Mathematical modeling of three equal collinear cracks in an orthotropic solid
We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses. Following Guz’s representation theorem and solving Riemann–Hilbert problems we determine the expressions of the complex potentials. Using the...
Saved in:
Published in | Meccanica (Milan) Vol. 51; no. 2; pp. 329 - 339 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses. Following Guz’s representation theorem and solving Riemann–Hilbert problems we determine the expressions of the complex potentials. Using the asymptotic analysis, we obtain the asymptotic values of the incremental stress and displacement fields. We determine the tangential stresses near the crack tips. Using the maximum tangential stress criterion and numerical computations we study the interaction problem for a Graphite-epoxy fiber reinforced composite material. |
---|---|
AbstractList | We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses. Following Guz's representation theorem and solving Riemann-Hilbert problems we determine the expressions of the complex potentials. Using the asymptotic analysis, we obtain the asymptotic values of the incremental stress and displacement fields. We determine the tangential stresses near the crack tips. Using the maximum tangential stress criterion and numerical computations we study the interaction problem for a Graphite-epoxy fiber reinforced composite material. |
Author | Craciun, E. M. Răbâea, A. Marsavina, L. Sadowski, T. |
Author_xml | – sequence: 1 givenname: T. surname: Sadowski fullname: Sadowski, T. email: t.sadowski@pollub.pl organization: Lublin University of Technology – sequence: 2 givenname: E. M. surname: Craciun fullname: Craciun, E. M. organization: Faculty of Mathematics and Informatics, “Ovidius” University of Constanta – sequence: 3 givenname: A. surname: Răbâea fullname: Răbâea, A. organization: Faculty of Sciences, Technical University of Cluj-Napoca, N.U.C.B.M – sequence: 4 givenname: L. surname: Marsavina fullname: Marsavina, L. organization: Politehnica University of Timisoara |
BookMark | eNp9kD1PwzAURS0EEm3hB7B5ZDH4JXESj6jiS2rFArPlOM9tSmK3djLw73EVZqYnXd3zpHuW5NJ5h4TcAX8AzqvHCMAhYxwE45komLggCxBVxmRZ1JdkwVPKykKIa7KM8cB5orhYkO1Wj3sc9NgZ3dPBt9h3bke9peM-IFI8TSk3vk8x6kBN0OY70s5R7agP496PwR87Q6Pvu_aGXFndR7z9uyvy9fL8uX5jm4_X9_XThplcwsig0QabprEVNLwspIEKeQE2y5tKZpltMYfcGltJ09qilhnIGnidN8KUuUHIV-R-_nsM_jRhHNXQRYN9rx36KSqo6zRYApyrMFdN8DEGtOoYukGHHwVcndWpWZ1K6tRZnRKJyWYmpq7bYVAHPwWXFv0D_QLcKHM_ |
CitedBy_id | crossref_primary_10_1016_j_tafmec_2022_103258 crossref_primary_10_1007_s00161_018_0731_x crossref_primary_10_1016_j_prostr_2021_10_110 crossref_primary_10_1016_j_tafmec_2018_01_016 crossref_primary_10_1016_j_matpr_2020_12_919 crossref_primary_10_1016_j_apm_2018_11_033 crossref_primary_10_1016_j_compstruct_2017_11_055 crossref_primary_10_1016_j_engfracmech_2020_107070 crossref_primary_10_1016_j_compstruct_2019_110902 crossref_primary_10_1515_zna_2017_0099 crossref_primary_10_1007_s00161_024_01283_7 crossref_primary_10_1017_jmech_2019_57 crossref_primary_10_1016_j_compstruct_2018_12_035 crossref_primary_10_1016_j_ceramint_2017_07_038 |
Cites_doi | 10.1007/BF00033702 10.1007/BF00018929 10.1002/zamm.201200293 10.1007/s10778-007-0052-4 10.1016/0167-8442(90)90087-G 10.1016/0020-7225(95)00100-X 10.1016/0020-7225(78)90091-5 10.1016/j.commatsci.2009.06.006 10.1115/1.2789172 10.1007/BF02086728 10.1093/imamat/hxh060 10.1016/j.ijsolstr.2006.10.024 10.1023/A:1007549317153 10.1115/1.3656897 10.1002/(SICI)1521-4001(199812)78:12<855::AID-ZAMM855>3.0.CO;2-0 10.1016/0013-7944(86)90116-5 10.1201/9780203502815 10.1016/S0020-7683(02)00252-4 10.1016/j.commatsci.2009.04.032 10.1007/978-3-540-69633-9 10.1007/978-94-015-8158-5 10.1016/j.commatsci.2008.05.023 10.1115/1.3097344 10.1016/S0020-7683(99)00137-7 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2015 |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1007/s11012-015-0254-5 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1572-9648 |
EndPage | 339 |
ExternalDocumentID | 10_1007_s11012_015_0254_5 |
GrantInformation_xml | – fundername: Seventh Framework Programme grantid: 245479 funderid: http://dx.doi.org/10.13039/501100004963 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z86 Z8M Z8N Z8P Z8S Z8T ZMTXR ~02 ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7TB 8FD AAYZH FR3 |
ID | FETCH-LOGICAL-c391t-1bacebbbf71b0649c17e041f23b7922fde313fcf79cdf48921981083b5c63ce13 |
IEDL.DBID | U2A |
ISSN | 0025-6455 |
IngestDate | Fri Oct 25 04:10:40 EDT 2024 Thu Sep 12 19:45:29 EDT 2024 Sat Dec 16 12:03:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Maximum tangential stress criterion Cracks interaction Three equal collinear cracks Riemann–Hilbert problem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-1bacebbbf71b0649c17e041f23b7922fde313fcf79cdf48921981083b5c63ce13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1880029111 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1880029111 crossref_primary_10_1007_s11012_015_0254_5 springer_journals_10_1007_s11012_015_0254_5 |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Theoretical and Applied Mechanics AIMETA |
PublicationTitle | Meccanica (Milan) |
PublicationTitleAbbrev | Meccanica |
PublicationYear | 2016 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | KaminskiiAABogdanovaOSModelling the failure of orthotropic materials subjected to biaxial loadingInt Appl Mech1996321081381910.1007/BF02086728 CarabineanuAPerideNRapeanuECraciunEMMathematical modelling of the interface crack. A new improved numerical methodComput Mater Sci200946367768110.1016/j.commatsci.2009.04.032 TvardovskiVVFurther results on rectilinear line cracks and inclusions in anisotropic mediumTheor Appl Fract Mech19901319320710.1016/0167-8442(90)90087-G GuzANFundamentals of the three dimensional theory of stability of deformable bodies1999BerlinSpringer10.1007/978-3-540-69633-90922.73001 LekhnitskiSGTheory of elasticity of aniosotropic elastic body1963San FranciscoHolden Day Leblond JB (2003) Mecanique de la Rupture Fragile et Ductile, series Etudes en Mecanique des Materiaux et des Structures, Hermes CraciunEMBaesuESoosEGeneral solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagationIMA J Appl Math20057013952211739110.1093/imamat/hxh0601073.74025 BogdanovaOSLimiting state of an elastoplastic orthotropic plate with a periodic system of collinear cracksInt Appl Mech2007435539546290613810.1007/s10778-007-0052-4 SadowskiTMarsavinaLPerideNCraciunE-MCracks propagation and interaction in an orthotropic elastic material: analytical and numerical methodsComput Mater Sci200946368769310.1016/j.commatsci.2009.06.006 MuskhelishviliNISome basic problems of the mathematical theory of elasticity1953GroningenNoordhoff Ltd0052.41402 CraciunEMSadowskiTRabaeaAStress concentration in an anisotropic body with three equal collinear cracks in Mode II of fracture. I. Analytical studyZ Angew Math Mech2014949721729325938410.1002/zamm.2012002931298.74253 RadiEBigoniDCapuaniDEffects of pre-stress on crack field in elastic, incompresible solidsInt J Solids Struct2002393971399610.1016/S0020-7683(02)00252-4 GdoutosEEFracture mechanics. An introduction1993BostonKluwer Academic Publishers10.1007/978-94-015-8158-50834.73056 PanasyukVVStrength and fracture of solids with cracks2002LvivNational Academy of Sciences of Ukraine SihGCLeibowitzHLeibowitzHMathematical theories of britle fracturesFracture—an advanced treatise, vol II, mathematical fundamentals1968New YorkAcademic Press68591 RoseLRFMicrocrack interaction with a main crackInt J Fract19863123324210.1007/BF00018929 DhaliwalRSSinghBMRockneJGThree coplanar Griffith cracks in an infinite elastic layer under antiplane loadingRundfunktech Mitt198010435459 TranterCJThe opening of a pair of coplanar Griffith’s cracks under internal pressureQ J Mech Appl Mech196113269280 CraciunEMSoosEInteraction of two unequal cracks in a prestressed fiber reinforced elastic compositeInt J Fract19989413715910.1023/A:1007549317153 DhaliwalRSSinghBMChehilDSTwo coplanar Griffith cracks under shear loading in an infinitely long elastic layerEng Fract Mech198623469570410.1016/0013-7944(86)90116-5 CristescuNDCraciunEMSoosEMechanics of elastic composites2003Boca RatonCRC Press Willmore TJ (1969) The distribution of stress in the neighborhood of a crack. Q J Mech Appl Math 53–60 ErdoganFSihGCOn the crack extension in plates under plane loading and transverse shearASME J Basic Eng19638551952510.1115/1.3656897 SoosEResonance and stress concentration in a pre-stressed elastic solid containing a crack. An apparent paradoxInt J Eng Sci199634363374138016310.1016/0020-7225(95)00100-X0900.73595 MukherjeeSDasSInteraction of three interfacial Griffith cracks between bounded dissimilar orthotropic half planesInt J Solids Struct2007445437544610.1016/j.ijsolstr.2006.10.0241126.74042 ValentiniMSerkovSKBigoniDMovchanABCrack propagation in a brittle elastic material with defectsJ Appl Mech199966798610.1115/1.2789172 KachanovMA simple technique of stress analysis in elastic solids with many cracksInt J Fract198528R11R19 DhawanGKDhaliwalRSOn three coplanar cracks in a transversely isotropic mediumInt J Eng Sci197816425326210.1016/0020-7225(78)90091-50377.73102 SneddonINLowengrubMCrack problems in the classical theory of elasticity1969New YorkWiley0201.26702 SneddonINLowengrubMCrack problem in the classical theory of elasticity1969New JerseyWiley PerideNCarabineanuACraciunEMMathematical modelling of the interface crack propagation in a pre-stressed fiber reinforced elastic compositeComput Mater Sci200945368469210.1016/j.commatsci.2008.05.023 PetrovaVTamuszVRomalisNA survey of macro-microcrack interaction problemsAppl Mech Rev20005351171462000ApMRv..53..117P10.1115/1.3097344 BigoniDMovchanABStatics and dynamics of structural interfaces in elasticityInt J Solids Struct20023948434865 Sih GC (1973) A special theory of crack propagation, In: Sih GC (ed) Mechanics of fracture, vol I. Norhoof Int. Leyden, pp XXI–XLV AggarwalaBDThree collinear cracks in plane elasticity and related problemZ Angew Math Mech19987812855860166471610.1002/(SICI)1521-4001(199812)78:12<855::AID-ZAMM855>3.0.CO;2-00923.73046 KachanovLMFundamentals of fracture mechanics1974MoskowNauka(in Russian) AzhdariAObataMNemat-NasserSAlternative solution methods for cracks problems in plane anisotropic elasticity, with examplesInt J Solids Struct200037643364781780486 OS Bogdanova (254_CR28) 2007; 43 N Peride (254_CR12) 2009; 45 LRF Rose (254_CR23) 1986; 31 CJ Tranter (254_CR26) 1961; 13 AA Kaminskii (254_CR22) 1996; 32 M Valentini (254_CR17) 1999; 66 254_CR9 EM Craciun (254_CR14) 2005; 70 A Carabineanu (254_CR13) 2009; 46 E Soos (254_CR11) 1996; 34 E Radi (254_CR15) 2002; 39 LM Kachanov (254_CR7) 1974 AN Guz (254_CR1) 1999 SG Lekhnitski (254_CR5) 1963 IN Sneddon (254_CR10) 1969 254_CR27 F Erdogan (254_CR36) 1963; 85 A Azhdari (254_CR16) 2000; 37 RS Dhaliwal (254_CR25) 1986; 23 D Bigoni (254_CR18) 2002; 39 254_CR20 S Mukherjee (254_CR31) 2007; 44 IN Sneddon (254_CR21) 1969 ND Cristescu (254_CR2) 2003 EM Craciun (254_CR3) 1998; 94 GC Sih (254_CR8) 1968 BD Aggarwala (254_CR30) 1998; 78 M Kachanov (254_CR29) 1985; 28 EE Gdoutos (254_CR37) 1993 VV Panasyuk (254_CR6) 2002 T Sadowski (254_CR24) 2009; 46 VV Tvardovski (254_CR34) 1990; 13 V Petrova (254_CR19) 2000; 53 NI Muskhelishvili (254_CR4) 1953 RS Dhaliwal (254_CR32) 1980; 10 GK Dhawan (254_CR33) 1978; 16 EM Craciun (254_CR35) 2014; 94 |
References_xml | – volume: 28 start-page: R11 year: 1985 ident: 254_CR29 publication-title: Int J Fract doi: 10.1007/BF00033702 contributor: fullname: M Kachanov – volume: 31 start-page: 233 year: 1986 ident: 254_CR23 publication-title: Int J Fract doi: 10.1007/BF00018929 contributor: fullname: LRF Rose – volume: 94 start-page: 721 issue: 9 year: 2014 ident: 254_CR35 publication-title: Z Angew Math Mech doi: 10.1002/zamm.201200293 contributor: fullname: EM Craciun – volume: 43 start-page: 539 issue: 5 year: 2007 ident: 254_CR28 publication-title: Int Appl Mech doi: 10.1007/s10778-007-0052-4 contributor: fullname: OS Bogdanova – volume: 13 start-page: 193 year: 1990 ident: 254_CR34 publication-title: Theor Appl Fract Mech doi: 10.1016/0167-8442(90)90087-G contributor: fullname: VV Tvardovski – volume: 34 start-page: 363 year: 1996 ident: 254_CR11 publication-title: Int J Eng Sci doi: 10.1016/0020-7225(95)00100-X contributor: fullname: E Soos – volume: 16 start-page: 253 issue: 4 year: 1978 ident: 254_CR33 publication-title: Int J Eng Sci doi: 10.1016/0020-7225(78)90091-5 contributor: fullname: GK Dhawan – volume: 46 start-page: 687 issue: 3 year: 2009 ident: 254_CR24 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2009.06.006 contributor: fullname: T Sadowski – volume: 66 start-page: 79 year: 1999 ident: 254_CR17 publication-title: J Appl Mech doi: 10.1115/1.2789172 contributor: fullname: M Valentini – volume: 32 start-page: 813 issue: 10 year: 1996 ident: 254_CR22 publication-title: Int Appl Mech doi: 10.1007/BF02086728 contributor: fullname: AA Kaminskii – volume: 70 start-page: 39 issue: 1 year: 2005 ident: 254_CR14 publication-title: IMA J Appl Math doi: 10.1093/imamat/hxh060 contributor: fullname: EM Craciun – start-page: 68 volume-title: Fracture—an advanced treatise, vol II, mathematical fundamentals year: 1968 ident: 254_CR8 contributor: fullname: GC Sih – volume: 44 start-page: 5437 year: 2007 ident: 254_CR31 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.10.024 contributor: fullname: S Mukherjee – volume-title: Theory of elasticity of aniosotropic elastic body year: 1963 ident: 254_CR5 contributor: fullname: SG Lekhnitski – volume-title: Crack problem in the classical theory of elasticity year: 1969 ident: 254_CR10 contributor: fullname: IN Sneddon – volume: 94 start-page: 137 year: 1998 ident: 254_CR3 publication-title: Int J Fract doi: 10.1023/A:1007549317153 contributor: fullname: EM Craciun – ident: 254_CR20 – volume: 13 start-page: 269 year: 1961 ident: 254_CR26 publication-title: Q J Mech Appl Mech contributor: fullname: CJ Tranter – volume: 85 start-page: 519 year: 1963 ident: 254_CR36 publication-title: ASME J Basic Eng doi: 10.1115/1.3656897 contributor: fullname: F Erdogan – volume-title: Some basic problems of the mathematical theory of elasticity year: 1953 ident: 254_CR4 contributor: fullname: NI Muskhelishvili – volume: 39 start-page: 48434865 year: 2002 ident: 254_CR18 publication-title: Int J Solids Struct contributor: fullname: D Bigoni – ident: 254_CR27 – volume: 78 start-page: 855 issue: 12 year: 1998 ident: 254_CR30 publication-title: Z Angew Math Mech doi: 10.1002/(SICI)1521-4001(199812)78:12<855::AID-ZAMM855>3.0.CO;2-0 contributor: fullname: BD Aggarwala – volume: 23 start-page: 695 issue: 4 year: 1986 ident: 254_CR25 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(86)90116-5 contributor: fullname: RS Dhaliwal – volume-title: Mechanics of elastic composites year: 2003 ident: 254_CR2 doi: 10.1201/9780203502815 contributor: fullname: ND Cristescu – volume: 10 start-page: 435 year: 1980 ident: 254_CR32 publication-title: Rundfunktech Mitt contributor: fullname: RS Dhaliwal – volume: 39 start-page: 3971 year: 2002 ident: 254_CR15 publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00252-4 contributor: fullname: E Radi – volume: 46 start-page: 677 issue: 3 year: 2009 ident: 254_CR13 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2009.04.032 contributor: fullname: A Carabineanu – volume-title: Fundamentals of fracture mechanics year: 1974 ident: 254_CR7 contributor: fullname: LM Kachanov – ident: 254_CR9 – volume-title: Fundamentals of the three dimensional theory of stability of deformable bodies year: 1999 ident: 254_CR1 doi: 10.1007/978-3-540-69633-9 contributor: fullname: AN Guz – volume-title: Fracture mechanics. An introduction year: 1993 ident: 254_CR37 doi: 10.1007/978-94-015-8158-5 contributor: fullname: EE Gdoutos – volume: 45 start-page: 684 issue: 3 year: 2009 ident: 254_CR12 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2008.05.023 contributor: fullname: N Peride – volume-title: Crack problems in the classical theory of elasticity year: 1969 ident: 254_CR21 contributor: fullname: IN Sneddon – volume: 53 start-page: 117 issue: 5 year: 2000 ident: 254_CR19 publication-title: Appl Mech Rev doi: 10.1115/1.3097344 contributor: fullname: V Petrova – volume-title: Strength and fracture of solids with cracks year: 2002 ident: 254_CR6 contributor: fullname: VV Panasyuk – volume: 37 start-page: 64336478 year: 2000 ident: 254_CR16 publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(99)00137-7 contributor: fullname: A Azhdari |
SSID | ssj0010005 |
Score | 2.205142 |
Snippet | We consider a homogeneous elastic, orthotropic solid containing three equal collinear cracks, loaded in tension by symmetrically distributed normal stresses.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 329 |
SubjectTerms | Automotive Engineering Civil Engineering Classical Mechanics Computational Micromechanics of Materials Cracks Criteria Displacement Graphite fiber reinforced plastics Graphite-epoxy composites Mathematical models Mechanical Engineering Physics Physics and Astronomy Representations Stresses |
Title | Mathematical modeling of three equal collinear cracks in an orthotropic solid |
URI | https://link.springer.com/article/10.1007/s11012-015-0254-5 https://search.proquest.com/docview/1880029111 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qi-DFR1Wsj7KCJyXibjZpcmyltSjtyUI9LdkXFCEpTfr_nU2TFkUPnnJJJjA7O_Ptzsw3AHdRqGImuXZlFYHHMSZ7SaTRliVnNqSGSe3uISfTcDzjr_Ng3gC2vbpIPx_rjGTpqHe9bo6JCk--rqE44F6wBy3EDtwduGasv80cOBBSj2kN8d91JvM3Ed9j0Q5g_siJlqFmdAyHFUYk_c2inkDDpG04qvAiqXZj3ob9snxT5acwmWzZV_HDcroNSiaZJQWulSHG9U4SVRJwo2kTtXKt9WSRkiQlLnOTFatsuVAELXGhz2A2Gr4_j71qUIKn_JgWHpWJMlJK26MSIUasaM88cWqZL3sxY1Ybn_pW2V6stOVRjF4qooi9ZKBCXxnqn0MzzVJzAYTrOFG-dkPVGTfUxNTaUCspTWj8UEUduK9VJpYbPgyxYz52-hWoX-H0K4IO3NZKFWi1LhWRpCZb58KxwD0x52g78FBrW1TbJ_9b4uW_3r6CA8Q3VZH1NTSL1drcIIYoZBda_dFgMHXPl4-3Ybc0oi8AxMB5 |
link.rule.ids | 315,783,787,27937,27938,41094,41536,42163,42605,52124,52247 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InrxURXrcwVPSsB9ZJMci1iqNj210NuSfUEvSWnS_-9umrQoevCe7MLs7MyXfDPfADzGXCVEMu3LKsKAuZwcZLF2viwZsRwbIrX_D5mO-XDKPmbhrOnjLttq95aSrCP1ttnNS1G5T1_fURyyINyFPS-v7uv4pqS_oQ48CmnntHK3eUtl_rbE92S0RZg_SNE61wxO4KgBiai_PtVT2DF5F44bwIia61h2Yb-u31TlGaTpRn7VvViPt3Ero8Kiyh2WQcY3TyJVK3A730Zq6Xvr0TxHWY48dVNUy2IxV8i54lyfw3TwNnkdBs2khEDRBFcBlpkyUkobYekwRqJwZF4YtoTKKCHEakMxtcpGidKWxYkLUzF24EuGilNlML2ATl7k5hIQ00mmqPZT1Qkz2CTYWq6VlIYbylXcg6fWZGKxFsQQW-ljb1_h7Cu8fUXYg4fWqMK5recistwUq1J4GbgX4iNtD55ba4vm_pR_r3j1r6fv4WA4SUdi9D7-vIZDB3aaiusb6FTLlbl1gKKSd7UDfQE7Q8DE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCMSF8RTjGSROoLKlTV_HCRiDMcQBJDiF5iVNSO20dhd-Pc7WbgLBAXFvkzS24y-1_RngNApk7AqmbFqF7zD0yU4SKdRlwVwTUO0KZf9D9h-C7jO7e_Ffyj6neZXtXoUkpzUNlqUpLZpDZZrzwjdLS4XXYFtd7DPHX4QlRvGmUoOl9s1r73oWSLCYpOraGuBSqsDmT4N8dU1zvPktRDrxPJ06vFVrniacvF-MC3EhP77ROf7jo9ZhrUSlpD1Vow1Y0Okm1EuESkr7zzdheZIwKvMt6PdnfK_44qSfDs5LMkMK1A5NtK3WJHJC-Y3GROTIFvOTQUqSlNhYUVaMsuFAEtT9gdqG587102XXKVszONKLaeFQkUgthDAhFQhqYklD3WLUuJ4IY9c1SnvUM9KEsVSGRTGeixFFtCd8GXhSU28HammW6l0gTMWJ9JRt4-4yTXVMjQmUFEIH2gtk1ICzSip8OGXg4HOuZbtlHLeM2y3jfgNOKrlxtBMb_EhSnY1zbnnnWq492htwXsmClwab_z7i3p-ePoaVx6sOv7996O3DKoKrMsP7AGrFaKwPEcAU4qhU0k8oeuZa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modeling+of+three+equal+collinear+cracks+in+an+orthotropic+solid&rft.jtitle=Meccanica+%28Milan%29&rft.au=Sadowski%2C+T.&rft.au=Craciun%2C+E.+M.&rft.au=R%C4%83b%C3%A2ea%2C+A.&rft.au=Marsavina%2C+L.&rft.date=2016-02-01&rft.issn=0025-6455&rft.eissn=1572-9648&rft.volume=51&rft.issue=2&rft.spage=329&rft.epage=339&rft_id=info:doi/10.1007%2Fs11012-015-0254-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11012_015_0254_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6455&client=summon |