High thermoelectric performance realized through manipulating layered phonon-electron decoupling

Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZT ave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 375; no. 6587; pp. 1385 - 1389
Main Authors Su, Lizhong, Wang, Dongyang, Wang, Sining, Qin, Bingchao, Wang, Yuping, Qin, Yongxin, Jin, Yang, Chang, Cheng, Zhao, Li-Dong
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 25.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZT ave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Z max of ~3.6 × 10 −3 per kelvin but a moderate ZT ave of ~1.1. We found an attractive high Z max of ~4.1 × 10 −3 per kelvin at 748 kelvin and a ZT ave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics. Thermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al . found that doping tin selenide with chlorine and lead substantially improved the thermoelectric figure of merit over a wide temperature range. This effect was mostly due to an improvement in the material’s deformation potential related to mass and strain fluctuations introduced into the n-type material. Improving the figure of merit in this way is challenging because properties are often intertwined and trying to improve one will often degrade others. —BG Doping tin selenide with lead and chlorine results in a material with high thermoelectric efficiency over a broad temperature range.
AbstractList Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZTave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Zmax of ~3.6 × 10-3 per kelvin but a moderate ZTave of ~1.1. We found an attractive high Zmax of ~4.1 × 10-3 per kelvin at 748 kelvin and a ZTave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics.Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZTave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Zmax of ~3.6 × 10-3 per kelvin but a moderate ZTave of ~1.1. We found an attractive high Zmax of ~4.1 × 10-3 per kelvin at 748 kelvin and a ZTave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics.
Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit of ~3.6 × 10 per kelvin but a moderate of ~1.1. We found an attractive high of ~4.1 × 10 per kelvin at 748 kelvin and a of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics.
Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZT ave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Z max of ~3.6 × 10 −3 per kelvin but a moderate ZT ave of ~1.1. We found an attractive high Z max of ~4.1 × 10 −3 per kelvin at 748 kelvin and a ZT ave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics. Thermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al . found that doping tin selenide with chlorine and lead substantially improved the thermoelectric figure of merit over a wide temperature range. This effect was mostly due to an improvement in the material’s deformation potential related to mass and strain fluctuations introduced into the n-type material. Improving the figure of merit in this way is challenging because properties are often intertwined and trying to improve one will often degrade others. —BG Doping tin selenide with lead and chlorine results in a material with high thermoelectric efficiency over a broad temperature range.
A material with high potentialThermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al. found that doping tin selenide with chlorine and lead substantially improved the thermoelectric figure of merit over a wide temperature range. This effect was mostly due to an improvement in the material’s deformation potential related to mass and strain fluctuations introduced into the n-type material. Improving the figure of merit in this way is challenging because properties are often intertwined and trying to improve one will often degrade others. —BG
Author Zhao, Li-Dong
Qin, Bingchao
Wang, Sining
Jin, Yang
Wang, Yuping
Qin, Yongxin
Chang, Cheng
Su, Lizhong
Wang, Dongyang
Author_xml – sequence: 1
  givenname: Lizhong
  orcidid: 0000-0002-3313-0886
  surname: Su
  fullname: Su, Lizhong
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Dongyang
  orcidid: 0000-0001-8149-7394
  surname: Wang
  fullname: Wang, Dongyang
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Sining
  orcidid: 0000-0001-7630-4041
  surname: Wang
  fullname: Wang, Sining
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Bingchao
  orcidid: 0000-0003-2720-5922
  surname: Qin
  fullname: Qin, Bingchao
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 5
  givenname: Yuping
  orcidid: 0000-0001-8080-7338
  surname: Wang
  fullname: Wang, Yuping
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 6
  givenname: Yongxin
  orcidid: 0000-0002-1699-1369
  surname: Qin
  fullname: Qin, Yongxin
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 7
  givenname: Yang
  orcidid: 0000-0002-8084-761X
  surname: Jin
  fullname: Jin, Yang
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 8
  givenname: Cheng
  orcidid: 0000-0002-9515-4277
  surname: Chang
  fullname: Chang, Cheng
  organization: Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
– sequence: 9
  givenname: Li-Dong
  orcidid: 0000-0003-1247-4345
  surname: Zhao
  fullname: Zhao, Li-Dong
  organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35324303$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rGzEQxUVIaRy359zKQi-5bDyS9kvHEpK6YOilPataadaW0UpbafeQ_PVVsH0J9DQw83uP4b1bcu2DR0LuKDxQyppN0ha9xgfV-06I9oqsKIi6FAz4NVkB8KbsoK1vyG1KR4B8E_wjueE1ZxUHviJ_tnZ_KOYDxjGgQz1Hq4sJ4xDiqLJzEVE5-4omMzEsmc1rOy1OzdbvC6deMObjdAj5s_LkEHxhUIdlchn5RD4MyiX8fJ5r8vv56dfjttz9_P7j8duu1FzQuWQVdLUaht50HEAb5GZQYBrBjNKs0kBRICoYqGnavucCtYCWgRJta0xb8zW5P_lOMfxdMM1ytEmjc8pjWJJkTVUBpVXLMvr1HXoMS_T5uzeKd8AAaKa-nKmlH9HIKdpRxRd5yS4D9QnQMaQUcZDazjmW4OeorJMU5FtH8tyRPHeUdZt3uov1_xT_AJMKmVs
CitedBy_id crossref_primary_10_1002_idm2_12134
crossref_primary_10_1016_j_jmat_2024_04_006
crossref_primary_10_1063_5_0159352
crossref_primary_10_1002_adfm_202406428
crossref_primary_10_1016_j_mtphys_2023_101018
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1021_acsaem_4c03344
crossref_primary_10_1016_j_mtphys_2023_100967
crossref_primary_10_1002_adfm_202419984
crossref_primary_10_1002_aenm_202202539
crossref_primary_10_1016_j_cej_2023_143529
crossref_primary_10_1088_0256_307X_41_9_097301
crossref_primary_10_1021_acs_chemmater_3c00393
crossref_primary_10_1007_s40843_024_3110_7
crossref_primary_10_1039_D3TA07023A
crossref_primary_10_1016_j_scib_2023_12_016
crossref_primary_10_1360_TB_2023_0553
crossref_primary_10_1016_j_optmat_2025_116800
crossref_primary_10_1016_j_ceramint_2023_04_015
crossref_primary_10_1039_D2NR04248G
crossref_primary_10_1039_D3EE01047C
crossref_primary_10_1016_j_apsusc_2022_155611
crossref_primary_10_1039_D4CP01491J
crossref_primary_10_1039_D4CS00361F
crossref_primary_10_1039_D3TA02283H
crossref_primary_10_1103_PhysRevB_109_235202
crossref_primary_10_1002_aenm_202403194
crossref_primary_10_1103_PhysRevB_107_024301
crossref_primary_10_1016_j_flatc_2023_100482
crossref_primary_10_1021_acsami_3c11449
crossref_primary_10_1002_smll_202202507
crossref_primary_10_1016_j_scriptamat_2022_114846
crossref_primary_10_1016_j_mtphys_2022_100791
crossref_primary_10_1002_adma_202208994
crossref_primary_10_1016_j_jmat_2024_100938
crossref_primary_10_1016_j_jeurceramsoc_2023_09_075
crossref_primary_10_1021_acsami_3c08294
crossref_primary_10_1016_j_apenergy_2023_121584
crossref_primary_10_1002_apxr_202200125
crossref_primary_10_1016_j_actamat_2023_119587
crossref_primary_10_1038_s41524_023_01162_w
crossref_primary_10_1021_acsami_2c17801
crossref_primary_10_1016_j_ceramint_2024_03_173
crossref_primary_10_1088_1361_6528_ac78f3
crossref_primary_10_1038_s41467_022_33684_0
crossref_primary_10_3390_nano14080722
crossref_primary_10_1103_PhysRevB_110_155202
crossref_primary_10_1021_acs_chemmater_2c02344
crossref_primary_10_1111_jace_19958
crossref_primary_10_1002_smsc_202400284
crossref_primary_10_1016_j_jmat_2023_02_010
crossref_primary_10_1007_s11664_023_10590_9
crossref_primary_10_1016_j_pmatsci_2022_101003
crossref_primary_10_1016_j_mtcomm_2023_105881
crossref_primary_10_1002_ange_202308515
crossref_primary_10_1002_adma_202307058
crossref_primary_10_1016_j_actamat_2023_119259
crossref_primary_10_1016_j_enconman_2024_118151
crossref_primary_10_1039_D3EE01902K
crossref_primary_10_1002_smll_202306701
crossref_primary_10_1039_D2TA08923H
crossref_primary_10_1002_asia_202200850
crossref_primary_10_1039_D4TA08632E
crossref_primary_10_1021_acsami_3c01404
crossref_primary_10_1140_epjp_s13360_025_05973_2
crossref_primary_10_1021_acsami_2c17263
crossref_primary_10_1021_acs_chemmater_2c03542
crossref_primary_10_1038_s41467_024_52063_5
crossref_primary_10_1007_s12598_024_02756_z
crossref_primary_10_1016_j_device_2025_100748
crossref_primary_10_1016_j_mtener_2022_101091
crossref_primary_10_3390_ma16247680
crossref_primary_10_1088_2053_1591_ad6533
crossref_primary_10_1002_advs_202411594
crossref_primary_10_1063_5_0211458
crossref_primary_10_1016_j_mtphys_2023_101283
crossref_primary_10_1021_jacs_4c05692
crossref_primary_10_1038_s41467_023_38054_y
crossref_primary_10_1080_23746149_2022_2082317
crossref_primary_10_1002_inf2_12481
crossref_primary_10_1016_j_nanoen_2024_109615
crossref_primary_10_1007_s40195_024_01798_7
crossref_primary_10_1016_j_jmst_2025_02_003
crossref_primary_10_1016_j_matchar_2023_113424
crossref_primary_10_1021_jacs_2c11908
crossref_primary_10_1002_pssa_202300717
crossref_primary_10_1021_jacs_3c01693
crossref_primary_10_1063_5_0220010
crossref_primary_10_1002_aenm_202404251
crossref_primary_10_1016_j_mseb_2023_116976
crossref_primary_10_1063_5_0184595
crossref_primary_10_1021_acsaelm_4c00170
crossref_primary_10_1002_adma_202208681
crossref_primary_10_1016_j_cej_2023_143965
crossref_primary_10_1021_acsami_4c08186
crossref_primary_10_1021_acs_chemmater_4c01092
crossref_primary_10_1016_j_physb_2024_416381
crossref_primary_10_1039_D3EE00128H
crossref_primary_10_1002_adfm_202303981
crossref_primary_10_54227_mlab_20230010
crossref_primary_10_1016_j_jmst_2022_12_075
crossref_primary_10_1088_1361_648X_acdbac
crossref_primary_10_1016_j_jmst_2024_11_039
crossref_primary_10_1063_5_0141075
crossref_primary_10_1007_s00339_024_07354_5
crossref_primary_10_1007_s10854_022_09352_w
crossref_primary_10_1002_adom_202201704
crossref_primary_10_1016_j_scriptamat_2022_115173
crossref_primary_10_1016_j_cej_2023_143397
crossref_primary_10_1016_j_jcis_2023_05_134
crossref_primary_10_1126_science_ado1133
crossref_primary_10_1002_bkcs_12821
crossref_primary_10_54227_mlab_20230013
crossref_primary_10_15541_jim20240057
crossref_primary_10_1016_j_jeurceramsoc_2023_04_022
crossref_primary_10_1021_acsaelm_3c01615
crossref_primary_10_54227_mlab_20230017
crossref_primary_10_1016_j_mtener_2022_101071
crossref_primary_10_1016_j_mtener_2023_101332
crossref_primary_10_1038_s41467_024_50946_1
crossref_primary_10_1002_adfm_202415323
crossref_primary_10_1021_acs_chemmater_4c03025
crossref_primary_10_1002_aenm_202304029
crossref_primary_10_1016_j_actamat_2023_119023
crossref_primary_10_1016_j_jallcom_2024_175770
crossref_primary_10_1021_acsami_4c15281
crossref_primary_10_1039_D2MA01102F
crossref_primary_10_54227_mlab_20220025
crossref_primary_10_1039_D2CP03300C
crossref_primary_10_1360_TB_2024_0771
crossref_primary_10_1016_j_commatsci_2024_112858
crossref_primary_10_1016_j_jallcom_2023_168987
crossref_primary_10_54227_mlab_20230029
crossref_primary_10_3390_ma16124329
crossref_primary_10_1021_acsami_2c20740
crossref_primary_10_3390_en15093375
crossref_primary_10_1093_nsr_nwae461
crossref_primary_10_3390_molecules28155894
crossref_primary_10_1016_j_jmst_2024_08_009
crossref_primary_10_1063_5_0254219
crossref_primary_10_20517_ss_2023_20
crossref_primary_10_1016_j_actamat_2024_120699
crossref_primary_10_26599_NRE_2022_9120034
crossref_primary_10_1002_aenm_202400340
crossref_primary_10_1038_s41467_023_37114_7
crossref_primary_10_1002_smll_202301963
crossref_primary_10_1016_j_jmat_2023_05_011
crossref_primary_10_1142_S1793604724510391
crossref_primary_10_1016_j_jallcom_2023_172787
crossref_primary_10_1002_smll_202405182
crossref_primary_10_1016_j_actamat_2023_118754
crossref_primary_10_3390_coatings13122018
crossref_primary_10_1002_smll_202304430
crossref_primary_10_1002_adfm_202411304
crossref_primary_10_1360_TB_2024_0776
crossref_primary_10_1007_s00894_023_05805_z
crossref_primary_10_1360_TB_2024_0796
crossref_primary_10_1360_TB_2024_0793
crossref_primary_10_1016_j_mattod_2023_04_021
crossref_primary_10_1038_s41586_024_07724_2
crossref_primary_10_1126_science_adg7196
crossref_primary_10_1016_j_jallcom_2024_178050
crossref_primary_10_1016_j_energy_2023_128895
crossref_primary_10_1016_j_mtchem_2024_102183
crossref_primary_10_1016_j_physe_2022_115509
crossref_primary_10_3390_ma18051029
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125063
crossref_primary_10_35848_1347_4065_ad27a3
crossref_primary_10_1016_j_scib_2022_04_007
crossref_primary_10_1039_D3MH02181E
crossref_primary_10_1016_j_joule_2025_101854
crossref_primary_10_1038_s41467_023_37436_6
crossref_primary_10_1016_j_ceramint_2022_07_346
crossref_primary_10_1021_jacs_3c09655
crossref_primary_10_1016_j_jallcom_2024_173960
crossref_primary_10_1016_j_commatsci_2023_112041
crossref_primary_10_1021_acsnano_4c11732
crossref_primary_10_1088_0256_307X_40_3_036801
crossref_primary_10_1007_s00339_022_06261_x
crossref_primary_10_1063_5_0220462
crossref_primary_10_1021_acs_chemmater_4c02258
crossref_primary_10_1021_jacs_3c04871
crossref_primary_10_1002_smll_202401723
crossref_primary_10_1016_j_jmst_2023_08_049
crossref_primary_10_1063_5_0249667
crossref_primary_10_1103_PhysRevApplied_20_014052
crossref_primary_10_1038_s41467_025_57125_w
crossref_primary_10_1021_jacs_4c16394
crossref_primary_10_1021_jacs_4c03532
crossref_primary_10_1002_smtd_202400953
crossref_primary_10_1002_adfm_202301750
crossref_primary_10_1002_qua_27290
crossref_primary_10_3390_nano13243165
crossref_primary_10_1016_j_cej_2023_148002
crossref_primary_10_1007_s12598_024_02663_3
crossref_primary_10_1002_adfm_202214771
crossref_primary_10_1016_j_cej_2024_150158
crossref_primary_10_1021_acsaelm_4c02095
crossref_primary_10_1039_D2RA04255J
crossref_primary_10_1016_j_mtphys_2024_101594
crossref_primary_10_1016_j_cej_2022_138637
crossref_primary_10_1016_j_jeurceramsoc_2023_04_052
crossref_primary_10_3389_fchem_2022_865281
crossref_primary_10_1021_acs_accounts_3c00490
crossref_primary_10_1002_adfm_202310335
crossref_primary_10_1016_j_ceramint_2025_02_026
crossref_primary_10_1021_acsenergylett_4c00047
crossref_primary_10_1039_D4TA02336F
crossref_primary_10_1016_j_cej_2022_140832
crossref_primary_10_1016_j_actamat_2023_119412
crossref_primary_10_54227_mlab_20220056
crossref_primary_10_1021_acsaem_3c01260
crossref_primary_10_1002_smtd_202301619
crossref_primary_10_1039_D2QI01232D
crossref_primary_10_1039_D3TA01778H
crossref_primary_10_1016_j_rinp_2023_106241
crossref_primary_10_1126_science_adp2444
crossref_primary_10_1021_acsomega_3c07284
crossref_primary_10_1021_acsaelm_4c01453
crossref_primary_10_1016_j_jallcom_2024_174028
crossref_primary_10_1002_adfm_202211281
crossref_primary_10_1039_D3CP00087G
crossref_primary_10_1007_s40242_023_3120_3
crossref_primary_10_54227_mlab_20220048
crossref_primary_10_1021_acsenergylett_2c02425
crossref_primary_10_1021_jacs_3c02146
crossref_primary_10_7498_aps_72_20230354
crossref_primary_10_1002_anie_202308515
crossref_primary_10_1021_acsami_4c18023
crossref_primary_10_1021_accountsmr_4c00243
crossref_primary_10_1039_D3TA06373A
crossref_primary_10_1039_D4EE03090G
crossref_primary_10_1016_j_mtphys_2025_101697
crossref_primary_10_1002_adma_202110236
crossref_primary_10_3390_nano12162854
crossref_primary_10_1016_j_mssp_2024_108190
crossref_primary_10_1007_s40843_022_2068_0
crossref_primary_10_1002_adfm_202414881
crossref_primary_10_1002_adma_202401828
crossref_primary_10_1016_j_mtphys_2023_101292
crossref_primary_10_1002_smll_202401070
crossref_primary_10_1016_j_cej_2024_153535
crossref_primary_10_1016_j_nanoen_2024_109845
crossref_primary_10_26599_NR_2025_94907308
crossref_primary_10_1002_aenm_202300312
crossref_primary_10_1039_D3NR05284B
crossref_primary_10_3390_mi14010031
crossref_primary_10_3390_molecules27217590
crossref_primary_10_1002_adma_202208272
crossref_primary_10_1002_aenm_202202987
crossref_primary_10_1007_s12598_023_02339_4
crossref_primary_10_1063_5_0159202
crossref_primary_10_1103_PhysRevB_110_134312
crossref_primary_10_1002_adma_202412967
crossref_primary_10_1021_acs_chemrev_4c00786
crossref_primary_10_1016_j_mtphys_2023_101180
crossref_primary_10_1016_j_jmrt_2023_12_161
crossref_primary_10_3390_ma16041413
crossref_primary_10_1039_D3TA07026C
crossref_primary_10_1016_j_nxmate_2023_100048
crossref_primary_10_1116_6_0004322
crossref_primary_10_1039_D2TA09475D
crossref_primary_10_1016_j_jmat_2025_101047
crossref_primary_10_1016_j_xinn_2023_100522
crossref_primary_10_1039_D2QI01437H
crossref_primary_10_1142_S0217984922501573
crossref_primary_10_1016_j_scib_2024_04_034
crossref_primary_10_1038_s41467_022_33917_2
crossref_primary_10_1021_jacsau_4c00375
crossref_primary_10_1002_ange_202501667
crossref_primary_10_1002_adfm_202309553
crossref_primary_10_1007_s40820_023_01077_7
crossref_primary_10_1002_admi_202400566
crossref_primary_10_1016_j_actamat_2023_118926
crossref_primary_10_1016_j_mtphys_2023_101071
crossref_primary_10_1016_j_mtphys_2024_101393
crossref_primary_10_1002_aenm_202400623
crossref_primary_10_1002_smll_202407529
crossref_primary_10_1016_j_jeurceramsoc_2025_117192
crossref_primary_10_1039_D4SC06615D
crossref_primary_10_1038_s41467_024_47578_w
crossref_primary_10_1016_j_rinp_2023_107309
crossref_primary_10_1038_s41467_024_51120_3
crossref_primary_10_1016_j_mset_2024_06_002
crossref_primary_10_1039_D3CP02330C
crossref_primary_10_1002_anie_202501667
crossref_primary_10_1016_j_jssc_2024_124617
crossref_primary_10_1039_D2EE02752F
crossref_primary_10_1039_D2TC05376D
crossref_primary_10_1016_j_nocx_2022_100111
crossref_primary_10_1093_nsr_nwad095
crossref_primary_10_1021_jacs_2c13179
crossref_primary_10_1021_acs_nanolett_3c04149
crossref_primary_10_1016_j_vacuum_2022_111239
crossref_primary_10_1002_apxr_202400179
crossref_primary_10_1002_adfm_202315652
crossref_primary_10_1063_5_0187427
crossref_primary_10_1007_s40195_024_01810_0
crossref_primary_10_1021_acsami_4c06836
Cites_doi 10.1107/S0567739476001551
10.1002/inf2.12217
10.1021/jacs.8b12450
10.1115/1.4034605
10.1038/ncomms13713
10.1103/PhysRevB.54.11169
10.1063/1.363052
10.1002/aenm.201300174
10.1073/pnas.1111419109
10.1038/s41467-018-03866-w
10.1126/science.aax7792
10.1038/s41563-021-01109-w
10.1002/adfm.200901905
10.1038/s41535-018-0083-6
10.1038/s41563-021-01064-6
10.1103/PhysRevB.50.17953
10.1126/science.abi8668
10.1134/S0020168508040043
10.1126/science.aax5123
10.1103/PhysRevLett.77.3865
10.1016/j.jmat.2018.07.001
10.1038/nature09996
10.1103/PhysRevLett.117.276601
10.1038/nmat4643
10.13538/j.1001-8042/nst.26.020101
10.1103/PhysRev.101.944
10.1103/PhysRevB.59.1758
10.1126/science.abe1292
10.1002/idm2.12009
10.1038/nature23667
10.1126/science.abb3517
10.1103/PhysRev.80.72
10.1016/j.mtphys.2017.06.001
10.1002/adma.201806518
10.1038/s41467-021-22541-1
10.1002/adfm.201300663
10.1021/jacs.0c00306
10.11900/0412.1961.2021.00130
10.1038/npjcompumats.2015.15
10.1126/science.aaq1479
10.1002/aenm.201901334
10.1038/nature11439
10.1038/nature13184
10.1039/D1MA00780G
10.1002/adma.201902980
10.1002/adma.202001537
10.1021/acs.chemrev.6b00255
10.1126/science.aaz9426
10.1039/C9EE03897C
10.1126/science.1159725
10.1021/acs.chemmater.8b03732
10.1103/PhysRevB.91.205201
10.1126/science.aad3749
10.1016/j.pmatsci.2018.04.005
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abn8997
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1389
ExternalDocumentID 35324303
10_1126_science_abn8997
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
AEUPB
ESX
GX1
IGG
NPM
OK1
PKN
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-24085affbd8300cde3dfa0d692dac24c01e9eea0f1d67bb39ec90720a977dd753
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 16:52:11 EDT 2025
Fri Jul 25 19:01:24 EDT 2025
Wed Feb 19 02:27:24 EST 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 02:24:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6587
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-24085affbd8300cde3dfa0d692dac24c01e9eea0f1d67bb39ec90720a977dd753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1699-1369
0000-0002-8084-761X
0000-0002-3313-0886
0000-0003-2720-5922
0000-0003-1247-4345
0000-0001-8149-7394
0000-0002-9515-4277
0000-0001-7630-4041
0000-0001-8080-7338
PMID 35324303
PQID 2643802001
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2644011472
proquest_journals_2643802001
pubmed_primary_35324303
crossref_citationtrail_10_1126_science_abn8997
crossref_primary_10_1126_science_abn8997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-25
20220325
PublicationDateYYYYMMDD 2022-03-25
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
Chen H. (e_1_3_2_43_2) 2019; 31
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_37_2
  doi: 10.1107/S0567739476001551
– ident: e_1_3_2_5_2
  doi: 10.1002/inf2.12217
– ident: e_1_3_2_40_2
  doi: 10.1021/jacs.8b12450
– ident: e_1_3_2_46_2
  doi: 10.1115/1.4034605
– ident: e_1_3_2_48_2
  doi: 10.1038/ncomms13713
– ident: e_1_3_2_53_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_31_2
  doi: 10.1063/1.363052
– ident: e_1_3_2_33_2
  doi: 10.1002/aenm.201300174
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.1111419109
– ident: e_1_3_2_39_2
  doi: 10.1038/s41467-018-03866-w
– ident: e_1_3_2_18_2
  doi: 10.1126/science.aax7792
– ident: e_1_3_2_47_2
  doi: 10.1038/s41563-021-01109-w
– ident: e_1_3_2_50_2
  doi: 10.1002/adfm.200901905
– ident: e_1_3_2_9_2
  doi: 10.1038/s41535-018-0083-6
– ident: e_1_3_2_45_2
  doi: 10.1038/s41563-021-01064-6
– ident: e_1_3_2_51_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_2_23_2
  doi: 10.1126/science.abi8668
– ident: e_1_3_2_56_2
  doi: 10.1134/S0020168508040043
– ident: e_1_3_2_15_2
  doi: 10.1126/science.aax5123
– ident: e_1_3_2_54_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_2_2
  doi: 10.1016/j.jmat.2018.07.001
– ident: e_1_3_2_11_2
  doi: 10.1038/nature09996
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevLett.117.276601
– ident: e_1_3_2_7_2
  doi: 10.1038/nmat4643
– ident: e_1_3_2_49_2
  doi: 10.13538/j.1001-8042/nst.26.020101
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRev.101.944
– ident: e_1_3_2_52_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_3_2_13_2
  doi: 10.1126/science.abe1292
– ident: e_1_3_2_12_2
  doi: 10.1002/idm2.12009
– ident: e_1_3_2_4_2
  doi: 10.1038/nature23667
– ident: e_1_3_2_17_2
  doi: 10.1126/science.abb3517
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRev.80.72
– ident: e_1_3_2_6_2
  doi: 10.1016/j.mtphys.2017.06.001
– volume: 31
  year: 2019
  ident: e_1_3_2_43_2
  article-title: Thermal conductivity during phase transitions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806518
– ident: e_1_3_2_38_2
  doi: 10.1038/s41467-021-22541-1
– ident: e_1_3_2_32_2
  doi: 10.1002/adfm.201300663
– ident: e_1_3_2_55_2
  doi: 10.1021/jacs.0c00306
– ident: e_1_3_2_26_2
  doi: 10.11900/0412.1961.2021.00130
– ident: e_1_3_2_8_2
  doi: 10.1038/npjcompumats.2015.15
– ident: e_1_3_2_24_2
  doi: 10.1126/science.aaq1479
– ident: e_1_3_2_34_2
  doi: 10.1002/aenm.201901334
– ident: e_1_3_2_14_2
  doi: 10.1038/nature11439
– ident: e_1_3_2_16_2
  doi: 10.1038/nature13184
– ident: e_1_3_2_36_2
  doi: 10.1039/D1MA00780G
– ident: e_1_3_2_44_2
  doi: 10.1002/adma.201902980
– ident: e_1_3_2_27_2
  doi: 10.1002/adma.202001537
– ident: e_1_3_2_3_2
  doi: 10.1021/acs.chemrev.6b00255
– ident: e_1_3_2_19_2
  doi: 10.1126/science.aaz9426
– ident: e_1_3_2_25_2
  doi: 10.1039/C9EE03897C
– ident: e_1_3_2_10_2
  doi: 10.1126/science.1159725
– ident: e_1_3_2_20_2
  doi: 10.1021/acs.chemmater.8b03732
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevB.91.205201
– ident: e_1_3_2_22_2
  doi: 10.1126/science.aad3749
– ident: e_1_3_2_21_2
  doi: 10.1016/j.pmatsci.2018.04.005
SSID ssj0009593
Score 2.7144227
Snippet Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless...
A material with high potentialThermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1385
SubjectTerms Chlorine
Decoupling
Deformation effects
Figure of merit
Selenide
Thermoelectricity
Tin selenide
Title High thermoelectric performance realized through manipulating layered phonon-electron decoupling
URI https://www.ncbi.nlm.nih.gov/pubmed/35324303
https://www.proquest.com/docview/2643802001
https://www.proquest.com/docview/2644011472
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVZy0Zfytp9peuGBnvoCA6KJdvRY7qulMH20hb65ukzLaRJaeOH5EfsN-_Kkh1lXWDbiwmSbEHO8eXe66t7EPoocmYLWrDEZLZImCp4IixXSc60zDnl0taqJd--52eX7OtVdtXp_Iyqlqq57KvlH8-V_A-qMAa4ulOy_4Bs-1AYgN-AL1wBYbj-FcauSMN5jve3My9nc6NcH-L2JAA4hJObpdGtGo9rduEFu6bj3kQsnFBnz1Wnz6ZJI4jT0xCRVu6g7jj2XBsjAB5p-5UnwrYtVxz5ooKmxiDcFiUcziufC1jCtuNVPt_bnBMYW4jH4-e1jkWbpQ0i8zCkrsUszlxA0Eto4k859423tsQJRaaExuaYeiWVwDtwkIrIvg6oF_h5bPgjqUrTF3IKcWQRrwTk7m5rHtAMnEgaNl3vtd1MPUHbKYQdYDe3R8cnx6drbZxDg6jo6FWz3w561jxh3c3ZELvUPszFc7Qbgg888kzaQx0z3UdPvRzpYh_tBbAe8FHoRv7pBfrhSIbXSYYjkuGGZDiQDMckw4Fk-DeS4RXJXqLL0y8Xn8-SIMuRKMoH86RuiieslXpICVHaUG0F0TlPtVApU2RguDGC2IHOCykpN4qTIiUCQg2tITx-hbZgR_MGYS1MpgwXtrCUyUxJDQGz4IYxng-HWd5F_eZfLFXoWe-kUyZlHbumeRkQKAMCXXTU3nDn27VsXnrYwFKGd_qhhPCADomrM-yiD-00WFz3GU1Mzayq1zCXRijSLnrt4Wz3auA_2DjzFu2s3oVDtDW_r8w78Gvn8n0g2y8Q2qxH
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+thermoelectric+performance+realized+through+manipulating+layered+phonon-electron+decoupling&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Su%2C+Lizhong&rft.au=Wang%2C+Dongyang&rft.au=Wang%2C+Sining&rft.au=Qin%2C+Bingchao&rft.date=2022-03-25&rft.eissn=1095-9203&rft.volume=375&rft.issue=6587&rft.spage=1385&rft_id=info:doi/10.1126%2Fscience.abn8997&rft_id=info%3Apmid%2F35324303&rft.externalDocID=35324303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon