Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants
Aims We aimed to quantify the pool size of soil microbial biomass P (P mic ) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P mic to the plant P (P plant ) pools in the ecosystem. Methods We determined the p...
Saved in:
Published in | Plant and soil Vol. 446; no. 1-2; pp. 259 - 274 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
We aimed to quantify the pool size of soil microbial biomass P (P
mic
) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P
mic
to the plant P (P
plant
) pools in the ecosystem.
Methods
We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (P
mic
cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes.
Results
The size of the P
mic
pools (0.2–8.3 g m
−2
) in the organic layer and top 10 cm of the mineral soils was comparable to that of the P
plant
pools (0.3–9.1 g m
−2
) at all study sites along the Hailuogou chronosequence. Based on the literature, the P
mic
cycling at our study site (0.3–13.5 g m
−2
year
−1
if estimated based on temporal fluctuations of P
mic
, 5.2–268 g m
−2
year
−1
if estimated based on the isotope dilution method) was at least one order of magnitude larger than the P
plant
uptake (not detected-0.36 g m
−2
year
−1
) and the P
plant
return by litterfall (not detected-0.16 g m
−2
year
−1
). Although P
mic
became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of P
mic
and plant-available P in soils and the P-rich status of plants and soil microbes.
Conclusions
Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that P
mic
cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization. |
---|---|
AbstractList | Aims We aimed to quantify the pool size of soil microbial biomass P (P.sub.mic) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P.sub.mic to the plant P (P.sub.plant) pools in the ecosystem. Methods We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (P.sub.mic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. Results The size of the P.sub.mic pools (0.2-8.3 g m.sup.-2) in the organic layer and top 10 cm of the mineral soils was comparable to that of the P.sub.plant pools (0.3-9.1 g m.sup.-2) at all study sites along the Hailuogou chronosequence. Based on the literature, the P.sub.mic cycling at our study site (0.3-13.5 g m.sup.-2 year.sup.-1 if estimated based on temporal fluctuations of P.sub.mic, 5.2-268 g m.sup.-2 year.sup.-1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the P.sub.plant uptake (not detected-0.36 g m.sup.-2 year.sup.-1) and the P.sub.plant return by litterfall (not detected-0.16 g m.sup.-2 year.sup.-1). Although P.sub.mic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of P.sub.mic and plant-available P in soils and the P-rich status of plants and soil microbes. Conclusions Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that P.sub.mic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization. Aims We aimed to quantify the pool size of soil microbial biomass P (P mic ) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P mic to the plant P (P plant ) pools in the ecosystem. Methods We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (P mic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. Results The size of the P mic pools (0.2–8.3 g m −2 ) in the organic layer and top 10 cm of the mineral soils was comparable to that of the P plant pools (0.3–9.1 g m −2 ) at all study sites along the Hailuogou chronosequence. Based on the literature, the P mic cycling at our study site (0.3–13.5 g m −2 year −1 if estimated based on temporal fluctuations of P mic , 5.2–268 g m −2 year −1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the P plant uptake (not detected-0.36 g m −2 year −1 ) and the P plant return by litterfall (not detected-0.16 g m −2 year −1 ). Although P mic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of P mic and plant-available P in soils and the P-rich status of plants and soil microbes. Conclusions Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that P mic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization. AimsWe aimed to quantify the pool size of soil microbial biomass P (Pmic) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of Pmic to the plant P (Pplant) pools in the ecosystem.MethodsWe determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (Pmic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes.ResultsThe size of the Pmic pools (0.2–8.3 g m−2) in the organic layer and top 10 cm of the mineral soils was comparable to that of the Pplant pools (0.3–9.1 g m−2) at all study sites along the Hailuogou chronosequence. Based on the literature, the Pmic cycling at our study site (0.3–13.5 g m−2 year−1 if estimated based on temporal fluctuations of Pmic, 5.2–268 g m−2 year−1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the Pplant uptake (not detected-0.36 g m−2 year−1) and the Pplant return by litterfall (not detected-0.16 g m−2 year−1). Although Pmic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of Pmic and plant-available P in soils and the P-rich status of plants and soil microbes.ConclusionsSoil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that Pmic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization. AIMS: We aimed to quantify the pool size of soil microbial biomass P (Pₘᵢc) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of Pₘᵢc to the plant P (Pₚₗₐₙₜ) pools in the ecosystem. METHODS: We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (Pₘᵢc cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. RESULTS: The size of the Pₘᵢc pools (0.2–8.3 g m⁻²) in the organic layer and top 10 cm of the mineral soils was comparable to that of the Pₚₗₐₙₜ pools (0.3–9.1 g m⁻²) at all study sites along the Hailuogou chronosequence. Based on the literature, the Pₘᵢc cycling at our study site (0.3–13.5 g m⁻² year⁻¹ if estimated based on temporal fluctuations of Pₘᵢc, 5.2–268 g m⁻² year⁻¹ if estimated based on the isotope dilution method) was at least one order of magnitude larger than the Pₚₗₐₙₜ uptake (not detected-0.36 g m⁻² year⁻¹) and the Pₚₗₐₙₜ return by litterfall (not detected-0.16 g m⁻² year⁻¹). Although Pₘᵢc became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of Pₘᵢc and plant-available P in soils and the P-rich status of plants and soil microbes. CONCLUSIONS: Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that Pₘᵢc cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization. |
Audience | Academic |
Author | He, Qingqing Zhou, Jun Li, Jingji Wilcke, Wolfgang Wu, Yanhong Bing, Haijian Wang, Jipeng Sun, Hongyang |
Author_xml | – sequence: 1 givenname: Jipeng surname: Wang fullname: Wang, Jipeng organization: College of Ecology and Environment, Chengdu University of Technology, Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Yanhong orcidid: 0000-0002-9803-0544 surname: Wu fullname: Wu, Yanhong email: yhwu@imde.ac.cn organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 3 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 4 givenname: Haijian surname: Bing fullname: Bing, Haijian organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 5 givenname: Hongyang surname: Sun fullname: Sun, Hongyang organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 6 givenname: Qingqing surname: He fullname: He, Qingqing organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 7 givenname: Jingji surname: Li fullname: Li, Jingji organization: College of Ecology and Environment, Chengdu University of Technology – sequence: 8 givenname: Wolfgang surname: Wilcke fullname: Wilcke, Wolfgang organization: Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT) |
BookMark | eNp9kc1q3TAQhU1JoTdpX6ArQTfdONFIlmUvQ-hPINBFW-hOyPboXl1ky5XkNHmfPmjl60IgiyCEkDjfmdGc8-Js8hMWxXugl0CpvIoAQKuSQlvSirO2fHhV7EBIXgrK67NiRylnJZXtrzfFeYxHut6h3hV_v3vryGj74DuMpMPej0g0GfXRBzJ774g3pLPe-b3ttSPzwce8wxLJsAQ77Uk6IEEd3COJSe9x1cfVdMB7dH4ecUrkj00H4mxKLmvv7YBTfxLmajMmm6yfiFkLPrmfkNnpKcW3xWujXcR3_8-L4ufnTz9uvpZ3377c3lzflT1vIZXQtAaNBKg5bfpaClbLSoDpBhAN4yhqxLpFU2vZCWmE1px1tDO97mTDqOYXxcfNdw7-94IxqdHGHl1uAv0SFRMCWgApIEs_PJMe_RKm3J1ivGqFbDi0WXW5qfbaobKT8SnoPq8B88hzhMbm9-saOIWKcZEBtgE5jxgDGjUHO-rwqICqNWm1Ja1y0uqUtHrIUPMM6m3S60xzNeteRvmGxnnNEsPTN16g_gE_vsN9 |
CitedBy_id | crossref_primary_10_1016_j_catena_2021_105328 crossref_primary_10_1016_j_still_2024_106241 crossref_primary_10_1007_s00374_024_01860_7 crossref_primary_10_1016_j_apsoil_2023_105167 crossref_primary_10_1007_s11104_021_05250_y crossref_primary_10_1016_j_agee_2024_109310 crossref_primary_10_1016_j_catena_2021_106000 crossref_primary_10_1007_s11104_020_04827_3 crossref_primary_10_1007_s11104_020_04462_y crossref_primary_10_1016_j_scitotenv_2021_149193 crossref_primary_10_1016_j_soilbio_2021_108150 crossref_primary_10_1016_j_apsoil_2023_105253 crossref_primary_10_1016_j_rhisph_2021_100316 crossref_primary_10_1016_j_geoderma_2021_115376 crossref_primary_10_1021_acsearthspacechem_3c00049 crossref_primary_10_1016_j_soilbio_2021_108429 crossref_primary_10_1016_j_apsoil_2023_104848 crossref_primary_10_1016_j_chemosphere_2022_135334 crossref_primary_10_1016_j_geoderma_2020_114424 crossref_primary_10_1016_j_scitotenv_2023_164405 crossref_primary_10_1029_2022JG006795 crossref_primary_10_1002_ldr_5141 crossref_primary_10_1016_j_rhisph_2024_100904 crossref_primary_10_1016_j_scitotenv_2023_163050 crossref_primary_10_1007_s11104_024_07128_1 crossref_primary_10_1007_s11368_021_03064_0 |
Cites_doi | 10.1007/BF00369306 10.1007/s11104-018-3839-7 10.1007/s00374-016-1123-7 10.1016/j.gca.2013.01.029 10.1111/geb.12029 10.2307/2937039 10.1007/s00374-013-0868-5 10.1038/nature08632 10.1111/ele.12113 10.1007/s11104-013-1750-9 10.1111/ele.12530 10.1016/j.soilbio.2010.08.023 10.1111/j.1461-0248.2009.01302.x 10.1021/es300311h 10.1016/j.geoderma.2015.12.024 10.1126/science.1231923 10.1016/j.soilbio.2003.10.002 10.1016/S0038-0717(01)00218-8 10.1038/aps.2014.143 10.1371/journal.pone.0042354 10.1146/annurev-ecolsys-071112-124414 10.1016/j.soilbio.2015.02.029 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2 10.1016/j.soilbio.2013.02.013 10.1038/nmicrobiol.2017.105 10.1016/j.foreco.2004.04.012 10.1007/s10021-007-9086-z 10.2307/1312897 10.1016/j.soilbio.2017.12.019 10.1016/j.geoderma.2010.04.027 10.1016/S0003-2670(00)88444-5 10.1016/0016-7061(76)90066-5 10.2136/sssaj1999.6351229x 10.1016/j.soilbio.2011.03.006 10.1016/j.geoderma.2012.06.033 10.1002/jpln.201500541 10.1016/j.soilbio.2017.04.009 10.1007/s10933-009-9382-z 10.3354/ame019139 10.1016/S0378-1127(02)00450-4 10.1126/sciadv.aaq0942 10.1007/s11104-013-1731-z 10.1051/forest/2009039 10.1038/s41598-017-01418-8 10.2136/sssabookser5.2.c37 10.1111/ejss.12536 10.1007/s10533-007-9132-0 10.1016/0016-7061(81)90024-0 10.1111/gcb.12113 10.1016/j.soilbio.2018.10.011 10.1126/science.1098778 10.1007/s11629-013-2328-y 10.1016/0038-0717(82)90009-8 10.1007/s00442-004-1501-y 10.1016/j.apsoil.2009.08.002 10.1002/wat2.1243 10.1007/s003740000284 10.1002/jpln.201600079 10.1890/08-0127.1 10.1104/pp.111.175448 10.2136/vzj2010.0129 10.1016/S1002-0160(17)60456-9 10.1007/s00442-002-1164-5 10.1016/j.geoderma.2012.12.010 10.1016/j.geoderma.2011.04.010 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 COPYRIGHT 2020 Springer Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: COPYRIGHT 2020 Springer – notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-019-04329-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 274 |
ExternalDocumentID | A613014235 10_1007_s11104_019_04329_x |
GeographicLocations | China Germany |
GeographicLocations_xml | – name: China – name: Germany |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201708515106 funderid: http://dx.doi.org/10.13039/501100004543 – fundername: Department of Science and Technology of Sichuan Province grantid: 18YYJC0163 funderid: http://dx.doi.org/10.13039/501100004829 – fundername: National Natural Science Foundation of China grantid: 41630751; 41701288; 41877011 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c391t-189fef7116308c675267451fbd15823e56ee69ef6a7b57f5aa32b0bfcab7820a3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Thu Jul 10 23:19:10 EDT 2025 Fri Jul 25 09:01:34 EDT 2025 Tue Jun 10 20:18:56 EDT 2025 Tue Jul 01 01:47:07 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Fri Feb 21 02:33:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Hailuogou chronosequence Primary succession Phosphomonoesterase Soil microbial biomass Phosphorus cycling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-189fef7116308c675267451fbd15823e56ee69ef6a7b57f5aa32b0bfcab7820a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9803-0544 |
PQID | 2349578319 |
PQPubID | 54098 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2551911751 proquest_journals_2349578319 gale_infotracacademiconefile_A613014235 crossref_primary_10_1007_s11104_019_04329_x crossref_citationtrail_10_1007_s11104_019_04329_x springer_journals_10_1007_s11104_019_04329_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Zederer, Talkner, Spohn, Joergensen (CR72) 2017; 111 Li, Cheng, Luo, Lu, Liao (CR31) 2004; 22 Allen, Gillooly (CR3) 2009; 12 Sinsabaugh, Manzoni, Moorhead, Richter (CR50) 2013; 16 Göransson, Olde Venterink, Bååth (CR19) 2011; 43 Zhou (CR75) 2016; 267 Clemmensen (CR12) 2013; 339 CR39 Wu, He, Wei, O'Donnell, Syers (CR65) 2000; 32 CR36 WANG, WU, ZHOU, BING, SUN, LUO, PU (CR63) 2020; 30 Liang, Schimel, Jastrow (CR33) 2017; 2 Chadwick, Derry, Vitousek, Huebert, Hedin (CR8) 1999; 397 Jiang, Lei, Yang, Korpelainen, Niinemets, Li (CR25) 2018; 118 Jenkinson, Brookes, Powlson (CR24) 2004; 36 CR73 Zhou, Sun, Wang, He, Bing, Wu (CR76) 2018; 433 Tamburini, Pfahler, Buenemann, Guelland, Bernasconi, Frossard (CR55) 2012; 46 Cleveland, Liptzin (CR13) 2007; 85 Walker, Syers (CR61) 1976; 15 Cotrufo, Wallenstein, Boot, Denef, Paul (CR14) 2013; 19 Clarholm (CR11) 1993; 16 Yang, Wang, Yang, Yang (CR70) 2012; 31 Yang (CR71) 2015; 52 Kirkby, Kirkegaard, Richardson, Wade, Blanchard, Batten (CR28) 2011; 163 Lang (CR30) 2016; 179 Bernasconi (CR4) 2011; 10 Achat, Bakker, Saur, Pellerin, Augusto, Morel (CR1) 2010; 158 Elser, Dobberfuhl, MacKay, Schampel (CR18) 1996; 46 CR44 Hedley, Stewart (CR21) 1982; 14 Richardson, Peltzer, Allen, McGlone, Parfitt (CR47) 2004; 139 Wu, Zhou, Bing, Sun, Wang (CR68) 2015; 3 Li, Xiong (CR32) 1995; 12 Wang, Wu, Zhou, Bing, Sun (CR62) 2016; 52 Liebisch, Keller, Huguenin-Elie, Frossard, Oberson, Bünemann (CR34) 2014; 50 Rosinger, Rousk, Sandén (CR48) 2019; 128 Margalef (CR38) 2017; 7 Vitousek, Porder, Houlton, Chadwick (CR60) 2010; 20 Kouno, Wu, Brookes (CR29) 2002; 34 Bowman, Bahn, Damm (CR6) 2003; 35 Hoppe, Ullrich (CR23) 1999; 19 Jonard, Augusto, Morel, Achat, Saur (CR27) 2009; 66 Sohrt, Lang, Weiler (CR52) 2017; 4 Zhou (CR77) 2013; 195 CR15 Wardle (CR64) 2004; 305 CR58 Hacker (CR20) 2015; 18 CR56 Heuck, Weig, Spohn (CR22) 2015; 85 Myers, Thien, Pierzynski (CR42) 1999; 63 CR54 Darcy, Schmidt, Knelman, Cleveland, Castle, Nemergut (CR16) 2018; 4 Spohn, Kuzyakov (CR53) 2013; 61 Vincent, Vestergren, Grobner, Persson, Schleucher, Giesler (CR59) 2013; 367 Bol (CR5) 2016; 179 Chen, Condron, Davis, Sherlock (CR10) 2003; 177 Xu, Thornton, Post (CR69) 2013; 22 Turner, Condron, Richardson, Peltzer, Allison (CR57) 2007; 10 Egli, Filip, Mavris, Fischer, Götze, Raimondi, Seibert (CR17) 2012; 189–190 Luo, Cheng, Li, He (CR37) 2005; 27 Richardson, Simpson (CR46) 2011; 156 Sinsabaugh, Shah (CR51) 2012; 43 Murphy, Riley (CR41) 1962; 27 Wu, Ma, Zhou, Wang, Xu, Kemmitt, Brookes (CR67) 2009; 43 Johnson, Frizano, Vann (CR26) 2003; 135 McGill, Cole (CR40) 1981; 26 Nannipieri, Giagnoni, Landi, Renella (CR43) 2010 Liu, Shen, Zhang, Wu, Yang (CR35) 2010; 44 Achat, Morel, Bakker, Augusto, Pellerin, Gallet-Budynek, Gonzalez (CR2) 2010; 42 Brandtberg, Bengtsson, Lundkvist (CR7) 2004; 198 Sinsabaugh, Hill, Shah (CR49) 2009; 462 Zhou, Bing, Wu, Sun, Wang (CR74) 2018; 69 Chapin, Walker, Fastie, Sharman (CR9) 1994; 64 Prietzel, Dümig, Wu, Zhou, Klysubun (CR45) 2013; 108 Wu, Li, Zhou, Cao (CR66) 2013; 10 DL Achat (4329_CR2) 2010; 42 Y Wu (4329_CR68) 2015; 3 RL Sinsabaugh (4329_CR49) 2009; 462 J Murphy (4329_CR41) 1962; 27 O Margalef (4329_CR38) 2017; 7 AE Richardson (4329_CR46) 2011; 156 H-G Hoppe (4329_CR23) 1999; 19 N Hacker (4329_CR20) 2015; 18 X Li (4329_CR32) 1995; 12 RL Sinsabaugh (4329_CR50) 2013; 16 F Tamburini (4329_CR55) 2012; 46 4329_CR44 OA Chadwick (4329_CR8) 1999; 397 CA Kirkby (4329_CR28) 2011; 163 RG Myers (4329_CR42) 1999; 63 CR Chen (4329_CR10) 2003; 177 MF Cotrufo (4329_CR14) 2013; 19 Y Jiang (4329_CR25) 2018; 118 John L. Darcy (4329_CR16) 2018; 4 M Hedley (4329_CR21) 1982; 14 J Luo (4329_CR37) 2005; 27 W Li (4329_CR31) 2004; 22 Jipeng WANG (4329_CR63) 2020; 30 P. Nannipieri (4329_CR43) 2010 4329_CR56 Jörg Prietzel (4329_CR45) 2013; 108 4329_CR58 4329_CR15 C Rosinger (4329_CR48) 2019; 128 R Bol (4329_CR5) 2016; 179 X Xu (4329_CR69) 2013; 22 FS Chapin (4329_CR9) 1994; 64 4329_CR54 CC Cleveland (4329_CR13) 2007; 85 Y Wu (4329_CR66) 2013; 10 K Kouno (4329_CR29) 2002; 34 F Liebisch (4329_CR34) 2014; 50 Y Wu (4329_CR67) 2009; 43 J Zhou (4329_CR76) 2018; 433 M Egli (4329_CR17) 2012; 189–190 T Walker (4329_CR61) 1976; 15 D. A. Wardle (4329_CR64) 2004; 305 J Wang (4329_CR62) 2016; 52 AP Allen (4329_CR3) 2009; 12 Z Yang (4329_CR71) 2015; 52 WB McGill (4329_CR40) 1981; 26 M Spohn (4329_CR53) 2013; 61 SM Bernasconi (4329_CR4) 2011; 10 M Jonard (4329_CR27) 2009; 66 E Liu (4329_CR35) 2010; 44 J Wu (4329_CR65) 2000; 32 J Zhou (4329_CR77) 2013; 195 J Zhou (4329_CR75) 2016; 267 C Liang (4329_CR33) 2017; 2 Jakob Sohrt (4329_CR52) 2017; 4 AG Vincent (4329_CR59) 2013; 367 M Clarholm (4329_CR11) 1993; 16 C Heuck (4329_CR22) 2015; 85 SJ Richardson (4329_CR47) 2004; 139 DL Achat (4329_CR1) 2010; 158 WD Bowman (4329_CR6) 2003; 35 BL Turner (4329_CR57) 2007; 10 H Göransson (4329_CR19) 2011; 43 KE Clemmensen (4329_CR12) 2013; 339 PM Vitousek (4329_CR60) 2010; 20 J Zhou (4329_CR74) 2018; 69 4329_CR36 DP Zederer (4329_CR72) 2017; 111 AH Johnson (4329_CR26) 2003; 135 4329_CR39 P-O Brandtberg (4329_CR7) 2004; 198 JJ Elser (4329_CR18) 1996; 46 F Lang (4329_CR30) 2016; 179 DS Jenkinson (4329_CR24) 2004; 36 RL Sinsabaugh (4329_CR51) 2012; 43 4329_CR73 L Yang (4329_CR70) 2012; 31 |
References_xml | – volume: 32 start-page: 500 year: 2000 end-page: 507 ident: CR65 article-title: Quantifying microbial biomass phosphorus in acid soils publication-title: Biol Fertil Soils – volume: 85 start-page: 235 year: 2007 end-page: 252 ident: CR13 article-title: C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – volume: 26 start-page: 267 year: 1981 end-page: 286 ident: CR40 article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic-matter publication-title: Geoderma – volume: 10 start-page: 370 year: 2013 end-page: 377 ident: CR66 article-title: Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades publication-title: J Mt Sci – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: CR14 article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob Chang Biol – volume: 339 start-page: 1615 year: 2013 end-page: 1618 ident: CR12 article-title: Roots and associated Fungi drive long-term carbon sequestration in boreal Forest publication-title: Science – volume: 20 start-page: 5 year: 2010 end-page: 15 ident: CR60 article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions publication-title: Ecol Appl – ident: CR39 – volume: 36 start-page: 5 year: 2004 end-page: 7 ident: CR24 article-title: Measuring soil microbial biomass publication-title: Soil Biol Biochem – start-page: 215 year: 2010 end-page: 243 ident: CR43 article-title: Role of Phosphatase Enzymes in Soil publication-title: Soil Biology – volume: 27 start-page: 13 year: 2005 end-page: 17 ident: CR37 article-title: Characteristics of nutrient biocycling of natural forests on the Gongga Mountain publication-title: Journal of Beijing Forestry University – volume: 69 start-page: 450 year: 2018 end-page: 461 ident: CR74 article-title: Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou glacier foreland chronosequence publication-title: Eur J Soil Sci – volume: 10 start-page: 867 year: 2011 end-page: 883 ident: CR4 article-title: Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland publication-title: Vadose Zone J – volume: 22 start-page: 698 year: 2004 end-page: 701 ident: CR31 article-title: Features of the natural runoff of Hailuo ravine in Mt publication-title: Gongga Journal of Mountain Research – ident: CR54 – volume: 22 start-page: 737 year: 2013 end-page: 749 ident: CR69 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Glob Ecol Biogeogr – volume: 50 start-page: 465 year: 2014 end-page: 475 ident: CR34 article-title: Seasonal dynamics and turnover of microbial phosphorusin a permanent grassland publication-title: Biol Fertil Soils – ident: CR58 – volume: 14 start-page: 377 year: 1982 end-page: 385 ident: CR21 article-title: Method to measure microbial phosphate in soils publication-title: Soil Biol Biochem – volume: 108 start-page: 154 year: 2013 end-page: 171 ident: CR45 article-title: Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences publication-title: Geochimica et Cosmochimica Acta – volume: 35 start-page: 144 year: 2003 end-page: 149 ident: CR6 article-title: Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability publication-title: Arct Antarct Alp Res – volume: 15 start-page: 1 year: 1976 end-page: 19 ident: CR61 article-title: The fate of phosphorus during pedogenesis publication-title: Geoderma – volume: 85 start-page: 119 year: 2015 end-page: 129 ident: CR22 article-title: Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus publication-title: Soil Biol Biochem – volume: 4 start-page: eaaq0942 issue: 5 year: 2018 ident: CR16 article-title: Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat publication-title: Science Advances – volume: 3 year: 2015 ident: CR68 article-title: Rapid loss of phosphorus during early pedogenesis along a glacier retreat choronosequence, Gongga Mountain (SW China) publication-title: PeerJ – volume: 12 start-page: 109 year: 1995 end-page: 115 ident: CR32 article-title: Vegetation primary succession on glacier foreland in Hailuogou, Mt. Gongga publication-title: Mountain Research – volume: 135 start-page: 487 year: 2003 end-page: 499 ident: CR26 article-title: Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure publication-title: Oecologia – ident: CR15 – volume: 195 start-page: 251 year: 2013 end-page: 259 ident: CR77 article-title: Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou glacier retreat area (Gongga Mountain, SW China) publication-title: Geoderma – volume: 198 start-page: 193 year: 2004 end-page: 208 ident: CR7 article-title: Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands publication-title: For Ecol Manag – volume: 118 start-page: 207 year: 2018 end-page: 216 ident: CR25 article-title: Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence publication-title: Soil Biol Biochem – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: CR41 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal Chim Acta – volume: 179 start-page: 425 year: 2016 end-page: 438 ident: CR5 article-title: Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research publication-title: J Plant Nutr Soil Sci – volume: 18 start-page: 1356 year: 2015 end-page: 1365 ident: CR20 article-title: Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil publication-title: Ecol Lett – volume: 433 start-page: 1 year: 2018 end-page: 5 ident: CR76 article-title: Comments on “unravelling community assemblages through multi-element stoichiometry in plant leaves and roots across primary successional stages in a glacier retreat area” by Jiang et al publication-title: Plant Soil – volume: 139 start-page: 267 year: 2004 end-page: 276 ident: CR47 article-title: Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence publication-title: Oecologia – volume: 64 start-page: 149 year: 1994 end-page: 175 ident: CR9 article-title: Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska publication-title: Ecol Monogr – ident: CR36 – volume: 163 start-page: 197 year: 2011 end-page: 208 ident: CR28 article-title: Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils publication-title: Geoderma – volume: 31 start-page: 44 year: 2012 end-page: 50 ident: CR70 article-title: Responses of leaf functional traits and nitrogen and phosphorus stoichiometry in Abies fabiri seedlings in Gongga Mountain to simulated nitrogen deposition publication-title: Chinese Journal of Ecology – volume: 66 start-page: 510 year: 2009 end-page: 510 ident: CR27 article-title: Forest floor contribution to phosphorus nutrition: experimental data publication-title: Ann For Sci – volume: 30 start-page: 272 issue: 2 year: 2020 end-page: 284 ident: CR63 article-title: Air-drying changes the distribution of Hedley phosphorus pools in forest soils publication-title: Pedosphere – volume: 111 start-page: 166 year: 2017 end-page: 175 ident: CR72 article-title: Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and a horizons as affected by tree species publication-title: Soil Biol Biochem – volume: 2 start-page: 17105 year: 2017 ident: CR33 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat Microbiol – volume: 128 start-page: 115 year: 2019 end-page: 126 ident: CR48 article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-a critical assessment in two subtropical soils publication-title: Soil Biol Biochem – volume: 43 start-page: 1333 year: 2011 end-page: 1340 ident: CR19 article-title: Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield publication-title: Soil Biol Biochem – volume: 63 start-page: 1229 year: 1999 end-page: 1237 ident: CR42 article-title: Using an ion sink to extract microbial phosphorus from soil publication-title: Soil Sci Soc Am J – volume: 305 start-page: 509 issue: 5683 year: 2004 end-page: 513 ident: CR64 article-title: Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences publication-title: Science – volume: 52 start-page: 825 year: 2016 end-page: 839 ident: CR62 article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development publication-title: Biol Fertil Soils – volume: 10 start-page: 1166 year: 2007 end-page: 1181 ident: CR57 article-title: Soil organic phosphorus transformations during pedogenesis publication-title: Ecosystems – volume: 12 start-page: 369 year: 2009 end-page: 384 ident: CR3 article-title: Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling publication-title: Ecol Lett – volume: 158 start-page: 163 year: 2010 end-page: 172 ident: CR1 article-title: Quantifying gross mineralisation of P in dead soil organic matter: testing an isotopic dilution method publication-title: Geoderma – volume: 179 start-page: 129 year: 2016 end-page: 135 ident: CR30 article-title: Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective publication-title: J Plant Nutr Soil Sci – volume: 46 start-page: 5956 year: 2012 end-page: 5962 ident: CR55 article-title: Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils publication-title: Environ Sci Technol – volume: 42 start-page: 2231 year: 2010 end-page: 2240 ident: CR2 article-title: Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model publication-title: Soil Biol Biochem – volume: 34 start-page: 617 year: 2002 end-page: 622 ident: CR29 article-title: Turnover of biomass C and P in soil following incorporation of glucose or ryegrass publication-title: Soil Biol Biochem – volume: 156 start-page: 989 year: 2011 end-page: 996 ident: CR46 article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus publication-title: Plant Physiol – ident: CR56 – volume: 189–190 start-page: 215 year: 2012 end-page: 226 ident: CR17 article-title: Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier forefield publication-title: Geoderma – volume: 16 start-page: 930 year: 2013 end-page: 939 ident: CR50 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecol Lett – volume: 43 start-page: 234 year: 2009 end-page: 240 ident: CR67 article-title: Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis publication-title: Appl Soil Ecol – volume: 19 start-page: 139 year: 1999 end-page: 148 ident: CR23 article-title: Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone publication-title: Aquat Microb Ecol – ident: CR44 – volume: 16 start-page: 287 year: 1993 end-page: 292 ident: CR11 article-title: Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers publication-title: Biol Fertil Soils – volume: 4 start-page: e1243 issue: 6 year: 2017 ident: CR52 article-title: Quantifying components of the phosphorus cycle in temperate forests publication-title: Wiley Interdisciplinary Reviews: Water – volume: 44 start-page: 15 year: 2010 end-page: 24 ident: CR35 article-title: A geochemical record of recent anthropogenic nutrient loading and enhanced productivity in Lake Nansihu publication-title: China J Paleolimnol – ident: CR73 – volume: 267 start-page: 78 year: 2016 end-page: 91 ident: CR75 article-title: Rapid weathering processes of a 120-year-old chronosequence in the Hailuogou glacier foreland, Mt. Gongga, SW China publication-title: Geoderma – volume: 7 start-page: 1337 year: 2017 ident: CR38 article-title: Global patterns of phosphatase activity in natural soils publication-title: Sci Rep – volume: 52 start-page: 507 year: 2015 end-page: 516 ident: CR71 article-title: Variation of mineral composition along the soil chronosequence at the Hailuogou glacier foreland of Gongga Mountain publication-title: Acta Pedol Sin – volume: 46 start-page: 674 year: 1996 end-page: 684 ident: CR18 article-title: Organism size, life history, and N: P stoichiometry publication-title: Bioscience – volume: 462 start-page: 795 year: 2009 end-page: 798 ident: CR49 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – volume: 397 start-page: 491 year: 1999 ident: CR8 publication-title: Changing sources of nutrients during four million years of ecosystem development Nature – volume: 177 start-page: 539 year: 2003 end-page: 557 ident: CR10 article-title: Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand publication-title: For Ecol Manag – volume: 367 start-page: 149 year: 2013 end-page: 162 ident: CR59 article-title: Soil organic phosphorus transformations in a boreal forest chronosequence publication-title: Plant Soil – volume: 43 start-page: 313 year: 2012 end-page: 343 ident: CR51 article-title: Ecoenzymatic stoichiometry and ecological theory annual review of ecology publication-title: Evolution, and Systematics – volume: 61 start-page: 69 year: 2013 end-page: 75 ident: CR53 article-title: Phosphorus mineralization can be driven by microbial need for carbon publication-title: Soil Biol Biochem – volume: 16 start-page: 287 year: 1993 ident: 4329_CR11 publication-title: Biol Fertil Soils doi: 10.1007/BF00369306 – volume: 433 start-page: 1 year: 2018 ident: 4329_CR76 publication-title: Plant Soil doi: 10.1007/s11104-018-3839-7 – volume: 52 start-page: 825 year: 2016 ident: 4329_CR62 publication-title: Biol Fertil Soils doi: 10.1007/s00374-016-1123-7 – volume: 108 start-page: 154 year: 2013 ident: 4329_CR45 publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2013.01.029 – volume: 22 start-page: 737 year: 2013 ident: 4329_CR69 publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.12029 – volume: 64 start-page: 149 year: 1994 ident: 4329_CR9 publication-title: Ecol Monogr doi: 10.2307/2937039 – volume: 50 start-page: 465 year: 2014 ident: 4329_CR34 publication-title: Biol Fertil Soils doi: 10.1007/s00374-013-0868-5 – volume: 462 start-page: 795 year: 2009 ident: 4329_CR49 publication-title: Nature doi: 10.1038/nature08632 – volume: 16 start-page: 930 year: 2013 ident: 4329_CR50 publication-title: Ecol Lett doi: 10.1111/ele.12113 – ident: 4329_CR58 doi: 10.1007/s11104-013-1750-9 – volume: 18 start-page: 1356 year: 2015 ident: 4329_CR20 publication-title: Ecol Lett doi: 10.1111/ele.12530 – volume: 42 start-page: 2231 year: 2010 ident: 4329_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.08.023 – volume: 12 start-page: 369 year: 2009 ident: 4329_CR3 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2009.01302.x – volume: 46 start-page: 5956 year: 2012 ident: 4329_CR55 publication-title: Environ Sci Technol doi: 10.1021/es300311h – volume: 267 start-page: 78 year: 2016 ident: 4329_CR75 publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.024 – volume: 339 start-page: 1615 year: 2013 ident: 4329_CR12 publication-title: Science doi: 10.1126/science.1231923 – volume: 36 start-page: 5 year: 2004 ident: 4329_CR24 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2003.10.002 – volume: 34 start-page: 617 year: 2002 ident: 4329_CR29 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(01)00218-8 – volume: 52 start-page: 507 year: 2015 ident: 4329_CR71 publication-title: Acta Pedol Sin doi: 10.1038/aps.2014.143 – ident: 4329_CR36 doi: 10.1371/journal.pone.0042354 – volume: 43 start-page: 313 year: 2012 ident: 4329_CR51 publication-title: Evolution, and Systematics doi: 10.1146/annurev-ecolsys-071112-124414 – volume: 12 start-page: 109 year: 1995 ident: 4329_CR32 publication-title: Mountain Research – volume: 3 year: 2015 ident: 4329_CR68 publication-title: PeerJ – volume: 85 start-page: 119 year: 2015 ident: 4329_CR22 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.02.029 – volume: 35 start-page: 144 year: 2003 ident: 4329_CR6 publication-title: Arct Antarct Alp Res doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2 – volume: 61 start-page: 69 year: 2013 ident: 4329_CR53 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.02.013 – volume: 2 start-page: 17105 year: 2017 ident: 4329_CR33 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.105 – volume: 397 start-page: 491 year: 1999 ident: 4329_CR8 publication-title: Changing sources of nutrients during four million years of ecosystem development Nature – volume: 198 start-page: 193 year: 2004 ident: 4329_CR7 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2004.04.012 – volume: 10 start-page: 1166 year: 2007 ident: 4329_CR57 publication-title: Ecosystems doi: 10.1007/s10021-007-9086-z – volume: 46 start-page: 674 year: 1996 ident: 4329_CR18 publication-title: Bioscience doi: 10.2307/1312897 – volume: 118 start-page: 207 year: 2018 ident: 4329_CR25 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.12.019 – volume: 27 start-page: 13 year: 2005 ident: 4329_CR37 publication-title: Journal of Beijing Forestry University – volume: 158 start-page: 163 year: 2010 ident: 4329_CR1 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.04.027 – volume: 27 start-page: 31 year: 1962 ident: 4329_CR41 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 15 start-page: 1 year: 1976 ident: 4329_CR61 publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – volume: 63 start-page: 1229 year: 1999 ident: 4329_CR42 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1999.6351229x – volume: 43 start-page: 1333 year: 2011 ident: 4329_CR19 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.03.006 – ident: 4329_CR15 – volume: 189–190 start-page: 215 year: 2012 ident: 4329_CR17 publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.033 – volume: 179 start-page: 129 year: 2016 ident: 4329_CR30 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201500541 – volume: 111 start-page: 166 year: 2017 ident: 4329_CR72 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.04.009 – volume: 44 start-page: 15 year: 2010 ident: 4329_CR35 publication-title: China J Paleolimnol doi: 10.1007/s10933-009-9382-z – volume: 19 start-page: 139 year: 1999 ident: 4329_CR23 publication-title: Aquat Microb Ecol doi: 10.3354/ame019139 – ident: 4329_CR73 – volume: 177 start-page: 539 year: 2003 ident: 4329_CR10 publication-title: For Ecol Manag doi: 10.1016/S0378-1127(02)00450-4 – volume: 4 start-page: eaaq0942 issue: 5 year: 2018 ident: 4329_CR16 publication-title: Science Advances doi: 10.1126/sciadv.aaq0942 – volume: 367 start-page: 149 year: 2013 ident: 4329_CR59 publication-title: Plant Soil doi: 10.1007/s11104-013-1731-z – volume: 66 start-page: 510 year: 2009 ident: 4329_CR27 publication-title: Ann For Sci doi: 10.1051/forest/2009039 – volume: 7 start-page: 1337 year: 2017 ident: 4329_CR38 publication-title: Sci Rep doi: 10.1038/s41598-017-01418-8 – ident: 4329_CR54 doi: 10.2136/sssabookser5.2.c37 – volume: 69 start-page: 450 year: 2018 ident: 4329_CR74 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12536 – volume: 85 start-page: 235 year: 2007 ident: 4329_CR13 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 26 start-page: 267 year: 1981 ident: 4329_CR40 publication-title: Geoderma doi: 10.1016/0016-7061(81)90024-0 – volume: 31 start-page: 44 year: 2012 ident: 4329_CR70 publication-title: Chinese Journal of Ecology – volume: 19 start-page: 988 year: 2013 ident: 4329_CR14 publication-title: Glob Chang Biol doi: 10.1111/gcb.12113 – volume: 128 start-page: 115 year: 2019 ident: 4329_CR48 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.10.011 – volume: 305 start-page: 509 issue: 5683 year: 2004 ident: 4329_CR64 publication-title: Science doi: 10.1126/science.1098778 – volume: 10 start-page: 370 year: 2013 ident: 4329_CR66 publication-title: J Mt Sci doi: 10.1007/s11629-013-2328-y – start-page: 215 volume-title: Soil Biology year: 2010 ident: 4329_CR43 – volume: 14 start-page: 377 year: 1982 ident: 4329_CR21 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(82)90009-8 – ident: 4329_CR44 – ident: 4329_CR39 – volume: 139 start-page: 267 year: 2004 ident: 4329_CR47 publication-title: Oecologia doi: 10.1007/s00442-004-1501-y – volume: 43 start-page: 234 year: 2009 ident: 4329_CR67 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2009.08.002 – volume: 22 start-page: 698 year: 2004 ident: 4329_CR31 publication-title: Gongga Journal of Mountain Research – volume: 4 start-page: e1243 issue: 6 year: 2017 ident: 4329_CR52 publication-title: Wiley Interdisciplinary Reviews: Water doi: 10.1002/wat2.1243 – volume: 32 start-page: 500 year: 2000 ident: 4329_CR65 publication-title: Biol Fertil Soils doi: 10.1007/s003740000284 – volume: 179 start-page: 425 year: 2016 ident: 4329_CR5 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201600079 – volume: 20 start-page: 5 year: 2010 ident: 4329_CR60 publication-title: Ecol Appl doi: 10.1890/08-0127.1 – volume: 156 start-page: 989 year: 2011 ident: 4329_CR46 publication-title: Plant Physiol doi: 10.1104/pp.111.175448 – ident: 4329_CR56 – volume: 10 start-page: 867 year: 2011 ident: 4329_CR4 publication-title: Vadose Zone J doi: 10.2136/vzj2010.0129 – volume: 30 start-page: 272 issue: 2 year: 2020 ident: 4329_CR63 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60456-9 – volume: 135 start-page: 487 year: 2003 ident: 4329_CR26 publication-title: Oecologia doi: 10.1007/s00442-002-1164-5 – volume: 195 start-page: 251 year: 2013 ident: 4329_CR77 publication-title: Geoderma doi: 10.1016/j.geoderma.2012.12.010 – volume: 163 start-page: 197 year: 2011 ident: 4329_CR28 publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.010 |
SSID | ssj0003216 |
Score | 2.4436758 |
Snippet | Aims
We aimed to quantify the pool size of soil microbial biomass P (P
mic
) during the early stage of soil development up to 125 years after glacial retreat... Aims We aimed to quantify the pool size of soil microbial biomass P (P.sub.mic) during the early stage of soil development up to 125 years after glacial... AimsWe aimed to quantify the pool size of soil microbial biomass P (Pmic) during the early stage of soil development up to 125 years after glacial retreat in... AIMS: We aimed to quantify the pool size of soil microbial biomass P (Pₘᵢc) during the early stage of soil development up to 125 years after glacial retreat in... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 259 |
SubjectTerms | Analysis Biomass Biomedical and Life Sciences China chronosequences Competition Cycles Developmental stages Dilution Ecology Ecosystems Fluxes glaciation Glacier retreat Glaciers Isotope dilution method isotope dilution technique Life Sciences Litter fall microbial biomass Microorganisms Mineralization Mountains Phosphorus plant litter Plant Physiology Plant Sciences Regular Article Soil microbiology Soil microorganisms Soil Science & Conservation Soils Variation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEA5yKuiDaFVcPSWC4IMuNMkmu3mscsch6IsW-rZks5NTabul24L3__iHOpNmu_gTfChb6Gy67GSSbyYz3zD2YuqtKlq0NE_pagV4kVsv21xXzihXFd4Gine8_2Au5sW7hV6korB-yHYfjiTjSj0Wu-FORRkTFMxX0uaIHK9r9N0pkWsuZ8f1V8nY8JS-5NPSLlKpzJ_H-Gk7-nVR_u10NG4653fZnYQW-eyg3nvsGqwn7PbscpsYM2DCbrzpEN9dTdjNs0hAfXWfff_YfVnyFaXaNdBzfH_dCrjjK_e123JqqsW7wA_0S6Qjvvnc9fjZ7nt-KFvkCAs5EPcxR_R4CSTf06DtmGPEKYTLEcXjbOOQmpOSoI9QPKaC8UB_OI4eb9ksKffmAZufn316e5Gnbgy5V1bsclHZAKEUCOCmlUc_Q5qy0CI0rdCVVKANgLEQjCsbXQbtnJLNtAneNcTJ59RDdrLu1vCIcaODAAtelzhD8Gqlccoo37ShRf_NZEwMSql9oiqnjhnLeiRZJkXWqMg6KrL-lrFXx3s2B6KOf0q_JF3XZMU4snepGAGfj_iw6hm5VQKhps7Y6TAd6mTefS0V-pVlhctXxp4ff0bDpNMWt4ZujzKIRS0RoYqMvR6m0TjE35_t8f-JP2G3JMUAYljolJ3stnt4ikBp1zyLdvEDh6QMTg priority: 102 providerName: Springer Nature |
Title | Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants |
URI | https://link.springer.com/article/10.1007/s11104-019-04329-x https://www.proquest.com/docview/2349578319 https://www.proquest.com/docview/2551911751 |
Volume | 446 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2xLQc4IFhAG1gqIyFxgIgmjp34hFJoWYFYIaBSOUWOYy-gtilNKy3_hx_KTOK2AsQeokSK40SZDz-Px28AngyN4kmFlmYoXS2xJgqViatQZFpynSVGOYp3vD-XZ9Pk7UzMfMCt8WmVO5_YOuqqNhQjfxFzhPJphhrzcvUjpKpRtLrqS2gcQR9dcJb1oD8an3_4uPfFPG6Ln9JFOEzVzG-b6TbP4chHGRi0OMBjFV7-MTT97aD_WSltB6DJbbjlkSPLO1HfgWt2eQw384u1Z8-wx3B9VCPW-3kXfn2qv83ZgpLtStsw_IP1wjLNFvp7vWZUVovVjnUETCQltvpaN3istw3rNi4yBIbMEvsxQ_x4Yal9Q51WhywjRkFchjge9Y1ZX56UGpoWjLfJYMzRCw-9t4-s5pR9cw-mk_HnV2ehr8cQGq6iTRhlylmXRgjhhpnBmUYs00RErqwikcXcCmmtVNZJnZYidUJrHpfD0hldEiuf5veht6yX9gSYFC6yyhqRoo7gWcVSc8lNWbkKZ3AygGgnisJ4snKqmTEvDjTLJL4CxVe04isuA3i2f2bVUXVc2fopSbggO8aejfbbEfD7iBGryGliFSHYFAGc7pSg8AbeFAd1DODx_jaaJq236KWtt9gG0agiKtQogOc75Tl08f9ve3D1Gx_CjZhm_W0g6BR6m_XWPkJotCkH0M9Hr0cTOr_58m488PYwgKNpnP8G4roRYg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDgl4QDBAFAYYCcQDRCR24sQPCHWwqWNbhWCT-pY5jr0NtU1pWrH9PzzzN3KXH60Asbc9RI1U5xLpzufP57vvAF74Rokwx5lmKF0ttCbwlOG5FyVaCp2ERjmKdxwMZP8o_DSMhmvwq62FobTK1idWjjovDMXI33KBUD5O0GLeT7971DWKTlfbFhq1WezZix-4ZSvf7X5E_b7kfGf78EPfa7oKeEaoYO4FiXLWxQECET8xiJe5jMMocFkeRAkXNpLWSmWd1HEWxS7SWvDMz5zRGXHLaYFyr8F6KKTPO7C-tT34_GXp-wWvmq3SjefHatiU6dTFerjSUsYHHUYIrrzzP5bCvxeEf05mqwVv5w7cbpAq69WmdRfW7GQDbvVOZg1bh92A61sFYsuLe_Dza3E2YmNK7stsyVBjxdgyzcb6WzFj1MaLFY7VhE9kFWx6WpR4zRYlqwslGQJRZoltmSFePbE0viSh-SqriVHQmOG-Ae2b2aYdKg00Ffivks-YoxeupFePTEeU7XMfjq5EUw-gMykm9iEwGbnAKmuiGG0SfxWXWkhhstzluGOUXQhaVaSmIUenHh2jdEXrTOpLUX1ppb70vAuvl89Ma2qQS0e_Ig2n5DdQstFN-QN-HzFwpT3ayAUIbqMubLZGkDYOpUxX5t-F58u_0RXQ-Y6e2GKBYxD9KqJeDbrwpjWelYj_f9ujy9_4DG70Dw_20_3dwd5juMkp4lAFoTahM58t7BOEZfPsaTMXGBxf9fT7DfijSio |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCE4ICggDAUWCcQBrMa7fu0BoZQ2ailEFVApt-16vVtaJXGIE9H-H34Fv44ZPxIBorcerFjKem1pXt_MzgPgRddIEeYoaYbS1UJrAl8anvtRqmOh09BIR_GOT4N47yj8MIyGa_CrrYWhtMpWJ1aKOi8Mxci3uEAon6TIMVuuSYs43Om_m373aYIUnbS24zRqFjmwFz_QfSvf7u8grV9y3t_9-n7PbyYM-EbIYO4HqXTWJQGCkm5qEDvzOAmjwGV5EKVc2Ci2NpbWxTrJosRFWguedTNndEZ95rTAfa_BekJeUQfWt3cHh5-XdkDwavAq3fjdRA6bkp26cA-tLmV_0MGE4NI__8Ms_m0c_jmlrYxf_w7cblAr69VsdhfW7GQDbvVOZk3nDrsB17cLxJkX9-Dnl-J0xMaU6JfZkiH1irFlmo31WTFjNNKLFY7VzZ-IQ9j0W1HiNVuUrC6aZAhKmaXOywyx64ml9SVtmq8ynBgFkBn6EMjrzDajUWmhqRyBKhGNOXrhavfqkemIMn_uw9GVUOoBdCbFxD4EFkcusNKaKEH-xF_JYy1iYbLc5eg9xh4ELSmUaRql07yOkVq1eCbyKSSfqsinzj14vXxmWrcJuXT1K6KwIh2COxvdlELg91E3LtUjpy5AoBt5sNkygWqUS6lWouDB8-XfqBborEdPbLHANYiEJbVhDTx40zLPaov_f9ujy9_4DG6g2KmP-4ODx3CTU_ChikdtQmc-W9gniNDm2dNGFBgcX7X0_QZSrU5f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+microbes+become+a+major+pool+of+biological+phosphorus+during+the+early+stage+of+soil+development+with+little+evidence+of+competition+for+phosphorus+with+plants&rft.jtitle=Plant+and+soil&rft.au=Wang%2C+Jipeng&rft.au=Wu%2C+Yanhong&rft.au=Zhou%2C+Jun&rft.au=Bing%2C+Haijian&rft.date=2020-01-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=446&rft.issue=1-2&rft.spage=259&rft.epage=274&rft_id=info:doi/10.1007%2Fs11104-019-04329-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_019_04329_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |