Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration
The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al . fabricated CNT intramolecular transistors by progressive heating...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6575; pp. 1616 - 1620 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
24.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang
et al
. fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDS
Strain and heating of carbon nanotubes in a transmission electron microscope created internal metal-semiconductor junctions.
Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers. |
---|---|
AbstractList | Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers.Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers. Straining to make a transistorThe use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al. fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDSCarbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers. Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers. The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are semiconducting or metallic and if they form strong, low-resistance contacts. Tang et al . fabricated CNT intramolecular transistors by progressive heating and straining of individual CNTs within a transmission electron microscope. Changes to chirality along sections of the nanotube created metallic-to-semiconducting transitions. A semiconducting nanotube channel was covalently bonded to the metallic nanotube source and drain regions. The resulting CNT intramolecular transistors had channel lengths as short as 2.8 nanometers. —PDS Strain and heating of carbon nanotubes in a transmission electron microscope created internal metal-semiconductor junctions. Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron microscopy, we applied heating and mechanical strain to alter the local chirality and thereby control the electronic properties of individual single-wall carbon nanotubes. A transition trend toward a larger chiral angle region was observed and explained in terms of orientation-dependent dislocation formation energy. A controlled metal-to-semiconductor transition was realized to create nanotube transistors with a semiconducting nanotube channel covalently bonded between a metallic nanotube source and drain. Additionally, quantum transport at room temperature was demonstrated for the fabricated nanotube transistors with a channel length as short as 2.8 nanometers. |
Author | Futaba, Don N. Kawamoto, Naoyuki Nemoto, Yoshihiro Hou, Peng-Xiang Maruyama, Shigeo Mitome, Masanori Jiang, Song Zhang, Lili Cretu, Ovidiu Zheng, Yongjia Liu, Chang Chen, Guohai Golberg, Dmitri Uesugi, Fumihiko Cheng, Hui-Ming Hsia, Feng-Chun Takeguchi, Masaki Kvashnin, Dmitry G. Zhou, Xin Sorokin, Pavel B. Demin, Victor A. Tang, Dai-Ming Bando, Yoshio Xiang, Rong Erohin, Sergey V. |
Author_xml | – sequence: 1 givenname: Dai-Ming orcidid: 0000-0001-7136-7481 surname: Tang fullname: Tang, Dai-Ming organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan – sequence: 2 givenname: Sergey V. surname: Erohin fullname: Erohin, Sergey V. organization: National University of Science and Technology (MISIS), Moscow 119049, Russian Federation – sequence: 3 givenname: Dmitry G. orcidid: 0000-0003-3320-6657 surname: Kvashnin fullname: Kvashnin, Dmitry G. organization: National University of Science and Technology (MISIS), Moscow 119049, Russian Federation., Emanuel Institute of Biochemical Physics, Moscow 119334, Russian Federation – sequence: 4 givenname: Victor A. orcidid: 0000-0003-3894-9396 surname: Demin fullname: Demin, Victor A. organization: Emanuel Institute of Biochemical Physics, Moscow 119334, Russian Federation – sequence: 5 givenname: Ovidiu surname: Cretu fullname: Cretu, Ovidiu organization: Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan – sequence: 6 givenname: Song orcidid: 0000-0002-5277-429X surname: Jiang fullname: Jiang, Song organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 7 givenname: Lili orcidid: 0000-0002-5383-8435 surname: Zhang fullname: Zhang, Lili organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 8 givenname: Peng-Xiang orcidid: 0000-0002-7585-513X surname: Hou fullname: Hou, Peng-Xiang organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 9 givenname: Guohai orcidid: 0000-0001-8481-0972 surname: Chen fullname: Chen, Guohai organization: CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan – sequence: 10 givenname: Don N. orcidid: 0000-0002-7083-2772 surname: Futaba fullname: Futaba, Don N. organization: CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan – sequence: 11 givenname: Yongjia orcidid: 0000-0001-5836-6978 surname: Zheng fullname: Zheng, Yongjia organization: Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 12 givenname: Rong orcidid: 0000-0002-4775-4948 surname: Xiang fullname: Xiang, Rong organization: Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 13 givenname: Xin orcidid: 0000-0002-4250-2768 surname: Zhou fullname: Zhou, Xin organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan – sequence: 14 givenname: Feng-Chun orcidid: 0000-0003-4263-4637 surname: Hsia fullname: Hsia, Feng-Chun organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan – sequence: 15 givenname: Naoyuki orcidid: 0000-0002-2022-3987 surname: Kawamoto fullname: Kawamoto, Naoyuki organization: Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan – sequence: 16 givenname: Masanori orcidid: 0000-0003-1192-9838 surname: Mitome fullname: Mitome, Masanori organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan – sequence: 17 givenname: Yoshihiro orcidid: 0000-0001-8547-4990 surname: Nemoto fullname: Nemoto, Yoshihiro organization: Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan – sequence: 18 givenname: Fumihiko orcidid: 0000-0003-3346-4218 surname: Uesugi fullname: Uesugi, Fumihiko organization: Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan – sequence: 19 givenname: Masaki orcidid: 0000-0002-0282-6020 surname: Takeguchi fullname: Takeguchi, Masaki organization: Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan – sequence: 20 givenname: Shigeo orcidid: 0000-0003-3694-3070 surname: Maruyama fullname: Maruyama, Shigeo organization: Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 21 givenname: Hui-Ming surname: Cheng fullname: Cheng, Hui-Ming organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China., Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China., Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China – sequence: 22 givenname: Yoshio orcidid: 0000-0002-6543-5529 surname: Bando fullname: Bando, Yoshio organization: Institute of Molecular Plus, Tianjin University, Tianjin 300072, China., Australian Institute for Innovative Materials, University of Wollongong, North Wollongong NSW 2500, Australia – sequence: 23 givenname: Chang orcidid: 0000-0003-3016-3997 surname: Liu fullname: Liu, Chang organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China – sequence: 24 givenname: Pavel B. orcidid: 0000-0001-5248-1799 surname: Sorokin fullname: Sorokin, Pavel B. organization: National University of Science and Technology (MISIS), Moscow 119049, Russian Federation., Moscow Institute of Physics and Technology, Moscow Region 141701, Russian Federation – sequence: 25 givenname: Dmitri orcidid: 0000-0003-2298-6539 surname: Golberg fullname: Golberg, Dmitri organization: International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan., Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34941420$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PHDEQxa0IBAehThetlCbNgj_2wy4jRADpJAqg3ox9szojr32xvcX995jjoDiJaqSZ3xvNvHdGjnzwSMgPRi8Z491VMha9wUvQVkrZfCMLRlVbK07FEVlQKrpa0r49JWcpvVBaZkqckFPRqIY1nC7Iv0ecrAl-NZscYuXBB7MG79GlyvpqwgzOWVMZiDr43TzPGlOlt1VeY5zChG8Ca8BVZm0jOJu3FbiMEbIN_js5HsElvNjXc_L89-bp-q5ePtzeX_9Z1kYolmsOzapZsU6xRuDITN_1Y49acpCq7TvDRq5Rci1HWpq6Z0yMTGmmRgCQyMU5-f2-dxPD_xlTHiabDDoHHsOcBt6Vh7nqGlHQXwfoS5ijL9cVSkgquerbQv3cU7OecDVsop0gbocP7wpw9Q6YGFKKOH4ijA5v6Qz7dIZ9OkXRHiiMzTuXcgTrvtS9AooSmI4 |
CitedBy_id | crossref_primary_10_1039_D3CE00184A crossref_primary_10_1063_5_0171559 crossref_primary_10_1007_s00339_024_07555_y crossref_primary_10_1063_5_0245016 crossref_primary_10_1007_s10853_024_10190_w crossref_primary_10_1002_advs_202200054 crossref_primary_10_1002_smll_202405736 crossref_primary_10_1007_s12274_023_6174_0 crossref_primary_10_1016_j_matt_2023_06_011 crossref_primary_10_1021_acsami_4c08163 crossref_primary_10_1038_s44287_023_00011_8 crossref_primary_10_1063_5_0211046 crossref_primary_10_1002_inf2_12398 crossref_primary_10_1021_acs_langmuir_3c03395 crossref_primary_10_3390_coatings14010126 crossref_primary_10_1016_j_carbon_2023_03_035 crossref_primary_10_1016_j_diamond_2024_111046 crossref_primary_10_1039_D2SC01160C crossref_primary_10_3390_nano13061048 crossref_primary_10_1002_advs_202304905 crossref_primary_10_1016_j_mcat_2024_114321 crossref_primary_10_3762_bjnano_14_35 crossref_primary_10_1021_acsnano_4c17376 crossref_primary_10_1109_JSEN_2023_3306744 crossref_primary_10_3390_ijms24076659 crossref_primary_10_1360_TB_2022_0210 crossref_primary_10_1016_j_jmst_2024_12_068 crossref_primary_10_1016_j_carbon_2022_07_076 crossref_primary_10_1016_j_mattod_2022_11_023 crossref_primary_10_3390_jcs7040165 crossref_primary_10_1063_5_0084360 crossref_primary_10_1016_j_ultramic_2022_113537 crossref_primary_10_3390_nano14211688 crossref_primary_10_1016_j_mtcomm_2023_105576 crossref_primary_10_1021_jacs_4c10592 crossref_primary_10_1016_j_carbon_2023_118272 crossref_primary_10_1016_j_ijhydene_2024_03_007 crossref_primary_10_1021_acs_jpclett_2c02117 crossref_primary_10_1016_j_carbon_2023_118073 crossref_primary_10_1126_sciadv_abq0794 |
Cites_doi | 10.1038/nature01797 10.1038/nmat769 10.1088/0953-8984/14/11/302 10.1088/0034-4885/58/4/001 10.1103/PhysRevB.47.558 10.1038/nnano.2010.220 10.1038/nature13607 10.1038/nature13434 10.1063/1.121624 10.1103/PhysRevB.58.12645 10.1038/439281a 10.1103/PhysRevLett.85.150 10.1126/science.aan2476 10.1038/nature12502 10.1103/PhysRevLett.77.3865 10.1021/nl0627543 10.1016/0009-2614(86)80661-3 10.1039/C5NR05537G 10.1038/s41586-019-1493-8 10.1021/nl203701g 10.1103/PhysRevLett.98.075503 10.1038/35079517 10.1038/nnano.2010.129 10.1016/S0009-2614(02)00838-2 10.1103/PhysRevB.85.125443 10.1126/science.aaj1628 10.1016/j.ultramic.2018.07.012 10.1063/1.120873 10.1063/1.107080 10.1021/nl035185x 10.1038/46241 10.1038/nature21051 10.1007/978-94-017-7478-9_5 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.13.5188 10.1103/PhysRevLett.76.971 10.1126/science.291.5501.97 10.1126/science.1104962 10.1143/JJAP.32.L107 10.1103/PhysRevLett.89.106801 10.1021/ja058836v 10.1126/sciadv.aap9264 10.1021/nn406462e 10.1016/j.carbon.2004.10.040 10.1038/nnano.2006.52 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abi8884 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1620 |
ExternalDocumentID | 34941420 10_1126_science_abi8884 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-2a4d4d169143ef1c767f7eb82a89576c1f2be82b8f0b82b7113f19b19faaa8e23 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 15:17:19 EDT 2025 Fri Jul 25 10:47:32 EDT 2025 Thu Apr 24 04:15:04 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Tue Jul 01 02:24:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6575 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-2a4d4d169143ef1c767f7eb82a89576c1f2be82b8f0b82b7113f19b19faaa8e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3346-4218 0000-0001-7136-7481 0000-0003-1192-9838 0000-0003-3320-6657 0000-0002-0282-6020 0000-0003-4263-4637 0000-0002-2022-3987 0000-0002-4775-4948 0000-0003-2298-6539 0000-0002-5277-429X 0000-0002-5383-8435 0000-0003-3894-9396 0000-0002-7083-2772 0000-0003-3694-3070 0000-0001-5836-6978 0000-0002-7585-513X 0000-0001-8481-0972 0000-0001-8547-4990 0000-0002-6543-5529 0000-0002-4250-2768 0000-0003-3016-3997 0000-0001-5248-1799 |
PMID | 34941420 |
PQID | 2638082975 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2614229643 proquest_journals_2638082975 pubmed_primary_34941420 crossref_primary_10_1126_science_abi8884 crossref_citationtrail_10_1126_science_abi8884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-24 2021-Dec-24 20211224 |
PublicationDateYYYYMMDD | 2021-12-24 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 Thrower P. A. (e_1_3_2_29_2) 1969; 5 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_28_2 doi: 10.1038/nature01797 – ident: e_1_3_2_24_2 doi: 10.1038/nmat769 – ident: e_1_3_2_39_2 doi: 10.1088/0953-8984/14/11/302 – ident: e_1_3_2_38_2 doi: 10.1088/0034-4885/58/4/001 – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevB.47.558 – ident: e_1_3_2_3_2 doi: 10.1038/nnano.2010.220 – ident: e_1_3_2_9_2 doi: 10.1038/nature13607 – ident: e_1_3_2_10_2 doi: 10.1038/nature13434 – ident: e_1_3_2_33_2 doi: 10.1063/1.121624 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.58.12645 – ident: e_1_3_2_17_2 doi: 10.1038/439281a – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevLett.85.150 – ident: e_1_3_2_5_2 doi: 10.1126/science.aan2476 – ident: e_1_3_2_6_2 doi: 10.1038/nature12502 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_47_2 doi: 10.1021/nl0627543 – ident: e_1_3_2_30_2 doi: 10.1016/0009-2614(86)80661-3 – ident: e_1_3_2_36_2 doi: 10.1039/C5NR05537G – ident: e_1_3_2_7_2 doi: 10.1038/s41586-019-1493-8 – ident: e_1_3_2_22_2 doi: 10.1021/nl203701g – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.98.075503 – ident: e_1_3_2_27_2 doi: 10.1038/35079517 – ident: e_1_3_2_21_2 doi: 10.1038/nnano.2010.129 – ident: e_1_3_2_34_2 doi: 10.1016/S0009-2614(02)00838-2 – volume: 5 start-page: 217 year: 1969 ident: e_1_3_2_29_2 article-title: The study of defects in graphite by transmission electron microscopy publication-title: Chem. Phys. Carbon – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevB.85.125443 – ident: e_1_3_2_4_2 doi: 10.1126/science.aaj1628 – ident: e_1_3_2_18_2 doi: 10.1016/j.ultramic.2018.07.012 – ident: e_1_3_2_15_2 doi: 10.1063/1.120873 – ident: e_1_3_2_2_2 doi: 10.1063/1.107080 – ident: e_1_3_2_26_2 doi: 10.1021/nl035185x – ident: e_1_3_2_13_2 doi: 10.1038/46241 – ident: e_1_3_2_11_2 doi: 10.1038/nature21051 – ident: e_1_3_2_37_2 doi: 10.1007/978-94-017-7478-9_5 – ident: e_1_3_2_46_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevLett.76.971 – ident: e_1_3_2_14_2 doi: 10.1126/science.291.5501.97 – ident: e_1_3_2_35_2 doi: 10.1126/science.1104962 – ident: e_1_3_2_31_2 doi: 10.1143/JJAP.32.L107 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.89.106801 – ident: e_1_3_2_25_2 doi: 10.1021/ja058836v – ident: e_1_3_2_32_2 doi: 10.1126/sciadv.aap9264 – ident: e_1_3_2_19_2 doi: 10.1021/nn406462e – ident: e_1_3_2_42_2 doi: 10.1016/j.carbon.2004.10.040 – ident: e_1_3_2_8_2 doi: 10.1038/nnano.2006.52 |
SSID | ssj0009593 |
Score | 2.5728297 |
Snippet | The use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines whether they are... Carbon nanotubes have a helical structure wherein the chirality determines whether they are metallic or semiconducting. Using in situ transmission electron... Straining to make a transistorThe use of carbon nanotubes (CNTs) as short-channel-length transistors will require control of their chirality, which determines... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1616 |
SubjectTerms | Carbon Chirality Electronic properties Electrons Free energy Heat Heat of formation Heating Mechanical stimuli Nanochannels Nanotechnology Nanotubes Quantum transport Room temperature Semiconductor devices Single wall carbon nanotubes Strain Transistors Transmission electron microscopy |
Title | Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34941420 https://www.proquest.com/docview/2638082975 https://www.proquest.com/docview/2614229643 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBs_VjaQkXgYQqkSJ0vTx4xQFcYmpHbS3oKdOmokmqA0nVT-XP4S7mIncdGKGC9RZcdJ5O96vrPvviPkreRD0IGOYyU85ZYXeMzizBZWwLhIAl-whGM28uWVP7n2Pt-c3fR6v4yopXUlBsnPO_NK_gdVaANcMUv2Hsi2D4UG-A34whUQhus_YTzFyPYiR8rWonyf87zAPN4cljvcxlhKMKyRwzrhpQCQsb9aC7mqTU7AalksJQ5QJCGLrFQ2eX2A3gGmLddGCYBF2p7yGNi24YqhCipoYgz0MGPDIeKZdakrqcy4XjjRpi-LhSI0mGJG6KYLv7245atFrvqiZVaVm64iWITkKHWwblZPQmhuYzAHQ0JYt4056_Jo7vP1pmrXzMpqYVPa3MZClMx2TXXvqqpAWq7x3MnQ32D_-oYt4Ph1pt4d64xRGVMOuMiCQFW622b0noTT-Gs0jr98urp4QPYZuDKgi_fD8-h8vJMaWhNQGaldzQu2bacdDlFtGM2ekMfao6GhEs8D0pP5IXmoapxuDsmBnsMVPdUU5--ekm9bkktNyaVZThvJpUpyaSu5VGzon5JLW8mlneQ-I9fjj7MPE0vX-rASd-RUFuPe3Jsjc5PnytRJhv4wHUoBKiMYgUucOCkTMmAiSG1oFKBd3NQZCWeUcs4DydznZC8vcnlEKAetM3dlYLs1Xd2ZsNN5mgrugrPDPTvpk0Ezi3GiifCxHsv3uHaImR_raY_1tPfJaTvgh-KA2X3rSQNLrBXFKmawxqkU9j5503aDGsezOZ7LYo334GYskuP1yQsFZ_suZJCCXvvl3x9-TB51f6wTsleVa_kKLOZKvNYi9xv36sws |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+nanochannels+in+metallic+carbon+nanotubes+by+thermomechanical+chirality+alteration&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Dai-Ming%2C+Tang&rft.au=Erohin%2C+Sergey+V&rft.au=Kvashnin%2C+Dmitry+G&rft.au=Demin%2C+Victor+A&rft.date=2021-12-24&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6575&rft.spage=1616&rft.epage=1620&rft_id=info:doi/10.1126%2Fscience.abi8884&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |