High thermoelectric performance realized through manipulating layered phonon-electron decoupling
Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZT ave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 375; no. 6587; pp. 1385 - 1389 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
25.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit
ZT
ave
determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit
Z
max
of ~3.6 × 10
−3
per kelvin but a moderate
ZT
ave
of ~1.1. We found an attractive high
Z
max
of ~4.1 × 10
−3
per kelvin at 748 kelvin and a
ZT
ave
of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics.
Thermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su
et al
. found that doping tin selenide with chlorine and lead substantially improved the thermoelectric figure of merit over a wide temperature range. This effect was mostly due to an improvement in the material’s deformation potential related to mass and strain fluctuations introduced into the n-type material. Improving the figure of merit in this way is challenging because properties are often intertwined and trying to improve one will often degrade others. —BG
Doping tin selenide with lead and chlorine results in a material with high thermoelectric efficiency over a broad temperature range. |
---|---|
AbstractList | Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZTave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Zmax of ~3.6 × 10-3 per kelvin but a moderate ZTave of ~1.1. We found an attractive high Zmax of ~4.1 × 10-3 per kelvin at 748 kelvin and a ZTave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics.Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZTave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Zmax of ~3.6 × 10-3 per kelvin but a moderate ZTave of ~1.1. We found an attractive high Zmax of ~4.1 × 10-3 per kelvin at 748 kelvin and a ZTave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics. Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit of ~3.6 × 10 per kelvin but a moderate of ~1.1. We found an attractive high of ~4.1 × 10 per kelvin at 748 kelvin and a of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics. Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZT ave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Z max of ~3.6 × 10 −3 per kelvin but a moderate ZT ave of ~1.1. We found an attractive high Z max of ~4.1 × 10 −3 per kelvin at 748 kelvin and a ZT ave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics. Thermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al . found that doping tin selenide with chlorine and lead substantially improved the thermoelectric figure of merit over a wide temperature range. This effect was mostly due to an improvement in the material’s deformation potential related to mass and strain fluctuations introduced into the n-type material. Improving the figure of merit in this way is challenging because properties are often intertwined and trying to improve one will often degrade others. —BG Doping tin selenide with lead and chlorine results in a material with high thermoelectric efficiency over a broad temperature range. A material with high potentialThermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al. found that doping tin selenide with chlorine and lead substantially improved the thermoelectric figure of merit over a wide temperature range. This effect was mostly due to an improvement in the material’s deformation potential related to mass and strain fluctuations introduced into the n-type material. Improving the figure of merit in this way is challenging because properties are often intertwined and trying to improve one will often degrade others. —BG |
Author | Zhao, Li-Dong Qin, Bingchao Wang, Sining Jin, Yang Wang, Yuping Qin, Yongxin Chang, Cheng Su, Lizhong Wang, Dongyang |
Author_xml | – sequence: 1 givenname: Lizhong orcidid: 0000-0002-3313-0886 surname: Su fullname: Su, Lizhong organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Dongyang orcidid: 0000-0001-8149-7394 surname: Wang fullname: Wang, Dongyang organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Sining orcidid: 0000-0001-7630-4041 surname: Wang fullname: Wang, Sining organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 4 givenname: Bingchao orcidid: 0000-0003-2720-5922 surname: Qin fullname: Qin, Bingchao organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 5 givenname: Yuping orcidid: 0000-0001-8080-7338 surname: Wang fullname: Wang, Yuping organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 6 givenname: Yongxin orcidid: 0000-0002-1699-1369 surname: Qin fullname: Qin, Yongxin organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 7 givenname: Yang orcidid: 0000-0002-8084-761X surname: Jin fullname: Jin, Yang organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China – sequence: 8 givenname: Cheng orcidid: 0000-0002-9515-4277 surname: Chang fullname: Chang, Cheng organization: Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria – sequence: 9 givenname: Li-Dong orcidid: 0000-0003-1247-4345 surname: Zhao fullname: Zhao, Li-Dong organization: School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35324303$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rGzEQxUVIaRy359zKQi-5bDyS9kvHEpK6YOilPataadaW0UpbafeQ_PVVsH0J9DQw83uP4b1bcu2DR0LuKDxQyppN0ha9xgfV-06I9oqsKIi6FAz4NVkB8KbsoK1vyG1KR4B8E_wjueE1ZxUHviJ_tnZ_KOYDxjGgQz1Hq4sJ4xDiqLJzEVE5-4omMzEsmc1rOy1OzdbvC6deMObjdAj5s_LkEHxhUIdlchn5RD4MyiX8fJ5r8vv56dfjttz9_P7j8duu1FzQuWQVdLUaht50HEAb5GZQYBrBjNKs0kBRICoYqGnavucCtYCWgRJta0xb8zW5P_lOMfxdMM1ytEmjc8pjWJJkTVUBpVXLMvr1HXoMS_T5uzeKd8AAaKa-nKmlH9HIKdpRxRd5yS4D9QnQMaQUcZDazjmW4OeorJMU5FtH8tyRPHeUdZt3uov1_xT_AJMKmVs |
CitedBy_id | crossref_primary_10_1002_idm2_12134 crossref_primary_10_1016_j_jmat_2024_04_006 crossref_primary_10_1063_5_0159352 crossref_primary_10_1002_adfm_202406428 crossref_primary_10_1016_j_mtphys_2023_101018 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1021_acsaem_4c03344 crossref_primary_10_1016_j_mtphys_2023_100967 crossref_primary_10_1002_adfm_202419984 crossref_primary_10_1002_aenm_202202539 crossref_primary_10_1016_j_cej_2023_143529 crossref_primary_10_1088_0256_307X_41_9_097301 crossref_primary_10_1021_acs_chemmater_3c00393 crossref_primary_10_1007_s40843_024_3110_7 crossref_primary_10_1039_D3TA07023A crossref_primary_10_1016_j_scib_2023_12_016 crossref_primary_10_1360_TB_2023_0553 crossref_primary_10_1016_j_optmat_2025_116800 crossref_primary_10_1016_j_ceramint_2023_04_015 crossref_primary_10_1039_D2NR04248G crossref_primary_10_1039_D3EE01047C crossref_primary_10_1016_j_apsusc_2022_155611 crossref_primary_10_1039_D4CP01491J crossref_primary_10_1039_D4CS00361F crossref_primary_10_1039_D3TA02283H crossref_primary_10_1103_PhysRevB_109_235202 crossref_primary_10_1002_aenm_202403194 crossref_primary_10_1103_PhysRevB_107_024301 crossref_primary_10_1016_j_flatc_2023_100482 crossref_primary_10_1021_acsami_3c11449 crossref_primary_10_1002_smll_202202507 crossref_primary_10_1016_j_scriptamat_2022_114846 crossref_primary_10_1016_j_mtphys_2022_100791 crossref_primary_10_1002_adma_202208994 crossref_primary_10_1016_j_jmat_2024_100938 crossref_primary_10_1016_j_jeurceramsoc_2023_09_075 crossref_primary_10_1021_acsami_3c08294 crossref_primary_10_1016_j_apenergy_2023_121584 crossref_primary_10_1002_apxr_202200125 crossref_primary_10_1016_j_actamat_2023_119587 crossref_primary_10_1038_s41524_023_01162_w crossref_primary_10_1021_acsami_2c17801 crossref_primary_10_1016_j_ceramint_2024_03_173 crossref_primary_10_1088_1361_6528_ac78f3 crossref_primary_10_1038_s41467_022_33684_0 crossref_primary_10_3390_nano14080722 crossref_primary_10_1103_PhysRevB_110_155202 crossref_primary_10_1021_acs_chemmater_2c02344 crossref_primary_10_1111_jace_19958 crossref_primary_10_1002_smsc_202400284 crossref_primary_10_1016_j_jmat_2023_02_010 crossref_primary_10_1007_s11664_023_10590_9 crossref_primary_10_1016_j_pmatsci_2022_101003 crossref_primary_10_1016_j_mtcomm_2023_105881 crossref_primary_10_1002_ange_202308515 crossref_primary_10_1002_adma_202307058 crossref_primary_10_1016_j_actamat_2023_119259 crossref_primary_10_1016_j_enconman_2024_118151 crossref_primary_10_1039_D3EE01902K crossref_primary_10_1002_smll_202306701 crossref_primary_10_1039_D2TA08923H crossref_primary_10_1002_asia_202200850 crossref_primary_10_1039_D4TA08632E crossref_primary_10_1021_acsami_3c01404 crossref_primary_10_1140_epjp_s13360_025_05973_2 crossref_primary_10_1021_acsami_2c17263 crossref_primary_10_1021_acs_chemmater_2c03542 crossref_primary_10_1038_s41467_024_52063_5 crossref_primary_10_1007_s12598_024_02756_z crossref_primary_10_1016_j_device_2025_100748 crossref_primary_10_1016_j_mtener_2022_101091 crossref_primary_10_3390_ma16247680 crossref_primary_10_1088_2053_1591_ad6533 crossref_primary_10_1002_advs_202411594 crossref_primary_10_1063_5_0211458 crossref_primary_10_1016_j_mtphys_2023_101283 crossref_primary_10_1021_jacs_4c05692 crossref_primary_10_1038_s41467_023_38054_y crossref_primary_10_1080_23746149_2022_2082317 crossref_primary_10_1002_inf2_12481 crossref_primary_10_1016_j_nanoen_2024_109615 crossref_primary_10_1007_s40195_024_01798_7 crossref_primary_10_1016_j_jmst_2025_02_003 crossref_primary_10_1016_j_matchar_2023_113424 crossref_primary_10_1021_jacs_2c11908 crossref_primary_10_1002_pssa_202300717 crossref_primary_10_1021_jacs_3c01693 crossref_primary_10_1063_5_0220010 crossref_primary_10_1002_aenm_202404251 crossref_primary_10_1016_j_mseb_2023_116976 crossref_primary_10_1063_5_0184595 crossref_primary_10_1021_acsaelm_4c00170 crossref_primary_10_1002_adma_202208681 crossref_primary_10_1016_j_cej_2023_143965 crossref_primary_10_1021_acsami_4c08186 crossref_primary_10_1021_acs_chemmater_4c01092 crossref_primary_10_1016_j_physb_2024_416381 crossref_primary_10_1039_D3EE00128H crossref_primary_10_1002_adfm_202303981 crossref_primary_10_54227_mlab_20230010 crossref_primary_10_1016_j_jmst_2022_12_075 crossref_primary_10_1088_1361_648X_acdbac crossref_primary_10_1016_j_jmst_2024_11_039 crossref_primary_10_1063_5_0141075 crossref_primary_10_1007_s00339_024_07354_5 crossref_primary_10_1007_s10854_022_09352_w crossref_primary_10_1002_adom_202201704 crossref_primary_10_1016_j_scriptamat_2022_115173 crossref_primary_10_1016_j_cej_2023_143397 crossref_primary_10_1016_j_jcis_2023_05_134 crossref_primary_10_1126_science_ado1133 crossref_primary_10_1002_bkcs_12821 crossref_primary_10_54227_mlab_20230013 crossref_primary_10_15541_jim20240057 crossref_primary_10_1016_j_jeurceramsoc_2023_04_022 crossref_primary_10_1021_acsaelm_3c01615 crossref_primary_10_54227_mlab_20230017 crossref_primary_10_1016_j_mtener_2022_101071 crossref_primary_10_1016_j_mtener_2023_101332 crossref_primary_10_1038_s41467_024_50946_1 crossref_primary_10_1002_adfm_202415323 crossref_primary_10_1021_acs_chemmater_4c03025 crossref_primary_10_1002_aenm_202304029 crossref_primary_10_1016_j_actamat_2023_119023 crossref_primary_10_1016_j_jallcom_2024_175770 crossref_primary_10_1021_acsami_4c15281 crossref_primary_10_1039_D2MA01102F crossref_primary_10_54227_mlab_20220025 crossref_primary_10_1039_D2CP03300C crossref_primary_10_1360_TB_2024_0771 crossref_primary_10_1016_j_commatsci_2024_112858 crossref_primary_10_1016_j_jallcom_2023_168987 crossref_primary_10_54227_mlab_20230029 crossref_primary_10_3390_ma16124329 crossref_primary_10_1021_acsami_2c20740 crossref_primary_10_3390_en15093375 crossref_primary_10_1093_nsr_nwae461 crossref_primary_10_3390_molecules28155894 crossref_primary_10_1016_j_jmst_2024_08_009 crossref_primary_10_1063_5_0254219 crossref_primary_10_20517_ss_2023_20 crossref_primary_10_1016_j_actamat_2024_120699 crossref_primary_10_26599_NRE_2022_9120034 crossref_primary_10_1002_aenm_202400340 crossref_primary_10_1038_s41467_023_37114_7 crossref_primary_10_1002_smll_202301963 crossref_primary_10_1016_j_jmat_2023_05_011 crossref_primary_10_1142_S1793604724510391 crossref_primary_10_1016_j_jallcom_2023_172787 crossref_primary_10_1002_smll_202405182 crossref_primary_10_1016_j_actamat_2023_118754 crossref_primary_10_3390_coatings13122018 crossref_primary_10_1002_smll_202304430 crossref_primary_10_1002_adfm_202411304 crossref_primary_10_1360_TB_2024_0776 crossref_primary_10_1007_s00894_023_05805_z crossref_primary_10_1360_TB_2024_0796 crossref_primary_10_1360_TB_2024_0793 crossref_primary_10_1016_j_mattod_2023_04_021 crossref_primary_10_1038_s41586_024_07724_2 crossref_primary_10_1126_science_adg7196 crossref_primary_10_1016_j_jallcom_2024_178050 crossref_primary_10_1016_j_energy_2023_128895 crossref_primary_10_1016_j_mtchem_2024_102183 crossref_primary_10_1016_j_physe_2022_115509 crossref_primary_10_3390_ma18051029 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125063 crossref_primary_10_35848_1347_4065_ad27a3 crossref_primary_10_1016_j_scib_2022_04_007 crossref_primary_10_1039_D3MH02181E crossref_primary_10_1016_j_joule_2025_101854 crossref_primary_10_1038_s41467_023_37436_6 crossref_primary_10_1016_j_ceramint_2022_07_346 crossref_primary_10_1021_jacs_3c09655 crossref_primary_10_1016_j_jallcom_2024_173960 crossref_primary_10_1016_j_commatsci_2023_112041 crossref_primary_10_1021_acsnano_4c11732 crossref_primary_10_1088_0256_307X_40_3_036801 crossref_primary_10_1007_s00339_022_06261_x crossref_primary_10_1063_5_0220462 crossref_primary_10_1021_acs_chemmater_4c02258 crossref_primary_10_1021_jacs_3c04871 crossref_primary_10_1002_smll_202401723 crossref_primary_10_1016_j_jmst_2023_08_049 crossref_primary_10_1063_5_0249667 crossref_primary_10_1103_PhysRevApplied_20_014052 crossref_primary_10_1038_s41467_025_57125_w crossref_primary_10_1021_jacs_4c16394 crossref_primary_10_1021_jacs_4c03532 crossref_primary_10_1002_smtd_202400953 crossref_primary_10_1002_adfm_202301750 crossref_primary_10_1002_qua_27290 crossref_primary_10_3390_nano13243165 crossref_primary_10_1016_j_cej_2023_148002 crossref_primary_10_1007_s12598_024_02663_3 crossref_primary_10_1002_adfm_202214771 crossref_primary_10_1016_j_cej_2024_150158 crossref_primary_10_1021_acsaelm_4c02095 crossref_primary_10_1039_D2RA04255J crossref_primary_10_1016_j_mtphys_2024_101594 crossref_primary_10_1016_j_cej_2022_138637 crossref_primary_10_1016_j_jeurceramsoc_2023_04_052 crossref_primary_10_3389_fchem_2022_865281 crossref_primary_10_1021_acs_accounts_3c00490 crossref_primary_10_1002_adfm_202310335 crossref_primary_10_1016_j_ceramint_2025_02_026 crossref_primary_10_1021_acsenergylett_4c00047 crossref_primary_10_1039_D4TA02336F crossref_primary_10_1016_j_cej_2022_140832 crossref_primary_10_1016_j_actamat_2023_119412 crossref_primary_10_54227_mlab_20220056 crossref_primary_10_1021_acsaem_3c01260 crossref_primary_10_1002_smtd_202301619 crossref_primary_10_1039_D2QI01232D crossref_primary_10_1039_D3TA01778H crossref_primary_10_1016_j_rinp_2023_106241 crossref_primary_10_1126_science_adp2444 crossref_primary_10_1021_acsomega_3c07284 crossref_primary_10_1021_acsaelm_4c01453 crossref_primary_10_1016_j_jallcom_2024_174028 crossref_primary_10_1002_adfm_202211281 crossref_primary_10_1039_D3CP00087G crossref_primary_10_1007_s40242_023_3120_3 crossref_primary_10_54227_mlab_20220048 crossref_primary_10_1021_acsenergylett_2c02425 crossref_primary_10_1021_jacs_3c02146 crossref_primary_10_7498_aps_72_20230354 crossref_primary_10_1002_anie_202308515 crossref_primary_10_1021_acsami_4c18023 crossref_primary_10_1021_accountsmr_4c00243 crossref_primary_10_1039_D3TA06373A crossref_primary_10_1039_D4EE03090G crossref_primary_10_1016_j_mtphys_2025_101697 crossref_primary_10_1002_adma_202110236 crossref_primary_10_3390_nano12162854 crossref_primary_10_1016_j_mssp_2024_108190 crossref_primary_10_1007_s40843_022_2068_0 crossref_primary_10_1002_adfm_202414881 crossref_primary_10_1002_adma_202401828 crossref_primary_10_1016_j_mtphys_2023_101292 crossref_primary_10_1002_smll_202401070 crossref_primary_10_1016_j_cej_2024_153535 crossref_primary_10_1016_j_nanoen_2024_109845 crossref_primary_10_26599_NR_2025_94907308 crossref_primary_10_1002_aenm_202300312 crossref_primary_10_1039_D3NR05284B crossref_primary_10_3390_mi14010031 crossref_primary_10_3390_molecules27217590 crossref_primary_10_1002_adma_202208272 crossref_primary_10_1002_aenm_202202987 crossref_primary_10_1007_s12598_023_02339_4 crossref_primary_10_1063_5_0159202 crossref_primary_10_1103_PhysRevB_110_134312 crossref_primary_10_1002_adma_202412967 crossref_primary_10_1021_acs_chemrev_4c00786 crossref_primary_10_1016_j_mtphys_2023_101180 crossref_primary_10_1016_j_jmrt_2023_12_161 crossref_primary_10_3390_ma16041413 crossref_primary_10_1039_D3TA07026C crossref_primary_10_1016_j_nxmate_2023_100048 crossref_primary_10_1116_6_0004322 crossref_primary_10_1039_D2TA09475D crossref_primary_10_1016_j_jmat_2025_101047 crossref_primary_10_1016_j_xinn_2023_100522 crossref_primary_10_1039_D2QI01437H crossref_primary_10_1142_S0217984922501573 crossref_primary_10_1016_j_scib_2024_04_034 crossref_primary_10_1038_s41467_022_33917_2 crossref_primary_10_1021_jacsau_4c00375 crossref_primary_10_1002_ange_202501667 crossref_primary_10_1002_adfm_202309553 crossref_primary_10_1007_s40820_023_01077_7 crossref_primary_10_1002_admi_202400566 crossref_primary_10_1016_j_actamat_2023_118926 crossref_primary_10_1016_j_mtphys_2023_101071 crossref_primary_10_1016_j_mtphys_2024_101393 crossref_primary_10_1002_aenm_202400623 crossref_primary_10_1002_smll_202407529 crossref_primary_10_1016_j_jeurceramsoc_2025_117192 crossref_primary_10_1039_D4SC06615D crossref_primary_10_1038_s41467_024_47578_w crossref_primary_10_1016_j_rinp_2023_107309 crossref_primary_10_1038_s41467_024_51120_3 crossref_primary_10_1016_j_mset_2024_06_002 crossref_primary_10_1039_D3CP02330C crossref_primary_10_1002_anie_202501667 crossref_primary_10_1016_j_jssc_2024_124617 crossref_primary_10_1039_D2EE02752F crossref_primary_10_1039_D2TC05376D crossref_primary_10_1016_j_nocx_2022_100111 crossref_primary_10_1093_nsr_nwad095 crossref_primary_10_1021_jacs_2c13179 crossref_primary_10_1021_acs_nanolett_3c04149 crossref_primary_10_1016_j_vacuum_2022_111239 crossref_primary_10_1002_apxr_202400179 crossref_primary_10_1002_adfm_202315652 crossref_primary_10_1063_5_0187427 crossref_primary_10_1007_s40195_024_01810_0 crossref_primary_10_1021_acsami_4c06836 |
Cites_doi | 10.1107/S0567739476001551 10.1002/inf2.12217 10.1021/jacs.8b12450 10.1115/1.4034605 10.1038/ncomms13713 10.1103/PhysRevB.54.11169 10.1063/1.363052 10.1002/aenm.201300174 10.1073/pnas.1111419109 10.1038/s41467-018-03866-w 10.1126/science.aax7792 10.1038/s41563-021-01109-w 10.1002/adfm.200901905 10.1038/s41535-018-0083-6 10.1038/s41563-021-01064-6 10.1103/PhysRevB.50.17953 10.1126/science.abi8668 10.1134/S0020168508040043 10.1126/science.aax5123 10.1103/PhysRevLett.77.3865 10.1016/j.jmat.2018.07.001 10.1038/nature09996 10.1103/PhysRevLett.117.276601 10.1038/nmat4643 10.13538/j.1001-8042/nst.26.020101 10.1103/PhysRev.101.944 10.1103/PhysRevB.59.1758 10.1126/science.abe1292 10.1002/idm2.12009 10.1038/nature23667 10.1126/science.abb3517 10.1103/PhysRev.80.72 10.1016/j.mtphys.2017.06.001 10.1002/adma.201806518 10.1038/s41467-021-22541-1 10.1002/adfm.201300663 10.1021/jacs.0c00306 10.11900/0412.1961.2021.00130 10.1038/npjcompumats.2015.15 10.1126/science.aaq1479 10.1002/aenm.201901334 10.1038/nature11439 10.1038/nature13184 10.1039/D1MA00780G 10.1002/adma.201902980 10.1002/adma.202001537 10.1021/acs.chemrev.6b00255 10.1126/science.aaz9426 10.1039/C9EE03897C 10.1126/science.1159725 10.1021/acs.chemmater.8b03732 10.1103/PhysRevB.91.205201 10.1126/science.aad3749 10.1016/j.pmatsci.2018.04.005 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abn8997 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1389 |
ExternalDocumentID | 35324303 10_1126_science_abn8997 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB ESX GX1 IGG NPM OK1 PKN UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-24085affbd8300cde3dfa0d692dac24c01e9eea0f1d67bb39ec90720a977dd753 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 16:52:11 EDT 2025 Fri Jul 25 19:01:24 EDT 2025 Wed Feb 19 02:27:24 EST 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 02:24:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6587 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-24085affbd8300cde3dfa0d692dac24c01e9eea0f1d67bb39ec90720a977dd753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1699-1369 0000-0002-8084-761X 0000-0002-3313-0886 0000-0003-2720-5922 0000-0003-1247-4345 0000-0001-8149-7394 0000-0002-9515-4277 0000-0001-7630-4041 0000-0001-8080-7338 |
PMID | 35324303 |
PQID | 2643802001 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2644011472 proquest_journals_2643802001 pubmed_primary_35324303 crossref_citationtrail_10_1126_science_abn8997 crossref_primary_10_1126_science_abn8997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-25 20220325 |
PublicationDateYYYYMMDD | 2022-03-25 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 Chen H. (e_1_3_2_43_2) 2019; 31 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_37_2 doi: 10.1107/S0567739476001551 – ident: e_1_3_2_5_2 doi: 10.1002/inf2.12217 – ident: e_1_3_2_40_2 doi: 10.1021/jacs.8b12450 – ident: e_1_3_2_46_2 doi: 10.1115/1.4034605 – ident: e_1_3_2_48_2 doi: 10.1038/ncomms13713 – ident: e_1_3_2_53_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_31_2 doi: 10.1063/1.363052 – ident: e_1_3_2_33_2 doi: 10.1002/aenm.201300174 – ident: e_1_3_2_28_2 doi: 10.1073/pnas.1111419109 – ident: e_1_3_2_39_2 doi: 10.1038/s41467-018-03866-w – ident: e_1_3_2_18_2 doi: 10.1126/science.aax7792 – ident: e_1_3_2_47_2 doi: 10.1038/s41563-021-01109-w – ident: e_1_3_2_50_2 doi: 10.1002/adfm.200901905 – ident: e_1_3_2_9_2 doi: 10.1038/s41535-018-0083-6 – ident: e_1_3_2_45_2 doi: 10.1038/s41563-021-01064-6 – ident: e_1_3_2_51_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_2_23_2 doi: 10.1126/science.abi8668 – ident: e_1_3_2_56_2 doi: 10.1134/S0020168508040043 – ident: e_1_3_2_15_2 doi: 10.1126/science.aax5123 – ident: e_1_3_2_54_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_2_2 doi: 10.1016/j.jmat.2018.07.001 – ident: e_1_3_2_11_2 doi: 10.1038/nature09996 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevLett.117.276601 – ident: e_1_3_2_7_2 doi: 10.1038/nmat4643 – ident: e_1_3_2_49_2 doi: 10.13538/j.1001-8042/nst.26.020101 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRev.101.944 – ident: e_1_3_2_52_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_3_2_13_2 doi: 10.1126/science.abe1292 – ident: e_1_3_2_12_2 doi: 10.1002/idm2.12009 – ident: e_1_3_2_4_2 doi: 10.1038/nature23667 – ident: e_1_3_2_17_2 doi: 10.1126/science.abb3517 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRev.80.72 – ident: e_1_3_2_6_2 doi: 10.1016/j.mtphys.2017.06.001 – volume: 31 year: 2019 ident: e_1_3_2_43_2 article-title: Thermal conductivity during phase transitions publication-title: Adv. Mater. doi: 10.1002/adma.201806518 – ident: e_1_3_2_38_2 doi: 10.1038/s41467-021-22541-1 – ident: e_1_3_2_32_2 doi: 10.1002/adfm.201300663 – ident: e_1_3_2_55_2 doi: 10.1021/jacs.0c00306 – ident: e_1_3_2_26_2 doi: 10.11900/0412.1961.2021.00130 – ident: e_1_3_2_8_2 doi: 10.1038/npjcompumats.2015.15 – ident: e_1_3_2_24_2 doi: 10.1126/science.aaq1479 – ident: e_1_3_2_34_2 doi: 10.1002/aenm.201901334 – ident: e_1_3_2_14_2 doi: 10.1038/nature11439 – ident: e_1_3_2_16_2 doi: 10.1038/nature13184 – ident: e_1_3_2_36_2 doi: 10.1039/D1MA00780G – ident: e_1_3_2_44_2 doi: 10.1002/adma.201902980 – ident: e_1_3_2_27_2 doi: 10.1002/adma.202001537 – ident: e_1_3_2_3_2 doi: 10.1021/acs.chemrev.6b00255 – ident: e_1_3_2_19_2 doi: 10.1126/science.aaz9426 – ident: e_1_3_2_25_2 doi: 10.1039/C9EE03897C – ident: e_1_3_2_10_2 doi: 10.1126/science.1159725 – ident: e_1_3_2_20_2 doi: 10.1021/acs.chemmater.8b03732 – ident: e_1_3_2_42_2 doi: 10.1103/PhysRevB.91.205201 – ident: e_1_3_2_22_2 doi: 10.1126/science.aad3749 – ident: e_1_3_2_21_2 doi: 10.1016/j.pmatsci.2018.04.005 |
SSID | ssj0009593 |
Score | 2.7144227 |
Snippet | Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless... A material with high potentialThermoelectic materials convert heat to electricity and are attractive for energy generation or solid-state cooling. Su et al.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1385 |
SubjectTerms | Chlorine Decoupling Deformation effects Figure of merit Selenide Thermoelectricity Tin selenide |
Title | High thermoelectric performance realized through manipulating layered phonon-electron decoupling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35324303 https://www.proquest.com/docview/2643802001 https://www.proquest.com/docview/2644011472 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVZy0Zfytp9peuGBnvoCA6KJdvRY7qulMH20hb65ukzLaRJaeOH5EfsN-_Kkh1lXWDbiwmSbEHO8eXe66t7EPoocmYLWrDEZLZImCp4IixXSc60zDnl0taqJd--52eX7OtVdtXp_Iyqlqq57KvlH8-V_A-qMAa4ulOy_4Bs-1AYgN-AL1wBYbj-FcauSMN5jve3My9nc6NcH-L2JAA4hJObpdGtGo9rduEFu6bj3kQsnFBnz1Wnz6ZJI4jT0xCRVu6g7jj2XBsjAB5p-5UnwrYtVxz5ooKmxiDcFiUcziufC1jCtuNVPt_bnBMYW4jH4-e1jkWbpQ0i8zCkrsUszlxA0Eto4k859423tsQJRaaExuaYeiWVwDtwkIrIvg6oF_h5bPgjqUrTF3IKcWQRrwTk7m5rHtAMnEgaNl3vtd1MPUHbKYQdYDe3R8cnx6drbZxDg6jo6FWz3w561jxh3c3ZELvUPszFc7Qbgg888kzaQx0z3UdPvRzpYh_tBbAe8FHoRv7pBfrhSIbXSYYjkuGGZDiQDMckw4Fk-DeS4RXJXqLL0y8Xn8-SIMuRKMoH86RuiieslXpICVHaUG0F0TlPtVApU2RguDGC2IHOCykpN4qTIiUCQg2tITx-hbZgR_MGYS1MpgwXtrCUyUxJDQGz4IYxng-HWd5F_eZfLFXoWe-kUyZlHbumeRkQKAMCXXTU3nDn27VsXnrYwFKGd_qhhPCADomrM-yiD-00WFz3GU1Mzayq1zCXRijSLnrt4Wz3auA_2DjzFu2s3oVDtDW_r8w78Gvn8n0g2y8Q2qxH |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+thermoelectric+performance+realized+through+manipulating+layered+phonon-electron+decoupling&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Su%2C+Lizhong&rft.au=Wang%2C+Dongyang&rft.au=Wang%2C+Sining&rft.au=Qin%2C+Bingchao&rft.date=2022-03-25&rft.eissn=1095-9203&rft.volume=375&rft.issue=6587&rft.spage=1385&rft_id=info:doi/10.1126%2Fscience.abn8997&rft_id=info%3Apmid%2F35324303&rft.externalDocID=35324303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |