Feature Selection and Machine Learning Approaches for Detecting Sarcopenia Through Predictive Modeling
Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the L...
Saved in:
Published in | Mathematics (Basel) Vol. 13; no. 1; p. 98 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the Local Interpretable Model-Agnostic Explanations (LIME) method. This enhanced model interpretability. Additionally, the CatBoost algorithm was used for training, and SMOTE-Tomek addressed dataset imbalance. Notably, the reduced-feature model outperformed the full-feature model, achieving an accuracy of 0.89 and an AUC of 0.94. The results highlight the importance of feature selection for improving model efficiency and interpretability in clinical applications. This approach provides valuable insights into the early identification and management of sarcopenia, contributing to better patient outcomes. |
---|---|
AbstractList | Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the Local Interpretable Model-Agnostic Explanations (LIME) method. This enhanced model interpretability. Additionally, the CatBoost algorithm was used for training, and SMOTE-Tomek addressed dataset imbalance. Notably, the reduced-feature model outperformed the full-feature model, achieving an accuracy of 0.89 and an AUC of 0.94. The results highlight the importance of feature selection for improving model efficiency and interpretability in clinical applications. This approach provides valuable insights into the early identification and management of sarcopenia, contributing to better patient outcomes. |
Audience | Academic |
Author | Turimov, Dilmurod Kim, Jiyoun Tukhtaev, Akhrorbek Kim, Wooseong |
Author_xml | – sequence: 1 givenname: Akhrorbek surname: Tukhtaev fullname: Tukhtaev, Akhrorbek – sequence: 2 givenname: Dilmurod orcidid: 0000-0001-7070-0393 surname: Turimov fullname: Turimov, Dilmurod – sequence: 3 givenname: Jiyoun surname: Kim fullname: Kim, Jiyoun – sequence: 4 givenname: Wooseong orcidid: 0000-0003-0955-3421 surname: Kim fullname: Kim, Wooseong |
BookMark | eNptUU1rGzEQFSWFpmlu-QGCXutUHyut5mjS5gMcWkhyFrPaWVvGllztutB_H7kOIYVKBw3vvXma4X1kJyknYuxCikutQXzd4rSSWkghwL1jp0qpdtZW4uRN_YGdj-Na1ANSuwZO2XBNOO0L8QfaUJhiThxTz-8xrGIiviAsKaYln-92JVeQRj7kwr_RdFBX4gFLyDtKEfnjquT9csV_FupjZX8Tv889barsE3s_4Gak85f3jD1df3-8up0tftzcXc0Xs6BBTjPVDK4haVF0IoAGo9ABATorbIcYOjtgh9KADkZWsW2EUmC73namNWT1Gbs7-vYZ135X4hbLH58x-r9ALkuPZYphQ17a1nXCOQFGNH39o-kNNsK00kIn4eD1-ehVN_-1p3Hy67wvqY7vtTTaWWXqIK-qJVbTmIY8FQzbOAY_dwpAWQemqi7_o6q3p20MNcghVvyfhi_HhlDyOBYaXpeRwh_y9m_z1s_pUpyz |
Cites_doi | 10.1145/3583133.3596943 10.3390/s22093246 10.1109/TPAMI.2005.159 10.1038/oby.2009.109 10.3389/fonc.2022.930432 10.1109/BIBE60311.2023.00053 10.3390/healthcare11091334 10.1007/s13534-023-00291-x 10.3390/make3030027 10.1016/j.ypmed.2016.08.040 10.1016/j.techfore.2021.120658 10.1016/j.diii.2020.04.011 10.3390/healthcare11212881 10.1109/ICOACS.2016.7563084 10.1007/978-3-031-42536-3_33 10.3390/cells11010160 10.3390/metabo13040565 10.1016/j.egyr.2021.07.008 10.3390/biomimetics9030179 10.1109/SUMMA60232.2023.10349492 10.1016/j.ymeth.2016.08.014 10.1016/j.eswa.2013.08.043 10.20944/preprints202308.0516.v1 10.1109/CBMS49503.2020.00009 10.2147/CIA.S323761 10.3390/math12142209 10.3390/healthcare11192699 10.3390/math11194055 10.1016/j.jelekin.2020.102440 10.1007/s42979-024-03227-z 10.1145/2939672.2939778 10.3390/asi4010018 10.3390/app11146574 10.1016/S0140-6736(19)31138-9 10.3390/app13158782 10.3390/diagnostics13162681 10.3233/JIFS-221652 10.1145/3593013.3594058 10.1371/journal.pone.0309830 10.1080/01605682.2020.1865846 10.1109/TBME.2019.2904398 10.1023/A:1012487302797 10.3389/fendo.2020.00123 10.3390/healthcare11182483 10.3390/technologies9030052 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math13010098 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_1678b08809504d9a84d5a4057169b196 A829926895 10_3390_math13010098 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c391t-24f84e16a0b0c93952a89e9a8606baacb6faba1593c5124f6402296bd6b575e63 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:20:19 EDT 2025 Fri Jul 25 11:54:26 EDT 2025 Tue Jun 17 21:58:06 EDT 2025 Tue Jun 10 20:58:14 EDT 2025 Tue Jul 01 01:04:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-24f84e16a0b0c93952a89e9a8606baacb6faba1593c5124f6402296bd6b575e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0955-3421 0000-0001-7070-0393 |
OpenAccessLink | https://doaj.org/article/1678b08809504d9a84d5a4057169b196 |
PQID | 3153862559 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1678b08809504d9a84d5a4057169b196 proquest_journals_3153862559 gale_infotracmisc_A829926895 gale_infotracacademiconefile_A829926895 crossref_primary_10_3390_math13010098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Peng (ref_40) 2005; 27 Yang (ref_28) 2022; 44 ref_14 ref_12 ref_11 ref_55 ref_10 ref_54 You (ref_39) 2014; 41 ref_53 Guyon (ref_42) 2002; 46 ref_52 ref_51 ref_19 ref_18 ref_15 Merletti (ref_45) 2020; 54 Ahmed (ref_21) 2024; 5 ref_25 ref_24 ref_22 Bouchard (ref_48) 2009; 17 ref_20 Shawi (ref_33) 2020; 37 Ko (ref_16) 2021; 16 Shin (ref_5) 2023; 13 ref_27 Gharib (ref_26) 2021; 166 Visani (ref_34) 2022; 73 Schiratti (ref_17) 2020; 101 ref_36 Aggio (ref_47) 2016; 91 ref_35 ref_32 ref_31 ref_30 Abdullahi (ref_23) 2023; 2 Zhang (ref_13) 2023; 136 ref_38 Hussain (ref_29) 2021; 7 ref_37 ref_46 ref_43 Cerone (ref_44) 2019; 66 Zafar (ref_6) 2021; 3 ref_3 ref_2 ref_49 Wang (ref_41) 2016; 111 ref_9 ref_8 ref_4 ref_7 Sayer (ref_1) 2019; 393 |
References_xml | – ident: ref_15 doi: 10.1145/3583133.3596943 – ident: ref_22 doi: 10.3390/s22093246 – ident: ref_49 – ident: ref_32 – volume: 27 start-page: 1226 year: 2005 ident: ref_40 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 17 start-page: 2082 year: 2009 ident: ref_48 article-title: Sarcopenic/Obesity and Physical Capacity in Older Men and Women: Data From the Nutrition as a Determinant of Successful Aging (NuAge)—the Quebec Longitudinal Study publication-title: Obesity doi: 10.1038/oby.2009.109 – ident: ref_20 doi: 10.3389/fonc.2022.930432 – ident: ref_46 doi: 10.1109/BIBE60311.2023.00053 – ident: ref_18 doi: 10.3390/healthcare11091334 – volume: 13 start-page: 689 year: 2023 ident: ref_5 article-title: Feasibility of local interpretable model-agnostic explanations (LIME) algorithm as an effective and interpretable feature selection method: Comparative fNIRS study publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-023-00291-x – volume: 136 start-page: 967 year: 2023 ident: ref_13 article-title: Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia publication-title: Chin. Med. J. – volume: 3 start-page: 525 year: 2021 ident: ref_6 article-title: Deterministic local interpretable model-agnostic explanations for stable explainability publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make3030027 – volume: 91 start-page: 264 year: 2016 ident: ref_47 article-title: Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men publication-title: Prev. Med. doi: 10.1016/j.ypmed.2016.08.040 – volume: 166 start-page: 120658 year: 2021 ident: ref_26 article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2021.120658 – ident: ref_31 – volume: 101 start-page: 789 year: 2020 ident: ref_17 article-title: Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment publication-title: Diagn. Interv. Imaging doi: 10.1016/j.diii.2020.04.011 – ident: ref_19 doi: 10.3390/healthcare11212881 – ident: ref_27 – ident: ref_10 doi: 10.1109/ICOACS.2016.7563084 – ident: ref_35 doi: 10.1007/978-3-031-42536-3_33 – ident: ref_2 doi: 10.3390/cells11010160 – ident: ref_55 doi: 10.3390/metabo13040565 – volume: 7 start-page: 4425 year: 2021 ident: ref_29 article-title: A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.07.008 – ident: ref_53 doi: 10.3390/biomimetics9030179 – ident: ref_30 doi: 10.1109/SUMMA60232.2023.10349492 – volume: 111 start-page: 21 year: 2016 ident: ref_41 article-title: Feature selection methods for big data bioinformatics: A survey from the search perspective publication-title: Methods doi: 10.1016/j.ymeth.2016.08.014 – ident: ref_11 – volume: 41 start-page: 1463 year: 2014 ident: ref_39 article-title: Feature selection for high-dimensional multi-category data using PLS-based local recursive feature elimination publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.043 – ident: ref_3 doi: 10.20944/preprints202308.0516.v1 – ident: ref_7 doi: 10.1109/CBMS49503.2020.00009 – volume: 16 start-page: 1723 year: 2021 ident: ref_16 article-title: Predicting Sarcopenia of Female Elderly from Physical Activity Performance Measurement Using Machine Learning Classifiers publication-title: Clin. Interv. Aging doi: 10.2147/CIA.S323761 – ident: ref_9 doi: 10.3390/math12142209 – volume: 37 start-page: 1633 year: 2020 ident: ref_33 article-title: Interpretability in healthcare: A comparative study of local machine learning interpretability techniques publication-title: Comput. Intell. – ident: ref_14 doi: 10.3390/healthcare11192699 – ident: ref_12 doi: 10.3390/math11194055 – volume: 54 start-page: 102440 year: 2020 ident: ref_45 article-title: Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2020.102440 – volume: 5 start-page: 865 year: 2024 ident: ref_21 article-title: A Novel Hybrid Resampling Approach to Address Class-Imbalanced Issues publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03227-z – volume: 2 start-page: 88 year: 2023 ident: ref_23 article-title: Comparative analysis of resampling algorithms in the prediction of stroke diseases publication-title: UMYU Sci. – ident: ref_50 – ident: ref_38 doi: 10.1145/2939672.2939778 – ident: ref_24 doi: 10.3390/asi4010018 – ident: ref_52 doi: 10.3390/app11146574 – volume: 393 start-page: 2636 year: 2019 ident: ref_1 article-title: Sarcopenia publication-title: Lancet doi: 10.1016/S0140-6736(19)31138-9 – ident: ref_51 doi: 10.3390/app13158782 – ident: ref_37 doi: 10.3390/diagnostics13162681 – volume: 44 start-page: 2269 year: 2022 ident: ref_28 article-title: A novel SSA-CatBoost machine learning model for credit rating publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-221652 – ident: ref_25 doi: 10.1145/3593013.3594058 – ident: ref_36 – ident: ref_8 doi: 10.1371/journal.pone.0309830 – volume: 73 start-page: 91 year: 2022 ident: ref_34 article-title: Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2020.1865846 – volume: 66 start-page: 3371 year: 2019 ident: ref_44 article-title: A Modular, Smart, and Wearable System for High Density sEMG Detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2904398 – volume: 46 start-page: 389 year: 2002 ident: ref_42 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: ref_54 doi: 10.3389/fendo.2020.00123 – ident: ref_4 doi: 10.3390/healthcare11182483 – ident: ref_43 doi: 10.3390/technologies9030052 |
SSID | ssj0000913849 |
Score | 2.2989452 |
Snippet | Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 98 |
SubjectTerms | Accuracy Aging Algorithms Artificial intelligence CatBoost Clinical outcomes Credit scoring Datasets Deep learning Diagnosis Exercise Feature selection LIME Literature reviews Machine learning Medical imaging Musculoskeletal system Older people Optimization techniques Prediction models random forest Sarcopenia |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgniK85AHEFDWJH7Un1EIRQiqqaJHYLDtxCktb0vL_uUvdQgdY4ySyzr677_z4PkKuhC48s0UZKyFEzF1pY8sLGbtEK-YTxlyJF5x7z_LxlT-9ibew4DYLxyqXMbEO1MUkxzXyJkPXlAiAb6efMapG4e5qkNDYJFsQghUUX1ud7nP_ZbXKgqyXiuvFiXcG9X0TcOA7xO0UiTTXclFN2f9XYK6zzcMe2Q0wkbYX47pPNvz4gOz0Vhyrs0NSInr7qjwd1FI2YF9qxwXt1acjPQ3EqSPaDqzhfkYBoNJ7j9sG2DCAOY7iWR-WDhdqPbRf4b4NRkCKIml4Vf2IvD50h3ePcVBNiHOm03mc8VJxn0qbuCTXTIvMKu21VVCqOGtzJ0vrLKAYlkOy56WECjLT0hXSAXTzkh2Txngy9ieEOhRN1x5AOPyybMGnKYNcJgVrtZT1MiLXS_uZ6YIcw0BRgXY2v-0ckQ4ad_UOUlrXDybVyAQPMSmkTQcxDzBfwgvoLy-ERTiZSu0gTkTkBofGoOPNK5vbcH8AuooUVqatILNmUmkRkfO1N8Fh8vXm5eCa4LAz8zO9Tv9vPiPbGUoA16sw56Qxr778BeCSubsMk-8b3lPh8w priority: 102 providerName: ProQuest |
Title | Feature Selection and Machine Learning Approaches for Detecting Sarcopenia Through Predictive Modeling |
URI | https://www.proquest.com/docview/3153862559 https://doaj.org/article/1678b08809504d9a84d5a4057169b196 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xWGBAPEV5VB5ATFGT-FF7LI-CkFpVtJW6WXbiAEtBbfn_3CWhagfEwho7kXVn330X298HcCVNHrjLi0hLKSPhCxc5kavIx0bzEHPuC7rg3Ourp7F4nsjJitQXnQmr6IErw7USjKYelwJCgVjkxmmRS0coI1HG4_Sh6Is5b6WYKmOwSbgWpjrpzrGubyH-e8N4nRCB5loOKqn6fwvIZZbp7sNeDQ9ZpxrWAWyE6SHs9pbcqvMjKAi1fc0CG5YSNmhX5qY565WnIgOrCVNfWadmCw9zhsCU3QfaLqCGIc5tEs16d2xUqfSwwYz2ayjyMRJHoyvqxzDuPozunqJaLSHKuEkWUSoKLUKiXOzjzHAjU6dNQINhieKdy7wqnHeIXniGSV4UCivH1CifK4-QLSh-AlvTj2k4BeZJLN0EBN_4yaKNryYcc5iSvN3WLqgGXP_Yz35WpBgWiwmys121cwNuybjLPkRlXT5AB9vawfYvBzfghlxjacEtZi5z9b0BHCpRV9mOxoyaKm1kAy7WeuJCydabf5xr64U6t5wivqK66uw_BnsOOykJBJf_aC5gazH7CpeIWha-CZu6-9iE7duH_uClWU7Xb7-96Xg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOJQeqtIWEUrpHop6srC9j-weUJUW0lAIqkSQuC279jr0koATVPVP8Rs740doDvTG1WuvrNmZ-b59zQfwSZo8cJcXkZZSRsIXLnIiV5GPjeYh5twXdMF5eK4Gl-LHlbxagYf2Lgwdq2xzYpWo82lGa-QHnEJTEQH-cnsXkWoU7a62Ehq1W5yGP79xyjY7PDnC8d1P0_7x6NsgalQFooybZB6lotAiJMrFPs4MNzJ12gTjNFJ571zmVeG8Q5TnGYKhKBTOsFKjfK48UpugOPa7CuuCc0MRpfvfF2s6VGNTC1Ofr8f2-ABZ5w2iREJlO5eQrxIIeAoGKmzrv4ZXDSllvdqLNmElTN7Ay-GiouvsLRTEFe_LwC4q4RwcTeYmORtWZzEDa8q0jlmvqVEeZgzpMDsKtElBDRdoOpLq-uXYqNYGYj9L2iWifMtIko0uxr-Dy2ex5hasTaaTsA3Mk0S7CUj5scuii58mHJFTSd7tahdUB_Zb-9nbuhSHxSkM2dn-a-cOfCXjLt6hAtrVg2k5tk082gRB2mOGRYYZixz_V-TSEXlNlPGYlTrwmYbGUpjPS5e55rYC_ioVzLI9jTieKm1kB3aX3sTwzJab28G1TXqY2Udn3vl_80d4MRgNz-zZyfnpe9hISXy4Wv_ZhbV5eR8-ICOa-73KDRlcP7ff_wUSbRzk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHGyYnsf8R4QSkmjlpIooq3U27Jr7xYuSXFSIf4av44Zex3IAW69eu2VNTs73zf7mA_gjdSV57YKSSGlTIQLNrGiUolLdcF9yrkLdMF5OlPHF-LjpbzcgV_dXRg6VtnFxCZQV8uS1sgHnKamIgI8CPFYxHw8eX_9PSEFKdpp7eQ0Whc59T9_YPq2encyxrE-yPPJ0fmH4yQqDCQl19k6yUUohM-UTV1aaq5lbgvttS2Q1jtrS6eCdRYRn5cIjCIozLZyrVylHNIcrzj2ewd2h5gVpT3YPTyazT9vVnio4mYhdHvannOdDpCDfkXMyKiI5xYONnIB_wKFBukmD-FBpKhs1PrUI9jxi8dwf7qp77p6AoGY403t2Vkjo4Njy-yiYtPmZKZnsWjrFRvFiuV-xZAcs7GnLQtqOEPjkXDXN8vOW6UgNq9pz4iiLyOBNrom_xQubsWez6C3WC78HjBHgu3aYwKAXYYhfppxxFEl-XBYWK_6cNDZz1y3hTkMJjRkZ_O3nftwSMbdvEPltJsHy_rKxNlpMoRsh_EW-WYqKvxfUUlLVDZT2mGM6sNbGhpDk35d29LGuwv4q1Q-y4wKRPVcFVr2YX_rTZys5XZzN7gmBouV-ePaz__f_Bruos-bTyez0xdwLycl4mYxaB966_rGv0R6tHavoh8y-HLbrv8bEaAidg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+and+Machine+Learning+Approaches+for+Detecting+Sarcopenia+Through+Predictive+Modeling&rft.jtitle=Mathematics+%28Basel%29&rft.au=Akhrorbek+Tukhtaev&rft.au=Dilmurod+Turimov&rft.au=Jiyoun+Kim&rft.au=Wooseong+Kim&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=1&rft.spage=98&rft_id=info:doi/10.3390%2Fmath13010098&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1678b08809504d9a84d5a4057169b196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |