Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application

This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed f...

Full description

Saved in:
Bibliographic Details
Published inActuators Vol. 14; no. 7; p. 342
Main Authors Hasan, Sk, Alam, Nafizul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies.
AbstractList This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies.
Audience Academic
Author Hasan, Sk
Alam, Nafizul
Author_xml – sequence: 1
  givenname: Sk
  orcidid: 0000-0003-0664-757X
  surname: Hasan
  fullname: Hasan, Sk
– sequence: 2
  givenname: Nafizul
  orcidid: 0009-0000-9131-9866
  surname: Alam
  fullname: Alam, Nafizul
BookMark eNptkUFr3DAQhUVJoWmaU_6AoMdm05HGXtu9Ldu0DSwEQu5iLI832tqSKzlp8--r7ZayhUgDGg3vfSC9t-LEB89CXCi4QmzgI9lZFVABFvqVONVQLRdQ6_LkqH8jzlPaQV6NwhrwVGzXYZwiP7BP7onl_kaR5n2_8jQ8J5dk6OUm_OQoN25s5fWvkL7zwHPw8o4TU7QPn7LRzzEMl_IzJ7f1l5J8J1fTNDibacG_E697GhKf_z3PxP2X6_v1t8Xm9uvNerVZWGzUvNAtFNQ03LawLMu6IdSqrcuqWSrq6qbIxY1iZVtA1XYVoaqsgtpS2ffQ4pm4OWC7QDszRTdSfDaBnPkzCHFrKM7ODmy0xV6rDAGLRVV3xIAVKo3EtAQFmfX-wJpi-PHIaTa78BjzpySDGhEQdHmk2lKGOt-HOZIdXbJmVZegdC7MqqsXVHl3PDqbc-xdnv9n-HAw2BhSitz_e4wCs4_bHMWNvwFhk5vJ
Cites_doi 10.1109/LRA.2024.3405381
10.1109/JSEN.2023.3330190
10.1109/TMECH.2022.3204921
10.1109/TMRB.2021.3052014
10.1109/TMRB.2022.3194360
10.1109/TMRB.2023.3310040
10.1016/j.isatra.2021.08.027
10.1016/j.jbiomech.2023.111552
10.1109/THMS.2024.3458905
10.1109/TMECH.2022.3181261
10.1016/j.conengprac.2022.105271
10.1109/TMRB.2024.3464671
10.1109/THMS.2022.3217971
10.1016/j.jfranklin.2023.05.030
10.1109/TRO.2020.3034017
10.1109/TMECH.2020.3044289
10.1016/j.compbiomed.2023.107910
10.1109/TBME.2022.3165547
10.1109/LCSYS.2020.3043838
10.1109/TBME.2020.3006787
10.1016/j.robot.2022.104319
10.1109/LRA.2021.3075368
10.1016/j.matcom.2023.08.020
10.1016/j.isatra.2021.10.009
10.1109/LRA.2021.3097832
10.1109/TNSRE.2023.3276424
10.1109/TASE.2024.3384515
10.1109/TRO.2024.3468768
10.1016/j.mechmachtheory.2024.105753
10.1016/j.bspc.2024.106347
10.1109/LRA.2023.3234813
10.1109/TMECH.2024.3367348
10.1109/TMECH.2024.3370954
10.1109/TRO.2021.3104244
10.1109/JSEN.2021.3111212
10.1016/j.neucom.2023.126963
10.1109/TRO.2021.3122975
10.1109/TRO.2023.3235584
10.1016/j.apergo.2022.103768
10.1109/LRA.2024.3461553
10.1109/TIE.2021.3082067
10.1109/JSEN.2022.3201192
10.1016/j.isatra.2022.05.025
10.1109/TNSRE.2025.3543606
10.1109/TMRB.2023.3329585
10.1109/JSEN.2024.3352005
10.1016/j.bbe.2020.09.004
10.1109/TII.2023.3234619
10.1016/j.bspc.2024.105976
10.1109/TMRB.2022.3178520
10.1016/j.mechatronics.2021.102554
10.1109/TASE.2023.3312214
10.1016/j.procs.2023.10.645
10.1016/j.robot.2024.104906
10.1016/j.jbiomech.2022.110987
10.1016/j.future.2021.06.053
10.1109/JSEN.2024.3479239
10.1016/j.procs.2024.11.009
10.1109/JSEN.2024.3399697
10.1109/LRA.2021.3125723
10.1109/TMECH.2024.3447674
10.1109/TSMC.2019.2932892
10.1109/TFUZZ.2022.3162700
10.1109/LRA.2024.3354618
10.1016/j.jor.2024.10.036
10.1109/TMECH.2022.3206530
10.1016/j.mechatronics.2023.103109
10.1109/TMRB.2025.3550736
10.1109/TNSRE.2023.3298670
10.1016/j.bspc.2024.106791
10.1109/TMRB.2023.3290982
10.1109/TMECH.2023.3294255
10.1016/j.eswa.2025.126601
10.1109/TASE.2020.2964807
10.1109/TOH.2025.3533974
10.1109/TNSRE.2022.3143361
10.1109/TMECH.2024.3496876
10.1016/j.isatra.2025.01.003
10.1109/LRA.2021.3098243
10.1109/TMECH.2021.3099815
10.1016/j.mechmachtheory.2024.105866
10.1109/TNSRE.2023.3294435
10.1016/j.cmpb.2024.108332
10.1109/TMRB.2021.3088521
10.1016/j.mechmachtheory.2022.104731
10.1109/TMECH.2022.3233434
10.1016/j.arcontrol.2022.04.003
10.1109/TNSRE.2021.3064463
10.1109/TMECH.2022.3156168
10.1109/TNSRE.2023.3297737
10.1109/TMRB.2022.3166543
10.1109/TASE.2024.3421318
10.1016/j.gaitpost.2022.09.082
10.1109/LRA.2024.3391695
10.1109/TNSRE.2025.3526424
10.1109/TASE.2020.3037973
10.1109/TASE.2024.3483872
10.1109/TNSRE.2024.3354806
10.1109/TMRB.2020.3048224
10.1109/THMS.2024.3503473
10.1109/JSEN.2025.3526646
10.1109/TNSRE.2021.3136088
10.1109/TMRB.2024.3464119
10.1109/TBME.2022.3188482
10.1109/TOH.2024.3375295
10.1109/TMECH.2022.3172715
10.1109/LRA.2021.3098915
10.1109/TFUZZ.2020.2999739
10.1016/j.mechatronics.2021.102699
10.1109/TCST.2024.3429908
10.1109/LRA.2023.3322082
10.1016/j.mechmachtheory.2021.104519
10.1109/LRA.2022.3185380
10.1109/TIM.2024.3485393
10.1109/TNSRE.2020.2989481
10.1016/j.ergon.2024.103661
10.1016/j.asoc.2021.107226
10.1109/TCST.2023.3305913
10.1016/j.eswa.2025.126862
10.1109/TMECH.2023.3235756
10.1109/TMECH.2022.3175731
10.1016/j.conengprac.2023.105651
10.1109/OJCSYS.2022.3165733
10.1016/j.mechatronics.2021.102608
10.1109/TIE.2024.3413820
10.1109/TCYB.2020.2972582
10.1109/TNSRE.2022.3229563
10.1109/LRA.2022.3173426
10.1109/TNSRE.2024.3425436
10.1109/JSEN.2023.3328615
10.1109/LRA.2022.3186066
10.1016/j.isatra.2024.06.001
10.1016/j.isatra.2021.05.039
10.1109/TBME.2024.3461880
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/act14070342
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_2c3f211bd0c3478dae0373123aea6010
A850120123
10_3390_act14070342
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c391t-2b04a99ebb065589a321b857961ad894894e91e1cb031bd7a317c108ca5ff0b3
IEDL.DBID DOA
ISSN 2076-0825
IngestDate Wed Aug 27 01:27:49 EDT 2025
Sat Aug 23 14:32:45 EDT 2025
Wed Aug 06 19:51:16 EDT 2025
Tue Aug 05 03:50:45 EDT 2025
Wed Jul 16 16:40:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-2b04a99ebb065589a321b857961ad894894e91e1cb031bd7a317c108ca5ff0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0664-757X
0009-0000-9131-9866
OpenAccessLink https://doaj.org/article/2c3f211bd0c3478dae0373123aea6010
PQID 3233030250
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_2c3f211bd0c3478dae0373123aea6010
proquest_journals_3233030250
gale_infotracmisc_A850120123
gale_infotracacademiconefile_A850120123
crossref_primary_10_3390_act14070342
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lin (ref_133) 2024; 32
Huo (ref_31) 2022; 38
Schrade (ref_111) 2021; 68
Staman (ref_95) 2021; 3
ref_11
Han (ref_73) 2021; 29
Mehr (ref_27) 2021; 6
Li (ref_44) 2024; 32
Kang (ref_58) 2022; 69
Song (ref_105) 2023; 28
Ma (ref_33) 2021; 18
Song (ref_71) 2025; 7
Chen (ref_117) 2022; 81
Zhang (ref_78) 2024; 9
Chen (ref_42) 2022; 27
Hunt (ref_2) 2022; 98
Zhao (ref_135) 2024; 72
Das (ref_74) 2025; 275
Chen (ref_128) 2025; 25
Yang (ref_72) 2024; 24
Camardella (ref_83) 2021; 6
Meng (ref_57) 2024; 6
Liu (ref_69) 2022; 4
Zhang (ref_86) 2024; 24
Li (ref_43) 2022; 27
Li (ref_85) 2021; 26
Zou (ref_25) 2024; 22
Mcgrath (ref_82) 2024; 6
Liu (ref_68) 2022; 7
Zhang (ref_21) 2022; 4
Zhan (ref_90) 2024; 201
Prieto (ref_101) 2025; 33
Wang (ref_15) 2022; 128
Yu (ref_30) 2024; 54
Hamza (ref_8) 2020; 40
Cao (ref_92) 2022; 7
Lu (ref_16) 2025; 270
Gao (ref_120) 2022; 127
Bergmann (ref_51) 2024; 55
Zou (ref_87) 2021; 18
Zhao (ref_137) 2021; 76
Sun (ref_118) 2024; 564
Li (ref_39) 2023; 31
Wang (ref_37) 2024; 29
Moriarty (ref_1) 2025; 65
Sarkisian (ref_81) 2021; 29
Zheng (ref_127) 2022; 22
Hybart (ref_10) 2023; 31
Chen (ref_96) 2024; 250
Torricelli (ref_9) 2020; 28
Li (ref_77) 2021; 21
Lin (ref_62) 2021; 5
Nasiri (ref_23) 2021; 6
Barrutia (ref_88) 2023; 31
Bergmann (ref_36) 2023; 5
Wang (ref_59) 2023; 53
Song (ref_103) 2023; 28
Zhu (ref_106) 2023; 8
Munera (ref_136) 2021; 78
Sun (ref_20) 2021; 51
Li (ref_24) 2024; 73
Andrade (ref_26) 2021; 3
Arceo (ref_38) 2024; 22
Qian (ref_80) 2022; 7
Laubscher (ref_122) 2023; 139
Wang (ref_14) 2024; 215
Medrano (ref_47) 2023; 39
Qiu (ref_28) 2024; 9
Yoon (ref_91) 2024; 104
Chen (ref_49) 2024; 9
Tortora (ref_65) 2023; 31
Carrasquillo (ref_61) 2025; 18
Shafer (ref_102) 2023; 70
Lin (ref_60) 2022; 1
Zhang (ref_134) 2022; 131
ref_55
Tu (ref_94) 2022; 30
Yu (ref_35) 2021; 37
Wu (ref_130) 2024; 9
Chen (ref_32) 2024; 40
Sarajchi (ref_3) 2021; 29
Caulcrick (ref_70) 2021; 6
Gonzalez (ref_98) 2022; 103
Otalora (ref_34) 2022; 7
Zhang (ref_22) 2024; 22
Qian (ref_107) 2024; 6
Sharma (ref_121) 2021; 105
Lee (ref_113) 2023; 8
Zhang (ref_6) 2024; 24
Chiu (ref_56) 2021; 3
Duan (ref_119) 2023; 360
Zhang (ref_19) 2024; 97
ref_67
ref_66
Zhou (ref_131) 2022; 170
ref_64
Liu (ref_99) 2022; 167
ref_63
Tian (ref_110) 2024; 22
Kim (ref_108) 2022; 27
Zhang (ref_116) 2023; 31
Zheng (ref_97) 2021; 125
Soni (ref_112) 2025; 205
Huang (ref_46) 2024; 17
Mohamad (ref_132) 2023; 160
Gesta (ref_4) 2023; 5
Wen (ref_45) 2023; 40
Zhang (ref_89) 2024; 24
Yang (ref_17) 2024; 151
ref_115
ref_114
Zhang (ref_84) 2023; 28
Kou (ref_13) 2025; 186
Zhang (ref_54) 2022; 27
Wang (ref_124) 2022; 123
Amiri (ref_12) 2025; 158
Duan (ref_126) 2024; 29
Tian (ref_79) 2024; 73
Li (ref_104) 2024; 30
Shi (ref_125) 2022; 4
Huang (ref_41) 2022; 30
Sharifi (ref_50) 2022; 27
Akkawutvanich (ref_52) 2023; 19
Sun (ref_7) 2022; 53
Livolsi (ref_40) 2024; 32
Bergmann (ref_53) 2023; 28
ref_100
Wu (ref_123) 2022; 69
Sugiura (ref_93) 2024; 29
Liu (ref_76) 2021; 51
Li (ref_5) 2023; 23
Zhang (ref_48) 2025; 72
Basla (ref_109) 2025; 33
Liu (ref_75) 2023; 226
Khamar (ref_18) 2022; 126
Livolsi (ref_129) 2022; 38
Casas (ref_29) 2024; 32
References_xml – volume: 9
  start-page: 6640
  year: 2024
  ident: ref_28
  article-title: Design-Modeling and Control of a Novel Wearable Exoskeleton for Lower-Limb Enhancement
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2024.3405381
– volume: 24
  start-page: 2009
  year: 2024
  ident: ref_89
  article-title: Study of Lower Limb Exoskeleton Stair Movement Based on Multicoupled Continuous Dynamic Primitive Gait Learning Strategy
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3330190
– volume: 28
  start-page: 531
  year: 2023
  ident: ref_103
  article-title: Novel Design and Control of a Crank-Slider Series Elastic Actuated Knee Exoskeleton for Compliant Human-Robot Interaction
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3204921
– volume: 3
  start-page: 125
  year: 2021
  ident: ref_26
  article-title: The Role Played by Mass, Friction, and Inertia on the Driving Torques of Lower-Limb Gait Training Exoskeletons
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2021.3052014
– volume: 4
  start-page: 754
  year: 2022
  ident: ref_21
  article-title: Gait Deviation Correction Method for Gait Rehabilitation with a Lower Limb Exoskeleton Robot
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2022.3194360
– volume: 5
  start-page: 768
  year: 2023
  ident: ref_4
  article-title: Design Considerations for the Development of Lower Limb Pediatric Exoskeletons: A Literature Review
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2023.3310040
– volume: 126
  start-page: 513
  year: 2022
  ident: ref_18
  article-title: Designing a Robust Controller for a Lower Limb Exoskeleton to Treat an Individual with Crouch Gait Pattern in the Presence of Actuator Saturation
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.08.027
– ident: ref_100
  doi: 10.1016/j.jbiomech.2023.111552
– volume: 54
  start-page: 778
  year: 2024
  ident: ref_30
  article-title: A Modified Dynamic Movement Primitive Algorithm for Adaptive Gait Control of a Lower Limb Exoskeleton
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2024.3458905
– volume: 27
  start-page: 5392
  year: 2022
  ident: ref_43
  article-title: Mechanical Compliance and Dynamic Load Isolation Design of Lower Limb Exoskeleton for Locomotion Assistance
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3181261
– volume: 127
  start-page: 105271
  year: 2022
  ident: ref_120
  article-title: A Digital Twin-Driven Trajectory Tracking Control Method of a Lower-Limb Exoskeleton
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105271
– volume: 6
  start-page: 1648
  year: 2024
  ident: ref_57
  article-title: Optimized Impedance Control of a Lightweight Gait Rehabilitation Exoskeleton Based on Accurate Knee Joint Torque Estimation
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2024.3464671
– volume: 53
  start-page: 85
  year: 2023
  ident: ref_59
  article-title: Design and Experimental Verification of a Hip Exoskeleton Based on Human-Machine Dynamics for Walking Assistance
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2022.3217971
– volume: 360
  start-page: 8200
  year: 2023
  ident: ref_119
  article-title: Novel Neuromuscular Controller Application Method to Improve the Balance Recovery Ability of Lower Limb Exoskeletons
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2023.05.030
– volume: 37
  start-page: 763
  year: 2021
  ident: ref_35
  article-title: Lower-Limb Exoskeleton with Variable-Structure Series Elastic Actuators: Phase-Synchronized Force Control for Gait Asymmetry Correction
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2020.3034017
– volume: 26
  start-page: 2700
  year: 2021
  ident: ref_85
  article-title: Human-in-the-Loop Control of a Wearable Lower Limb Exoskeleton for Stable Dynamic Walking
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.3044289
– ident: ref_64
  doi: 10.1016/j.compbiomed.2023.107910
– volume: 69
  start-page: 3234
  year: 2022
  ident: ref_58
  article-title: Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3165547
– volume: 5
  start-page: 1711
  year: 2021
  ident: ref_62
  article-title: Optimal Task-Invariant Energetic Control for a Knee-Ankle Exoskeleton
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2020.3043838
– volume: 68
  start-page: 535
  year: 2021
  ident: ref_111
  article-title: Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3006787
– volume: 160
  start-page: 104319
  year: 2023
  ident: ref_132
  article-title: Online Gait Generator for Lower Limb Exoskeleton Robots: Suitable for Level Ground, Slopes, Stairs, and Obstacle Avoidance
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2022.104319
– volume: 6
  start-page: 5453
  year: 2021
  ident: ref_83
  article-title: Gait Phases Blended Control for Enhancing Transparency on Lower-Limb Exoskeletons
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3075368
– volume: 215
  start-page: 357
  year: 2024
  ident: ref_14
  article-title: Active Torque-Based Gait Adjustment Multi-Level Control Strategy for Lower Limb Patient–Exoskeleton Coupling System in Rehabilitation Training
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2023.08.020
– volume: 128
  start-page: 184
  year: 2022
  ident: ref_15
  article-title: Adaptive Interaction Torque-Based AAN Control for Lower Limb Rehabilitation Exoskeleton
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.10.009
– volume: 6
  start-page: 7185
  year: 2021
  ident: ref_70
  article-title: Human Joint Torque Modelling with MMG and EMG during Lower Limb Human-Exoskeleton Interaction
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3097832
– volume: 31
  start-page: 2497
  year: 2023
  ident: ref_88
  article-title: A Human Lower Limb Mechanical Phantom for the Testing of Knee Exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3276424
– volume: 22
  start-page: 2806
  year: 2024
  ident: ref_25
  article-title: Optimization-Based Adaptive Assistance for Lower Limb Exoskeleton Robots with a Robotic Walker via Spatially Quantized Gait
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2024.3384515
– volume: 40
  start-page: 4699
  year: 2024
  ident: ref_32
  article-title: Learning to Assist Different Wearers in Multitasks: Efficient and Individualized Human-in-the-Loop Adaptation Framework for Lower-Limb Exoskeleton
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2024.3468768
– volume: 201
  start-page: 105753
  year: 2024
  ident: ref_90
  article-title: Non-Anthropomorphic Passive Load-Bearing Lower-Limb Exoskeleton with a Reconfigurable Mechanism Based on Mechanical Intelligence
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2024.105753
– ident: ref_67
  doi: 10.1016/j.bspc.2024.106347
– volume: 8
  start-page: 1579
  year: 2023
  ident: ref_113
  article-title: Lower Limb Exoskeleton—Energy Optimization of Bipedal Walking With Energy Recycling—Modeling and Simulation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2023.3234813
– volume: 29
  start-page: 4191
  year: 2024
  ident: ref_126
  article-title: Gait-Generation Strategy for Lower Limb Exoskeleton Based on Central Pattern Generator
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2024.3367348
– volume: 29
  start-page: 4251
  year: 2024
  ident: ref_37
  article-title: PI2-Based Adaptive Impedance Control for Gait Adaption of Lower Limb Exoskeleton
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2024.3370954
– volume: 38
  start-page: 1230
  year: 2022
  ident: ref_31
  article-title: Impedance Modulation Control of a Lower-Limb Exoskeleton to Assist Sit-to-Stand Movements
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2021.3104244
– volume: 21
  start-page: 27116
  year: 2021
  ident: ref_77
  article-title: Real-Time Gait Event Detection for a Lower Extremity Exoskeleton Robot by Infrared Distance Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3111212
– volume: 564
  start-page: 126963
  year: 2024
  ident: ref_118
  article-title: Event-Triggered Critic Learning Impedance Control of Lower Limb Exoskeleton Robots in Interactive Environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126963
– volume: 38
  start-page: 1503
  year: 2022
  ident: ref_129
  article-title: A Novel Wavelet-Based Gait Segmentation Method for a Portable Hip Exoskeleton
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2021.3122975
– volume: 39
  start-page: 2170
  year: 2023
  ident: ref_47
  article-title: Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2023.3235584
– volume: 103
  start-page: 103768
  year: 2022
  ident: ref_98
  article-title: Assessment of a Powered Ankle Exoskeleton on Human Stability and Balance
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2022.103768
– volume: 9
  start-page: 9891
  year: 2024
  ident: ref_78
  article-title: A Novel Quasi-Passive Non-Anthropomorphic Lower Limb Exoskeleton for Load-Bearing
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2024.3461553
– volume: 69
  start-page: 4999
  year: 2022
  ident: ref_123
  article-title: Gait Phase Classification for a Lower Limb Exoskeleton System Based on a Graph Convolutional Network Model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3082067
– volume: 22
  start-page: 19556
  year: 2022
  ident: ref_127
  article-title: A GMM-DTW-Based Locomotion Mode Recognition Method in Lower Limb Exoskeleton
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3201192
– volume: 131
  start-page: 610
  year: 2022
  ident: ref_134
  article-title: Blending Control Method of Lower Limb Exoskeleton toward Tripping-Free Stair Climbing
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.05.025
– volume: 33
  start-page: 966
  year: 2025
  ident: ref_109
  article-title: Changes in Kinematic and Spatiotemporal Gait Parameters with a Biarticular Lower Limb Exosuit for Adolescents with Crouch Gait During Level Walking and Stair Climbing
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2025.3543606
– volume: 6
  start-page: 235
  year: 2024
  ident: ref_107
  article-title: Adaptive Oscillator-Based Gait Feature Extraction Method of Hip Exoskeleton for Stroke Patients
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2023.3329585
– ident: ref_11
– volume: 24
  start-page: 5759
  year: 2024
  ident: ref_6
  article-title: Interactive Control of Lower Limb Exoskeleton Robots: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3352005
– volume: 40
  start-page: 1666
  year: 2020
  ident: ref_8
  article-title: Balance and Stability Issues in Lower Extremity Exoskeletons: A Systematic Review
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.09.004
– volume: 19
  start-page: 9798
  year: 2023
  ident: ref_52
  article-title: Personalized Symmetrical and Asymmetrical Gait Generation of a Lower Limb Exoskeleton
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3234619
– ident: ref_114
  doi: 10.1016/j.bspc.2024.105976
– volume: 4
  start-page: 775
  year: 2022
  ident: ref_125
  article-title: Joint-Angle Adaptive Coordination Control of a Serial-Parallel Lower Limb Rehabilitation Exoskeleton
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2022.3178520
– volume: 76
  start-page: 102554
  year: 2021
  ident: ref_137
  article-title: Sliding Mode Control Combined with Extended State Observer for an Ankle Exoskeleton Driven by Electrical Motor
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102554
– volume: 22
  start-page: 1
  year: 2024
  ident: ref_22
  article-title: Generation & Clinical Validation of Individualized Gait Trajectory for Stroke Patients Based on Lower Limb Exoskeleton Robot
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2023.3312214
– volume: 226
  start-page: 120
  year: 2023
  ident: ref_75
  article-title: Landing Area Prediction in Complex Terrains for Walking-Assisted Lower-Limb Exoskeleton Robot
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.10.645
– volume: 186
  start-page: 104906
  year: 2025
  ident: ref_13
  article-title: Active Control Strategy of Lower Limb Exoskeleton Based on Variable Admittance Control
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2024.104906
– ident: ref_115
  doi: 10.1016/j.jbiomech.2022.110987
– volume: 125
  start-page: 352
  year: 2021
  ident: ref_97
  article-title: Analysis and Experimental Research on Stability Characteristics of Squatting Posture of Wearable Lower Limb Exoskeleton Robot
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.06.053
– volume: 24
  start-page: 39490
  year: 2024
  ident: ref_72
  article-title: A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3479239
– volume: 250
  start-page: 58
  year: 2024
  ident: ref_96
  article-title: Anthropomorphic Viscoelastic Compliance Control Method for Self-Balancing Lower Limb Exoskeletons
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.11.009
– volume: 24
  start-page: 35346
  year: 2024
  ident: ref_86
  article-title: Research on Human-Machine Synergy Control Method of Lower Limb Exoskeleton Based on Multi-Sensor Fusion Information
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3399697
– volume: 7
  start-page: 454
  year: 2022
  ident: ref_92
  article-title: A Lower Limb Exoskeleton with Rigid and Soft Structure for Loaded Walking Assistance
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3125723
– volume: 30
  start-page: 1935
  year: 2024
  ident: ref_104
  article-title: Control of Self-Balancing Lower Limb Exoskeleton for Various Wearers Under Dynamic Deformation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2024.3447674
– volume: 51
  start-page: 3759
  year: 2021
  ident: ref_76
  article-title: Vision-Assisted Autonomous Lower-Limb Exoskeleton Robot
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2932892
– volume: 30
  start-page: 1541
  year: 2022
  ident: ref_41
  article-title: Fuzzy Enhanced Adaptive Admittance Control of a Wearable Walking Exoskeleton with Step Trajectory Shaping
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2022.3162700
– volume: 9
  start-page: 2391
  year: 2024
  ident: ref_130
  article-title: Novel Lightweight Lower Limb Exoskeleton Design for Single-Motor Sequential Assistance of Knee & Ankle Joints in Real World
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2024.3354618
– volume: 65
  start-page: 1
  year: 2025
  ident: ref_1
  article-title: The Use of Exoskeleton Robotic Training on Lower Extremity Function in Spinal Cord Injuries: A Systematic Review
  publication-title: J. Orthop.
  doi: 10.1016/j.jor.2024.10.036
– volume: 28
  start-page: 758
  year: 2023
  ident: ref_53
  article-title: Lower Limb Exoskeleton with Compliant Actuators: Design, Modeling, and Human Torque Estimation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3206530
– volume: 97
  start-page: 103109
  year: 2024
  ident: ref_19
  article-title: Actuator Optimization and Deep Learning-Based Control of Pediatric Knee Exoskeleton for Community-Based Mobility Assistance
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2023.103109
– volume: 7
  start-page: 655
  year: 2025
  ident: ref_71
  article-title: Irrelevant Locomotion Intention Detection for Myoelectric Assistive Lower Limb Robot Control
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2025.3550736
– volume: 31
  start-page: 3106
  year: 2023
  ident: ref_116
  article-title: An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3298670
– ident: ref_66
  doi: 10.1016/j.bspc.2024.106791
– volume: 5
  start-page: 717
  year: 2023
  ident: ref_36
  article-title: Lower-Limb Exoskeleton with Compliant Actuators: Human Cooperative Control
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2023.3290982
– volume: 29
  start-page: 1193
  year: 2024
  ident: ref_93
  article-title: Passive Lower Limb Exoskeleton for Kneeling and Postural Transition Assistance with Expanded Support Polygon
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2023.3294255
– volume: 270
  start-page: 126601
  year: 2025
  ident: ref_16
  article-title: Explicit Model Based Fuzzy Control Method for Lower Limb Exoskeleton Robot
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2025.126601
– volume: 18
  start-page: 414
  year: 2021
  ident: ref_33
  article-title: Online Gait Planning of Lower-Limb Exoskeleton Robot for Paraplegic Rehabilitation Considering Weight Transfer Process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2964807
– volume: 18
  start-page: 312
  year: 2025
  ident: ref_61
  article-title: Enhancing Human Navigation Ability Using Force-Feedback from a Lower-Limb Exoskeleton
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2025.3533974
– volume: 30
  start-page: 184
  year: 2022
  ident: ref_94
  article-title: Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers with Motorized Tuning of Squat Heights
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3143361
– ident: ref_55
  doi: 10.1109/TMECH.2024.3496876
– volume: 158
  start-page: 640
  year: 2025
  ident: ref_12
  article-title: Swarm-Initialized Adaptive Controller with Beetle Antenna Searching of Wearable Lower Limb Exoskeleton for Sit-to-Stand and Walking Motions
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2025.01.003
– volume: 6
  start-page: 7699
  year: 2021
  ident: ref_23
  article-title: Virtual Energy Regulator: A Time-Independent Solution for Control of Lower Limb Exoskeletons
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3098243
– volume: 27
  start-page: 1223
  year: 2022
  ident: ref_108
  article-title: Bioinspired Knee Joint of a Lower-Limb Exoskeleton for Misalignment Reduction
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3099815
– volume: 205
  start-page: 105866
  year: 2025
  ident: ref_112
  article-title: Kinematics and Kinetics of a Knee Assistance Exoskeleton for Sit-to-Stand and Stand-to-Sit Motions with Energy Storage and Regeneration: A Bond Graph Approach
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2024.105866
– volume: 31
  start-page: 2988
  year: 2023
  ident: ref_65
  article-title: Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3294435
– ident: ref_63
  doi: 10.1016/j.cmpb.2024.108332
– volume: 3
  start-page: 773
  year: 2021
  ident: ref_56
  article-title: Design of a Hip Exoskeleton with Actuation in Frontal and Sagittal Planes
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2021.3088521
– volume: 170
  start-page: 104731
  year: 2022
  ident: ref_131
  article-title: Lower Limb Exoskeleton Parasitic Force Modeling and Minimizing with an Adaptive Trajectory Controller
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2022.104731
– volume: 28
  start-page: 2375
  year: 2023
  ident: ref_84
  article-title: Walking Speed Learning and Generalization Using Seq2Seq Gated and Adaptive Continuous-Time Recurrent Neural Network (S2S-GACTRNN) for a Hip Exoskeleton
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3233434
– volume: 53
  start-page: 83
  year: 2022
  ident: ref_7
  article-title: From Sensing to Control of Lower Limb Exoskeleton: A Systematic Review
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2022.04.003
– volume: 29
  start-page: 629
  year: 2021
  ident: ref_81
  article-title: Self-Aligning Mechanism Improves Comfort and Performance with a Powered Knee Exoskeleton
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3064463
– volume: 27
  start-page: 645
  year: 2022
  ident: ref_50
  article-title: Autonomous Locomotion Trajectory Shaping and Nonlinear Control for Lower Limb Exoskeletons
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3156168
– volume: 31
  start-page: 3095
  year: 2023
  ident: ref_39
  article-title: Exoskeleton-Assisted Sit-to-Stand Training Improves Lower-Limb Function Through Modifications of Muscle Synergies in Subacute Stroke Survivors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3297737
– volume: 73
  start-page: 6502914
  year: 2024
  ident: ref_24
  article-title: The Human-Machine Interface Design Based on SEMG and Motor Imagery EEG for Lower Limb Exoskeleton Assistance System
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 4
  start-page: 472
  year: 2022
  ident: ref_69
  article-title: Metric Learning for Robust Gait Phase Recognition for a Lower Limb Exoskeleton Robot Based on SEMG
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2022.3166543
– volume: 22
  start-page: 5425
  year: 2024
  ident: ref_38
  article-title: Robust Sensor Fusion and Biomimetic Control of a Lower-Limb Exoskeleton with Multimodal Sensors
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2024.3421318
– volume: 98
  start-page: 343
  year: 2022
  ident: ref_2
  article-title: Effectiveness of Robotic Exoskeletons for Improving Gait in Children with Cerebral Palsy: A Systematic Review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.09.082
– volume: 40
  start-page: 1842
  year: 2023
  ident: ref_45
  article-title: Haptic Transparency and Interaction Force Control for a Lower-Limb Exoskeleton
  publication-title: IEEE Trans. Robot.
– volume: 9
  start-page: 5528
  year: 2024
  ident: ref_49
  article-title: Design and Evaluation of a Bilateral Mobile Ankle Exoskeleton with High-Efficiency Actuation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2024.3391695
– volume: 33
  start-page: 343
  year: 2025
  ident: ref_101
  article-title: Implementation and Tuning of Momentum-Based Controller for Standing Balance in a Lower-Limb Exoskeleton with Paraplegic User
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2025.3526424
– volume: 18
  start-page: 405
  year: 2021
  ident: ref_87
  article-title: Slope Gradient Adaptive Gait Planning for Walking Assistance Lower Limb Exoskeletons
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3037973
– volume: 22
  start-page: 8292
  year: 2024
  ident: ref_110
  article-title: Bionic Design and Control of a 12-DoF Self-Balancing Walking Exoskeleton
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2024.3483872
– volume: 32
  start-page: 472
  year: 2024
  ident: ref_44
  article-title: Development and Validation of a Self-Aligning Knee Exoskeleton with Hip Rotation Capability
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3354806
– volume: 3
  start-page: 156
  year: 2021
  ident: ref_95
  article-title: Design, Control and Evaluation of the Electro-Hydrostatic Actuator, PREHydrA, for Gait Restoration Exoskeleton Technology
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2020.3048224
– volume: 55
  start-page: 10
  year: 2024
  ident: ref_51
  article-title: Fatigue Assessment and Control with Lower Limb Exoskeletons
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2024.3503473
– volume: 25
  start-page: 7698
  year: 2025
  ident: ref_128
  article-title: A Deep Learning Hybrid Model for Identifying Gait Patterns and Transition States of Lower Limb Exoskeleton Wearer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2025.3526646
– volume: 29
  start-page: 2695
  year: 2021
  ident: ref_3
  article-title: Wearable Lower-Limb Exoskeleton for Children with Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3136088
– volume: 6
  start-page: 1581
  year: 2024
  ident: ref_82
  article-title: Repetitive Control of Knee Interaction Torque via a Lower Extremity Exoskeleton for Improved Transparency During Walking
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2024.3464119
– volume: 70
  start-page: 271
  year: 2023
  ident: ref_102
  article-title: Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3188482
– volume: 17
  start-page: 650
  year: 2024
  ident: ref_46
  article-title: Identification and Analysis of Human-Exoskeleton Coupling Parameters in Lower Extremities
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2024.3375295
– volume: 27
  start-page: 5107
  year: 2022
  ident: ref_54
  article-title: Echo State Network-Enhanced Super-Twisting Control of Passive Gait Training Exoskeleton Driven by Pneumatic Muscles
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3172715
– volume: 6
  start-page: 7588
  year: 2021
  ident: ref_27
  article-title: Intelligent Locomotion Planning with Enhanced Postural Stability for Lower-Limb Exoskeletons
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3098915
– volume: 29
  start-page: 2373
  year: 2021
  ident: ref_73
  article-title: Deterministic Adaptive Robust Control with a Novel Optimal Gain Design Approach for a Fuzzy 2-DOF Lower Limb Exoskeleton Robot System
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2999739
– volume: 81
  start-page: 102699
  year: 2022
  ident: ref_117
  article-title: Model Identification and Adaptive Control of Lower Limb Exoskeleton Based on Neighborhood Field Optimization
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102699
– volume: 32
  start-page: 2359
  year: 2024
  ident: ref_133
  article-title: A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2024.3429908
– volume: 8
  start-page: 7751
  year: 2023
  ident: ref_106
  article-title: Knee Exoskeleton-Enabled Balance Control of Human Walking Gait with Unexpected Foot Slip
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2023.3322082
– volume: 167
  start-page: 104519
  year: 2022
  ident: ref_99
  article-title: Design and Analysis of a Novel 12-DOF Self-Balancing Lower Extremity Exoskeleton for Walking Assistance
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104519
– volume: 7
  start-page: 7779
  year: 2022
  ident: ref_68
  article-title: A Novel Method for Detecting Misclassifications of the Locomotion Mode in Lower-Limb Exoskeleton Robot Control
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3185380
– volume: 73
  start-page: 1
  year: 2024
  ident: ref_79
  article-title: Dual-Loop Control Framework of a Self-Balancing Lower-Limb Exoskeleton for Assisted Walking
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3485393
– volume: 28
  start-page: 1573
  year: 2020
  ident: ref_9
  article-title: Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2989481
– volume: 104
  start-page: 103661
  year: 2024
  ident: ref_91
  article-title: Discovering Hidden Strengths: How a Passive Lower Extremity Exoskeleton Boosts the Isometric Pulling Capacity to New Heights
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2024.103661
– volume: 105
  start-page: 107226
  year: 2021
  ident: ref_121
  article-title: Optimal Fuzzy Logic-Based Control Strategy for Lower Limb Rehabilitation Exoskeleton
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107226
– volume: 32
  start-page: 174
  year: 2024
  ident: ref_29
  article-title: Switched Concurrent Learning Adaptive Control for Treadmill Walking Using a Lower Limb Hybrid Exoskeleton
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2023.3305913
– volume: 275
  start-page: 126862
  year: 2025
  ident: ref_74
  article-title: A Multi-Modal Sensing Based Terrain Identification Approach for Active Lower Limb Exoskeletons
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2025.126862
– volume: 28
  start-page: 2852
  year: 2023
  ident: ref_105
  article-title: Cable-Driven and Series Elastic Actuation Coupled for a Rigid-Flexible Spine-Hip Assistive Exoskeleton in Stoop-Lifting Event
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2023.3235756
– volume: 27
  start-page: 1846
  year: 2022
  ident: ref_42
  article-title: Design and Evaluation of a Mobile Ankle Exoskeleton with Switchable Actuation Configurations
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3175731
– volume: 139
  start-page: 105651
  year: 2023
  ident: ref_122
  article-title: Optimal Phase-Based Gait Guidance Control on a Lower-Limb Exoskeleton
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2023.105651
– volume: 1
  start-page: 15
  year: 2022
  ident: ref_60
  article-title: Optimally Biomimetic Passivity-Based Control of a Lower-Limb Exoskeleton Over the Primary Activities of Daily Life
  publication-title: IEEE Open J. Control Syst.
  doi: 10.1109/OJCSYS.2022.3165733
– volume: 78
  start-page: 102608
  year: 2021
  ident: ref_136
  article-title: Experimental Characterization of the T-FLEX Ankle Exoskeleton for Gait Assistance
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2021.102608
– volume: 72
  start-page: 714
  year: 2024
  ident: ref_135
  article-title: Active Disturbance Rejection Control with Backstepping for Decoupling Control of Hydraulic Driven Lower Limb Exoskeleton Robot
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2024.3413820
– volume: 51
  start-page: 1099
  year: 2021
  ident: ref_20
  article-title: Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2972582
– volume: 31
  start-page: 657
  year: 2023
  ident: ref_10
  article-title: Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3229563
– volume: 7
  start-page: 6439
  year: 2022
  ident: ref_80
  article-title: Predictive Locomotion Mode Recognition and Accurate Gait Phase Estimation for Hip Exoskeleton on Various Terrains
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3173426
– volume: 32
  start-page: 2553
  year: 2024
  ident: ref_40
  article-title: Enhancing Walking Performance with a Bilateral Hip Exoskeleton Assistance in Individuals with Above-Knee Amputation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3425436
– volume: 23
  start-page: 30007
  year: 2023
  ident: ref_5
  article-title: Human Lower Limb Motion Intention Recognition for Exoskeletons: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3328615
– volume: 7
  start-page: 7928
  year: 2022
  ident: ref_34
  article-title: The AGoRA V2 Unilateral Lower-Limb Exoskeleton: Mechatronic Integration and Biomechanical Assessment
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3186066
– volume: 151
  start-page: 143
  year: 2024
  ident: ref_17
  article-title: Adaptive Neural Fault-Tolerant Prescribed Performance Control of a Rehabilitation Exoskeleton for Lower Limb Passive Training
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2024.06.001
– volume: 123
  start-page: 87
  year: 2022
  ident: ref_124
  article-title: Periodic Event-Triggered Sliding Mode Control for Lower Limb Exoskeleton Based on Human–Robot Cooperation
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.05.039
– volume: 72
  start-page: 528
  year: 2025
  ident: ref_48
  article-title: Parallel Elastic Self-Alignment Mechanism Enhances Energy Efficiency and Reduces Misalignment in a Powered Knee Exoskeleton
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2024.3461880
SSID ssj0000913803
Score 2.296339
SecondaryResourceType review_article
Snippet This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 342
SubjectTerms Actuator design
Actuators
adaptive control systems
Business metrics
Comparative analysis
Computer architecture
Configuration management
Control algorithms
Control engineering
Controllers
Cooperative control
Degrees of freedom
Design
Digital twins
Electroencephalography
Energy efficiency
Exoskeletons
Fuzzy logic
Gait
Hardware
Human engineering
human–robot interaction (HRI)
Inclusion
Innovations
lower limb exoskeletons
Machine learning
Neural networks
Pediatrics
Real time
Recurrent neural networks
Rehabilitation
rehabilitation robotics
Robotics
Robots
Sensors
Simulation methods
Spinal cord
Synchronism
Technological change
Terrain
Trends
wearable assistive technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9oNKHukArH5C4EOHEycbupVq2u0IVoKqiEjfLdmyoKjawGyR-PjOJs8seqJRT7EiRx_P47JlvAA7K0jhemipB34wAReUisVz4JIxKqwruJHdUnHx-MTr9k_-8Kq7igdsyplX2NrE11FXt6Iz8WGSIvAV57O939wl1jaLb1dhC4zVsoQmWcgBbJ9OLX79XpyzEeinb9sgZAvaE8FBXpCcQ6x8b1yC-KIkFb8Mttez9L9no1vHM3sF2jBjZuBPxDrzy8_fw9hmP4Ae4Jq1e-JsuGZ1N1ozerCcdYXVgZ9QRjZ39vbVs-lgv_6HHwciP9cl339iky1s_Yj_avI4jZuYVG6-vuD_C5Wx6OTlNYgeFxAmVNklmeW6U8tZipFFIZUSWWknlp6mppMrx8Sr1qUP5pLYqDUYTLuXSmSIEbsUnGMzruf8MLCjiXh-hzxvZ3GJYaQrv0ywEwS13QQ7hoF8_fdfxZGjEF7TM-tkyD-GE1nY1hcit2xf14lpHXdGZEwFxqa24E3kpK-O5KAW6WOMN4cchHJJkNKlgszDOxEoC_FMis9JjWVBJMH4whP2Nmag6bnO4l62OqrvU6422-__hPXiTUTPgNnd3HwbN4sF_wQilsV_jNnwCxLPiXQ
  priority: 102
  providerName: ProQuest
Title Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
URI https://www.proquest.com/docview/3233030250
https://doaj.org/article/2c3f211bd0c3478dae0373123aea6010
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEB20XvQgfmK1lhwELy7NbvYj8VZrq4iKiEJvIckmKmIr7Qr-fCe7W20P4kXY024WwsxO3ht25g3AUZYpQzOVB4jNmKCImAWaMhu4NNMioYZT45uTb27Ty8f4apgM50Z9-ZqwSh64MlwnMsxhkqJzalic8VxZyjKG562yKq2bqxDz5pKp8gwWIeOUVQ15DPP6jjIF5hKZV7xbgKBSqf-387gEmcEGrNfskHSrXW3Ckh1twdqcZuA2PPkIntjnqvCc9H7Uu8lMYISMHbn208_I9cubJv3P8fQV0QVZHpkV2p2SXlWjfkLOyxqOE6JGOen-_M7egYdB_6F3GdTTEgLDRFgEkaaxEsJqjawi4UKxKNTct5qGKucixsuK0IYGfYHmzBQyBxNSblTiHNVsFxqj8cjuAXHC66yniG-pjjVSSJVYG0bOMaqpcbwJRzP7yfdKE0NiLuHNLOfM3IQzb9vvJV7IuryB7pW1e-Vf7m3CsfeM9OFWTJRRddcA7tQLV8kuT3z7L77QhNbCSgwTs_h45ltZh-lUsoghhHsauP8fmz2A1ciPBy6reVvQKCYf9hA5S6HbsMwHF21YOevf3t23y4_1C5iY6bM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOBDEZdGdexkHSMhtGy7bOm2p0XqzbIduyDEpuwGAT-K_8hMHt3uAW6VcoqdyBo_Pn_2zDcAu0pZz5UtE8RmJCg6k4njMiRxqJzOuS-4p-Dkk9Ph9FP28Sw_24I_fSwMuVX2a2KzUJeVpzPyfSmQeUtC7HcX3xPKGkW3q30KjXZYHIffP5Gyrd4eHWD_vhJicjgfT5Muq0DipU7rRDieWa2Dc4i-eaGtFKkrKCQztWWhM3yCTkPqsc2pK5VFhPUpL7zNY-RO4m9vwM1MIpBTYPrkw-WRDklsFk0uZsEV8nQkX21EINbl-9bXSGYUSe5tYGCTKuBfgNCg3OQe3O22p2zUjqf7sBUWD-DOFdHCh3BOS8gyfG4939l4LR_OeoUTVkU2o_RrbPblm2OHv6rVV4Q33Gay3tPvDRu3TvJ77KBxItljdlGy0fo-_RHMr8Owj2F7US3CE2BRk9D7EAF26DKHe1ibh5CKGCV33MdiALu9_cxFK8phkMyQmc0VMw_gPdn2sgopaTcvquW56SamEV5GJMGu5F5mqiht4FJJxHMbLJHVAbymnjE03-ul9bYLW8CWknKWGRU5xR_jBwPY2aiJ89RvFvd9a7p1YmXWo_rp_4tfwq3p_GRmZkenx8_gtqAsxI3T8A5s18sf4TlujWr3ohmQDMw1T4C_OLccfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqWwr4UMSl0Tpxso6RENruQy1dVhUqUm-W7dgFoW7K7iLgp_HvmMmj2z3ArVJOcRJZ47E_f87MNwD7UhrHpSkixGYkKCoVkeXCR6Evrcq4y7mj5OSPs_7R5_TDeXa-BX_aXBgKq2zXxGqhLkpHZ-Q9kSDzFoTYvdCERZyOJu-vvkdUQYr-tLblNGoXOfG_fyJ9W747HuFYv06SyfhseBQ1FQYiJ1S8ihLLU6OUtxaROMuVEUlsc0rPjE2RqxQvr2IfO-x_bAtpEG1dzHNnshC4FfjZO7AtiRR1YPtwPDv9dH3AQ4KbeVWZOeESWTtSsTo_UAjFe8atkNpIEuDbQMSqcMC_4KHCvMlDeNBsVtmg9q5HsOXnj-H-DQnDJ3BBC8rCf6nj4NlwLSbOWr0TVgY2pWJsbPr10rLxr3L5DcEON52sjft7y4Z1yPwBG1UhJQfMzAs2WP9dfwpnt2HaZ9CZl3O_Aywokn3vI9z2bWpxR2sy7-MkBMEtdyHvwn5rP31VS3RopDZkZn3DzF04JNteP0K62tWNcnGhm2mqEycCUmJbcCdSmRfGcyEForvxhqhrF97QyGia_auFcaZJYsCeko6WHuQZZSPjC13Y23gSZ63bbG7HVjerxlKvfXz3_82v4C46v54ez06ew72EShJXEcR70FktfvgXuE9a2ZeNRzLQtzwH_gJUxSIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Comparative+Analysis+of+Lower+Limb+Exoskeleton+Research%3A+Control%2C+Design%2C+and+Application&rft.jtitle=Actuators&rft.au=Hasan%2C+Sk&rft.au=Alam%2C+Nafizul&rft.date=2025-07-01&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=14&rft.issue=7&rft.spage=342&rft_id=info:doi/10.3390%2Fact14070342&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_act14070342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon