Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed f...
Saved in:
Published in | Actuators Vol. 14; no. 7; p. 342 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. |
---|---|
AbstractList | This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. |
Audience | Academic |
Author | Hasan, Sk Alam, Nafizul |
Author_xml | – sequence: 1 givenname: Sk orcidid: 0000-0003-0664-757X surname: Hasan fullname: Hasan, Sk – sequence: 2 givenname: Nafizul orcidid: 0009-0000-9131-9866 surname: Alam fullname: Alam, Nafizul |
BookMark | eNptkUFr3DAQhUVJoWmaU_6AoMdm05HGXtu9Ldu0DSwEQu5iLI832tqSKzlp8--r7ZayhUgDGg3vfSC9t-LEB89CXCi4QmzgI9lZFVABFvqVONVQLRdQ6_LkqH8jzlPaQV6NwhrwVGzXYZwiP7BP7onl_kaR5n2_8jQ8J5dk6OUm_OQoN25s5fWvkL7zwHPw8o4TU7QPn7LRzzEMl_IzJ7f1l5J8J1fTNDibacG_E697GhKf_z3PxP2X6_v1t8Xm9uvNerVZWGzUvNAtFNQ03LawLMu6IdSqrcuqWSrq6qbIxY1iZVtA1XYVoaqsgtpS2ffQ4pm4OWC7QDszRTdSfDaBnPkzCHFrKM7ODmy0xV6rDAGLRVV3xIAVKo3EtAQFmfX-wJpi-PHIaTa78BjzpySDGhEQdHmk2lKGOt-HOZIdXbJmVZegdC7MqqsXVHl3PDqbc-xdnv9n-HAw2BhSitz_e4wCs4_bHMWNvwFhk5vJ |
Cites_doi | 10.1109/LRA.2024.3405381 10.1109/JSEN.2023.3330190 10.1109/TMECH.2022.3204921 10.1109/TMRB.2021.3052014 10.1109/TMRB.2022.3194360 10.1109/TMRB.2023.3310040 10.1016/j.isatra.2021.08.027 10.1016/j.jbiomech.2023.111552 10.1109/THMS.2024.3458905 10.1109/TMECH.2022.3181261 10.1016/j.conengprac.2022.105271 10.1109/TMRB.2024.3464671 10.1109/THMS.2022.3217971 10.1016/j.jfranklin.2023.05.030 10.1109/TRO.2020.3034017 10.1109/TMECH.2020.3044289 10.1016/j.compbiomed.2023.107910 10.1109/TBME.2022.3165547 10.1109/LCSYS.2020.3043838 10.1109/TBME.2020.3006787 10.1016/j.robot.2022.104319 10.1109/LRA.2021.3075368 10.1016/j.matcom.2023.08.020 10.1016/j.isatra.2021.10.009 10.1109/LRA.2021.3097832 10.1109/TNSRE.2023.3276424 10.1109/TASE.2024.3384515 10.1109/TRO.2024.3468768 10.1016/j.mechmachtheory.2024.105753 10.1016/j.bspc.2024.106347 10.1109/LRA.2023.3234813 10.1109/TMECH.2024.3367348 10.1109/TMECH.2024.3370954 10.1109/TRO.2021.3104244 10.1109/JSEN.2021.3111212 10.1016/j.neucom.2023.126963 10.1109/TRO.2021.3122975 10.1109/TRO.2023.3235584 10.1016/j.apergo.2022.103768 10.1109/LRA.2024.3461553 10.1109/TIE.2021.3082067 10.1109/JSEN.2022.3201192 10.1016/j.isatra.2022.05.025 10.1109/TNSRE.2025.3543606 10.1109/TMRB.2023.3329585 10.1109/JSEN.2024.3352005 10.1016/j.bbe.2020.09.004 10.1109/TII.2023.3234619 10.1016/j.bspc.2024.105976 10.1109/TMRB.2022.3178520 10.1016/j.mechatronics.2021.102554 10.1109/TASE.2023.3312214 10.1016/j.procs.2023.10.645 10.1016/j.robot.2024.104906 10.1016/j.jbiomech.2022.110987 10.1016/j.future.2021.06.053 10.1109/JSEN.2024.3479239 10.1016/j.procs.2024.11.009 10.1109/JSEN.2024.3399697 10.1109/LRA.2021.3125723 10.1109/TMECH.2024.3447674 10.1109/TSMC.2019.2932892 10.1109/TFUZZ.2022.3162700 10.1109/LRA.2024.3354618 10.1016/j.jor.2024.10.036 10.1109/TMECH.2022.3206530 10.1016/j.mechatronics.2023.103109 10.1109/TMRB.2025.3550736 10.1109/TNSRE.2023.3298670 10.1016/j.bspc.2024.106791 10.1109/TMRB.2023.3290982 10.1109/TMECH.2023.3294255 10.1016/j.eswa.2025.126601 10.1109/TASE.2020.2964807 10.1109/TOH.2025.3533974 10.1109/TNSRE.2022.3143361 10.1109/TMECH.2024.3496876 10.1016/j.isatra.2025.01.003 10.1109/LRA.2021.3098243 10.1109/TMECH.2021.3099815 10.1016/j.mechmachtheory.2024.105866 10.1109/TNSRE.2023.3294435 10.1016/j.cmpb.2024.108332 10.1109/TMRB.2021.3088521 10.1016/j.mechmachtheory.2022.104731 10.1109/TMECH.2022.3233434 10.1016/j.arcontrol.2022.04.003 10.1109/TNSRE.2021.3064463 10.1109/TMECH.2022.3156168 10.1109/TNSRE.2023.3297737 10.1109/TMRB.2022.3166543 10.1109/TASE.2024.3421318 10.1016/j.gaitpost.2022.09.082 10.1109/LRA.2024.3391695 10.1109/TNSRE.2025.3526424 10.1109/TASE.2020.3037973 10.1109/TASE.2024.3483872 10.1109/TNSRE.2024.3354806 10.1109/TMRB.2020.3048224 10.1109/THMS.2024.3503473 10.1109/JSEN.2025.3526646 10.1109/TNSRE.2021.3136088 10.1109/TMRB.2024.3464119 10.1109/TBME.2022.3188482 10.1109/TOH.2024.3375295 10.1109/TMECH.2022.3172715 10.1109/LRA.2021.3098915 10.1109/TFUZZ.2020.2999739 10.1016/j.mechatronics.2021.102699 10.1109/TCST.2024.3429908 10.1109/LRA.2023.3322082 10.1016/j.mechmachtheory.2021.104519 10.1109/LRA.2022.3185380 10.1109/TIM.2024.3485393 10.1109/TNSRE.2020.2989481 10.1016/j.ergon.2024.103661 10.1016/j.asoc.2021.107226 10.1109/TCST.2023.3305913 10.1016/j.eswa.2025.126862 10.1109/TMECH.2023.3235756 10.1109/TMECH.2022.3175731 10.1016/j.conengprac.2023.105651 10.1109/OJCSYS.2022.3165733 10.1016/j.mechatronics.2021.102608 10.1109/TIE.2024.3413820 10.1109/TCYB.2020.2972582 10.1109/TNSRE.2022.3229563 10.1109/LRA.2022.3173426 10.1109/TNSRE.2024.3425436 10.1109/JSEN.2023.3328615 10.1109/LRA.2022.3186066 10.1016/j.isatra.2024.06.001 10.1016/j.isatra.2021.05.039 10.1109/TBME.2024.3461880 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/act14070342 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-0825 |
ExternalDocumentID | oai_doaj_org_article_2c3f211bd0c3478dae0373123aea6010 A850120123 10_3390_act14070342 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c391t-2b04a99ebb065589a321b857961ad894894e91e1cb031bd7a317c108ca5ff0b3 |
IEDL.DBID | DOA |
ISSN | 2076-0825 |
IngestDate | Wed Aug 27 01:27:49 EDT 2025 Sat Aug 23 14:32:45 EDT 2025 Wed Aug 06 19:51:16 EDT 2025 Tue Aug 05 03:50:45 EDT 2025 Wed Jul 16 16:40:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-2b04a99ebb065589a321b857961ad894894e91e1cb031bd7a317c108ca5ff0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0664-757X 0009-0000-9131-9866 |
OpenAccessLink | https://doaj.org/article/2c3f211bd0c3478dae0373123aea6010 |
PQID | 3233030250 |
PQPubID | 2032444 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c3f211bd0c3478dae0373123aea6010 proquest_journals_3233030250 gale_infotracmisc_A850120123 gale_infotracacademiconefile_A850120123 crossref_primary_10_3390_act14070342 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Actuators |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lin (ref_133) 2024; 32 Huo (ref_31) 2022; 38 Schrade (ref_111) 2021; 68 Staman (ref_95) 2021; 3 ref_11 Han (ref_73) 2021; 29 Mehr (ref_27) 2021; 6 Li (ref_44) 2024; 32 Kang (ref_58) 2022; 69 Song (ref_105) 2023; 28 Ma (ref_33) 2021; 18 Song (ref_71) 2025; 7 Chen (ref_117) 2022; 81 Zhang (ref_78) 2024; 9 Chen (ref_42) 2022; 27 Hunt (ref_2) 2022; 98 Zhao (ref_135) 2024; 72 Das (ref_74) 2025; 275 Chen (ref_128) 2025; 25 Yang (ref_72) 2024; 24 Camardella (ref_83) 2021; 6 Meng (ref_57) 2024; 6 Liu (ref_69) 2022; 4 Zhang (ref_86) 2024; 24 Li (ref_43) 2022; 27 Li (ref_85) 2021; 26 Zou (ref_25) 2024; 22 Mcgrath (ref_82) 2024; 6 Liu (ref_68) 2022; 7 Zhang (ref_21) 2022; 4 Zhan (ref_90) 2024; 201 Prieto (ref_101) 2025; 33 Wang (ref_15) 2022; 128 Yu (ref_30) 2024; 54 Hamza (ref_8) 2020; 40 Cao (ref_92) 2022; 7 Lu (ref_16) 2025; 270 Gao (ref_120) 2022; 127 Bergmann (ref_51) 2024; 55 Zou (ref_87) 2021; 18 Zhao (ref_137) 2021; 76 Sun (ref_118) 2024; 564 Li (ref_39) 2023; 31 Wang (ref_37) 2024; 29 Moriarty (ref_1) 2025; 65 Sarkisian (ref_81) 2021; 29 Zheng (ref_127) 2022; 22 Hybart (ref_10) 2023; 31 Chen (ref_96) 2024; 250 Torricelli (ref_9) 2020; 28 Li (ref_77) 2021; 21 Lin (ref_62) 2021; 5 Nasiri (ref_23) 2021; 6 Barrutia (ref_88) 2023; 31 Bergmann (ref_36) 2023; 5 Wang (ref_59) 2023; 53 Song (ref_103) 2023; 28 Zhu (ref_106) 2023; 8 Munera (ref_136) 2021; 78 Sun (ref_20) 2021; 51 Li (ref_24) 2024; 73 Andrade (ref_26) 2021; 3 Arceo (ref_38) 2024; 22 Qian (ref_80) 2022; 7 Laubscher (ref_122) 2023; 139 Wang (ref_14) 2024; 215 Medrano (ref_47) 2023; 39 Qiu (ref_28) 2024; 9 Yoon (ref_91) 2024; 104 Chen (ref_49) 2024; 9 Tortora (ref_65) 2023; 31 Carrasquillo (ref_61) 2025; 18 Shafer (ref_102) 2023; 70 Lin (ref_60) 2022; 1 Zhang (ref_134) 2022; 131 ref_55 Tu (ref_94) 2022; 30 Yu (ref_35) 2021; 37 Wu (ref_130) 2024; 9 Chen (ref_32) 2024; 40 Sarajchi (ref_3) 2021; 29 Caulcrick (ref_70) 2021; 6 Gonzalez (ref_98) 2022; 103 Otalora (ref_34) 2022; 7 Zhang (ref_22) 2024; 22 Qian (ref_107) 2024; 6 Sharma (ref_121) 2021; 105 Lee (ref_113) 2023; 8 Zhang (ref_6) 2024; 24 Chiu (ref_56) 2021; 3 Duan (ref_119) 2023; 360 Zhang (ref_19) 2024; 97 ref_67 ref_66 Zhou (ref_131) 2022; 170 ref_64 Liu (ref_99) 2022; 167 ref_63 Tian (ref_110) 2024; 22 Kim (ref_108) 2022; 27 Zhang (ref_116) 2023; 31 Zheng (ref_97) 2021; 125 Soni (ref_112) 2025; 205 Huang (ref_46) 2024; 17 Mohamad (ref_132) 2023; 160 Gesta (ref_4) 2023; 5 Wen (ref_45) 2023; 40 Zhang (ref_89) 2024; 24 Yang (ref_17) 2024; 151 ref_115 ref_114 Zhang (ref_84) 2023; 28 Kou (ref_13) 2025; 186 Zhang (ref_54) 2022; 27 Wang (ref_124) 2022; 123 Amiri (ref_12) 2025; 158 Duan (ref_126) 2024; 29 Tian (ref_79) 2024; 73 Li (ref_104) 2024; 30 Shi (ref_125) 2022; 4 Huang (ref_41) 2022; 30 Sharifi (ref_50) 2022; 27 Akkawutvanich (ref_52) 2023; 19 Sun (ref_7) 2022; 53 Livolsi (ref_40) 2024; 32 Bergmann (ref_53) 2023; 28 ref_100 Wu (ref_123) 2022; 69 Sugiura (ref_93) 2024; 29 Liu (ref_76) 2021; 51 Li (ref_5) 2023; 23 Zhang (ref_48) 2025; 72 Basla (ref_109) 2025; 33 Liu (ref_75) 2023; 226 Khamar (ref_18) 2022; 126 Livolsi (ref_129) 2022; 38 Casas (ref_29) 2024; 32 |
References_xml | – volume: 9 start-page: 6640 year: 2024 ident: ref_28 article-title: Design-Modeling and Control of a Novel Wearable Exoskeleton for Lower-Limb Enhancement publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2024.3405381 – volume: 24 start-page: 2009 year: 2024 ident: ref_89 article-title: Study of Lower Limb Exoskeleton Stair Movement Based on Multicoupled Continuous Dynamic Primitive Gait Learning Strategy publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3330190 – volume: 28 start-page: 531 year: 2023 ident: ref_103 article-title: Novel Design and Control of a Crank-Slider Series Elastic Actuated Knee Exoskeleton for Compliant Human-Robot Interaction publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3204921 – volume: 3 start-page: 125 year: 2021 ident: ref_26 article-title: The Role Played by Mass, Friction, and Inertia on the Driving Torques of Lower-Limb Gait Training Exoskeletons publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2021.3052014 – volume: 4 start-page: 754 year: 2022 ident: ref_21 article-title: Gait Deviation Correction Method for Gait Rehabilitation with a Lower Limb Exoskeleton Robot publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2022.3194360 – volume: 5 start-page: 768 year: 2023 ident: ref_4 article-title: Design Considerations for the Development of Lower Limb Pediatric Exoskeletons: A Literature Review publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2023.3310040 – volume: 126 start-page: 513 year: 2022 ident: ref_18 article-title: Designing a Robust Controller for a Lower Limb Exoskeleton to Treat an Individual with Crouch Gait Pattern in the Presence of Actuator Saturation publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.027 – ident: ref_100 doi: 10.1016/j.jbiomech.2023.111552 – volume: 54 start-page: 778 year: 2024 ident: ref_30 article-title: A Modified Dynamic Movement Primitive Algorithm for Adaptive Gait Control of a Lower Limb Exoskeleton publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2024.3458905 – volume: 27 start-page: 5392 year: 2022 ident: ref_43 article-title: Mechanical Compliance and Dynamic Load Isolation Design of Lower Limb Exoskeleton for Locomotion Assistance publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3181261 – volume: 127 start-page: 105271 year: 2022 ident: ref_120 article-title: A Digital Twin-Driven Trajectory Tracking Control Method of a Lower-Limb Exoskeleton publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2022.105271 – volume: 6 start-page: 1648 year: 2024 ident: ref_57 article-title: Optimized Impedance Control of a Lightweight Gait Rehabilitation Exoskeleton Based on Accurate Knee Joint Torque Estimation publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2024.3464671 – volume: 53 start-page: 85 year: 2023 ident: ref_59 article-title: Design and Experimental Verification of a Hip Exoskeleton Based on Human-Machine Dynamics for Walking Assistance publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2022.3217971 – volume: 360 start-page: 8200 year: 2023 ident: ref_119 article-title: Novel Neuromuscular Controller Application Method to Improve the Balance Recovery Ability of Lower Limb Exoskeletons publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2023.05.030 – volume: 37 start-page: 763 year: 2021 ident: ref_35 article-title: Lower-Limb Exoskeleton with Variable-Structure Series Elastic Actuators: Phase-Synchronized Force Control for Gait Asymmetry Correction publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2020.3034017 – volume: 26 start-page: 2700 year: 2021 ident: ref_85 article-title: Human-in-the-Loop Control of a Wearable Lower Limb Exoskeleton for Stable Dynamic Walking publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.3044289 – ident: ref_64 doi: 10.1016/j.compbiomed.2023.107910 – volume: 69 start-page: 3234 year: 2022 ident: ref_58 article-title: Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3165547 – volume: 5 start-page: 1711 year: 2021 ident: ref_62 article-title: Optimal Task-Invariant Energetic Control for a Knee-Ankle Exoskeleton publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2020.3043838 – volume: 68 start-page: 535 year: 2021 ident: ref_111 article-title: Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3006787 – volume: 160 start-page: 104319 year: 2023 ident: ref_132 article-title: Online Gait Generator for Lower Limb Exoskeleton Robots: Suitable for Level Ground, Slopes, Stairs, and Obstacle Avoidance publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2022.104319 – volume: 6 start-page: 5453 year: 2021 ident: ref_83 article-title: Gait Phases Blended Control for Enhancing Transparency on Lower-Limb Exoskeletons publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3075368 – volume: 215 start-page: 357 year: 2024 ident: ref_14 article-title: Active Torque-Based Gait Adjustment Multi-Level Control Strategy for Lower Limb Patient–Exoskeleton Coupling System in Rehabilitation Training publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2023.08.020 – volume: 128 start-page: 184 year: 2022 ident: ref_15 article-title: Adaptive Interaction Torque-Based AAN Control for Lower Limb Rehabilitation Exoskeleton publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.10.009 – volume: 6 start-page: 7185 year: 2021 ident: ref_70 article-title: Human Joint Torque Modelling with MMG and EMG during Lower Limb Human-Exoskeleton Interaction publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3097832 – volume: 31 start-page: 2497 year: 2023 ident: ref_88 article-title: A Human Lower Limb Mechanical Phantom for the Testing of Knee Exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3276424 – volume: 22 start-page: 2806 year: 2024 ident: ref_25 article-title: Optimization-Based Adaptive Assistance for Lower Limb Exoskeleton Robots with a Robotic Walker via Spatially Quantized Gait publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2024.3384515 – volume: 40 start-page: 4699 year: 2024 ident: ref_32 article-title: Learning to Assist Different Wearers in Multitasks: Efficient and Individualized Human-in-the-Loop Adaptation Framework for Lower-Limb Exoskeleton publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2024.3468768 – volume: 201 start-page: 105753 year: 2024 ident: ref_90 article-title: Non-Anthropomorphic Passive Load-Bearing Lower-Limb Exoskeleton with a Reconfigurable Mechanism Based on Mechanical Intelligence publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2024.105753 – ident: ref_67 doi: 10.1016/j.bspc.2024.106347 – volume: 8 start-page: 1579 year: 2023 ident: ref_113 article-title: Lower Limb Exoskeleton—Energy Optimization of Bipedal Walking With Energy Recycling—Modeling and Simulation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2023.3234813 – volume: 29 start-page: 4191 year: 2024 ident: ref_126 article-title: Gait-Generation Strategy for Lower Limb Exoskeleton Based on Central Pattern Generator publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2024.3367348 – volume: 29 start-page: 4251 year: 2024 ident: ref_37 article-title: PI2-Based Adaptive Impedance Control for Gait Adaption of Lower Limb Exoskeleton publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2024.3370954 – volume: 38 start-page: 1230 year: 2022 ident: ref_31 article-title: Impedance Modulation Control of a Lower-Limb Exoskeleton to Assist Sit-to-Stand Movements publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3104244 – volume: 21 start-page: 27116 year: 2021 ident: ref_77 article-title: Real-Time Gait Event Detection for a Lower Extremity Exoskeleton Robot by Infrared Distance Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3111212 – volume: 564 start-page: 126963 year: 2024 ident: ref_118 article-title: Event-Triggered Critic Learning Impedance Control of Lower Limb Exoskeleton Robots in Interactive Environments publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126963 – volume: 38 start-page: 1503 year: 2022 ident: ref_129 article-title: A Novel Wavelet-Based Gait Segmentation Method for a Portable Hip Exoskeleton publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3122975 – volume: 39 start-page: 2170 year: 2023 ident: ref_47 article-title: Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2023.3235584 – volume: 103 start-page: 103768 year: 2022 ident: ref_98 article-title: Assessment of a Powered Ankle Exoskeleton on Human Stability and Balance publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2022.103768 – volume: 9 start-page: 9891 year: 2024 ident: ref_78 article-title: A Novel Quasi-Passive Non-Anthropomorphic Lower Limb Exoskeleton for Load-Bearing publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2024.3461553 – volume: 69 start-page: 4999 year: 2022 ident: ref_123 article-title: Gait Phase Classification for a Lower Limb Exoskeleton System Based on a Graph Convolutional Network Model publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3082067 – volume: 22 start-page: 19556 year: 2022 ident: ref_127 article-title: A GMM-DTW-Based Locomotion Mode Recognition Method in Lower Limb Exoskeleton publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3201192 – volume: 131 start-page: 610 year: 2022 ident: ref_134 article-title: Blending Control Method of Lower Limb Exoskeleton toward Tripping-Free Stair Climbing publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.05.025 – volume: 33 start-page: 966 year: 2025 ident: ref_109 article-title: Changes in Kinematic and Spatiotemporal Gait Parameters with a Biarticular Lower Limb Exosuit for Adolescents with Crouch Gait During Level Walking and Stair Climbing publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2025.3543606 – volume: 6 start-page: 235 year: 2024 ident: ref_107 article-title: Adaptive Oscillator-Based Gait Feature Extraction Method of Hip Exoskeleton for Stroke Patients publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2023.3329585 – ident: ref_11 – volume: 24 start-page: 5759 year: 2024 ident: ref_6 article-title: Interactive Control of Lower Limb Exoskeleton Robots: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3352005 – volume: 40 start-page: 1666 year: 2020 ident: ref_8 article-title: Balance and Stability Issues in Lower Extremity Exoskeletons: A Systematic Review publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.09.004 – volume: 19 start-page: 9798 year: 2023 ident: ref_52 article-title: Personalized Symmetrical and Asymmetrical Gait Generation of a Lower Limb Exoskeleton publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3234619 – ident: ref_114 doi: 10.1016/j.bspc.2024.105976 – volume: 4 start-page: 775 year: 2022 ident: ref_125 article-title: Joint-Angle Adaptive Coordination Control of a Serial-Parallel Lower Limb Rehabilitation Exoskeleton publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2022.3178520 – volume: 76 start-page: 102554 year: 2021 ident: ref_137 article-title: Sliding Mode Control Combined with Extended State Observer for an Ankle Exoskeleton Driven by Electrical Motor publication-title: Mechatronics doi: 10.1016/j.mechatronics.2021.102554 – volume: 22 start-page: 1 year: 2024 ident: ref_22 article-title: Generation & Clinical Validation of Individualized Gait Trajectory for Stroke Patients Based on Lower Limb Exoskeleton Robot publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2023.3312214 – volume: 226 start-page: 120 year: 2023 ident: ref_75 article-title: Landing Area Prediction in Complex Terrains for Walking-Assisted Lower-Limb Exoskeleton Robot publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2023.10.645 – volume: 186 start-page: 104906 year: 2025 ident: ref_13 article-title: Active Control Strategy of Lower Limb Exoskeleton Based on Variable Admittance Control publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2024.104906 – ident: ref_115 doi: 10.1016/j.jbiomech.2022.110987 – volume: 125 start-page: 352 year: 2021 ident: ref_97 article-title: Analysis and Experimental Research on Stability Characteristics of Squatting Posture of Wearable Lower Limb Exoskeleton Robot publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.06.053 – volume: 24 start-page: 39490 year: 2024 ident: ref_72 article-title: A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3479239 – volume: 250 start-page: 58 year: 2024 ident: ref_96 article-title: Anthropomorphic Viscoelastic Compliance Control Method for Self-Balancing Lower Limb Exoskeletons publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2024.11.009 – volume: 24 start-page: 35346 year: 2024 ident: ref_86 article-title: Research on Human-Machine Synergy Control Method of Lower Limb Exoskeleton Based on Multi-Sensor Fusion Information publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3399697 – volume: 7 start-page: 454 year: 2022 ident: ref_92 article-title: A Lower Limb Exoskeleton with Rigid and Soft Structure for Loaded Walking Assistance publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3125723 – volume: 30 start-page: 1935 year: 2024 ident: ref_104 article-title: Control of Self-Balancing Lower Limb Exoskeleton for Various Wearers Under Dynamic Deformation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2024.3447674 – volume: 51 start-page: 3759 year: 2021 ident: ref_76 article-title: Vision-Assisted Autonomous Lower-Limb Exoskeleton Robot publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2932892 – volume: 30 start-page: 1541 year: 2022 ident: ref_41 article-title: Fuzzy Enhanced Adaptive Admittance Control of a Wearable Walking Exoskeleton with Step Trajectory Shaping publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2022.3162700 – volume: 9 start-page: 2391 year: 2024 ident: ref_130 article-title: Novel Lightweight Lower Limb Exoskeleton Design for Single-Motor Sequential Assistance of Knee & Ankle Joints in Real World publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2024.3354618 – volume: 65 start-page: 1 year: 2025 ident: ref_1 article-title: The Use of Exoskeleton Robotic Training on Lower Extremity Function in Spinal Cord Injuries: A Systematic Review publication-title: J. Orthop. doi: 10.1016/j.jor.2024.10.036 – volume: 28 start-page: 758 year: 2023 ident: ref_53 article-title: Lower Limb Exoskeleton with Compliant Actuators: Design, Modeling, and Human Torque Estimation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3206530 – volume: 97 start-page: 103109 year: 2024 ident: ref_19 article-title: Actuator Optimization and Deep Learning-Based Control of Pediatric Knee Exoskeleton for Community-Based Mobility Assistance publication-title: Mechatronics doi: 10.1016/j.mechatronics.2023.103109 – volume: 7 start-page: 655 year: 2025 ident: ref_71 article-title: Irrelevant Locomotion Intention Detection for Myoelectric Assistive Lower Limb Robot Control publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2025.3550736 – volume: 31 start-page: 3106 year: 2023 ident: ref_116 article-title: An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3298670 – ident: ref_66 doi: 10.1016/j.bspc.2024.106791 – volume: 5 start-page: 717 year: 2023 ident: ref_36 article-title: Lower-Limb Exoskeleton with Compliant Actuators: Human Cooperative Control publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2023.3290982 – volume: 29 start-page: 1193 year: 2024 ident: ref_93 article-title: Passive Lower Limb Exoskeleton for Kneeling and Postural Transition Assistance with Expanded Support Polygon publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2023.3294255 – volume: 270 start-page: 126601 year: 2025 ident: ref_16 article-title: Explicit Model Based Fuzzy Control Method for Lower Limb Exoskeleton Robot publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2025.126601 – volume: 18 start-page: 414 year: 2021 ident: ref_33 article-title: Online Gait Planning of Lower-Limb Exoskeleton Robot for Paraplegic Rehabilitation Considering Weight Transfer Process publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2964807 – volume: 18 start-page: 312 year: 2025 ident: ref_61 article-title: Enhancing Human Navigation Ability Using Force-Feedback from a Lower-Limb Exoskeleton publication-title: IEEE Trans. Haptics doi: 10.1109/TOH.2025.3533974 – volume: 30 start-page: 184 year: 2022 ident: ref_94 article-title: Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers with Motorized Tuning of Squat Heights publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3143361 – ident: ref_55 doi: 10.1109/TMECH.2024.3496876 – volume: 158 start-page: 640 year: 2025 ident: ref_12 article-title: Swarm-Initialized Adaptive Controller with Beetle Antenna Searching of Wearable Lower Limb Exoskeleton for Sit-to-Stand and Walking Motions publication-title: ISA Trans. doi: 10.1016/j.isatra.2025.01.003 – volume: 6 start-page: 7699 year: 2021 ident: ref_23 article-title: Virtual Energy Regulator: A Time-Independent Solution for Control of Lower Limb Exoskeletons publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3098243 – volume: 27 start-page: 1223 year: 2022 ident: ref_108 article-title: Bioinspired Knee Joint of a Lower-Limb Exoskeleton for Misalignment Reduction publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3099815 – volume: 205 start-page: 105866 year: 2025 ident: ref_112 article-title: Kinematics and Kinetics of a Knee Assistance Exoskeleton for Sit-to-Stand and Stand-to-Sit Motions with Energy Storage and Regeneration: A Bond Graph Approach publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2024.105866 – volume: 31 start-page: 2988 year: 2023 ident: ref_65 article-title: Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3294435 – ident: ref_63 doi: 10.1016/j.cmpb.2024.108332 – volume: 3 start-page: 773 year: 2021 ident: ref_56 article-title: Design of a Hip Exoskeleton with Actuation in Frontal and Sagittal Planes publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2021.3088521 – volume: 170 start-page: 104731 year: 2022 ident: ref_131 article-title: Lower Limb Exoskeleton Parasitic Force Modeling and Minimizing with an Adaptive Trajectory Controller publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2022.104731 – volume: 28 start-page: 2375 year: 2023 ident: ref_84 article-title: Walking Speed Learning and Generalization Using Seq2Seq Gated and Adaptive Continuous-Time Recurrent Neural Network (S2S-GACTRNN) for a Hip Exoskeleton publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3233434 – volume: 53 start-page: 83 year: 2022 ident: ref_7 article-title: From Sensing to Control of Lower Limb Exoskeleton: A Systematic Review publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2022.04.003 – volume: 29 start-page: 629 year: 2021 ident: ref_81 article-title: Self-Aligning Mechanism Improves Comfort and Performance with a Powered Knee Exoskeleton publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3064463 – volume: 27 start-page: 645 year: 2022 ident: ref_50 article-title: Autonomous Locomotion Trajectory Shaping and Nonlinear Control for Lower Limb Exoskeletons publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3156168 – volume: 31 start-page: 3095 year: 2023 ident: ref_39 article-title: Exoskeleton-Assisted Sit-to-Stand Training Improves Lower-Limb Function Through Modifications of Muscle Synergies in Subacute Stroke Survivors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3297737 – volume: 73 start-page: 6502914 year: 2024 ident: ref_24 article-title: The Human-Machine Interface Design Based on SEMG and Motor Imagery EEG for Lower Limb Exoskeleton Assistance System publication-title: IEEE Trans. Instrum. Meas. – volume: 4 start-page: 472 year: 2022 ident: ref_69 article-title: Metric Learning for Robust Gait Phase Recognition for a Lower Limb Exoskeleton Robot Based on SEMG publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2022.3166543 – volume: 22 start-page: 5425 year: 2024 ident: ref_38 article-title: Robust Sensor Fusion and Biomimetic Control of a Lower-Limb Exoskeleton with Multimodal Sensors publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2024.3421318 – volume: 98 start-page: 343 year: 2022 ident: ref_2 article-title: Effectiveness of Robotic Exoskeletons for Improving Gait in Children with Cerebral Palsy: A Systematic Review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2022.09.082 – volume: 40 start-page: 1842 year: 2023 ident: ref_45 article-title: Haptic Transparency and Interaction Force Control for a Lower-Limb Exoskeleton publication-title: IEEE Trans. Robot. – volume: 9 start-page: 5528 year: 2024 ident: ref_49 article-title: Design and Evaluation of a Bilateral Mobile Ankle Exoskeleton with High-Efficiency Actuation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2024.3391695 – volume: 33 start-page: 343 year: 2025 ident: ref_101 article-title: Implementation and Tuning of Momentum-Based Controller for Standing Balance in a Lower-Limb Exoskeleton with Paraplegic User publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2025.3526424 – volume: 18 start-page: 405 year: 2021 ident: ref_87 article-title: Slope Gradient Adaptive Gait Planning for Walking Assistance Lower Limb Exoskeletons publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3037973 – volume: 22 start-page: 8292 year: 2024 ident: ref_110 article-title: Bionic Design and Control of a 12-DoF Self-Balancing Walking Exoskeleton publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2024.3483872 – volume: 32 start-page: 472 year: 2024 ident: ref_44 article-title: Development and Validation of a Self-Aligning Knee Exoskeleton with Hip Rotation Capability publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3354806 – volume: 3 start-page: 156 year: 2021 ident: ref_95 article-title: Design, Control and Evaluation of the Electro-Hydrostatic Actuator, PREHydrA, for Gait Restoration Exoskeleton Technology publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2020.3048224 – volume: 55 start-page: 10 year: 2024 ident: ref_51 article-title: Fatigue Assessment and Control with Lower Limb Exoskeletons publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2024.3503473 – volume: 25 start-page: 7698 year: 2025 ident: ref_128 article-title: A Deep Learning Hybrid Model for Identifying Gait Patterns and Transition States of Lower Limb Exoskeleton Wearer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2025.3526646 – volume: 29 start-page: 2695 year: 2021 ident: ref_3 article-title: Wearable Lower-Limb Exoskeleton for Children with Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3136088 – volume: 6 start-page: 1581 year: 2024 ident: ref_82 article-title: Repetitive Control of Knee Interaction Torque via a Lower Extremity Exoskeleton for Improved Transparency During Walking publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2024.3464119 – volume: 70 start-page: 271 year: 2023 ident: ref_102 article-title: Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3188482 – volume: 17 start-page: 650 year: 2024 ident: ref_46 article-title: Identification and Analysis of Human-Exoskeleton Coupling Parameters in Lower Extremities publication-title: IEEE Trans. Haptics doi: 10.1109/TOH.2024.3375295 – volume: 27 start-page: 5107 year: 2022 ident: ref_54 article-title: Echo State Network-Enhanced Super-Twisting Control of Passive Gait Training Exoskeleton Driven by Pneumatic Muscles publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3172715 – volume: 6 start-page: 7588 year: 2021 ident: ref_27 article-title: Intelligent Locomotion Planning with Enhanced Postural Stability for Lower-Limb Exoskeletons publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3098915 – volume: 29 start-page: 2373 year: 2021 ident: ref_73 article-title: Deterministic Adaptive Robust Control with a Novel Optimal Gain Design Approach for a Fuzzy 2-DOF Lower Limb Exoskeleton Robot System publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2999739 – volume: 81 start-page: 102699 year: 2022 ident: ref_117 article-title: Model Identification and Adaptive Control of Lower Limb Exoskeleton Based on Neighborhood Field Optimization publication-title: Mechatronics doi: 10.1016/j.mechatronics.2021.102699 – volume: 32 start-page: 2359 year: 2024 ident: ref_133 article-title: A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2024.3429908 – volume: 8 start-page: 7751 year: 2023 ident: ref_106 article-title: Knee Exoskeleton-Enabled Balance Control of Human Walking Gait with Unexpected Foot Slip publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2023.3322082 – volume: 167 start-page: 104519 year: 2022 ident: ref_99 article-title: Design and Analysis of a Novel 12-DOF Self-Balancing Lower Extremity Exoskeleton for Walking Assistance publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2021.104519 – volume: 7 start-page: 7779 year: 2022 ident: ref_68 article-title: A Novel Method for Detecting Misclassifications of the Locomotion Mode in Lower-Limb Exoskeleton Robot Control publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3185380 – volume: 73 start-page: 1 year: 2024 ident: ref_79 article-title: Dual-Loop Control Framework of a Self-Balancing Lower-Limb Exoskeleton for Assisted Walking publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3485393 – volume: 28 start-page: 1573 year: 2020 ident: ref_9 article-title: Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2989481 – volume: 104 start-page: 103661 year: 2024 ident: ref_91 article-title: Discovering Hidden Strengths: How a Passive Lower Extremity Exoskeleton Boosts the Isometric Pulling Capacity to New Heights publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2024.103661 – volume: 105 start-page: 107226 year: 2021 ident: ref_121 article-title: Optimal Fuzzy Logic-Based Control Strategy for Lower Limb Rehabilitation Exoskeleton publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107226 – volume: 32 start-page: 174 year: 2024 ident: ref_29 article-title: Switched Concurrent Learning Adaptive Control for Treadmill Walking Using a Lower Limb Hybrid Exoskeleton publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2023.3305913 – volume: 275 start-page: 126862 year: 2025 ident: ref_74 article-title: A Multi-Modal Sensing Based Terrain Identification Approach for Active Lower Limb Exoskeletons publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2025.126862 – volume: 28 start-page: 2852 year: 2023 ident: ref_105 article-title: Cable-Driven and Series Elastic Actuation Coupled for a Rigid-Flexible Spine-Hip Assistive Exoskeleton in Stoop-Lifting Event publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2023.3235756 – volume: 27 start-page: 1846 year: 2022 ident: ref_42 article-title: Design and Evaluation of a Mobile Ankle Exoskeleton with Switchable Actuation Configurations publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3175731 – volume: 139 start-page: 105651 year: 2023 ident: ref_122 article-title: Optimal Phase-Based Gait Guidance Control on a Lower-Limb Exoskeleton publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2023.105651 – volume: 1 start-page: 15 year: 2022 ident: ref_60 article-title: Optimally Biomimetic Passivity-Based Control of a Lower-Limb Exoskeleton Over the Primary Activities of Daily Life publication-title: IEEE Open J. Control Syst. doi: 10.1109/OJCSYS.2022.3165733 – volume: 78 start-page: 102608 year: 2021 ident: ref_136 article-title: Experimental Characterization of the T-FLEX Ankle Exoskeleton for Gait Assistance publication-title: Mechatronics doi: 10.1016/j.mechatronics.2021.102608 – volume: 72 start-page: 714 year: 2024 ident: ref_135 article-title: Active Disturbance Rejection Control with Backstepping for Decoupling Control of Hydraulic Driven Lower Limb Exoskeleton Robot publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2024.3413820 – volume: 51 start-page: 1099 year: 2021 ident: ref_20 article-title: Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2972582 – volume: 31 start-page: 657 year: 2023 ident: ref_10 article-title: Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3229563 – volume: 7 start-page: 6439 year: 2022 ident: ref_80 article-title: Predictive Locomotion Mode Recognition and Accurate Gait Phase Estimation for Hip Exoskeleton on Various Terrains publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3173426 – volume: 32 start-page: 2553 year: 2024 ident: ref_40 article-title: Enhancing Walking Performance with a Bilateral Hip Exoskeleton Assistance in Individuals with Above-Knee Amputation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3425436 – volume: 23 start-page: 30007 year: 2023 ident: ref_5 article-title: Human Lower Limb Motion Intention Recognition for Exoskeletons: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3328615 – volume: 7 start-page: 7928 year: 2022 ident: ref_34 article-title: The AGoRA V2 Unilateral Lower-Limb Exoskeleton: Mechatronic Integration and Biomechanical Assessment publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3186066 – volume: 151 start-page: 143 year: 2024 ident: ref_17 article-title: Adaptive Neural Fault-Tolerant Prescribed Performance Control of a Rehabilitation Exoskeleton for Lower Limb Passive Training publication-title: ISA Trans. doi: 10.1016/j.isatra.2024.06.001 – volume: 123 start-page: 87 year: 2022 ident: ref_124 article-title: Periodic Event-Triggered Sliding Mode Control for Lower Limb Exoskeleton Based on Human–Robot Cooperation publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.05.039 – volume: 72 start-page: 528 year: 2025 ident: ref_48 article-title: Parallel Elastic Self-Alignment Mechanism Enhances Energy Efficiency and Reduces Misalignment in a Powered Knee Exoskeleton publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2024.3461880 |
SSID | ssj0000913803 |
Score | 2.296339 |
SecondaryResourceType | review_article |
Snippet | This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 342 |
SubjectTerms | Actuator design Actuators adaptive control systems Business metrics Comparative analysis Computer architecture Configuration management Control algorithms Control engineering Controllers Cooperative control Degrees of freedom Design Digital twins Electroencephalography Energy efficiency Exoskeletons Fuzzy logic Gait Hardware Human engineering human–robot interaction (HRI) Inclusion Innovations lower limb exoskeletons Machine learning Neural networks Pediatrics Real time Recurrent neural networks Rehabilitation rehabilitation robotics Robotics Robots Sensors Simulation methods Spinal cord Synchronism Technological change Terrain Trends wearable assistive technology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9oNKHukArH5C4EOHEycbupVq2u0IVoKqiEjfLdmyoKjawGyR-PjOJs8seqJRT7EiRx_P47JlvAA7K0jhemipB34wAReUisVz4JIxKqwruJHdUnHx-MTr9k_-8Kq7igdsyplX2NrE11FXt6Iz8WGSIvAV57O939wl1jaLb1dhC4zVsoQmWcgBbJ9OLX79XpyzEeinb9sgZAvaE8FBXpCcQ6x8b1yC-KIkFb8Mttez9L9no1vHM3sF2jBjZuBPxDrzy8_fw9hmP4Ae4Jq1e-JsuGZ1N1ozerCcdYXVgZ9QRjZ39vbVs-lgv_6HHwciP9cl339iky1s_Yj_avI4jZuYVG6-vuD_C5Wx6OTlNYgeFxAmVNklmeW6U8tZipFFIZUSWWknlp6mppMrx8Sr1qUP5pLYqDUYTLuXSmSIEbsUnGMzruf8MLCjiXh-hzxvZ3GJYaQrv0ywEwS13QQ7hoF8_fdfxZGjEF7TM-tkyD-GE1nY1hcit2xf14lpHXdGZEwFxqa24E3kpK-O5KAW6WOMN4cchHJJkNKlgszDOxEoC_FMis9JjWVBJMH4whP2Nmag6bnO4l62OqrvU6422-__hPXiTUTPgNnd3HwbN4sF_wQilsV_jNnwCxLPiXQ priority: 102 providerName: ProQuest |
Title | Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application |
URI | https://www.proquest.com/docview/3233030250 https://doaj.org/article/2c3f211bd0c3478dae0373123aea6010 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEB20XvQgfmK1lhwELy7NbvYj8VZrq4iKiEJvIckmKmIr7Qr-fCe7W20P4kXY024WwsxO3ht25g3AUZYpQzOVB4jNmKCImAWaMhu4NNMioYZT45uTb27Ty8f4apgM50Z9-ZqwSh64MlwnMsxhkqJzalic8VxZyjKG562yKq2bqxDz5pKp8gwWIeOUVQ15DPP6jjIF5hKZV7xbgKBSqf-387gEmcEGrNfskHSrXW3Ckh1twdqcZuA2PPkIntjnqvCc9H7Uu8lMYISMHbn208_I9cubJv3P8fQV0QVZHpkV2p2SXlWjfkLOyxqOE6JGOen-_M7egYdB_6F3GdTTEgLDRFgEkaaxEsJqjawi4UKxKNTct5qGKucixsuK0IYGfYHmzBQyBxNSblTiHNVsFxqj8cjuAXHC66yniG-pjjVSSJVYG0bOMaqpcbwJRzP7yfdKE0NiLuHNLOfM3IQzb9vvJV7IuryB7pW1e-Vf7m3CsfeM9OFWTJRRddcA7tQLV8kuT3z7L77QhNbCSgwTs_h45ltZh-lUsoghhHsauP8fmz2A1ciPBy6reVvQKCYf9hA5S6HbsMwHF21YOevf3t23y4_1C5iY6bM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOBDEZdGdexkHSMhtGy7bOm2p0XqzbIduyDEpuwGAT-K_8hMHt3uAW6VcoqdyBo_Pn_2zDcAu0pZz5UtE8RmJCg6k4njMiRxqJzOuS-4p-Dkk9Ph9FP28Sw_24I_fSwMuVX2a2KzUJeVpzPyfSmQeUtC7HcX3xPKGkW3q30KjXZYHIffP5Gyrd4eHWD_vhJicjgfT5Muq0DipU7rRDieWa2Dc4i-eaGtFKkrKCQztWWhM3yCTkPqsc2pK5VFhPUpL7zNY-RO4m9vwM1MIpBTYPrkw-WRDklsFk0uZsEV8nQkX21EINbl-9bXSGYUSe5tYGCTKuBfgNCg3OQe3O22p2zUjqf7sBUWD-DOFdHCh3BOS8gyfG4939l4LR_OeoUTVkU2o_RrbPblm2OHv6rVV4Q33Gay3tPvDRu3TvJ77KBxItljdlGy0fo-_RHMr8Owj2F7US3CE2BRk9D7EAF26DKHe1ibh5CKGCV33MdiALu9_cxFK8phkMyQmc0VMw_gPdn2sgopaTcvquW56SamEV5GJMGu5F5mqiht4FJJxHMbLJHVAbymnjE03-ul9bYLW8CWknKWGRU5xR_jBwPY2aiJ89RvFvd9a7p1YmXWo_rp_4tfwq3p_GRmZkenx8_gtqAsxI3T8A5s18sf4TlujWr3ohmQDMw1T4C_OLccfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqWwr4UMSl0Tpxso6RENruQy1dVhUqUm-W7dgFoW7K7iLgp_HvmMmj2z3ArVJOcRJZ47E_f87MNwD7UhrHpSkixGYkKCoVkeXCR6Evrcq4y7mj5OSPs_7R5_TDeXa-BX_aXBgKq2zXxGqhLkpHZ-Q9kSDzFoTYvdCERZyOJu-vvkdUQYr-tLblNGoXOfG_fyJ9W747HuFYv06SyfhseBQ1FQYiJ1S8ihLLU6OUtxaROMuVEUlsc0rPjE2RqxQvr2IfO-x_bAtpEG1dzHNnshC4FfjZO7AtiRR1YPtwPDv9dH3AQ4KbeVWZOeESWTtSsTo_UAjFe8atkNpIEuDbQMSqcMC_4KHCvMlDeNBsVtmg9q5HsOXnj-H-DQnDJ3BBC8rCf6nj4NlwLSbOWr0TVgY2pWJsbPr10rLxr3L5DcEON52sjft7y4Z1yPwBG1UhJQfMzAs2WP9dfwpnt2HaZ9CZl3O_Aywokn3vI9z2bWpxR2sy7-MkBMEtdyHvwn5rP31VS3RopDZkZn3DzF04JNteP0K62tWNcnGhm2mqEycCUmJbcCdSmRfGcyEForvxhqhrF97QyGia_auFcaZJYsCeko6WHuQZZSPjC13Y23gSZ63bbG7HVjerxlKvfXz3_82v4C46v54ez06ew72EShJXEcR70FktfvgXuE9a2ZeNRzLQtzwH_gJUxSIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Comparative+Analysis+of+Lower+Limb+Exoskeleton+Research%3A+Control%2C+Design%2C+and+Application&rft.jtitle=Actuators&rft.au=Hasan%2C+Sk&rft.au=Alam%2C+Nafizul&rft.date=2025-07-01&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=14&rft.issue=7&rft.spage=342&rft_id=info:doi/10.3390%2Fact14070342&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_act14070342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon |