10_1016_j_snb_2020_128442
elsevier_sciencedirect_doi_10_1016_j_snb_2020_128442
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Kubota, Yamagiwa, Sawahata, Idogawa, Tsuruhara, Numano, Koida, Ishida, Kawano (bib0065) 2018; 258
Kawano, Kato, Tani, Takao, Sawada, Ishida (bib0085) 2004; 51
Kim, Viventi, Amsden, Xiao, Vigeland, Kim, Blanco, Panilaitis, Frechette, Contreras, Kaplan, Omenetto, Huang, Hwang, Zakin, Litt, Rogers (bib0005) 2010; 9
Oka, Shimono, Ogawa, Sugihara, Taketani (bib0120) 1999; 93
Kawano, Kato, Futagawa, Takao, Sawada, Ishida (bib0075) 2002; 97–98
Khodagholy, Doublet, Gurfinkel, Quilichini, Ismailova, Leleux, Herve, Sanaur, Bernard, Malliaras (bib0105) 2011; 23
Kaneko, Tamura, Suzuki (bib0135) 2007; 54
Wang, Lopez, Garakoui, Chun, Salinas, Sijbers, Putzeys, Martens, Craninckx, Van Helleputte (bib0020) 2019; 13
Harimoto, Takei, Kawano, Ishihara, Kawashima, Kaneko, Ishida, Usui (bib0080) 2011; 26
Ikedo, Kawashima, Kawano, Ishida (bib0070) 2009; 95
Sawahata, Yamagiwa, Moriya, Dong, Oi, Ando, Numano, Ishida, Koida, Kawano (bib0055) 2016; 6
Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits, Lee, Anastassiou, Andrei, Aydin, Barbic, Blanche, Bonin, Couto, Dutta, Gratiy, Gutnisky, Häusser, Karsh, Ledochowitsch, Lopez, Mitelut, Musa, Okun, Pachitariu, Putzeys, Rich, Rossant, Sun, Svoboda, Carandini, Harris, Koch, O’Keefe, Harris (bib0025) 2017; 551
Kawano, Harimoto, Ishihara, Takei, Kawashima, Usui, Ishida (bib0090) 2010; 25
Buzsáki, Anastassiou, Koch (bib0010) 2012; 13
Saxena, Karumbaiah, Gaupp, Patkar, Patil, Betancur, Stanley, Bellamkonda (bib0030) 2013; 34
Edell, Van Toi, Mcneil, Clark (bib0040) 1992; 39
Yamagiwa, Fujishiro, Sawahata, Numano, Ishida, Kawano (bib0125) 2015; 206
Fujishiro, Kaneko, Kawashima, Ishida, Kawano (bib0050) 2014; 4
Kubota, Oi, Sawahata, Goryu, Ando, Numano, IShida, Kawano (bib0060) 2016; 12
Mora Lopez, Putzeys, Raducanu, Ballini, Wang, Andrei, Rochus, Vandebriel, Severi, Van Hoof, Musa, Van Helleputte, Yazicioglu, Mitra (bib0015) 2017; 11
Yoshida Kozai, Langhals, Patel, Deng, Zhang, Smith, Lahann, Kotov, Kipke (bib0045) 2012; 11
Abidian, Martin (bib0115) 2009; 19
DeFelipe (bib0140) 2011; 5
Szarowski, Andersen, Retterer, Spence, Isaacson, Craighead, Turner, Shain (bib0035) 2003; 983
Okugawa, Mayumi, Ikedo, Ishida, Kawano (bib0095) 2011; 32
Venkatraman, Hendricks, King, Sereno, Richardson-Burns, Martin, Carmena (bib0110) 2011; 19
Wilks, Richardson-burns, Hendricks, David, Otto (bib0100) 2017; 2
Cogan, Ehrlich, Plante, Smirnov, Shire, Gingerich, Rizzo (bib0130) 2009; 89
Wang (10.1016/j.snb.2020.128442_bib0020) 2019; 13
Kawano (10.1016/j.snb.2020.128442_bib0090) 2010; 25
Cogan (10.1016/j.snb.2020.128442_bib0130) 2009; 89
Szarowski (10.1016/j.snb.2020.128442_bib0035) 2003; 983
Kawano (10.1016/j.snb.2020.128442_bib0075) 2002; 97–98
Oka (10.1016/j.snb.2020.128442_bib0120) 1999; 93
Edell (10.1016/j.snb.2020.128442_bib0040) 1992; 39
Yamagiwa (10.1016/j.snb.2020.128442_bib0125) 2015; 206
Kubota (10.1016/j.snb.2020.128442_bib0065) 2018; 258
Harimoto (10.1016/j.snb.2020.128442_bib0080) 2011; 26
Saxena (10.1016/j.snb.2020.128442_bib0030) 2013; 34
Abidian (10.1016/j.snb.2020.128442_bib0115) 2009; 19
Fujishiro (10.1016/j.snb.2020.128442_bib0050) 2014; 4
Yoshida Kozai (10.1016/j.snb.2020.128442_bib0045) 2012; 11
DeFelipe (10.1016/j.snb.2020.128442_bib0140) 2011; 5
Kubota (10.1016/j.snb.2020.128442_bib0060) 2016; 12
Wilks (10.1016/j.snb.2020.128442_bib0100) 2017; 2
Kawano (10.1016/j.snb.2020.128442_bib0085) 2004; 51
Okugawa (10.1016/j.snb.2020.128442_bib0095) 2011; 32
Buzsáki (10.1016/j.snb.2020.128442_bib0010) 2012; 13
Mora Lopez (10.1016/j.snb.2020.128442_bib0015) 2017; 11
Ikedo (10.1016/j.snb.2020.128442_bib0070) 2009; 95
Jun (10.1016/j.snb.2020.128442_bib0025) 2017; 551
Khodagholy (10.1016/j.snb.2020.128442_bib0105) 2011; 23
Kaneko (10.1016/j.snb.2020.128442_bib0135) 2007; 54
Kim (10.1016/j.snb.2020.128442_bib0005) 2010; 9
Sawahata (10.1016/j.snb.2020.128442_bib0055) 2016; 6
Venkatraman (10.1016/j.snb.2020.128442_bib0110) 2011; 19
References_xml – volume: 23
  start-page: 268
  year: 2011
  end-page: 272
  ident: bib0105
  article-title: Highly conformable conducting polymer electrodes for in vivo recordings
  publication-title: Adv. Mater.
  contributor:
    fullname: Malliaras
– volume: 32
  start-page: 683
  year: 2011
  end-page: 685
  ident: bib0095
  article-title: Heterogeneously integrated vaporliquidsolid grown silicon probes/(111) and silicon MOSFETs/(100)
  publication-title: IEEE Electron Device Lett.
  contributor:
    fullname: Kawano
– volume: 12
  start-page: 2846
  year: 2016
  end-page: 2853
  ident: bib0060
  article-title: Nanoscale-tipped high-aspect-Ratio vertical microneedle electrodes for intracellular recordings
  publication-title: Small.
  contributor:
    fullname: Kawano
– volume: 13
  start-page: 1625
  year: 2019
  end-page: 1634
  ident: bib0020
  article-title: A compact quad-shank CMOS neural probe with 5,120 addressable recording sites and 384 fully differential parallel channels
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  contributor:
    fullname: Van Helleputte
– volume: 95
  year: 2009
  ident: bib0070
  article-title: Vertically aligned silicon microwire arrays of various lengths by repeated selective vapor-liquid-solid growth of n-type silicon/n-type silicon
  publication-title: Applied Physics Letters
  contributor:
    fullname: Ishida
– volume: 13
  start-page: 407
  year: 2012
  end-page: 420
  ident: bib0010
  article-title: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
  contributor:
    fullname: Koch
– volume: 4
  year: 2014
  ident: bib0050
  article-title: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays
  publication-title: Sci. Rep.
  contributor:
    fullname: Kawano
– volume: 19
  start-page: 573
  year: 2009
  end-page: 585
  ident: bib0115
  article-title: Multifunctional nanobiomaterials for neural interfaces
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Martin
– volume: 39
  start-page: 635
  year: 1992
  end-page: 643
  ident: bib0040
  article-title: Factors influencing the biocompatibility of insertable silicon microshafts
  publication-title: Cereb. Cortex
  contributor:
    fullname: Clark
– volume: 54
  start-page: 262
  year: 2007
  end-page: 272
  ident: bib0135
  article-title: Tracking spike-amplitude changes to improve the quality of multineuronal data analysis
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Suzuki
– volume: 19
  start-page: 307
  year: 2011
  end-page: 316
  ident: bib0110
  article-title: In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  contributor:
    fullname: Carmena
– volume: 983
  start-page: 23
  year: 2003
  end-page: 35
  ident: bib0035
  article-title: Brain responses to micro-machined silicon devices
  publication-title: Brain Res.
  contributor:
    fullname: Shain
– volume: 51
  start-page: 415
  year: 2004
  end-page: 420
  ident: bib0085
  article-title: Selective vapor-liquid-Solid epitaxial growth of Micro-Si probe electrode arrays with on-chip mosfets on Si (1 1 1) substrates
  publication-title: IEEE Trans. Electron Devices
  contributor:
    fullname: Ishida
– volume: 2
  year: 2017
  ident: bib0100
  article-title: Poly (3, 4-ethylene dioxythiophene)(PEDOT) as a micro-neural interface material for electrostimulation
  publication-title: Front. Neuroeng.
  contributor:
    fullname: Otto
– volume: 93
  start-page: 61
  year: 1999
  end-page: 67
  ident: bib0120
  article-title: A new planar multielectrode array for extracellular recording: application to hippocampal acute slice
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Taketani
– volume: 11
  start-page: 510
  year: 2017
  end-page: 522
  ident: bib0015
  article-title: A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  contributor:
    fullname: Mitra
– volume: 258
  start-page: 1287
  year: 2018
  end-page: 1294
  ident: bib0065
  article-title: Long nanoneedle-electrode devices for extracellular and intracellular recording in vivo
  publication-title: Sensors Actuators B Chem.
  contributor:
    fullname: Kawano
– volume: 11
  start-page: 1065
  year: 2012
  end-page: 1073
  ident: bib0045
  article-title: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces
  publication-title: Nat. Mater.
  contributor:
    fullname: Kipke
– volume: 34
  start-page: 4703
  year: 2013
  end-page: 4713
  ident: bib0030
  article-title: The impact of chronic blood–brain barrier breach on intracortical electrode function
  publication-title: Biomaterials.
  contributor:
    fullname: Bellamkonda
– volume: 89
  start-page: 353
  year: 2009
  end-page: 361
  ident: bib0130
  article-title: Sputtered iridium oxide films for neural stimulation electrodes
  publication-title: J. Biomed. Mater. Res. - Part B Appl. Biomater.
  contributor:
    fullname: Rizzo
– volume: 5
  year: 2011
  ident: bib0140
  article-title: The evolution of the brain, the human nature of cortical circuits, and intellectual creativity
  publication-title: Front. Neuroanat.
  contributor:
    fullname: DeFelipe
– volume: 26
  start-page: 2368
  year: 2011
  end-page: 2375
  ident: bib0080
  article-title: Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina
  publication-title: Biosens. Bioelectron.
  contributor:
    fullname: Usui
– volume: 6
  year: 2016
  ident: bib0055
  article-title: Single 5 μm diameter needle electrode block modules for unit recordings in vivo
  publication-title: Sci. Rep.
  contributor:
    fullname: Kawano
– volume: 9
  start-page: 511
  year: 2010
  end-page: 517
  ident: bib0005
  article-title: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics
  publication-title: Nat. Mater.
  contributor:
    fullname: Rogers
– volume: 206
  start-page: 205
  year: 2015
  end-page: 211
  ident: bib0125
  article-title: Layer-by-layer assembled nanorough iridium-oxide/platinum-black for low-voltage microscale electrode neurostimulation
  publication-title: Sensors Actuators B Chem.
  contributor:
    fullname: Kawano
– volume: 551
  start-page: 232
  year: 2017
  end-page: 236
  ident: bib0025
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature.
  contributor:
    fullname: Harris
– volume: 97–98
  start-page: 709
  year: 2002
  end-page: 715
  ident: bib0075
  article-title: Fabrication and properties of ultrasmall Si wire arrays with circuits by vapor-liquid-solid growth, Sensors Actuators
  publication-title: A Phys.
  contributor:
    fullname: Ishida
– volume: 25
  start-page: 1809
  year: 2010
  end-page: 1815
  ident: bib0090
  article-title: Electrical interfacing between neurons and electronics via vertically integrated sub-4mu;m-diameter silicon probe arrays fabricated by vapor-liquid-solid growth
  publication-title: Biosens. Bioelectron.
  contributor:
    fullname: Ishida
– volume: 9
  start-page: 511
  year: 2010
  ident: 10.1016/j.snb.2020.128442_bib0005
  article-title: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2745
  contributor:
    fullname: Kim
– volume: 983
  start-page: 23
  year: 2003
  ident: 10.1016/j.snb.2020.128442_bib0035
  article-title: Brain responses to micro-machined silicon devices
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(03)03023-3
  contributor:
    fullname: Szarowski
– volume: 23
  start-page: 268
  year: 2011
  ident: 10.1016/j.snb.2020.128442_bib0105
  article-title: Highly conformable conducting polymer electrodes for in vivo recordings
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102378
  contributor:
    fullname: Khodagholy
– volume: 95
  year: 2009
  ident: 10.1016/j.snb.2020.128442_bib0070
  article-title: Vertically aligned silicon microwire arrays of various lengths by repeated selective vapor-liquid-solid growth of n-type silicon/n-type silicon
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3178556
  contributor:
    fullname: Ikedo
– volume: 551
  start-page: 232
  year: 2017
  ident: 10.1016/j.snb.2020.128442_bib0025
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature.
  doi: 10.1038/nature24636
  contributor:
    fullname: Jun
– volume: 11
  start-page: 510
  year: 2017
  ident: 10.1016/j.snb.2020.128442_bib0015
  article-title: A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2016.2646901
  contributor:
    fullname: Mora Lopez
– volume: 32
  start-page: 683
  year: 2011
  ident: 10.1016/j.snb.2020.128442_bib0095
  article-title: Heterogeneously integrated vaporliquidsolid grown silicon probes/(111) and silicon MOSFETs/(100)
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2011.2120590
  contributor:
    fullname: Okugawa
– volume: 258
  start-page: 1287
  year: 2018
  ident: 10.1016/j.snb.2020.128442_bib0065
  article-title: Long nanoneedle-electrode devices for extracellular and intracellular recording in vivo
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2017.11.152
  contributor:
    fullname: Kubota
– volume: 19
  start-page: 307
  year: 2011
  ident: 10.1016/j.snb.2020.128442_bib0110
  article-title: In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2109399
  contributor:
    fullname: Venkatraman
– volume: 89
  start-page: 353
  year: 2009
  ident: 10.1016/j.snb.2020.128442_bib0130
  article-title: Sputtered iridium oxide films for neural stimulation electrodes
  publication-title: J. Biomed. Mater. Res. - Part B Appl. Biomater.
  doi: 10.1002/jbm.b.31223
  contributor:
    fullname: Cogan
– volume: 13
  start-page: 1625
  year: 2019
  ident: 10.1016/j.snb.2020.128442_bib0020
  article-title: A compact quad-shank CMOS neural probe with 5,120 addressable recording sites and 384 fully differential parallel channels
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2942450
  contributor:
    fullname: Wang
– volume: 97–98
  start-page: 709
  year: 2002
  ident: 10.1016/j.snb.2020.128442_bib0075
  article-title: Fabrication and properties of ultrasmall Si wire arrays with circuits by vapor-liquid-solid growth, Sensors Actuators
  publication-title: A Phys.
  contributor:
    fullname: Kawano
– volume: 54
  start-page: 262
  year: 2007
  ident: 10.1016/j.snb.2020.128442_bib0135
  article-title: Tracking spike-amplitude changes to improve the quality of multineuronal data analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886934
  contributor:
    fullname: Kaneko
– volume: 26
  start-page: 2368
  year: 2011
  ident: 10.1016/j.snb.2020.128442_bib0080
  article-title: Enlarged gold-tipped silicon microprobe arrays and signal compensation for multi-site electroretinogram recordings in the isolated carp retina
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.10.014
  contributor:
    fullname: Harimoto
– volume: 12
  start-page: 2846
  year: 2016
  ident: 10.1016/j.snb.2020.128442_bib0060
  article-title: Nanoscale-tipped high-aspect-Ratio vertical microneedle electrodes for intracellular recordings
  publication-title: Small.
  doi: 10.1002/smll.201600172
  contributor:
    fullname: Kubota
– volume: 93
  start-page: 61
  year: 1999
  ident: 10.1016/j.snb.2020.128442_bib0120
  article-title: A new planar multielectrode array for extracellular recording: application to hippocampal acute slice
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(99)00113-2
  contributor:
    fullname: Oka
– volume: 34
  start-page: 4703
  year: 2013
  ident: 10.1016/j.snb.2020.128442_bib0030
  article-title: The impact of chronic blood–brain barrier breach on intracortical electrode function
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2013.03.007
  contributor:
    fullname: Saxena
– volume: 39
  start-page: 635
  year: 1992
  ident: 10.1016/j.snb.2020.128442_bib0040
  article-title: Factors influencing the biocompatibility of insertable silicon microshafts
  publication-title: Cereb. Cortex
  contributor:
    fullname: Edell
– volume: 6
  year: 2016
  ident: 10.1016/j.snb.2020.128442_bib0055
  article-title: Single 5 μm diameter needle electrode block modules for unit recordings in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/srep35806
  contributor:
    fullname: Sawahata
– volume: 4
  year: 2014
  ident: 10.1016/j.snb.2020.128442_bib0050
  article-title: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays
  publication-title: Sci. Rep.
  doi: 10.1038/srep04868
  contributor:
    fullname: Fujishiro
– volume: 11
  start-page: 1065
  year: 2012
  ident: 10.1016/j.snb.2020.128442_bib0045
  article-title: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3468
  contributor:
    fullname: Yoshida Kozai
– volume: 2
  year: 2017
  ident: 10.1016/j.snb.2020.128442_bib0100
  article-title: Poly (3, 4-ethylene dioxythiophene)(PEDOT) as a micro-neural interface material for electrostimulation
  publication-title: Front. Neuroeng.
  contributor:
    fullname: Wilks
– volume: 25
  start-page: 1809
  year: 2010
  ident: 10.1016/j.snb.2020.128442_bib0090
  article-title: Electrical interfacing between neurons and electronics via vertically integrated sub-4mu;m-diameter silicon probe arrays fabricated by vapor-liquid-solid growth
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.12.037
  contributor:
    fullname: Kawano
– volume: 206
  start-page: 205
  year: 2015
  ident: 10.1016/j.snb.2020.128442_bib0125
  article-title: Layer-by-layer assembled nanorough iridium-oxide/platinum-black for low-voltage microscale electrode neurostimulation
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2014.09.048
  contributor:
    fullname: Yamagiwa
– volume: 51
  start-page: 415
  year: 2004
  ident: 10.1016/j.snb.2020.128442_bib0085
  article-title: Selective vapor-liquid-Solid epitaxial growth of Micro-Si probe electrode arrays with on-chip mosfets on Si (1 1 1) substrates
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2003.822473
  contributor:
    fullname: Kawano
– volume: 5
  year: 2011
  ident: 10.1016/j.snb.2020.128442_bib0140
  article-title: The evolution of the brain, the human nature of cortical circuits, and intellectual creativity
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2011.00029
  contributor:
    fullname: DeFelipe
– volume: 13
  start-page: 407
  year: 2012
  ident: 10.1016/j.snb.2020.128442_bib0010
  article-title: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3241
  contributor:
    fullname: Buzsáki
– volume: 19
  start-page: 573
  year: 2009
  ident: 10.1016/j.snb.2020.128442_bib0115
  article-title: Multifunctional nanobiomaterials for neural interfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801473
  contributor:
    fullname: Abidian
SSID ssj0004360
Score 2.3996232
Snippet •We fabricated a <10-μm diameter coaxial microneedle-electrode.•Applications include multichannel and local-differential neuronal recordings.•LFP and...
Electrophysiological recording requires low invasive electrode geometry in the tissue and high-quality signal acquisitions. Here we propose a <10-μm diameter...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 128442
SubjectTerms Coaxial cables
Differential geometry
Differential recording
Electrodes
Microelectrode
Multichannel recording
Needles
Neural recording
Recording
Signal quality
Signal to noise ratio
Title Coaxial microneedle-electrode for multichannel and local-differential recordings of neuronal activity
URI https://dx.doi.org/10.1016/j.snb.2020.128442
https://www.proquest.com/docview/2448683527
Volume 320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwIZk2jpPYY1VRFRBdoFI3y04cqaikFQ0SE7-dOycRDwkGxkR2Yp0vd985390RchHEJnSJlUyoLGPCJJxZFUVMRAYBR2yNxATn-2k8mYnbeTRvkVGTC4O0ytr2VzbdW-v6Tr-WZn-9WPQfBgqCG8_jAD0F2I0Z7OD-QKev3j9pHiL0mcI4mOHo5s-m53htCgshIscaC1II_ptv-mGlvesZ75HdGjPSYbWsfdJyxQHZ-VJJ8JC40cq8gSrRZyTYwe1s6Vjd4iZzFJAp9dRBzPMt3JKaIqPejbGmQ0qJs6sjGzw8p6uc-lqX-GZMfsAeE0dkNr5-HE1Y3UGBpaEKSsbTKMgtdxCW5GmAxfhMmvHUcJUENuYqB_zglErSSMQ8U06o3NhQZAMjJQRmIjwm7QIWfUKoswDuhLOplDAglBZQuTJqkKdSWedEh1w2stPrqlCGbhhkTxoErVHQuhJ0h4hGuvrbbmsw5H9N6zY7oetPbaNhmTJGHJmc_u-pZ2QbryqGXpe0y5dXdw5Io7Q9r0o9sjW8uZtMPwD0SNMt
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RRvPDAhmTaOk9gjqkAF2i60UjfLdhwJVAKCIjHx27lzEvGQYGB17MQ6X87f2d_dEXISpSb2mZVMqDxnwmScWZUkTCQGAUdqjcQA5-Eo7U_E9TSZtkiviYVBWmVt-yubHqx13dKppdl5urvr3HYVODeBxwF6CrB7gSwKxMeg1GfvnzwPEYdQYezNsHtztRlIXi-lBR-RY5IFKQT_bXP6YabD3nO5RlZr0EjPq3mtk5YvN8jKl1SCm8T3Hs0b6BJ9QIYdNOczz-oaN7mnAE1p4A5ioG_pZ9SUOQ37GGtKpMxxdHVmg6fn9LGgIdklfhmjH7DIxBaZXF6Me31Wl1BgLlbRnHGXRIXlHvySwkWYjc-4nDvDVRbZlKsCAIRXKnOJSHmuvFCFsbHIu0ZK8MxEvE3aJUx6h1BvAd0Jb52U0CGWFmC5MqpbOKms92KXnDay009VpgzdUMjuNQhao6B1JehdIhrp6m_LrcGS_zXsoFkJXf9rLxqmKVMEktne_956TJb64-FAD65GN_tkGZ9UdL0D0p4_v_pDgB1zexTU6gMLXtTG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coaxial+microneedle-electrode+for+multichannel+and+local-differential+recordings+of+neuronal+activity&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Idogawa%2C+Shinnosuke&rft.au=Yamashita%2C+Koji&rft.au=Kubota%2C+Yoshihiro&rft.au=Sawahata%2C+Hirohito&rft.date=2020-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B320&rft.spage=1&rft_id=info:doi/10.1016%2Fj.snb.2020.128442&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon