Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration

The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al . fabricated CNT intramolecular transistors by progressive heating...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 374; no. 6575; pp. 1616 - 1620
Main Authors Tang, Dai-Ming, Erohin, Sergey V., Kvashnin, Dmitry G., Demin, Victor A., Cretu, Ovidiu, Jiang, Song, Zhang, Lili, Hou, Peng-Xiang, Chen, Guohai, Futaba, Don N., Zheng, Yongjia, Xiang, Rong, Zhou, Xin, Hsia, Feng-Chun, Kawamoto, Naoyuki, Mitome, Masanori, Nemoto, Yoshihiro, Uesugi, Fumihiko, Takeguchi, Masaki, Maruyama, Shigeo, Cheng, Hui-Ming, Bando, Yoshio, Liu, Chang, Sorokin, Pavel B., Golberg, Dmitri
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 24.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al . fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDS Strain and heating of carbon nanotubes in a transmission electron microscope created internal metal-semiconductor junctions. Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.
AbstractList Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.
Straining to make a transistorThe use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al. fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDSCarbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.
Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.
The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al . fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDS Strain and heating of carbon nanotubes in a transmission electron microscope created internal metal-semiconductor junctions. Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.
Author Futaba, Don N.
Kawamoto, Naoyuki
Nemoto, Yoshihiro
Hou, Peng-Xiang
Maruyama, Shigeo
Mitome, Masanori
Jiang, Song
Zhang, Lili
Cretu, Ovidiu
Zheng, Yongjia
Liu, Chang
Chen, Guohai
Golberg, Dmitri
Uesugi, Fumihiko
Cheng, Hui-Ming
Hsia, Feng-Chun
Takeguchi, Masaki
Kvashnin, Dmitry G.
Zhou, Xin
Sorokin, Pavel B.
Demin, Victor A.
Tang, Dai-Ming
Bando, Yoshio
Xiang, Rong
Erohin, Sergey V.
Author_xml – sequence: 1
  givenname: Dai-Ming
  orcidid: 0000-0001-7136-7481
  surname: Tang
  fullname: Tang, Dai-Ming
  organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
– sequence: 2
  givenname: Sergey V.
  surname: Erohin
  fullname: Erohin, Sergey V.
  organization: National University of Science and Technology (MISIS), Moscow 119049, Russian Federation
– sequence: 3
  givenname: Dmitry G.
  orcidid: 0000-0003-3320-6657
  surname: Kvashnin
  fullname: Kvashnin, Dmitry G.
  organization: National University of Science and Technology (MISIS), Moscow 119049, Russian Federation., Emanuel Institute of Biochemical Physics, Moscow 119334, Russian Federation
– sequence: 4
  givenname: Victor A.
  orcidid: 0000-0003-3894-9396
  surname: Demin
  fullname: Demin, Victor A.
  organization: Emanuel Institute of Biochemical Physics, Moscow 119334, Russian Federation
– sequence: 5
  givenname: Ovidiu
  surname: Cretu
  fullname: Cretu, Ovidiu
  organization: Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
– sequence: 6
  givenname: Song
  orcidid: 0000-0002-5277-429X
  surname: Jiang
  fullname: Jiang, Song
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 7
  givenname: Lili
  orcidid: 0000-0002-5383-8435
  surname: Zhang
  fullname: Zhang, Lili
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 8
  givenname: Peng-Xiang
  orcidid: 0000-0002-7585-513X
  surname: Hou
  fullname: Hou, Peng-Xiang
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 9
  givenname: Guohai
  orcidid: 0000-0001-8481-0972
  surname: Chen
  fullname: Chen, Guohai
  organization: CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
– sequence: 10
  givenname: Don N.
  orcidid: 0000-0002-7083-2772
  surname: Futaba
  fullname: Futaba, Don N.
  organization: CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
– sequence: 11
  givenname: Yongjia
  orcidid: 0000-0001-5836-6978
  surname: Zheng
  fullname: Zheng, Yongjia
  organization: Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 12
  givenname: Rong
  orcidid: 0000-0002-4775-4948
  surname: Xiang
  fullname: Xiang, Rong
  organization: Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 13
  givenname: Xin
  orcidid: 0000-0002-4250-2768
  surname: Zhou
  fullname: Zhou, Xin
  organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
– sequence: 14
  givenname: Feng-Chun
  orcidid: 0000-0003-4263-4637
  surname: Hsia
  fullname: Hsia, Feng-Chun
  organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
– sequence: 15
  givenname: Naoyuki
  orcidid: 0000-0002-2022-3987
  surname: Kawamoto
  fullname: Kawamoto, Naoyuki
  organization: Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
– sequence: 16
  givenname: Masanori
  orcidid: 0000-0003-1192-9838
  surname: Mitome
  fullname: Mitome, Masanori
  organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
– sequence: 17
  givenname: Yoshihiro
  orcidid: 0000-0001-8547-4990
  surname: Nemoto
  fullname: Nemoto, Yoshihiro
  organization: Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
– sequence: 18
  givenname: Fumihiko
  orcidid: 0000-0003-3346-4218
  surname: Uesugi
  fullname: Uesugi, Fumihiko
  organization: Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
– sequence: 19
  givenname: Masaki
  orcidid: 0000-0002-0282-6020
  surname: Takeguchi
  fullname: Takeguchi, Masaki
  organization: Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
– sequence: 20
  givenname: Shigeo
  orcidid: 0000-0003-3694-3070
  surname: Maruyama
  fullname: Maruyama, Shigeo
  organization: Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 21
  givenname: Hui-Ming
  surname: Cheng
  fullname: Cheng, Hui-Ming
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China., Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China., Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 22
  givenname: Yoshio
  orcidid: 0000-0002-6543-5529
  surname: Bando
  fullname: Bando, Yoshio
  organization: Institute of Molecular Plus, Tianjin University, Tianjin 300072, China., Australian Institute for Innovative Materials, University of Wollongong, North Wollongong NSW 2500, Australia
– sequence: 23
  givenname: Chang
  orcidid: 0000-0003-3016-3997
  surname: Liu
  fullname: Liu, Chang
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 24
  givenname: Pavel B.
  orcidid: 0000-0001-5248-1799
  surname: Sorokin
  fullname: Sorokin, Pavel B.
  organization: National University of Science and Technology (MISIS), Moscow 119049, Russian Federation., Moscow Institute of Physics and Technology, Moscow Region 141701, Russian Federation
– sequence: 25
  givenname: Dmitri
  orcidid: 0000-0003-2298-6539
  surname: Golberg
  fullname: Golberg, Dmitri
  organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan., Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34941420$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1PHDEQxa0IBAehThetlCbNgj_2wy4jRADpJAqg3ox9szojr32xvcX995jjoDiJaqSZ3xvNvHdGjnzwSMgPRi8Z491VMha9wUvQVkrZfCMLRlVbK07FEVlQKrpa0r49JWcpvVBaZkqckFPRqIY1nC7Iv0ecrAl-NZscYuXBB7MG79GlyvpqwgzOWVMZiDr43TzPGlOlt1VeY5zChG8Ca8BVZm0jOJu3FbiMEbIN_js5HsElvNjXc_L89-bp-q5ePtzeX_9Z1kYolmsOzapZsU6xRuDITN_1Y49acpCq7TvDRq5Rci1HWpq6Z0yMTGmmRgCQyMU5-f2-dxPD_xlTHiabDDoHHsOcBt6Vh7nqGlHQXwfoS5ijL9cVSkgquerbQv3cU7OecDVsop0gbocP7wpw9Q6YGFKKOH4ijA5v6Qz7dIZ9OkXRHiiMzTuXcgTrvtS9AooSmI4
CitedBy_id crossref_primary_10_1039_D3CE00184A
crossref_primary_10_1063_5_0171559
crossref_primary_10_1007_s00339_024_07555_y
crossref_primary_10_1063_5_0245016
crossref_primary_10_1007_s10853_024_10190_w
crossref_primary_10_1002_advs_202200054
crossref_primary_10_1002_smll_202405736
crossref_primary_10_1007_s12274_023_6174_0
crossref_primary_10_1016_j_matt_2023_06_011
crossref_primary_10_1021_acsami_4c08163
crossref_primary_10_1038_s44287_023_00011_8
crossref_primary_10_1063_5_0211046
crossref_primary_10_1002_inf2_12398
crossref_primary_10_1021_acs_langmuir_3c03395
crossref_primary_10_3390_coatings14010126
crossref_primary_10_1016_j_carbon_2023_03_035
crossref_primary_10_1016_j_diamond_2024_111046
crossref_primary_10_1039_D2SC01160C
crossref_primary_10_3390_nano13061048
crossref_primary_10_1002_advs_202304905
crossref_primary_10_1016_j_mcat_2024_114321
crossref_primary_10_3762_bjnano_14_35
crossref_primary_10_1021_acsnano_4c17376
crossref_primary_10_1109_JSEN_2023_3306744
crossref_primary_10_3390_ijms24076659
crossref_primary_10_1360_TB_2022_0210
crossref_primary_10_1016_j_jmst_2024_12_068
crossref_primary_10_1016_j_carbon_2022_07_076
crossref_primary_10_1016_j_mattod_2022_11_023
crossref_primary_10_3390_jcs7040165
crossref_primary_10_1063_5_0084360
crossref_primary_10_1016_j_ultramic_2022_113537
crossref_primary_10_3390_nano14211688
crossref_primary_10_1016_j_mtcomm_2023_105576
crossref_primary_10_1021_jacs_4c10592
crossref_primary_10_1016_j_carbon_2023_118272
crossref_primary_10_1016_j_ijhydene_2024_03_007
crossref_primary_10_1021_acs_jpclett_2c02117
crossref_primary_10_1016_j_carbon_2023_118073
crossref_primary_10_1126_sciadv_abq0794
Cites_doi 10.1038/nature01797
10.1038/nmat769
10.1088/0953-8984/14/11/302
10.1088/0034-4885/58/4/001
10.1103/PhysRevB.47.558
10.1038/nnano.2010.220
10.1038/nature13607
10.1038/nature13434
10.1063/1.121624
10.1103/PhysRevB.58.12645
10.1038/439281a
10.1103/PhysRevLett.85.150
10.1126/science.aan2476
10.1038/nature12502
10.1103/PhysRevLett.77.3865
10.1021/nl0627543
10.1016/0009-2614(86)80661-3
10.1039/C5NR05537G
10.1038/s41586-019-1493-8
10.1021/nl203701g
10.1103/PhysRevLett.98.075503
10.1038/35079517
10.1038/nnano.2010.129
10.1016/S0009-2614(02)00838-2
10.1103/PhysRevB.85.125443
10.1126/science.aaj1628
10.1016/j.ultramic.2018.07.012
10.1063/1.120873
10.1063/1.107080
10.1021/nl035185x
10.1038/46241
10.1038/nature21051
10.1007/978-94-017-7478-9_5
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.13.5188
10.1103/PhysRevLett.76.971
10.1126/science.291.5501.97
10.1126/science.1104962
10.1143/JJAP.32.L107
10.1103/PhysRevLett.89.106801
10.1021/ja058836v
10.1126/sciadv.aap9264
10.1021/nn406462e
10.1016/j.carbon.2004.10.040
10.1038/nnano.2006.52
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abi8884
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1620
ExternalDocumentID 34941420
10_1126_science_abi8884
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-2a4d4d169143ef1c767f7eb82a89576c1f2be82b8f0b82b7113f19b19faaa8e23
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 15:17:19 EDT 2025
Fri Jul 25 10:47:32 EDT 2025
Thu Apr 24 04:15:04 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Tue Jul 01 02:24:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6575
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-2a4d4d169143ef1c767f7eb82a89576c1f2be82b8f0b82b7113f19b19faaa8e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3346-4218
0000-0001-7136-7481
0000-0003-1192-9838
0000-0003-3320-6657
0000-0002-0282-6020
0000-0003-4263-4637
0000-0002-2022-3987
0000-0002-4775-4948
0000-0003-2298-6539
0000-0002-5277-429X
0000-0002-5383-8435
0000-0003-3894-9396
0000-0002-7083-2772
0000-0003-3694-3070
0000-0001-5836-6978
0000-0002-7585-513X
0000-0001-8481-0972
0000-0001-8547-4990
0000-0002-6543-5529
0000-0002-4250-2768
0000-0003-3016-3997
0000-0001-5248-1799
PMID 34941420
PQID 2638082975
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2614229643
proquest_journals_2638082975
pubmed_primary_34941420
crossref_primary_10_1126_science_abi8884
crossref_citationtrail_10_1126_science_abi8884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-24
2021-Dec-24
20211224
PublicationDateYYYYMMDD 2021-12-24
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
Thrower P. A. (e_1_3_2_29_2) 1969; 5
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_28_2
  doi: 10.1038/nature01797
– ident: e_1_3_2_24_2
  doi: 10.1038/nmat769
– ident: e_1_3_2_39_2
  doi: 10.1088/0953-8984/14/11/302
– ident: e_1_3_2_38_2
  doi: 10.1088/0034-4885/58/4/001
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_3_2_3_2
  doi: 10.1038/nnano.2010.220
– ident: e_1_3_2_9_2
  doi: 10.1038/nature13607
– ident: e_1_3_2_10_2
  doi: 10.1038/nature13434
– ident: e_1_3_2_33_2
  doi: 10.1063/1.121624
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.58.12645
– ident: e_1_3_2_17_2
  doi: 10.1038/439281a
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevLett.85.150
– ident: e_1_3_2_5_2
  doi: 10.1126/science.aan2476
– ident: e_1_3_2_6_2
  doi: 10.1038/nature12502
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_47_2
  doi: 10.1021/nl0627543
– ident: e_1_3_2_30_2
  doi: 10.1016/0009-2614(86)80661-3
– ident: e_1_3_2_36_2
  doi: 10.1039/C5NR05537G
– ident: e_1_3_2_7_2
  doi: 10.1038/s41586-019-1493-8
– ident: e_1_3_2_22_2
  doi: 10.1021/nl203701g
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.98.075503
– ident: e_1_3_2_27_2
  doi: 10.1038/35079517
– ident: e_1_3_2_21_2
  doi: 10.1038/nnano.2010.129
– ident: e_1_3_2_34_2
  doi: 10.1016/S0009-2614(02)00838-2
– volume: 5
  start-page: 217
  year: 1969
  ident: e_1_3_2_29_2
  article-title: The study of defects in graphite by transmission electron microscopy
  publication-title: Chem. Phys. Carbon
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevB.85.125443
– ident: e_1_3_2_4_2
  doi: 10.1126/science.aaj1628
– ident: e_1_3_2_18_2
  doi: 10.1016/j.ultramic.2018.07.012
– ident: e_1_3_2_15_2
  doi: 10.1063/1.120873
– ident: e_1_3_2_2_2
  doi: 10.1063/1.107080
– ident: e_1_3_2_26_2
  doi: 10.1021/nl035185x
– ident: e_1_3_2_13_2
  doi: 10.1038/46241
– ident: e_1_3_2_11_2
  doi: 10.1038/nature21051
– ident: e_1_3_2_37_2
  doi: 10.1007/978-94-017-7478-9_5
– ident: e_1_3_2_46_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.76.971
– ident: e_1_3_2_14_2
  doi: 10.1126/science.291.5501.97
– ident: e_1_3_2_35_2
  doi: 10.1126/science.1104962
– ident: e_1_3_2_31_2
  doi: 10.1143/JJAP.32.L107
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.89.106801
– ident: e_1_3_2_25_2
  doi: 10.1021/ja058836v
– ident: e_1_3_2_32_2
  doi: 10.1126/sciadv.aap9264
– ident: e_1_3_2_19_2
  doi: 10.1021/nn406462e
– ident: e_1_3_2_42_2
  doi: 10.1016/j.carbon.2004.10.040
– ident: e_1_3_2_8_2
  doi: 10.1038/nnano.2006.52
SSID ssj0009593
Score 2.5728297
Snippet The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are...
Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron...
Straining to make a transistorThe use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1616
SubjectTerms Carbon
Chirality
Electronic properties
Electrons
Free energy
Heat
Heat of formation
Heating
Mechanical stimuli
Nanochannels
Nanotechnology
Nanotubes
Quantum transport
Room temperature
Semiconductor devices
Single wall carbon nanotubes
Strain
Transistors
Transmission electron microscopy
Title Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration
URI https://www.ncbi.nlm.nih.gov/pubmed/34941420
https://www.proquest.com/docview/2638082975
https://www.proquest.com/docview/2614229643
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBs_VjaQkXgYQqkSJ0vTx4xQFcYmpHbS3oKdOmokmqA0nVT-XP4S7mIncdGKGC9RZcdJ5O96vrPvviPkreRD0IGOYyU85ZYXeMzizBZWwLhIAl-whGM28uWVP7n2Pt-c3fR6v4yopXUlBsnPO_NK_gdVaANcMUv2Hsi2D4UG-A34whUQhus_YTzFyPYiR8rWonyf87zAPN4cljvcxlhKMKyRwzrhpQCQsb9aC7mqTU7AalksJQ5QJCGLrFQ2eX2A3gGmLddGCYBF2p7yGNi24YqhCipoYgz0MGPDIeKZdakrqcy4XjjRpi-LhSI0mGJG6KYLv7245atFrvqiZVaVm64iWITkKHWwblZPQmhuYzAHQ0JYt4056_Jo7vP1pmrXzMpqYVPa3MZClMx2TXXvqqpAWq7x3MnQ32D_-oYt4Ph1pt4d64xRGVMOuMiCQFW622b0noTT-Gs0jr98urp4QPYZuDKgi_fD8-h8vJMaWhNQGaldzQu2bacdDlFtGM2ekMfao6GhEs8D0pP5IXmoapxuDsmBnsMVPdUU5--ekm9bkktNyaVZThvJpUpyaSu5VGzon5JLW8mlneQ-I9fjj7MPE0vX-rASd-RUFuPe3Jsjc5PnytRJhv4wHUoBKiMYgUucOCkTMmAiSG1oFKBd3NQZCWeUcs4DydznZC8vcnlEKAetM3dlYLs1Xd2ZsNN5mgrugrPDPTvpk0Ezi3GiifCxHsv3uHaImR_raY_1tPfJaTvgh-KA2X3rSQNLrBXFKmawxqkU9j5503aDGsezOZ7LYo334GYskuP1yQsFZ_suZJCCXvvl3x9-TB51f6wTsleVa_kKLOZKvNYi9xv36sws
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+nanochannels+in+metallic+carbon+nanotubes+by+thermomechanical+chirality+alteration&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Dai-Ming%2C+Tang&rft.au=Erohin%2C+Sergey+V&rft.au=Kvashnin%2C+Dmitry+G&rft.au=Demin%2C+Victor+A&rft.date=2021-12-24&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6575&rft.spage=1616&rft.epage=1620&rft_id=info:doi/10.1126%2Fscience.abi8884&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon