Feature Selection and Machine Learning Approaches for Detecting Sarcopenia Through Predictive Modeling

Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the L...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 13; no. 1; p. 98
Main Authors Tukhtaev, Akhrorbek, Turimov, Dilmurod, Kim, Jiyoun, Kim, Wooseong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the Local Interpretable Model-Agnostic Explanations (LIME) method. This enhanced model interpretability. Additionally, the CatBoost algorithm was used for training, and SMOTE-Tomek addressed dataset imbalance. Notably, the reduced-feature model outperformed the full-feature model, achieving an accuracy of 0.89 and an AUC of 0.94. The results highlight the importance of feature selection for improving model efficiency and interpretability in clinical applications. This approach provides valuable insights into the early identification and management of sarcopenia, contributing to better patient outcomes.
AbstractList Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the Local Interpretable Model-Agnostic Explanations (LIME) method. This enhanced model interpretability. Additionally, the CatBoost algorithm was used for training, and SMOTE-Tomek addressed dataset imbalance. Notably, the reduced-feature model outperformed the full-feature model, achieving an accuracy of 0.89 and an AUC of 0.94. The results highlight the importance of feature selection for improving model efficiency and interpretability in clinical applications. This approach provides valuable insights into the early identification and management of sarcopenia, contributing to better patient outcomes.
Audience Academic
Author Turimov, Dilmurod
Kim, Jiyoun
Tukhtaev, Akhrorbek
Kim, Wooseong
Author_xml – sequence: 1
  givenname: Akhrorbek
  surname: Tukhtaev
  fullname: Tukhtaev, Akhrorbek
– sequence: 2
  givenname: Dilmurod
  orcidid: 0000-0001-7070-0393
  surname: Turimov
  fullname: Turimov, Dilmurod
– sequence: 3
  givenname: Jiyoun
  surname: Kim
  fullname: Kim, Jiyoun
– sequence: 4
  givenname: Wooseong
  orcidid: 0000-0003-0955-3421
  surname: Kim
  fullname: Kim, Wooseong
BookMark eNptUU1rGzEQFSWFpmlu-QGCXutUHyut5mjS5gMcWkhyFrPaWVvGllztutB_H7kOIYVKBw3vvXma4X1kJyknYuxCikutQXzd4rSSWkghwL1jp0qpdtZW4uRN_YGdj-Na1ANSuwZO2XBNOO0L8QfaUJhiThxTz-8xrGIiviAsKaYln-92JVeQRj7kwr_RdFBX4gFLyDtKEfnjquT9csV_FupjZX8Tv889barsE3s_4Gak85f3jD1df3-8up0tftzcXc0Xs6BBTjPVDK4haVF0IoAGo9ABATorbIcYOjtgh9KADkZWsW2EUmC73namNWT1Gbs7-vYZ135X4hbLH58x-r9ALkuPZYphQ17a1nXCOQFGNH39o-kNNsK00kIn4eD1-ehVN_-1p3Hy67wvqY7vtTTaWWXqIK-qJVbTmIY8FQzbOAY_dwpAWQemqi7_o6q3p20MNcghVvyfhi_HhlDyOBYaXpeRwh_y9m_z1s_pUpyz
Cites_doi 10.1145/3583133.3596943
10.3390/s22093246
10.1109/TPAMI.2005.159
10.1038/oby.2009.109
10.3389/fonc.2022.930432
10.1109/BIBE60311.2023.00053
10.3390/healthcare11091334
10.1007/s13534-023-00291-x
10.3390/make3030027
10.1016/j.ypmed.2016.08.040
10.1016/j.techfore.2021.120658
10.1016/j.diii.2020.04.011
10.3390/healthcare11212881
10.1109/ICOACS.2016.7563084
10.1007/978-3-031-42536-3_33
10.3390/cells11010160
10.3390/metabo13040565
10.1016/j.egyr.2021.07.008
10.3390/biomimetics9030179
10.1109/SUMMA60232.2023.10349492
10.1016/j.ymeth.2016.08.014
10.1016/j.eswa.2013.08.043
10.20944/preprints202308.0516.v1
10.1109/CBMS49503.2020.00009
10.2147/CIA.S323761
10.3390/math12142209
10.3390/healthcare11192699
10.3390/math11194055
10.1016/j.jelekin.2020.102440
10.1007/s42979-024-03227-z
10.1145/2939672.2939778
10.3390/asi4010018
10.3390/app11146574
10.1016/S0140-6736(19)31138-9
10.3390/app13158782
10.3390/diagnostics13162681
10.3233/JIFS-221652
10.1145/3593013.3594058
10.1371/journal.pone.0309830
10.1080/01605682.2020.1865846
10.1109/TBME.2019.2904398
10.1023/A:1012487302797
10.3389/fendo.2020.00123
10.3390/healthcare11182483
10.3390/technologies9030052
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math13010098
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_1678b08809504d9a84d5a4057169b196
A829926895
10_3390_math13010098
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c391t-24f84e16a0b0c93952a89e9a8606baacb6faba1593c5124f6402296bd6b575e63
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:20:19 EDT 2025
Fri Jul 25 11:54:26 EDT 2025
Tue Jun 17 21:58:06 EDT 2025
Tue Jun 10 20:58:14 EDT 2025
Tue Jul 01 01:04:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-24f84e16a0b0c93952a89e9a8606baacb6faba1593c5124f6402296bd6b575e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0955-3421
0000-0001-7070-0393
OpenAccessLink https://doaj.org/article/1678b08809504d9a84d5a4057169b196
PQID 3153862559
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_1678b08809504d9a84d5a4057169b196
proquest_journals_3153862559
gale_infotracmisc_A829926895
gale_infotracacademiconefile_A829926895
crossref_primary_10_3390_math13010098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Peng (ref_40) 2005; 27
Yang (ref_28) 2022; 44
ref_14
ref_12
ref_11
ref_55
ref_10
ref_54
You (ref_39) 2014; 41
ref_53
Guyon (ref_42) 2002; 46
ref_52
ref_51
ref_19
ref_18
ref_15
Merletti (ref_45) 2020; 54
Ahmed (ref_21) 2024; 5
ref_25
ref_24
ref_22
Bouchard (ref_48) 2009; 17
ref_20
Shawi (ref_33) 2020; 37
Ko (ref_16) 2021; 16
Shin (ref_5) 2023; 13
ref_27
Gharib (ref_26) 2021; 166
Visani (ref_34) 2022; 73
Schiratti (ref_17) 2020; 101
ref_36
Aggio (ref_47) 2016; 91
ref_35
ref_32
ref_31
ref_30
Abdullahi (ref_23) 2023; 2
Zhang (ref_13) 2023; 136
ref_38
Hussain (ref_29) 2021; 7
ref_37
ref_46
ref_43
Cerone (ref_44) 2019; 66
Zafar (ref_6) 2021; 3
ref_3
ref_2
ref_49
Wang (ref_41) 2016; 111
ref_9
ref_8
ref_4
ref_7
Sayer (ref_1) 2019; 393
References_xml – ident: ref_15
  doi: 10.1145/3583133.3596943
– ident: ref_22
  doi: 10.3390/s22093246
– ident: ref_49
– ident: ref_32
– volume: 27
  start-page: 1226
  year: 2005
  ident: ref_40
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 17
  start-page: 2082
  year: 2009
  ident: ref_48
  article-title: Sarcopenic/Obesity and Physical Capacity in Older Men and Women: Data From the Nutrition as a Determinant of Successful Aging (NuAge)—the Quebec Longitudinal Study
  publication-title: Obesity
  doi: 10.1038/oby.2009.109
– ident: ref_20
  doi: 10.3389/fonc.2022.930432
– ident: ref_46
  doi: 10.1109/BIBE60311.2023.00053
– ident: ref_18
  doi: 10.3390/healthcare11091334
– volume: 13
  start-page: 689
  year: 2023
  ident: ref_5
  article-title: Feasibility of local interpretable model-agnostic explanations (LIME) algorithm as an effective and interpretable feature selection method: Comparative fNIRS study
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-023-00291-x
– volume: 136
  start-page: 967
  year: 2023
  ident: ref_13
  article-title: Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia
  publication-title: Chin. Med. J.
– volume: 3
  start-page: 525
  year: 2021
  ident: ref_6
  article-title: Deterministic local interpretable model-agnostic explanations for stable explainability
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make3030027
– volume: 91
  start-page: 264
  year: 2016
  ident: ref_47
  article-title: Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men
  publication-title: Prev. Med.
  doi: 10.1016/j.ypmed.2016.08.040
– volume: 166
  start-page: 120658
  year: 2021
  ident: ref_26
  article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2021.120658
– ident: ref_31
– volume: 101
  start-page: 789
  year: 2020
  ident: ref_17
  article-title: Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment
  publication-title: Diagn. Interv. Imaging
  doi: 10.1016/j.diii.2020.04.011
– ident: ref_19
  doi: 10.3390/healthcare11212881
– ident: ref_27
– ident: ref_10
  doi: 10.1109/ICOACS.2016.7563084
– ident: ref_35
  doi: 10.1007/978-3-031-42536-3_33
– ident: ref_2
  doi: 10.3390/cells11010160
– ident: ref_55
  doi: 10.3390/metabo13040565
– volume: 7
  start-page: 4425
  year: 2021
  ident: ref_29
  article-title: A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.07.008
– ident: ref_53
  doi: 10.3390/biomimetics9030179
– ident: ref_30
  doi: 10.1109/SUMMA60232.2023.10349492
– volume: 111
  start-page: 21
  year: 2016
  ident: ref_41
  article-title: Feature selection methods for big data bioinformatics: A survey from the search perspective
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.08.014
– ident: ref_11
– volume: 41
  start-page: 1463
  year: 2014
  ident: ref_39
  article-title: Feature selection for high-dimensional multi-category data using PLS-based local recursive feature elimination
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.043
– ident: ref_3
  doi: 10.20944/preprints202308.0516.v1
– ident: ref_7
  doi: 10.1109/CBMS49503.2020.00009
– volume: 16
  start-page: 1723
  year: 2021
  ident: ref_16
  article-title: Predicting Sarcopenia of Female Elderly from Physical Activity Performance Measurement Using Machine Learning Classifiers
  publication-title: Clin. Interv. Aging
  doi: 10.2147/CIA.S323761
– ident: ref_9
  doi: 10.3390/math12142209
– volume: 37
  start-page: 1633
  year: 2020
  ident: ref_33
  article-title: Interpretability in healthcare: A comparative study of local machine learning interpretability techniques
  publication-title: Comput. Intell.
– ident: ref_14
  doi: 10.3390/healthcare11192699
– ident: ref_12
  doi: 10.3390/math11194055
– volume: 54
  start-page: 102440
  year: 2020
  ident: ref_45
  article-title: Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2020.102440
– volume: 5
  start-page: 865
  year: 2024
  ident: ref_21
  article-title: A Novel Hybrid Resampling Approach to Address Class-Imbalanced Issues
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-024-03227-z
– volume: 2
  start-page: 88
  year: 2023
  ident: ref_23
  article-title: Comparative analysis of resampling algorithms in the prediction of stroke diseases
  publication-title: UMYU Sci.
– ident: ref_50
– ident: ref_38
  doi: 10.1145/2939672.2939778
– ident: ref_24
  doi: 10.3390/asi4010018
– ident: ref_52
  doi: 10.3390/app11146574
– volume: 393
  start-page: 2636
  year: 2019
  ident: ref_1
  article-title: Sarcopenia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31138-9
– ident: ref_51
  doi: 10.3390/app13158782
– ident: ref_37
  doi: 10.3390/diagnostics13162681
– volume: 44
  start-page: 2269
  year: 2022
  ident: ref_28
  article-title: A novel SSA-CatBoost machine learning model for credit rating
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-221652
– ident: ref_25
  doi: 10.1145/3593013.3594058
– ident: ref_36
– ident: ref_8
  doi: 10.1371/journal.pone.0309830
– volume: 73
  start-page: 91
  year: 2022
  ident: ref_34
  article-title: Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2020.1865846
– volume: 66
  start-page: 3371
  year: 2019
  ident: ref_44
  article-title: A Modular, Smart, and Wearable System for High Density sEMG Detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2904398
– volume: 46
  start-page: 389
  year: 2002
  ident: ref_42
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: ref_54
  doi: 10.3389/fendo.2020.00123
– ident: ref_4
  doi: 10.3390/healthcare11182483
– ident: ref_43
  doi: 10.3390/technologies9030052
SSID ssj0000913849
Score 2.2989452
Snippet Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 98
SubjectTerms Accuracy
Aging
Algorithms
Artificial intelligence
CatBoost
Clinical outcomes
Credit scoring
Datasets
Deep learning
Diagnosis
Exercise
Feature selection
LIME
Literature reviews
Machine learning
Medical imaging
Musculoskeletal system
Older people
Optimization techniques
Prediction models
random forest
Sarcopenia
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgniK85AHEFDWJH7Un1EIRQiqqaJHYLDtxCktb0vL_uUvdQgdY4ySyzr677_z4PkKuhC48s0UZKyFEzF1pY8sLGbtEK-YTxlyJF5x7z_LxlT-9ibew4DYLxyqXMbEO1MUkxzXyJkPXlAiAb6efMapG4e5qkNDYJFsQghUUX1ud7nP_ZbXKgqyXiuvFiXcG9X0TcOA7xO0UiTTXclFN2f9XYK6zzcMe2Q0wkbYX47pPNvz4gOz0Vhyrs0NSInr7qjwd1FI2YF9qxwXt1acjPQ3EqSPaDqzhfkYBoNJ7j9sG2DCAOY7iWR-WDhdqPbRf4b4NRkCKIml4Vf2IvD50h3ePcVBNiHOm03mc8VJxn0qbuCTXTIvMKu21VVCqOGtzJ0vrLKAYlkOy56WECjLT0hXSAXTzkh2Txngy9ieEOhRN1x5AOPyybMGnKYNcJgVrtZT1MiLXS_uZ6YIcw0BRgXY2v-0ckQ4ad_UOUlrXDybVyAQPMSmkTQcxDzBfwgvoLy-ERTiZSu0gTkTkBofGoOPNK5vbcH8AuooUVqatILNmUmkRkfO1N8Fh8vXm5eCa4LAz8zO9Tv9vPiPbGUoA16sw56Qxr778BeCSubsMk-8b3lPh8w
  priority: 102
  providerName: ProQuest
Title Feature Selection and Machine Learning Approaches for Detecting Sarcopenia Through Predictive Modeling
URI https://www.proquest.com/docview/3153862559
https://doaj.org/article/1678b08809504d9a84d5a4057169b196
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xWGBAPEV5VB5ATFGT-FF7LI-CkFpVtJW6WXbiAEtBbfn_3CWhagfEwho7kXVn330X298HcCVNHrjLi0hLKSPhCxc5kavIx0bzEHPuC7rg3Ourp7F4nsjJitQXnQmr6IErw7USjKYelwJCgVjkxmmRS0coI1HG4_Sh6Is5b6WYKmOwSbgWpjrpzrGubyH-e8N4nRCB5loOKqn6fwvIZZbp7sNeDQ9ZpxrWAWyE6SHs9pbcqvMjKAi1fc0CG5YSNmhX5qY565WnIgOrCVNfWadmCw9zhsCU3QfaLqCGIc5tEs16d2xUqfSwwYz2ayjyMRJHoyvqxzDuPozunqJaLSHKuEkWUSoKLUKiXOzjzHAjU6dNQINhieKdy7wqnHeIXniGSV4UCivH1CifK4-QLSh-AlvTj2k4BeZJLN0EBN_4yaKNryYcc5iSvN3WLqgGXP_Yz35WpBgWiwmys121cwNuybjLPkRlXT5AB9vawfYvBzfghlxjacEtZi5z9b0BHCpRV9mOxoyaKm1kAy7WeuJCydabf5xr64U6t5wivqK66uw_BnsOOykJBJf_aC5gazH7CpeIWha-CZu6-9iE7duH_uClWU7Xb7-96Xg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOJQeqtIWEUrpHop6srC9j-weUJUW0lAIqkSQuC279jr0koATVPVP8Rs740doDvTG1WuvrNmZ-b59zQfwSZo8cJcXkZZSRsIXLnIiV5GPjeYh5twXdMF5eK4Gl-LHlbxagYf2Lgwdq2xzYpWo82lGa-QHnEJTEQH-cnsXkWoU7a62Ehq1W5yGP79xyjY7PDnC8d1P0_7x6NsgalQFooybZB6lotAiJMrFPs4MNzJ12gTjNFJ571zmVeG8Q5TnGYKhKBTOsFKjfK48UpugOPa7CuuCc0MRpfvfF2s6VGNTC1Ofr8f2-ABZ5w2iREJlO5eQrxIIeAoGKmzrv4ZXDSllvdqLNmElTN7Ay-GiouvsLRTEFe_LwC4q4RwcTeYmORtWZzEDa8q0jlmvqVEeZgzpMDsKtElBDRdoOpLq-uXYqNYGYj9L2iWifMtIko0uxr-Dy2ex5hasTaaTsA3Mk0S7CUj5scuii58mHJFTSd7tahdUB_Zb-9nbuhSHxSkM2dn-a-cOfCXjLt6hAtrVg2k5tk082gRB2mOGRYYZixz_V-TSEXlNlPGYlTrwmYbGUpjPS5e55rYC_ioVzLI9jTieKm1kB3aX3sTwzJab28G1TXqY2Udn3vl_80d4MRgNz-zZyfnpe9hISXy4Wv_ZhbV5eR8-ICOa-73KDRlcP7ff_wUSbRzk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHGyYnsf8R4QSkmjlpIooq3U27Jr7xYuSXFSIf4av44Zex3IAW69eu2VNTs73zf7mA_gjdSV57YKSSGlTIQLNrGiUolLdcF9yrkLdMF5OlPHF-LjpbzcgV_dXRg6VtnFxCZQV8uS1sgHnKamIgI8CPFYxHw8eX_9PSEFKdpp7eQ0Whc59T9_YPq2encyxrE-yPPJ0fmH4yQqDCQl19k6yUUohM-UTV1aaq5lbgvttS2Q1jtrS6eCdRYRn5cIjCIozLZyrVylHNIcrzj2ewd2h5gVpT3YPTyazT9vVnio4mYhdHvannOdDpCDfkXMyKiI5xYONnIB_wKFBukmD-FBpKhs1PrUI9jxi8dwf7qp77p6AoGY403t2Vkjo4Njy-yiYtPmZKZnsWjrFRvFiuV-xZAcs7GnLQtqOEPjkXDXN8vOW6UgNq9pz4iiLyOBNrom_xQubsWez6C3WC78HjBHgu3aYwKAXYYhfppxxFEl-XBYWK_6cNDZz1y3hTkMJjRkZ_O3nftwSMbdvEPltJsHy_rKxNlpMoRsh_EW-WYqKvxfUUlLVDZT2mGM6sNbGhpDk35d29LGuwv4q1Q-y4wKRPVcFVr2YX_rTZys5XZzN7gmBouV-ePaz__f_Bruos-bTyez0xdwLycl4mYxaB966_rGv0R6tHavoh8y-HLbrv8bEaAidg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+and+Machine+Learning+Approaches+for+Detecting+Sarcopenia+Through+Predictive+Modeling&rft.jtitle=Mathematics+%28Basel%29&rft.au=Akhrorbek+Tukhtaev&rft.au=Dilmurod+Turimov&rft.au=Jiyoun+Kim&rft.au=Wooseong+Kim&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=1&rft.spage=98&rft_id=info:doi/10.3390%2Fmath13010098&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1678b08809504d9a84d5a4057169b196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon