Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants

Aims We aimed to quantify the pool size of soil microbial biomass P (P mic ) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P mic to the plant P (P plant ) pools in the ecosystem. Methods We determined the p...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 446; no. 1-2; pp. 259 - 274
Main Authors Wang, Jipeng, Wu, Yanhong, Zhou, Jun, Bing, Haijian, Sun, Hongyang, He, Qingqing, Li, Jingji, Wilcke, Wolfgang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims We aimed to quantify the pool size of soil microbial biomass P (P mic ) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P mic to the plant P (P plant ) pools in the ecosystem. Methods We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (P mic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. Results The size of the P mic pools (0.2–8.3 g m −2 ) in the organic layer and top 10 cm of the mineral soils was comparable to that of the P plant pools (0.3–9.1 g m −2 ) at all study sites along the Hailuogou chronosequence. Based on the literature, the P mic cycling at our study site (0.3–13.5 g m −2  year −1 if estimated based on temporal fluctuations of P mic , 5.2–268 g m −2  year −1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the P plant uptake (not detected-0.36 g m −2  year −1 ) and the P plant return by litterfall (not detected-0.16 g m −2  year −1 ). Although P mic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of P mic and plant-available P in soils and the P-rich status of plants and soil microbes. Conclusions Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that P mic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization.
AbstractList Aims We aimed to quantify the pool size of soil microbial biomass P (P.sub.mic) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P.sub.mic to the plant P (P.sub.plant) pools in the ecosystem. Methods We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (P.sub.mic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. Results The size of the P.sub.mic pools (0.2-8.3 g m.sup.-2) in the organic layer and top 10 cm of the mineral soils was comparable to that of the P.sub.plant pools (0.3-9.1 g m.sup.-2) at all study sites along the Hailuogou chronosequence. Based on the literature, the P.sub.mic cycling at our study site (0.3-13.5 g m.sup.-2 year.sup.-1 if estimated based on temporal fluctuations of P.sub.mic, 5.2-268 g m.sup.-2 year.sup.-1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the P.sub.plant uptake (not detected-0.36 g m.sup.-2 year.sup.-1) and the P.sub.plant return by litterfall (not detected-0.16 g m.sup.-2 year.sup.-1). Although P.sub.mic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of P.sub.mic and plant-available P in soils and the P-rich status of plants and soil microbes. Conclusions Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that P.sub.mic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization.
Aims We aimed to quantify the pool size of soil microbial biomass P (P mic ) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of P mic to the plant P (P plant ) pools in the ecosystem. Methods We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (P mic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. Results The size of the P mic pools (0.2–8.3 g m −2 ) in the organic layer and top 10 cm of the mineral soils was comparable to that of the P plant pools (0.3–9.1 g m −2 ) at all study sites along the Hailuogou chronosequence. Based on the literature, the P mic cycling at our study site (0.3–13.5 g m −2  year −1 if estimated based on temporal fluctuations of P mic , 5.2–268 g m −2  year −1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the P plant uptake (not detected-0.36 g m −2  year −1 ) and the P plant return by litterfall (not detected-0.16 g m −2  year −1 ). Although P mic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of P mic and plant-available P in soils and the P-rich status of plants and soil microbes. Conclusions Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that P mic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization.
AimsWe aimed to quantify the pool size of soil microbial biomass P (Pmic) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of Pmic to the plant P (Pplant) pools in the ecosystem.MethodsWe determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (Pmic cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes.ResultsThe size of the Pmic pools (0.2–8.3 g m−2) in the organic layer and top 10 cm of the mineral soils was comparable to that of the Pplant pools (0.3–9.1 g m−2) at all study sites along the Hailuogou chronosequence. Based on the literature, the Pmic cycling at our study site (0.3–13.5 g m−2 year−1 if estimated based on temporal fluctuations of Pmic, 5.2–268 g m−2 year−1 if estimated based on the isotope dilution method) was at least one order of magnitude larger than the Pplant uptake (not detected-0.36 g m−2 year−1) and the Pplant return by litterfall (not detected-0.16 g m−2 year−1). Although Pmic became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of Pmic and plant-available P in soils and the P-rich status of plants and soil microbes.ConclusionsSoil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that Pmic cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization.
AIMS: We aimed to quantify the pool size of soil microbial biomass P (Pₘᵢc) during the early stage of soil development up to 125 years after glacial retreat in the Gongga Mountains, China and relate the pool size of Pₘᵢc to the plant P (Pₚₗₐₙₜ) pools in the ecosystem. METHODS: We determined the pool sizes of P in soil microbes, plants and soils and the P fluxes with plant uptake and litterfall in successional ecosystems at five study sites along the 125-year Hailuogou glacial retreat chronosequence. Moreover, we estimated the flux of P cycled through microbial biomass (Pₘᵢc cycling) based on literature data. We also approached the likelihood of P competition between plants and soil microbes based on the P status of the plants, soils and soil microbes. RESULTS: The size of the Pₘᵢc pools (0.2–8.3 g m⁻²) in the organic layer and top 10 cm of the mineral soils was comparable to that of the Pₚₗₐₙₜ pools (0.3–9.1 g m⁻²) at all study sites along the Hailuogou chronosequence. Based on the literature, the Pₘᵢc cycling at our study site (0.3–13.5 g m⁻² year⁻¹ if estimated based on temporal fluctuations of Pₘᵢc, 5.2–268 g m⁻² year⁻¹ if estimated based on the isotope dilution method) was at least one order of magnitude larger than the Pₚₗₐₙₜ uptake (not detected-0.36 g m⁻² year⁻¹) and the Pₚₗₐₙₜ return by litterfall (not detected-0.16 g m⁻² year⁻¹). Although Pₘᵢc became a major pool of biological P, we did not find indications of P competition between plants and soil microbes as indicated by the positive relationships between the concentrations of Pₘᵢc and plant-available P in soils and the P-rich status of plants and soil microbes. CONCLUSIONS: Soil microbial biomass already becomes a major P pool in the early stage of soil development. Our estimations based on the literature suggest that Pₘᵢc cycling is probably the largest P flux in the studied up to 125-year ecosystems. Plants likely did not suffer P competition with microbes, in part due to the preferential decomposition of the P-rich compounds from dead microbial biomass which led to net P mineralization.
Audience Academic
Author He, Qingqing
Zhou, Jun
Li, Jingji
Wilcke, Wolfgang
Wu, Yanhong
Bing, Haijian
Wang, Jipeng
Sun, Hongyang
Author_xml – sequence: 1
  givenname: Jipeng
  surname: Wang
  fullname: Wang, Jipeng
  organization: College of Ecology and Environment, Chengdu University of Technology, Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Yanhong
  orcidid: 0000-0002-9803-0544
  surname: Wu
  fullname: Wu, Yanhong
  email: yhwu@imde.ac.cn
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 3
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 4
  givenname: Haijian
  surname: Bing
  fullname: Bing, Haijian
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 5
  givenname: Hongyang
  surname: Sun
  fullname: Sun, Hongyang
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 6
  givenname: Qingqing
  surname: He
  fullname: He, Qingqing
  organization: Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Jingji
  surname: Li
  fullname: Li, Jingji
  organization: College of Ecology and Environment, Chengdu University of Technology
– sequence: 8
  givenname: Wolfgang
  surname: Wilcke
  fullname: Wilcke, Wolfgang
  organization: Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT)
BookMark eNp9kc1q3TAQhU1JoTdpX6ArQTfdONFIlmUvQ-hPINBFW-hOyPboXl1ky5XkNHmfPmjl60IgiyCEkDjfmdGc8-Js8hMWxXugl0CpvIoAQKuSQlvSirO2fHhV7EBIXgrK67NiRylnJZXtrzfFeYxHut6h3hV_v3vryGj74DuMpMPej0g0GfXRBzJ774g3pLPe-b3ttSPzwce8wxLJsAQ77Uk6IEEd3COJSe9x1cfVdMB7dH4ecUrkj00H4mxKLmvv7YBTfxLmajMmm6yfiFkLPrmfkNnpKcW3xWujXcR3_8-L4ufnTz9uvpZ3377c3lzflT1vIZXQtAaNBKg5bfpaClbLSoDpBhAN4yhqxLpFU2vZCWmE1px1tDO97mTDqOYXxcfNdw7-94IxqdHGHl1uAv0SFRMCWgApIEs_PJMe_RKm3J1ivGqFbDi0WXW5qfbaobKT8SnoPq8B88hzhMbm9-saOIWKcZEBtgE5jxgDGjUHO-rwqICqNWm1Ja1y0uqUtHrIUPMM6m3S60xzNeteRvmGxnnNEsPTN16g_gE_vsN9
CitedBy_id crossref_primary_10_1016_j_catena_2021_105328
crossref_primary_10_1016_j_still_2024_106241
crossref_primary_10_1007_s00374_024_01860_7
crossref_primary_10_1016_j_apsoil_2023_105167
crossref_primary_10_1007_s11104_021_05250_y
crossref_primary_10_1016_j_agee_2024_109310
crossref_primary_10_1016_j_catena_2021_106000
crossref_primary_10_1007_s11104_020_04827_3
crossref_primary_10_1007_s11104_020_04462_y
crossref_primary_10_1016_j_scitotenv_2021_149193
crossref_primary_10_1016_j_soilbio_2021_108150
crossref_primary_10_1016_j_apsoil_2023_105253
crossref_primary_10_1016_j_rhisph_2021_100316
crossref_primary_10_1016_j_geoderma_2021_115376
crossref_primary_10_1021_acsearthspacechem_3c00049
crossref_primary_10_1016_j_soilbio_2021_108429
crossref_primary_10_1016_j_apsoil_2023_104848
crossref_primary_10_1016_j_chemosphere_2022_135334
crossref_primary_10_1016_j_geoderma_2020_114424
crossref_primary_10_1016_j_scitotenv_2023_164405
crossref_primary_10_1029_2022JG006795
crossref_primary_10_1002_ldr_5141
crossref_primary_10_1016_j_rhisph_2024_100904
crossref_primary_10_1016_j_scitotenv_2023_163050
crossref_primary_10_1007_s11104_024_07128_1
crossref_primary_10_1007_s11368_021_03064_0
Cites_doi 10.1007/BF00369306
10.1007/s11104-018-3839-7
10.1007/s00374-016-1123-7
10.1016/j.gca.2013.01.029
10.1111/geb.12029
10.2307/2937039
10.1007/s00374-013-0868-5
10.1038/nature08632
10.1111/ele.12113
10.1007/s11104-013-1750-9
10.1111/ele.12530
10.1016/j.soilbio.2010.08.023
10.1111/j.1461-0248.2009.01302.x
10.1021/es300311h
10.1016/j.geoderma.2015.12.024
10.1126/science.1231923
10.1016/j.soilbio.2003.10.002
10.1016/S0038-0717(01)00218-8
10.1038/aps.2014.143
10.1371/journal.pone.0042354
10.1146/annurev-ecolsys-071112-124414
10.1016/j.soilbio.2015.02.029
10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
10.1016/j.soilbio.2013.02.013
10.1038/nmicrobiol.2017.105
10.1016/j.foreco.2004.04.012
10.1007/s10021-007-9086-z
10.2307/1312897
10.1016/j.soilbio.2017.12.019
10.1016/j.geoderma.2010.04.027
10.1016/S0003-2670(00)88444-5
10.1016/0016-7061(76)90066-5
10.2136/sssaj1999.6351229x
10.1016/j.soilbio.2011.03.006
10.1016/j.geoderma.2012.06.033
10.1002/jpln.201500541
10.1016/j.soilbio.2017.04.009
10.1007/s10933-009-9382-z
10.3354/ame019139
10.1016/S0378-1127(02)00450-4
10.1126/sciadv.aaq0942
10.1007/s11104-013-1731-z
10.1051/forest/2009039
10.1038/s41598-017-01418-8
10.2136/sssabookser5.2.c37
10.1111/ejss.12536
10.1007/s10533-007-9132-0
10.1016/0016-7061(81)90024-0
10.1111/gcb.12113
10.1016/j.soilbio.2018.10.011
10.1126/science.1098778
10.1007/s11629-013-2328-y
10.1016/0038-0717(82)90009-8
10.1007/s00442-004-1501-y
10.1016/j.apsoil.2009.08.002
10.1002/wat2.1243
10.1007/s003740000284
10.1002/jpln.201600079
10.1890/08-0127.1
10.1104/pp.111.175448
10.2136/vzj2010.0129
10.1016/S1002-0160(17)60456-9
10.1007/s00442-002-1164-5
10.1016/j.geoderma.2012.12.010
10.1016/j.geoderma.2011.04.010
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
COPYRIGHT 2020 Springer
Plant and Soil is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: COPYRIGHT 2020 Springer
– notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-019-04329-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Agricultural Science Database
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 274
ExternalDocumentID A613014235
10_1007_s11104_019_04329_x
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201708515106
  funderid: http://dx.doi.org/10.13039/501100004543
– fundername: Department of Science and Technology of Sichuan Province
  grantid: 18YYJC0163
  funderid: http://dx.doi.org/10.13039/501100004829
– fundername: National Natural Science Foundation of China
  grantid: 41630751; 41701288; 41877011
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c391t-189fef7116308c675267451fbd15823e56ee69ef6a7b57f5aa32b0bfcab7820a3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Thu Jul 10 23:19:10 EDT 2025
Fri Jul 25 09:01:34 EDT 2025
Tue Jun 10 20:18:56 EDT 2025
Tue Jul 01 01:47:07 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Fri Feb 21 02:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Hailuogou chronosequence
Primary succession
Phosphomonoesterase
Soil microbial biomass
Phosphorus cycling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-189fef7116308c675267451fbd15823e56ee69ef6a7b57f5aa32b0bfcab7820a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9803-0544
PQID 2349578319
PQPubID 54098
PageCount 16
ParticipantIDs proquest_miscellaneous_2551911751
proquest_journals_2349578319
gale_infotracacademiconefile_A613014235
crossref_primary_10_1007_s11104_019_04329_x
crossref_citationtrail_10_1007_s11104_019_04329_x
springer_journals_10_1007_s11104_019_04329_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Zederer, Talkner, Spohn, Joergensen (CR72) 2017; 111
Li, Cheng, Luo, Lu, Liao (CR31) 2004; 22
Allen, Gillooly (CR3) 2009; 12
Sinsabaugh, Manzoni, Moorhead, Richter (CR50) 2013; 16
Göransson, Olde Venterink, Bååth (CR19) 2011; 43
Zhou (CR75) 2016; 267
Clemmensen (CR12) 2013; 339
CR39
Wu, He, Wei, O'Donnell, Syers (CR65) 2000; 32
CR36
WANG, WU, ZHOU, BING, SUN, LUO, PU (CR63) 2020; 30
Liang, Schimel, Jastrow (CR33) 2017; 2
Chadwick, Derry, Vitousek, Huebert, Hedin (CR8) 1999; 397
Jiang, Lei, Yang, Korpelainen, Niinemets, Li (CR25) 2018; 118
Jenkinson, Brookes, Powlson (CR24) 2004; 36
CR73
Zhou, Sun, Wang, He, Bing, Wu (CR76) 2018; 433
Tamburini, Pfahler, Buenemann, Guelland, Bernasconi, Frossard (CR55) 2012; 46
Cleveland, Liptzin (CR13) 2007; 85
Walker, Syers (CR61) 1976; 15
Cotrufo, Wallenstein, Boot, Denef, Paul (CR14) 2013; 19
Clarholm (CR11) 1993; 16
Yang, Wang, Yang, Yang (CR70) 2012; 31
Yang (CR71) 2015; 52
Kirkby, Kirkegaard, Richardson, Wade, Blanchard, Batten (CR28) 2011; 163
Lang (CR30) 2016; 179
Bernasconi (CR4) 2011; 10
Achat, Bakker, Saur, Pellerin, Augusto, Morel (CR1) 2010; 158
Elser, Dobberfuhl, MacKay, Schampel (CR18) 1996; 46
CR44
Hedley, Stewart (CR21) 1982; 14
Richardson, Peltzer, Allen, McGlone, Parfitt (CR47) 2004; 139
Wu, Zhou, Bing, Sun, Wang (CR68) 2015; 3
Li, Xiong (CR32) 1995; 12
Wang, Wu, Zhou, Bing, Sun (CR62) 2016; 52
Liebisch, Keller, Huguenin-Elie, Frossard, Oberson, Bünemann (CR34) 2014; 50
Rosinger, Rousk, Sandén (CR48) 2019; 128
Margalef (CR38) 2017; 7
Vitousek, Porder, Houlton, Chadwick (CR60) 2010; 20
Kouno, Wu, Brookes (CR29) 2002; 34
Bowman, Bahn, Damm (CR6) 2003; 35
Hoppe, Ullrich (CR23) 1999; 19
Jonard, Augusto, Morel, Achat, Saur (CR27) 2009; 66
Sohrt, Lang, Weiler (CR52) 2017; 4
Zhou (CR77) 2013; 195
CR15
Wardle (CR64) 2004; 305
CR58
Hacker (CR20) 2015; 18
CR56
Heuck, Weig, Spohn (CR22) 2015; 85
Myers, Thien, Pierzynski (CR42) 1999; 63
CR54
Darcy, Schmidt, Knelman, Cleveland, Castle, Nemergut (CR16) 2018; 4
Spohn, Kuzyakov (CR53) 2013; 61
Vincent, Vestergren, Grobner, Persson, Schleucher, Giesler (CR59) 2013; 367
Bol (CR5) 2016; 179
Chen, Condron, Davis, Sherlock (CR10) 2003; 177
Xu, Thornton, Post (CR69) 2013; 22
Turner, Condron, Richardson, Peltzer, Allison (CR57) 2007; 10
Egli, Filip, Mavris, Fischer, Götze, Raimondi, Seibert (CR17) 2012; 189–190
Luo, Cheng, Li, He (CR37) 2005; 27
Richardson, Simpson (CR46) 2011; 156
Sinsabaugh, Shah (CR51) 2012; 43
Murphy, Riley (CR41) 1962; 27
Wu, Ma, Zhou, Wang, Xu, Kemmitt, Brookes (CR67) 2009; 43
Johnson, Frizano, Vann (CR26) 2003; 135
McGill, Cole (CR40) 1981; 26
Nannipieri, Giagnoni, Landi, Renella (CR43) 2010
Liu, Shen, Zhang, Wu, Yang (CR35) 2010; 44
Achat, Morel, Bakker, Augusto, Pellerin, Gallet-Budynek, Gonzalez (CR2) 2010; 42
Brandtberg, Bengtsson, Lundkvist (CR7) 2004; 198
Sinsabaugh, Hill, Shah (CR49) 2009; 462
Zhou, Bing, Wu, Sun, Wang (CR74) 2018; 69
Chapin, Walker, Fastie, Sharman (CR9) 1994; 64
Prietzel, Dümig, Wu, Zhou, Klysubun (CR45) 2013; 108
Wu, Li, Zhou, Cao (CR66) 2013; 10
DL Achat (4329_CR2) 2010; 42
Y Wu (4329_CR68) 2015; 3
RL Sinsabaugh (4329_CR49) 2009; 462
J Murphy (4329_CR41) 1962; 27
O Margalef (4329_CR38) 2017; 7
AE Richardson (4329_CR46) 2011; 156
H-G Hoppe (4329_CR23) 1999; 19
N Hacker (4329_CR20) 2015; 18
X Li (4329_CR32) 1995; 12
RL Sinsabaugh (4329_CR50) 2013; 16
F Tamburini (4329_CR55) 2012; 46
4329_CR44
OA Chadwick (4329_CR8) 1999; 397
CA Kirkby (4329_CR28) 2011; 163
RG Myers (4329_CR42) 1999; 63
CR Chen (4329_CR10) 2003; 177
MF Cotrufo (4329_CR14) 2013; 19
Y Jiang (4329_CR25) 2018; 118
John L. Darcy (4329_CR16) 2018; 4
M Hedley (4329_CR21) 1982; 14
J Luo (4329_CR37) 2005; 27
W Li (4329_CR31) 2004; 22
Jipeng WANG (4329_CR63) 2020; 30
P. Nannipieri (4329_CR43) 2010
4329_CR56
Jörg Prietzel (4329_CR45) 2013; 108
4329_CR58
4329_CR15
C Rosinger (4329_CR48) 2019; 128
R Bol (4329_CR5) 2016; 179
X Xu (4329_CR69) 2013; 22
FS Chapin (4329_CR9) 1994; 64
4329_CR54
CC Cleveland (4329_CR13) 2007; 85
Y Wu (4329_CR66) 2013; 10
K Kouno (4329_CR29) 2002; 34
F Liebisch (4329_CR34) 2014; 50
Y Wu (4329_CR67) 2009; 43
J Zhou (4329_CR76) 2018; 433
M Egli (4329_CR17) 2012; 189–190
T Walker (4329_CR61) 1976; 15
D. A. Wardle (4329_CR64) 2004; 305
J Wang (4329_CR62) 2016; 52
AP Allen (4329_CR3) 2009; 12
Z Yang (4329_CR71) 2015; 52
WB McGill (4329_CR40) 1981; 26
M Spohn (4329_CR53) 2013; 61
SM Bernasconi (4329_CR4) 2011; 10
M Jonard (4329_CR27) 2009; 66
E Liu (4329_CR35) 2010; 44
J Wu (4329_CR65) 2000; 32
J Zhou (4329_CR77) 2013; 195
J Zhou (4329_CR75) 2016; 267
C Liang (4329_CR33) 2017; 2
Jakob Sohrt (4329_CR52) 2017; 4
AG Vincent (4329_CR59) 2013; 367
M Clarholm (4329_CR11) 1993; 16
C Heuck (4329_CR22) 2015; 85
SJ Richardson (4329_CR47) 2004; 139
DL Achat (4329_CR1) 2010; 158
WD Bowman (4329_CR6) 2003; 35
BL Turner (4329_CR57) 2007; 10
H Göransson (4329_CR19) 2011; 43
KE Clemmensen (4329_CR12) 2013; 339
PM Vitousek (4329_CR60) 2010; 20
J Zhou (4329_CR74) 2018; 69
4329_CR36
DP Zederer (4329_CR72) 2017; 111
AH Johnson (4329_CR26) 2003; 135
4329_CR39
P-O Brandtberg (4329_CR7) 2004; 198
JJ Elser (4329_CR18) 1996; 46
F Lang (4329_CR30) 2016; 179
DS Jenkinson (4329_CR24) 2004; 36
RL Sinsabaugh (4329_CR51) 2012; 43
4329_CR73
L Yang (4329_CR70) 2012; 31
References_xml – volume: 32
  start-page: 500
  year: 2000
  end-page: 507
  ident: CR65
  article-title: Quantifying microbial biomass phosphorus in acid soils
  publication-title: Biol Fertil Soils
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  ident: CR13
  article-title: C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 26
  start-page: 267
  year: 1981
  end-page: 286
  ident: CR40
  article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic-matter
  publication-title: Geoderma
– volume: 10
  start-page: 370
  year: 2013
  end-page: 377
  ident: CR66
  article-title: Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades
  publication-title: J Mt Sci
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  ident: CR14
  article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Glob Chang Biol
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  ident: CR12
  article-title: Roots and associated Fungi drive long-term carbon sequestration in boreal Forest
  publication-title: Science
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  ident: CR60
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
  publication-title: Ecol Appl
– ident: CR39
– volume: 36
  start-page: 5
  year: 2004
  end-page: 7
  ident: CR24
  article-title: Measuring soil microbial biomass
  publication-title: Soil Biol Biochem
– start-page: 215
  year: 2010
  end-page: 243
  ident: CR43
  article-title: Role of Phosphatase Enzymes in Soil
  publication-title: Soil Biology
– volume: 27
  start-page: 13
  year: 2005
  end-page: 17
  ident: CR37
  article-title: Characteristics of nutrient biocycling of natural forests on the Gongga Mountain
  publication-title: Journal of Beijing Forestry University
– volume: 69
  start-page: 450
  year: 2018
  end-page: 461
  ident: CR74
  article-title: Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou glacier foreland chronosequence
  publication-title: Eur J Soil Sci
– volume: 10
  start-page: 867
  year: 2011
  end-page: 883
  ident: CR4
  article-title: Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland
  publication-title: Vadose Zone J
– volume: 22
  start-page: 698
  year: 2004
  end-page: 701
  ident: CR31
  article-title: Features of the natural runoff of Hailuo ravine in Mt
  publication-title: Gongga Journal of Mountain Research
– ident: CR54
– volume: 22
  start-page: 737
  year: 2013
  end-page: 749
  ident: CR69
  article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems
  publication-title: Glob Ecol Biogeogr
– volume: 50
  start-page: 465
  year: 2014
  end-page: 475
  ident: CR34
  article-title: Seasonal dynamics and turnover of microbial phosphorusin a permanent grassland
  publication-title: Biol Fertil Soils
– ident: CR58
– volume: 14
  start-page: 377
  year: 1982
  end-page: 385
  ident: CR21
  article-title: Method to measure microbial phosphate in soils
  publication-title: Soil Biol Biochem
– volume: 108
  start-page: 154
  year: 2013
  end-page: 171
  ident: CR45
  article-title: Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences
  publication-title: Geochimica et Cosmochimica Acta
– volume: 35
  start-page: 144
  year: 2003
  end-page: 149
  ident: CR6
  article-title: Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability
  publication-title: Arct Antarct Alp Res
– volume: 15
  start-page: 1
  year: 1976
  end-page: 19
  ident: CR61
  article-title: The fate of phosphorus during pedogenesis
  publication-title: Geoderma
– volume: 85
  start-page: 119
  year: 2015
  end-page: 129
  ident: CR22
  article-title: Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus
  publication-title: Soil Biol Biochem
– volume: 4
  start-page: eaaq0942
  issue: 5
  year: 2018
  ident: CR16
  article-title: Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat
  publication-title: Science Advances
– volume: 3
  year: 2015
  ident: CR68
  article-title: Rapid loss of phosphorus during early pedogenesis along a glacier retreat choronosequence, Gongga Mountain (SW China)
  publication-title: PeerJ
– volume: 12
  start-page: 109
  year: 1995
  end-page: 115
  ident: CR32
  article-title: Vegetation primary succession on glacier foreland in Hailuogou, Mt. Gongga
  publication-title: Mountain Research
– volume: 135
  start-page: 487
  year: 2003
  end-page: 499
  ident: CR26
  article-title: Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure
  publication-title: Oecologia
– ident: CR15
– volume: 195
  start-page: 251
  year: 2013
  end-page: 259
  ident: CR77
  article-title: Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou glacier retreat area (Gongga Mountain, SW China)
  publication-title: Geoderma
– volume: 198
  start-page: 193
  year: 2004
  end-page: 208
  ident: CR7
  article-title: Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands
  publication-title: For Ecol Manag
– volume: 118
  start-page: 207
  year: 2018
  end-page: 216
  ident: CR25
  article-title: Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence
  publication-title: Soil Biol Biochem
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: CR41
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal Chim Acta
– volume: 179
  start-page: 425
  year: 2016
  end-page: 438
  ident: CR5
  article-title: Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research
  publication-title: J Plant Nutr Soil Sci
– volume: 18
  start-page: 1356
  year: 2015
  end-page: 1365
  ident: CR20
  article-title: Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil
  publication-title: Ecol Lett
– volume: 433
  start-page: 1
  year: 2018
  end-page: 5
  ident: CR76
  article-title: Comments on “unravelling community assemblages through multi-element stoichiometry in plant leaves and roots across primary successional stages in a glacier retreat area” by Jiang et al
  publication-title: Plant Soil
– volume: 139
  start-page: 267
  year: 2004
  end-page: 276
  ident: CR47
  article-title: Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence
  publication-title: Oecologia
– volume: 64
  start-page: 149
  year: 1994
  end-page: 175
  ident: CR9
  article-title: Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska
  publication-title: Ecol Monogr
– ident: CR36
– volume: 163
  start-page: 197
  year: 2011
  end-page: 208
  ident: CR28
  article-title: Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils
  publication-title: Geoderma
– volume: 31
  start-page: 44
  year: 2012
  end-page: 50
  ident: CR70
  article-title: Responses of leaf functional traits and nitrogen and phosphorus stoichiometry in Abies fabiri seedlings in Gongga Mountain to simulated nitrogen deposition
  publication-title: Chinese Journal of Ecology
– volume: 66
  start-page: 510
  year: 2009
  end-page: 510
  ident: CR27
  article-title: Forest floor contribution to phosphorus nutrition: experimental data
  publication-title: Ann For Sci
– volume: 30
  start-page: 272
  issue: 2
  year: 2020
  end-page: 284
  ident: CR63
  article-title: Air-drying changes the distribution of Hedley phosphorus pools in forest soils
  publication-title: Pedosphere
– volume: 111
  start-page: 166
  year: 2017
  end-page: 175
  ident: CR72
  article-title: Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and a horizons as affected by tree species
  publication-title: Soil Biol Biochem
– volume: 2
  start-page: 17105
  year: 2017
  ident: CR33
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat Microbiol
– volume: 128
  start-page: 115
  year: 2019
  end-page: 126
  ident: CR48
  article-title: Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-a critical assessment in two subtropical soils
  publication-title: Soil Biol Biochem
– volume: 43
  start-page: 1333
  year: 2011
  end-page: 1340
  ident: CR19
  article-title: Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield
  publication-title: Soil Biol Biochem
– volume: 63
  start-page: 1229
  year: 1999
  end-page: 1237
  ident: CR42
  article-title: Using an ion sink to extract microbial phosphorus from soil
  publication-title: Soil Sci Soc Am J
– volume: 305
  start-page: 509
  issue: 5683
  year: 2004
  end-page: 513
  ident: CR64
  article-title: Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences
  publication-title: Science
– volume: 52
  start-page: 825
  year: 2016
  end-page: 839
  ident: CR62
  article-title: Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development
  publication-title: Biol Fertil Soils
– volume: 10
  start-page: 1166
  year: 2007
  end-page: 1181
  ident: CR57
  article-title: Soil organic phosphorus transformations during pedogenesis
  publication-title: Ecosystems
– volume: 12
  start-page: 369
  year: 2009
  end-page: 384
  ident: CR3
  article-title: Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling
  publication-title: Ecol Lett
– volume: 158
  start-page: 163
  year: 2010
  end-page: 172
  ident: CR1
  article-title: Quantifying gross mineralisation of P in dead soil organic matter: testing an isotopic dilution method
  publication-title: Geoderma
– volume: 179
  start-page: 129
  year: 2016
  end-page: 135
  ident: CR30
  article-title: Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective
  publication-title: J Plant Nutr Soil Sci
– volume: 46
  start-page: 5956
  year: 2012
  end-page: 5962
  ident: CR55
  article-title: Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils
  publication-title: Environ Sci Technol
– volume: 42
  start-page: 2231
  year: 2010
  end-page: 2240
  ident: CR2
  article-title: Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model
  publication-title: Soil Biol Biochem
– volume: 34
  start-page: 617
  year: 2002
  end-page: 622
  ident: CR29
  article-title: Turnover of biomass C and P in soil following incorporation of glucose or ryegrass
  publication-title: Soil Biol Biochem
– volume: 156
  start-page: 989
  year: 2011
  end-page: 996
  ident: CR46
  article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus
  publication-title: Plant Physiol
– ident: CR56
– volume: 189–190
  start-page: 215
  year: 2012
  end-page: 226
  ident: CR17
  article-title: Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier forefield
  publication-title: Geoderma
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  ident: CR50
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecol Lett
– volume: 43
  start-page: 234
  year: 2009
  end-page: 240
  ident: CR67
  article-title: Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis
  publication-title: Appl Soil Ecol
– volume: 19
  start-page: 139
  year: 1999
  end-page: 148
  ident: CR23
  article-title: Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone
  publication-title: Aquat Microb Ecol
– ident: CR44
– volume: 16
  start-page: 287
  year: 1993
  end-page: 292
  ident: CR11
  article-title: Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers
  publication-title: Biol Fertil Soils
– volume: 4
  start-page: e1243
  issue: 6
  year: 2017
  ident: CR52
  article-title: Quantifying components of the phosphorus cycle in temperate forests
  publication-title: Wiley Interdisciplinary Reviews: Water
– volume: 44
  start-page: 15
  year: 2010
  end-page: 24
  ident: CR35
  article-title: A geochemical record of recent anthropogenic nutrient loading and enhanced productivity in Lake Nansihu
  publication-title: China J Paleolimnol
– ident: CR73
– volume: 267
  start-page: 78
  year: 2016
  end-page: 91
  ident: CR75
  article-title: Rapid weathering processes of a 120-year-old chronosequence in the Hailuogou glacier foreland, Mt. Gongga, SW China
  publication-title: Geoderma
– volume: 7
  start-page: 1337
  year: 2017
  ident: CR38
  article-title: Global patterns of phosphatase activity in natural soils
  publication-title: Sci Rep
– volume: 52
  start-page: 507
  year: 2015
  end-page: 516
  ident: CR71
  article-title: Variation of mineral composition along the soil chronosequence at the Hailuogou glacier foreland of Gongga Mountain
  publication-title: Acta Pedol Sin
– volume: 46
  start-page: 674
  year: 1996
  end-page: 684
  ident: CR18
  article-title: Organism size, life history, and N: P stoichiometry
  publication-title: Bioscience
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: CR49
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 397
  start-page: 491
  year: 1999
  ident: CR8
  publication-title: Changing sources of nutrients during four million years of ecosystem development Nature
– volume: 177
  start-page: 539
  year: 2003
  end-page: 557
  ident: CR10
  article-title: Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand
  publication-title: For Ecol Manag
– volume: 367
  start-page: 149
  year: 2013
  end-page: 162
  ident: CR59
  article-title: Soil organic phosphorus transformations in a boreal forest chronosequence
  publication-title: Plant Soil
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  ident: CR51
  article-title: Ecoenzymatic stoichiometry and ecological theory annual review of ecology
  publication-title: Evolution, and Systematics
– volume: 61
  start-page: 69
  year: 2013
  end-page: 75
  ident: CR53
  article-title: Phosphorus mineralization can be driven by microbial need for carbon
  publication-title: Soil Biol Biochem
– volume: 16
  start-page: 287
  year: 1993
  ident: 4329_CR11
  publication-title: Biol Fertil Soils
  doi: 10.1007/BF00369306
– volume: 433
  start-page: 1
  year: 2018
  ident: 4329_CR76
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3839-7
– volume: 52
  start-page: 825
  year: 2016
  ident: 4329_CR62
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-016-1123-7
– volume: 108
  start-page: 154
  year: 2013
  ident: 4329_CR45
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2013.01.029
– volume: 22
  start-page: 737
  year: 2013
  ident: 4329_CR69
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/geb.12029
– volume: 64
  start-page: 149
  year: 1994
  ident: 4329_CR9
  publication-title: Ecol Monogr
  doi: 10.2307/2937039
– volume: 50
  start-page: 465
  year: 2014
  ident: 4329_CR34
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-013-0868-5
– volume: 462
  start-page: 795
  year: 2009
  ident: 4329_CR49
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 16
  start-page: 930
  year: 2013
  ident: 4329_CR50
  publication-title: Ecol Lett
  doi: 10.1111/ele.12113
– ident: 4329_CR58
  doi: 10.1007/s11104-013-1750-9
– volume: 18
  start-page: 1356
  year: 2015
  ident: 4329_CR20
  publication-title: Ecol Lett
  doi: 10.1111/ele.12530
– volume: 42
  start-page: 2231
  year: 2010
  ident: 4329_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.08.023
– volume: 12
  start-page: 369
  year: 2009
  ident: 4329_CR3
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2009.01302.x
– volume: 46
  start-page: 5956
  year: 2012
  ident: 4329_CR55
  publication-title: Environ Sci Technol
  doi: 10.1021/es300311h
– volume: 267
  start-page: 78
  year: 2016
  ident: 4329_CR75
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.024
– volume: 339
  start-page: 1615
  year: 2013
  ident: 4329_CR12
  publication-title: Science
  doi: 10.1126/science.1231923
– volume: 36
  start-page: 5
  year: 2004
  ident: 4329_CR24
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2003.10.002
– volume: 34
  start-page: 617
  year: 2002
  ident: 4329_CR29
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00218-8
– volume: 52
  start-page: 507
  year: 2015
  ident: 4329_CR71
  publication-title: Acta Pedol Sin
  doi: 10.1038/aps.2014.143
– ident: 4329_CR36
  doi: 10.1371/journal.pone.0042354
– volume: 43
  start-page: 313
  year: 2012
  ident: 4329_CR51
  publication-title: Evolution, and Systematics
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 12
  start-page: 109
  year: 1995
  ident: 4329_CR32
  publication-title: Mountain Research
– volume: 3
  year: 2015
  ident: 4329_CR68
  publication-title: PeerJ
– volume: 85
  start-page: 119
  year: 2015
  ident: 4329_CR22
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.02.029
– volume: 35
  start-page: 144
  year: 2003
  ident: 4329_CR6
  publication-title: Arct Antarct Alp Res
  doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
– volume: 61
  start-page: 69
  year: 2013
  ident: 4329_CR53
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.02.013
– volume: 2
  start-page: 17105
  year: 2017
  ident: 4329_CR33
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.105
– volume: 397
  start-page: 491
  year: 1999
  ident: 4329_CR8
  publication-title: Changing sources of nutrients during four million years of ecosystem development Nature
– volume: 198
  start-page: 193
  year: 2004
  ident: 4329_CR7
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2004.04.012
– volume: 10
  start-page: 1166
  year: 2007
  ident: 4329_CR57
  publication-title: Ecosystems
  doi: 10.1007/s10021-007-9086-z
– volume: 46
  start-page: 674
  year: 1996
  ident: 4329_CR18
  publication-title: Bioscience
  doi: 10.2307/1312897
– volume: 118
  start-page: 207
  year: 2018
  ident: 4329_CR25
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.12.019
– volume: 27
  start-page: 13
  year: 2005
  ident: 4329_CR37
  publication-title: Journal of Beijing Forestry University
– volume: 158
  start-page: 163
  year: 2010
  ident: 4329_CR1
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.04.027
– volume: 27
  start-page: 31
  year: 1962
  ident: 4329_CR41
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 15
  start-page: 1
  year: 1976
  ident: 4329_CR61
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– volume: 63
  start-page: 1229
  year: 1999
  ident: 4329_CR42
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1999.6351229x
– volume: 43
  start-page: 1333
  year: 2011
  ident: 4329_CR19
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.03.006
– ident: 4329_CR15
– volume: 189–190
  start-page: 215
  year: 2012
  ident: 4329_CR17
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.033
– volume: 179
  start-page: 129
  year: 2016
  ident: 4329_CR30
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201500541
– volume: 111
  start-page: 166
  year: 2017
  ident: 4329_CR72
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.04.009
– volume: 44
  start-page: 15
  year: 2010
  ident: 4329_CR35
  publication-title: China J Paleolimnol
  doi: 10.1007/s10933-009-9382-z
– volume: 19
  start-page: 139
  year: 1999
  ident: 4329_CR23
  publication-title: Aquat Microb Ecol
  doi: 10.3354/ame019139
– ident: 4329_CR73
– volume: 177
  start-page: 539
  year: 2003
  ident: 4329_CR10
  publication-title: For Ecol Manag
  doi: 10.1016/S0378-1127(02)00450-4
– volume: 4
  start-page: eaaq0942
  issue: 5
  year: 2018
  ident: 4329_CR16
  publication-title: Science Advances
  doi: 10.1126/sciadv.aaq0942
– volume: 367
  start-page: 149
  year: 2013
  ident: 4329_CR59
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1731-z
– volume: 66
  start-page: 510
  year: 2009
  ident: 4329_CR27
  publication-title: Ann For Sci
  doi: 10.1051/forest/2009039
– volume: 7
  start-page: 1337
  year: 2017
  ident: 4329_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01418-8
– ident: 4329_CR54
  doi: 10.2136/sssabookser5.2.c37
– volume: 69
  start-page: 450
  year: 2018
  ident: 4329_CR74
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12536
– volume: 85
  start-page: 235
  year: 2007
  ident: 4329_CR13
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9132-0
– volume: 26
  start-page: 267
  year: 1981
  ident: 4329_CR40
  publication-title: Geoderma
  doi: 10.1016/0016-7061(81)90024-0
– volume: 31
  start-page: 44
  year: 2012
  ident: 4329_CR70
  publication-title: Chinese Journal of Ecology
– volume: 19
  start-page: 988
  year: 2013
  ident: 4329_CR14
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12113
– volume: 128
  start-page: 115
  year: 2019
  ident: 4329_CR48
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.10.011
– volume: 305
  start-page: 509
  issue: 5683
  year: 2004
  ident: 4329_CR64
  publication-title: Science
  doi: 10.1126/science.1098778
– volume: 10
  start-page: 370
  year: 2013
  ident: 4329_CR66
  publication-title: J Mt Sci
  doi: 10.1007/s11629-013-2328-y
– start-page: 215
  volume-title: Soil Biology
  year: 2010
  ident: 4329_CR43
– volume: 14
  start-page: 377
  year: 1982
  ident: 4329_CR21
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(82)90009-8
– ident: 4329_CR44
– ident: 4329_CR39
– volume: 139
  start-page: 267
  year: 2004
  ident: 4329_CR47
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1501-y
– volume: 43
  start-page: 234
  year: 2009
  ident: 4329_CR67
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2009.08.002
– volume: 22
  start-page: 698
  year: 2004
  ident: 4329_CR31
  publication-title: Gongga Journal of Mountain Research
– volume: 4
  start-page: e1243
  issue: 6
  year: 2017
  ident: 4329_CR52
  publication-title: Wiley Interdisciplinary Reviews: Water
  doi: 10.1002/wat2.1243
– volume: 32
  start-page: 500
  year: 2000
  ident: 4329_CR65
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740000284
– volume: 179
  start-page: 425
  year: 2016
  ident: 4329_CR5
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201600079
– volume: 20
  start-page: 5
  year: 2010
  ident: 4329_CR60
  publication-title: Ecol Appl
  doi: 10.1890/08-0127.1
– volume: 156
  start-page: 989
  year: 2011
  ident: 4329_CR46
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175448
– ident: 4329_CR56
– volume: 10
  start-page: 867
  year: 2011
  ident: 4329_CR4
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2010.0129
– volume: 30
  start-page: 272
  issue: 2
  year: 2020
  ident: 4329_CR63
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60456-9
– volume: 135
  start-page: 487
  year: 2003
  ident: 4329_CR26
  publication-title: Oecologia
  doi: 10.1007/s00442-002-1164-5
– volume: 195
  start-page: 251
  year: 2013
  ident: 4329_CR77
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.12.010
– volume: 163
  start-page: 197
  year: 2011
  ident: 4329_CR28
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.010
SSID ssj0003216
Score 2.4436758
Snippet Aims We aimed to quantify the pool size of soil microbial biomass P (P mic ) during the early stage of soil development up to 125 years after glacial retreat...
Aims We aimed to quantify the pool size of soil microbial biomass P (P.sub.mic) during the early stage of soil development up to 125 years after glacial...
AimsWe aimed to quantify the pool size of soil microbial biomass P (Pmic) during the early stage of soil development up to 125 years after glacial retreat in...
AIMS: We aimed to quantify the pool size of soil microbial biomass P (Pₘᵢc) during the early stage of soil development up to 125 years after glacial retreat in...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 259
SubjectTerms Analysis
Biomass
Biomedical and Life Sciences
China
chronosequences
Competition
Cycles
Developmental stages
Dilution
Ecology
Ecosystems
Fluxes
glaciation
Glacier retreat
Glaciers
Isotope dilution method
isotope dilution technique
Life Sciences
Litter fall
microbial biomass
Microorganisms
Mineralization
Mountains
Phosphorus
plant litter
Plant Physiology
Plant Sciences
Regular Article
Soil microbiology
Soil microorganisms
Soil Science & Conservation
Soils
Variation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fixMxEA5yKuiDaFVcPSWC4IMuNMkmu3mscsch6IsW-rZks5NTabul24L3__iHOpNmu_gTfChb6Gy67GSSbyYz3zD2YuqtKlq0NE_pagV4kVsv21xXzihXFd4Gine8_2Au5sW7hV6korB-yHYfjiTjSj0Wu-FORRkTFMxX0uaIHK9r9N0pkWsuZ8f1V8nY8JS-5NPSLlKpzJ_H-Gk7-nVR_u10NG4653fZnYQW-eyg3nvsGqwn7PbscpsYM2DCbrzpEN9dTdjNs0hAfXWfff_YfVnyFaXaNdBzfH_dCrjjK_e123JqqsW7wA_0S6Qjvvnc9fjZ7nt-KFvkCAs5EPcxR_R4CSTf06DtmGPEKYTLEcXjbOOQmpOSoI9QPKaC8UB_OI4eb9ksKffmAZufn316e5Gnbgy5V1bsclHZAKEUCOCmlUc_Q5qy0CI0rdCVVKANgLEQjCsbXQbtnJLNtAneNcTJ59RDdrLu1vCIcaODAAtelzhD8Gqlccoo37ShRf_NZEwMSql9oiqnjhnLeiRZJkXWqMg6KrL-lrFXx3s2B6KOf0q_JF3XZMU4snepGAGfj_iw6hm5VQKhps7Y6TAd6mTefS0V-pVlhctXxp4ff0bDpNMWt4ZujzKIRS0RoYqMvR6m0TjE35_t8f-JP2G3JMUAYljolJ3stnt4ikBp1zyLdvEDh6QMTg
  priority: 102
  providerName: Springer Nature
Title Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants
URI https://link.springer.com/article/10.1007/s11104-019-04329-x
https://www.proquest.com/docview/2349578319
https://www.proquest.com/docview/2551911751
Volume 446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2xLQc4IFhAG1gqIyFxgIgmjp34hFJoWYFYIaBSOUWOYy-gtilNKy3_hx_KTOK2AsQeokSK40SZDz-Px28AngyN4kmFlmYoXS2xJgqViatQZFpynSVGOYp3vD-XZ9Pk7UzMfMCt8WmVO5_YOuqqNhQjfxFzhPJphhrzcvUjpKpRtLrqS2gcQR9dcJb1oD8an3_4uPfFPG6Ln9JFOEzVzG-b6TbP4chHGRi0OMBjFV7-MTT97aD_WSltB6DJbbjlkSPLO1HfgWt2eQw384u1Z8-wx3B9VCPW-3kXfn2qv83ZgpLtStsw_IP1wjLNFvp7vWZUVovVjnUETCQltvpaN3istw3rNi4yBIbMEvsxQ_x4Yal9Q51WhywjRkFchjge9Y1ZX56UGpoWjLfJYMzRCw-9t4-s5pR9cw-mk_HnV2ehr8cQGq6iTRhlylmXRgjhhpnBmUYs00RErqwikcXcCmmtVNZJnZYidUJrHpfD0hldEiuf5veht6yX9gSYFC6yyhqRoo7gWcVSc8lNWbkKZ3AygGgnisJ4snKqmTEvDjTLJL4CxVe04isuA3i2f2bVUXVc2fopSbggO8aejfbbEfD7iBGryGliFSHYFAGc7pSg8AbeFAd1DODx_jaaJq236KWtt9gG0agiKtQogOc75Tl08f9ve3D1Gx_CjZhm_W0g6BR6m_XWPkJotCkH0M9Hr0cTOr_58m488PYwgKNpnP8G4roRYg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDgl4QDBAFAYYCcQDRCR24sQPCHWwqWNbhWCT-pY5jr0NtU1pWrH9PzzzN3KXH60Asbc9RI1U5xLpzufP57vvAF74Rokwx5lmKF0ttCbwlOG5FyVaCp2ERjmKdxwMZP8o_DSMhmvwq62FobTK1idWjjovDMXI33KBUD5O0GLeT7971DWKTlfbFhq1WezZix-4ZSvf7X5E_b7kfGf78EPfa7oKeEaoYO4FiXLWxQECET8xiJe5jMMocFkeRAkXNpLWSmWd1HEWxS7SWvDMz5zRGXHLaYFyr8F6KKTPO7C-tT34_GXp-wWvmq3SjefHatiU6dTFerjSUsYHHUYIrrzzP5bCvxeEf05mqwVv5w7cbpAq69WmdRfW7GQDbvVOZg1bh92A61sFYsuLe_Dza3E2YmNK7stsyVBjxdgyzcb6WzFj1MaLFY7VhE9kFWx6WpR4zRYlqwslGQJRZoltmSFePbE0viSh-SqriVHQmOG-Ae2b2aYdKg00Ffivks-YoxeupFePTEeU7XMfjq5EUw-gMykm9iEwGbnAKmuiGG0SfxWXWkhhstzluGOUXQhaVaSmIUenHh2jdEXrTOpLUX1ppb70vAuvl89Ma2qQS0e_Ig2n5DdQstFN-QN-HzFwpT3ayAUIbqMubLZGkDYOpUxX5t-F58u_0RXQ-Y6e2GKBYxD9KqJeDbrwpjWelYj_f9ujy9_4DG70Dw_20_3dwd5juMkp4lAFoTahM58t7BOEZfPsaTMXGBxf9fT7DfijSio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCE4ICggDAUWCcQBrMa7fu0BoZQ2ailEFVApt-16vVtaJXGIE9H-H34Fv44ZPxIBorcerFjKem1pXt_MzgPgRddIEeYoaYbS1UJrAl8anvtRqmOh09BIR_GOT4N47yj8MIyGa_CrrYWhtMpWJ1aKOi8Mxci3uEAon6TIMVuuSYs43Om_m373aYIUnbS24zRqFjmwFz_QfSvf7u8grV9y3t_9-n7PbyYM-EbIYO4HqXTWJQGCkm5qEDvzOAmjwGV5EKVc2Ci2NpbWxTrJosRFWguedTNndEZ95rTAfa_BekJeUQfWt3cHh5-XdkDwavAq3fjdRA6bkp26cA-tLmV_0MGE4NI__8Ms_m0c_jmlrYxf_w7cblAr69VsdhfW7GQDbvVOZk3nDrsB17cLxJkX9-Dnl-J0xMaU6JfZkiH1irFlmo31WTFjNNKLFY7VzZ-IQ9j0W1HiNVuUrC6aZAhKmaXOywyx64ml9SVtmq8ynBgFkBn6EMjrzDajUWmhqRyBKhGNOXrhavfqkemIMn_uw9GVUOoBdCbFxD4EFkcusNKaKEH-xF_JYy1iYbLc5eg9xh4ELSmUaRql07yOkVq1eCbyKSSfqsinzj14vXxmWrcJuXT1K6KwIh2COxvdlELg91E3LtUjpy5AoBt5sNkygWqUS6lWouDB8-XfqBborEdPbLHANYiEJbVhDTx40zLPaov_f9ujy9_4DG6g2KmP-4ODx3CTU_ChikdtQmc-W9gniNDm2dNGFBgcX7X0_QZSrU5f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+microbes+become+a+major+pool+of+biological+phosphorus+during+the+early+stage+of+soil+development+with+little+evidence+of+competition+for+phosphorus+with+plants&rft.jtitle=Plant+and+soil&rft.au=Wang%2C+Jipeng&rft.au=Wu%2C+Yanhong&rft.au=Zhou%2C+Jun&rft.au=Bing%2C+Haijian&rft.date=2020-01-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=446&rft.issue=1-2&rft.spage=259&rft.epage=274&rft_id=info:doi/10.1007%2Fs11104-019-04329-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_019_04329_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon