Mathematical modeling of three equal collinear cracks in an orthotropic solid

We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses. Following Guz’s representation theorem and solving Riemann–Hilbert problems we determine the expressions of the complex potentials. Using the...

Full description

Saved in:
Bibliographic Details
Published inMeccanica (Milan) Vol. 51; no. 2; pp. 329 - 339
Main Authors Sadowski, T., Craciun, E. M., Răbâea, A., Marsavina, L.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses. Following Guz’s representation theorem and solving Riemann–Hilbert problems we determine the expressions of the complex potentials. Using the asymptotic analysis, we obtain the asymptotic values of the incremental stress and displacement fields. We determine the tangential stresses near the crack tips. Using the maximum tangential stress criterion and numerical computations we study the interaction problem for a Graphite-epoxy fiber reinforced composite material.
AbstractList We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses. Following Guz's representation theorem and solving Riemann-Hilbert problems we determine the expressions of the complex potentials. Using the asymptotic analysis, we obtain the asymptotic values of the incremental stress and displacement fields. We determine the tangential stresses near the crack tips. Using the maximum tangential stress criterion and numerical computations we study the interaction problem for a Graphite-epoxy fiber reinforced composite material.
Author Craciun, E. M.
Răbâea, A.
Marsavina, L.
Sadowski, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Sadowski
  fullname: Sadowski, T.
  email: t.sadowski@pollub.pl
  organization: Lublin University of Technology
– sequence: 2
  givenname: E. M.
  surname: Craciun
  fullname: Craciun, E. M.
  organization: Faculty of Mathematics and Informatics, “Ovidius” University of Constanta
– sequence: 3
  givenname: A.
  surname: Răbâea
  fullname: Răbâea, A.
  organization: Faculty of Sciences, Technical University of Cluj-Napoca, N.U.C.B.M
– sequence: 4
  givenname: L.
  surname: Marsavina
  fullname: Marsavina, L.
  organization: Politehnica University of Timisoara
BookMark eNp9kD1PwzAURS0EEm3hB7B5ZDH4JXESj6jiS2rFArPlOM9tSmK3djLw73EVZqYnXd3zpHuW5NJ5h4TcAX8AzqvHCMAhYxwE45komLggCxBVxmRZ1JdkwVPKykKIa7KM8cB5orhYkO1Wj3sc9NgZ3dPBt9h3bke9peM-IFI8TSk3vk8x6kBN0OY70s5R7agP496PwR87Q6Pvu_aGXFndR7z9uyvy9fL8uX5jm4_X9_XThplcwsig0QabprEVNLwspIEKeQE2y5tKZpltMYfcGltJ09qilhnIGnidN8KUuUHIV-R-_nsM_jRhHNXQRYN9rx36KSqo6zRYApyrMFdN8DEGtOoYukGHHwVcndWpWZ1K6tRZnRKJyWYmpq7bYVAHPwWXFv0D_QLcKHM_
CitedBy_id crossref_primary_10_1016_j_tafmec_2022_103258
crossref_primary_10_1007_s00161_018_0731_x
crossref_primary_10_1016_j_prostr_2021_10_110
crossref_primary_10_1016_j_tafmec_2018_01_016
crossref_primary_10_1016_j_matpr_2020_12_919
crossref_primary_10_1016_j_apm_2018_11_033
crossref_primary_10_1016_j_compstruct_2017_11_055
crossref_primary_10_1016_j_engfracmech_2020_107070
crossref_primary_10_1016_j_compstruct_2019_110902
crossref_primary_10_1515_zna_2017_0099
crossref_primary_10_1007_s00161_024_01283_7
crossref_primary_10_1017_jmech_2019_57
crossref_primary_10_1016_j_compstruct_2018_12_035
crossref_primary_10_1016_j_ceramint_2017_07_038
Cites_doi 10.1007/BF00033702
10.1007/BF00018929
10.1002/zamm.201200293
10.1007/s10778-007-0052-4
10.1016/0167-8442(90)90087-G
10.1016/0020-7225(95)00100-X
10.1016/0020-7225(78)90091-5
10.1016/j.commatsci.2009.06.006
10.1115/1.2789172
10.1007/BF02086728
10.1093/imamat/hxh060
10.1016/j.ijsolstr.2006.10.024
10.1023/A:1007549317153
10.1115/1.3656897
10.1002/(SICI)1521-4001(199812)78:12<855::AID-ZAMM855>3.0.CO;2-0
10.1016/0013-7944(86)90116-5
10.1201/9780203502815
10.1016/S0020-7683(02)00252-4
10.1016/j.commatsci.2009.04.032
10.1007/978-3-540-69633-9
10.1007/978-94-015-8158-5
10.1016/j.commatsci.2008.05.023
10.1115/1.3097344
10.1016/S0020-7683(99)00137-7
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1007/s11012-015-0254-5
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1572-9648
EndPage 339
ExternalDocumentID 10_1007_s11012_015_0254_5
GrantInformation_xml – fundername: Seventh Framework Programme
  grantid: 245479
  funderid: http://dx.doi.org/10.13039/501100004963
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z86
Z8M
Z8N
Z8P
Z8S
Z8T
ZMTXR
~02
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7TB
8FD
AAYZH
FR3
ID FETCH-LOGICAL-c391t-1bacebbbf71b0649c17e041f23b7922fde313fcf79cdf48921981083b5c63ce13
IEDL.DBID U2A
ISSN 0025-6455
IngestDate Fri Oct 25 04:10:40 EDT 2024
Thu Sep 12 19:45:29 EDT 2024
Sat Dec 16 12:03:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Maximum tangential stress criterion
Cracks interaction
Three equal collinear cracks
Riemann–Hilbert problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-1bacebbbf71b0649c17e041f23b7922fde313fcf79cdf48921981083b5c63ce13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1880029111
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1880029111
crossref_primary_10_1007_s11012_015_0254_5
springer_journals_10_1007_s11012_015_0254_5
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Theoretical and Applied Mechanics AIMETA
PublicationTitle Meccanica (Milan)
PublicationTitleAbbrev Meccanica
PublicationYear 2016
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References KaminskiiAABogdanovaOSModelling the failure of orthotropic materials subjected to biaxial loadingInt Appl Mech1996321081381910.1007/BF02086728
CarabineanuAPerideNRapeanuECraciunEMMathematical modelling of the interface crack. A new improved numerical methodComput Mater Sci200946367768110.1016/j.commatsci.2009.04.032
TvardovskiVVFurther results on rectilinear line cracks and inclusions in anisotropic mediumTheor Appl Fract Mech19901319320710.1016/0167-8442(90)90087-G
GuzANFundamentals of the three dimensional theory of stability of deformable bodies1999BerlinSpringer10.1007/978-3-540-69633-90922.73001
LekhnitskiSGTheory of elasticity of aniosotropic elastic body1963San FranciscoHolden Day
Leblond JB (2003) Mecanique de la Rupture Fragile et Ductile, series Etudes en Mecanique des Materiaux et des Structures, Hermes
CraciunEMBaesuESoosEGeneral solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagationIMA J Appl Math20057013952211739110.1093/imamat/hxh0601073.74025
BogdanovaOSLimiting state of an elastoplastic orthotropic plate with a periodic system of collinear cracksInt Appl Mech2007435539546290613810.1007/s10778-007-0052-4
SadowskiTMarsavinaLPerideNCraciunE-MCracks propagation and interaction in an orthotropic elastic material: analytical and numerical methodsComput Mater Sci200946368769310.1016/j.commatsci.2009.06.006
MuskhelishviliNISome basic problems of the mathematical theory of elasticity1953GroningenNoordhoff Ltd0052.41402
CraciunEMSadowskiTRabaeaAStress concentration in an anisotropic body with three equal collinear cracks in Mode II of fracture. I. Analytical studyZ Angew Math Mech2014949721729325938410.1002/zamm.2012002931298.74253
RadiEBigoniDCapuaniDEffects of pre-stress on crack field in elastic, incompresible solidsInt J Solids Struct2002393971399610.1016/S0020-7683(02)00252-4
GdoutosEEFracture mechanics. An introduction1993BostonKluwer Academic Publishers10.1007/978-94-015-8158-50834.73056
PanasyukVVStrength and fracture of solids with cracks2002LvivNational Academy of Sciences of Ukraine
SihGCLeibowitzHLeibowitzHMathematical theories of britle fracturesFracture—an advanced treatise, vol II, mathematical fundamentals1968New YorkAcademic Press68591
RoseLRFMicrocrack interaction with a main crackInt J Fract19863123324210.1007/BF00018929
DhaliwalRSSinghBMRockneJGThree coplanar Griffith cracks in an infinite elastic layer under antiplane loadingRundfunktech Mitt198010435459
TranterCJThe opening of a pair of coplanar Griffith’s cracks under internal pressureQ J Mech Appl Mech196113269280
CraciunEMSoosEInteraction of two unequal cracks in a prestressed fiber reinforced elastic compositeInt J Fract19989413715910.1023/A:1007549317153
DhaliwalRSSinghBMChehilDSTwo coplanar Griffith cracks under shear loading in an infinitely long elastic layerEng Fract Mech198623469570410.1016/0013-7944(86)90116-5
CristescuNDCraciunEMSoosEMechanics of elastic composites2003Boca RatonCRC Press
Willmore TJ (1969) The distribution of stress in the neighborhood of a crack. Q J Mech Appl Math 53–60
ErdoganFSihGCOn the crack extension in plates under plane loading and transverse shearASME J Basic Eng19638551952510.1115/1.3656897
SoosEResonance and stress concentration in a pre-stressed elastic solid containing a crack. An apparent paradoxInt J Eng Sci199634363374138016310.1016/0020-7225(95)00100-X0900.73595
MukherjeeSDasSInteraction of three interfacial Griffith cracks between bounded dissimilar orthotropic half planesInt J Solids Struct2007445437544610.1016/j.ijsolstr.2006.10.0241126.74042
ValentiniMSerkovSKBigoniDMovchanABCrack propagation in a brittle elastic material with defectsJ Appl Mech199966798610.1115/1.2789172
KachanovMA simple technique of stress analysis in elastic solids with many cracksInt J Fract198528R11R19
DhawanGKDhaliwalRSOn three coplanar cracks in a transversely isotropic mediumInt J Eng Sci197816425326210.1016/0020-7225(78)90091-50377.73102
SneddonINLowengrubMCrack problems in the classical theory of elasticity1969New YorkWiley0201.26702
SneddonINLowengrubMCrack problem in the classical theory of elasticity1969New JerseyWiley
PerideNCarabineanuACraciunEMMathematical modelling of the interface crack propagation in a pre-stressed fiber reinforced elastic compositeComput Mater Sci200945368469210.1016/j.commatsci.2008.05.023
PetrovaVTamuszVRomalisNA survey of macro-microcrack interaction problemsAppl Mech Rev20005351171462000ApMRv..53..117P10.1115/1.3097344
BigoniDMovchanABStatics and dynamics of structural interfaces in elasticityInt J Solids Struct20023948434865
Sih GC (1973) A special theory of crack propagation, In: Sih GC (ed) Mechanics of fracture, vol I. Norhoof Int. Leyden, pp XXI–XLV
AggarwalaBDThree collinear cracks in plane elasticity and related problemZ Angew Math Mech19987812855860166471610.1002/(SICI)1521-4001(199812)78:12<855::AID-ZAMM855>3.0.CO;2-00923.73046
KachanovLMFundamentals of fracture mechanics1974MoskowNauka(in Russian)
AzhdariAObataMNemat-NasserSAlternative solution methods for cracks problems in plane anisotropic elasticity, with examplesInt J Solids Struct200037643364781780486
OS Bogdanova (254_CR28) 2007; 43
N Peride (254_CR12) 2009; 45
LRF Rose (254_CR23) 1986; 31
CJ Tranter (254_CR26) 1961; 13
AA Kaminskii (254_CR22) 1996; 32
M Valentini (254_CR17) 1999; 66
254_CR9
EM Craciun (254_CR14) 2005; 70
A Carabineanu (254_CR13) 2009; 46
E Soos (254_CR11) 1996; 34
E Radi (254_CR15) 2002; 39
LM Kachanov (254_CR7) 1974
AN Guz (254_CR1) 1999
SG Lekhnitski (254_CR5) 1963
IN Sneddon (254_CR10) 1969
254_CR27
F Erdogan (254_CR36) 1963; 85
A Azhdari (254_CR16) 2000; 37
RS Dhaliwal (254_CR25) 1986; 23
D Bigoni (254_CR18) 2002; 39
254_CR20
S Mukherjee (254_CR31) 2007; 44
IN Sneddon (254_CR21) 1969
ND Cristescu (254_CR2) 2003
EM Craciun (254_CR3) 1998; 94
GC Sih (254_CR8) 1968
BD Aggarwala (254_CR30) 1998; 78
M Kachanov (254_CR29) 1985; 28
EE Gdoutos (254_CR37) 1993
VV Panasyuk (254_CR6) 2002
T Sadowski (254_CR24) 2009; 46
VV Tvardovski (254_CR34) 1990; 13
V Petrova (254_CR19) 2000; 53
NI Muskhelishvili (254_CR4) 1953
RS Dhaliwal (254_CR32) 1980; 10
GK Dhawan (254_CR33) 1978; 16
EM Craciun (254_CR35) 2014; 94
References_xml – volume: 28
  start-page: R11
  year: 1985
  ident: 254_CR29
  publication-title: Int J Fract
  doi: 10.1007/BF00033702
  contributor:
    fullname: M Kachanov
– volume: 31
  start-page: 233
  year: 1986
  ident: 254_CR23
  publication-title: Int J Fract
  doi: 10.1007/BF00018929
  contributor:
    fullname: LRF Rose
– volume: 94
  start-page: 721
  issue: 9
  year: 2014
  ident: 254_CR35
  publication-title: Z Angew Math Mech
  doi: 10.1002/zamm.201200293
  contributor:
    fullname: EM Craciun
– volume: 43
  start-page: 539
  issue: 5
  year: 2007
  ident: 254_CR28
  publication-title: Int Appl Mech
  doi: 10.1007/s10778-007-0052-4
  contributor:
    fullname: OS Bogdanova
– volume: 13
  start-page: 193
  year: 1990
  ident: 254_CR34
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/0167-8442(90)90087-G
  contributor:
    fullname: VV Tvardovski
– volume: 34
  start-page: 363
  year: 1996
  ident: 254_CR11
  publication-title: Int J Eng Sci
  doi: 10.1016/0020-7225(95)00100-X
  contributor:
    fullname: E Soos
– volume: 16
  start-page: 253
  issue: 4
  year: 1978
  ident: 254_CR33
  publication-title: Int J Eng Sci
  doi: 10.1016/0020-7225(78)90091-5
  contributor:
    fullname: GK Dhawan
– volume: 46
  start-page: 687
  issue: 3
  year: 2009
  ident: 254_CR24
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2009.06.006
  contributor:
    fullname: T Sadowski
– volume: 66
  start-page: 79
  year: 1999
  ident: 254_CR17
  publication-title: J Appl Mech
  doi: 10.1115/1.2789172
  contributor:
    fullname: M Valentini
– volume: 32
  start-page: 813
  issue: 10
  year: 1996
  ident: 254_CR22
  publication-title: Int Appl Mech
  doi: 10.1007/BF02086728
  contributor:
    fullname: AA Kaminskii
– volume: 70
  start-page: 39
  issue: 1
  year: 2005
  ident: 254_CR14
  publication-title: IMA J Appl Math
  doi: 10.1093/imamat/hxh060
  contributor:
    fullname: EM Craciun
– start-page: 68
  volume-title: Fracture—an advanced treatise, vol II, mathematical fundamentals
  year: 1968
  ident: 254_CR8
  contributor:
    fullname: GC Sih
– volume: 44
  start-page: 5437
  year: 2007
  ident: 254_CR31
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.10.024
  contributor:
    fullname: S Mukherjee
– volume-title: Theory of elasticity of aniosotropic elastic body
  year: 1963
  ident: 254_CR5
  contributor:
    fullname: SG Lekhnitski
– volume-title: Crack problem in the classical theory of elasticity
  year: 1969
  ident: 254_CR10
  contributor:
    fullname: IN Sneddon
– volume: 94
  start-page: 137
  year: 1998
  ident: 254_CR3
  publication-title: Int J Fract
  doi: 10.1023/A:1007549317153
  contributor:
    fullname: EM Craciun
– ident: 254_CR20
– volume: 13
  start-page: 269
  year: 1961
  ident: 254_CR26
  publication-title: Q J Mech Appl Mech
  contributor:
    fullname: CJ Tranter
– volume: 85
  start-page: 519
  year: 1963
  ident: 254_CR36
  publication-title: ASME J Basic Eng
  doi: 10.1115/1.3656897
  contributor:
    fullname: F Erdogan
– volume-title: Some basic problems of the mathematical theory of elasticity
  year: 1953
  ident: 254_CR4
  contributor:
    fullname: NI Muskhelishvili
– volume: 39
  start-page: 48434865
  year: 2002
  ident: 254_CR18
  publication-title: Int J Solids Struct
  contributor:
    fullname: D Bigoni
– ident: 254_CR27
– volume: 78
  start-page: 855
  issue: 12
  year: 1998
  ident: 254_CR30
  publication-title: Z Angew Math Mech
  doi: 10.1002/(SICI)1521-4001(199812)78:12<855::AID-ZAMM855>3.0.CO;2-0
  contributor:
    fullname: BD Aggarwala
– volume: 23
  start-page: 695
  issue: 4
  year: 1986
  ident: 254_CR25
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(86)90116-5
  contributor:
    fullname: RS Dhaliwal
– volume-title: Mechanics of elastic composites
  year: 2003
  ident: 254_CR2
  doi: 10.1201/9780203502815
  contributor:
    fullname: ND Cristescu
– volume: 10
  start-page: 435
  year: 1980
  ident: 254_CR32
  publication-title: Rundfunktech Mitt
  contributor:
    fullname: RS Dhaliwal
– volume: 39
  start-page: 3971
  year: 2002
  ident: 254_CR15
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(02)00252-4
  contributor:
    fullname: E Radi
– volume: 46
  start-page: 677
  issue: 3
  year: 2009
  ident: 254_CR13
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2009.04.032
  contributor:
    fullname: A Carabineanu
– volume-title: Fundamentals of fracture mechanics
  year: 1974
  ident: 254_CR7
  contributor:
    fullname: LM Kachanov
– ident: 254_CR9
– volume-title: Fundamentals of the three dimensional theory of stability of deformable bodies
  year: 1999
  ident: 254_CR1
  doi: 10.1007/978-3-540-69633-9
  contributor:
    fullname: AN Guz
– volume-title: Fracture mechanics. An introduction
  year: 1993
  ident: 254_CR37
  doi: 10.1007/978-94-015-8158-5
  contributor:
    fullname: EE Gdoutos
– volume: 45
  start-page: 684
  issue: 3
  year: 2009
  ident: 254_CR12
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2008.05.023
  contributor:
    fullname: N Peride
– volume-title: Crack problems in the classical theory of elasticity
  year: 1969
  ident: 254_CR21
  contributor:
    fullname: IN Sneddon
– volume: 53
  start-page: 117
  issue: 5
  year: 2000
  ident: 254_CR19
  publication-title: Appl Mech Rev
  doi: 10.1115/1.3097344
  contributor:
    fullname: V Petrova
– volume-title: Strength and fracture of solids with cracks
  year: 2002
  ident: 254_CR6
  contributor:
    fullname: VV Panasyuk
– volume: 37
  start-page: 64336478
  year: 2000
  ident: 254_CR16
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(99)00137-7
  contributor:
    fullname: A Azhdari
SSID ssj0010005
Score 2.205142
Snippet We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 329
SubjectTerms Automotive Engineering
Civil Engineering
Classical Mechanics
Computational Micromechanics of Materials
Cracks
Criteria
Displacement
Graphite fiber reinforced plastics
Graphite-epoxy composites
Mathematical models
Mechanical Engineering
Physics
Physics and Astronomy
Representations
Stresses
Title Mathematical modeling of three equal collinear cracks in an orthotropic solid
URI https://link.springer.com/article/10.1007/s11012-015-0254-5
https://search.proquest.com/docview/1880029111
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qi-DFR1Wsj7KCJyXibjZpcmyltSjtyUI9LdkXFCEpTfr_nU2TFkUPnnJJJjA7O_Ptzsw3AHdRqGImuXZlFYHHMSZ7SaTRliVnNqSGSe3uISfTcDzjr_Ng3gC2vbpIPx_rjGTpqHe9bo6JCk--rqE44F6wBy3EDtwduGasv80cOBBSj2kN8d91JvM3Ed9j0Q5g_siJlqFmdAyHFUYk_c2inkDDpG04qvAiqXZj3ob9snxT5acwmWzZV_HDcroNSiaZJQWulSHG9U4SVRJwo2kTtXKt9WSRkiQlLnOTFatsuVAELXGhz2A2Gr4_j71qUIKn_JgWHpWJMlJK26MSIUasaM88cWqZL3sxY1Ybn_pW2V6stOVRjF4qooi9ZKBCXxnqn0MzzVJzAYTrOFG-dkPVGTfUxNTaUCspTWj8UEUduK9VJpYbPgyxYz52-hWoX-H0K4IO3NZKFWi1LhWRpCZb58KxwD0x52g78FBrW1TbJ_9b4uW_3r6CA8Q3VZH1NTSL1drcIIYoZBda_dFgMHXPl4-3Ybc0oi8AxMB5
link.rule.ids 315,783,787,27937,27938,41094,41536,42163,42605,52124,52247
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InrxURXrcwVPSsB9ZJMci1iqNj210NuSfUEvSWnS_-9umrQoevCe7MLs7MyXfDPfADzGXCVEMu3LKsKAuZwcZLF2viwZsRwbIrX_D5mO-XDKPmbhrOnjLttq95aSrCP1ttnNS1G5T1_fURyyINyFPS-v7uv4pqS_oQ48CmnntHK3eUtl_rbE92S0RZg_SNE61wxO4KgBiai_PtVT2DF5F44bwIia61h2Yb-u31TlGaTpRn7VvViPt3Ero8Kiyh2WQcY3TyJVK3A730Zq6Xvr0TxHWY48dVNUy2IxV8i54lyfw3TwNnkdBs2khEDRBFcBlpkyUkobYekwRqJwZF4YtoTKKCHEakMxtcpGidKWxYkLUzF24EuGilNlML2ATl7k5hIQ00mmqPZT1Qkz2CTYWq6VlIYbylXcg6fWZGKxFsQQW-ljb1_h7Cu8fUXYg4fWqMK5recistwUq1J4GbgX4iNtD55ba4vm_pR_r3j1r6fv4WA4SUdi9D7-vIZDB3aaiusb6FTLlbl1gKKSd7UDfQE7Q8DE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCMSF8RTjGSROoLKlTV_HCRiDMcQBJDiF5iVNSO20dhd-Pc7WbgLBAXFvkzS24y-1_RngNApk7AqmbFqF7zD0yU4SKdRlwVwTUO0KZf9D9h-C7jO7e_Ffyj6neZXtXoUkpzUNlqUpLZpDZZrzwjdLS4XXYFtd7DPHX4QlRvGmUoOl9s1r73oWSLCYpOraGuBSqsDmT4N8dU1zvPktRDrxPJ06vFVrniacvF-MC3EhP77ROf7jo9ZhrUSlpD1Vow1Y0Okm1EuESkr7zzdheZIwKvMt6PdnfK_44qSfDs5LMkMK1A5NtK3WJHJC-Y3GROTIFvOTQUqSlNhYUVaMsuFAEtT9gdqG587102XXKVszONKLaeFQkUgthDAhFQhqYklD3WLUuJ4IY9c1SnvUM9KEsVSGRTGeixFFtCd8GXhSU28HammW6l0gTMWJ9JRt4-4yTXVMjQmUFEIH2gtk1ICzSip8OGXg4HOuZbtlHLeM2y3jfgNOKrlxtBMb_EhSnY1zbnnnWq492htwXsmClwab_z7i3p-ePoaVx6sOv7996O3DKoKrMsP7AGrFaKwPEcAU4qhU0k8oeuZa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modeling+of+three+equal+collinear+cracks+in+an+orthotropic+solid&rft.jtitle=Meccanica+%28Milan%29&rft.au=Sadowski%2C+T.&rft.au=Craciun%2C+E.+M.&rft.au=R%C4%83b%C3%A2ea%2C+A.&rft.au=Marsavina%2C+L.&rft.date=2016-02-01&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=51&rft.issue=2&rft.spage=329&rft.epage=339&rft_id=info:doi/10.1007%2Fs11012-015-0254-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11012_015_0254_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon