Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture

Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet ( Setaria italica L...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 472; no. 1-2; pp. 279 - 293
Main Authors Li, Chunjie, Li, Haigang, Hoffland, Ellis, Zhang, Fusuo, Zhang, Junling, Kuyper, Thomas W.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet ( Setaria italica L.) and chickpea ( Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF). Methods Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae . The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver. Results Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver. Conclusion Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect.
AbstractList Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet ( Setaria italica L.) and chickpea ( Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF). Methods Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae . The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver. Results Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver. Conclusion Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect.
AIM: Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (Setaria italica L.) and chickpea (Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF). METHODS: Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver. RESULTS: Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver. CONCLUSION: Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect.
Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (Setaria italica L.) and chickpea (Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF). Methods Microcosms with two compartments were used, separated by a 30-[mu]m nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver. Results Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver. Conclusion Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect.
AimCereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (Setaria italica L.) and chickpea (Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF).MethodsMicrocosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver.ResultsInoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver.ConclusionOur study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect.
Audience Academic
Author Zhang, Fusuo
Li, Haigang
Zhang, Junling
Li, Chunjie
Hoffland, Ellis
Kuyper, Thomas W.
Author_xml – sequence: 1
  givenname: Chunjie
  surname: Li
  fullname: Li, Chunjie
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Soil Biology Group, Wageningen University
– sequence: 2
  givenname: Haigang
  orcidid: 0000-0003-3889-919X
  surname: Li
  fullname: Li, Haigang
  email: haigangli@cau.edu.cn
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Key Laboratory of Grassland Resource (IMAU), Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University
– sequence: 3
  givenname: Ellis
  surname: Hoffland
  fullname: Hoffland, Ellis
  organization: Soil Biology Group, Wageningen University
– sequence: 4
  givenname: Fusuo
  surname: Zhang
  fullname: Zhang, Fusuo
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University
– sequence: 5
  givenname: Junling
  surname: Zhang
  fullname: Zhang, Junling
  email: junlingz@cau.edu.cn
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University
– sequence: 6
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
  organization: Soil Biology Group, Wageningen University
BookMark eNp9kU9v1DAQxS1UJLYLX4CTJS5c0tpJbCfHasU_qQIOIHGzJs7s1q3tbO2kkF77xXEIAqmHygfLT-8345l3Sk7CEJCQ15ydccbUeeKcs7pgJS-YKKuyYM_IhgtVFYJV8oRsGFtE1f54QU5TumbLm8sNedgN3g-B-tkMMV7Ze3A04PhziDeJQpq9xzFaA87N1PpjHO6Qmitrbo4I9DOF0NOvFMztZJMdbS60KAamhDRb42zR9TYcaDdToN46h-P5P97bX-MU8SV5vgeX8NXfe0u-v3_3bfexuPzy4dPu4rIwVcvHgpes7XjXgACGsmW8MZ0SIKEVbSsF4xzbXiLWtRIoGyl513UceoV9Jyooqy15u9bNY9xOmEbtbTLoHAQcpqRLWTeNUFxU2frmkfV6mGLIv1tcTDRK5cVuydnqOoBDbcN-GCOYfHr01uSE9jbrF7JVnIlaLWWbFTBxSCniXhs7wrK3DFqnOdNLnHqNU-c49Z849dKrfIQeo_UQ56ehaoVSNocDxv9jPEH9Bka-tbc
CitedBy_id crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1016_j_apsoil_2024_105274
crossref_primary_10_1016_j_tplants_2024_04_010
crossref_primary_10_4236_as_2024_1511063
crossref_primary_10_3389_fmicb_2023_1284648
crossref_primary_10_1007_s11104_024_07018_6
crossref_primary_10_1007_s11104_024_06925_y
crossref_primary_10_1016_j_fcr_2024_109434
crossref_primary_10_3389_fpls_2022_1047270
Cites_doi 10.1007/s00572-011-0381-3
10.1890/10-1915.1
10.1016/0038-0717(93)90104-J
10.1111/j.1469-8137.2004.01192.x
10.1016/S0007-1536(70)80110-3
10.1111/1365-2664.13739
10.1111/j.1574-6941.2007.00337.x
10.1016/j.agee.2017.02.019
10.1111/nph.14041
10.1111/nph.13132
10.1007/s11104-008-9751-9
10.1111/nph.13092
10.1080/713608315
10.1111/nph.13838
10.1038/s41396-018-0171-4
10.1073/pnas.1523580113
10.1111/nph.12778
10.1023/A:1015798428743
10.1080/17429145.2018.1550218
10.1016/j.apsoil.2015.10.006
10.1007/s11104-010-0538-4
10.1071/PP9860699
10.1093/Aob/Mch140
10.1111/nph.15833
10.1111/nph.13113
10.3732/ajb.1600142
10.1093/aob/mcv182
10.1007/BF00333217
10.3389/fpls.2019.00157
10.1016/j.fcr.2016.12.020
10.1016/s0168-6496(01)00134-9
10.1111/j.1365-3040.2012.02547.x
10.1007/s00374-004-0797-4
10.1007/s11368-018-2198-6
10.1007/s11104-016-2863-8
10.1007/s10658-019-01711-4
10.1038/35021046
10.1016/0378-3774(90)90069-B
10.1007/s00572-017-0801-0
10.1016/j.soilbio.2011.11.015
10.1007/s11104-018-3732-4
10.1016/j.fcr.2021.108127
10.1126/science.1208473
10.3389/fpls.2015.00339
10.1111/nph.12125
10.1093/aob/mch135
10.1104/pp.112.195727
10.1016/j.apsoil.2014.12.008
10.1038/s41477-020-0680-9
10.1080/17429145.2017.1308569
10.1016/0038-0717(94)00190-C
10.1007/s11104-006-0019-y
10.1016/bs.agron.2015.06.003
10.1038/srep08122
10.1007/s42832-021-0107-1
10.1016/j.eja.2019.125987
10.1016/S1002-0160(21)60076-0
10.1038/srep18663
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-021-05232-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 293
ExternalDocumentID A697105473
10_1007_s11104_021_05232_0
GeographicLocations Netherlands
China
GeographicLocations_xml – name: Netherlands
– name: China
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c391t-1209b1b8a5a0e69018cb75a6a959965011e9d6ee4475e68661bbb1ad7edb53a23
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 11 03:11:15 EDT 2025
Fri Jul 25 19:08:18 EDT 2025
Tue Jun 10 21:03:56 EDT 2025
Tue Jul 01 01:47:15 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Rhizosphere
Nutrient
Intercrop
Mycorrhiza
Overyielding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-1209b1b8a5a0e69018cb75a6a959965011e9d6ee4475e68661bbb1ad7edb53a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3889-919X
PQID 2640587750
PQPubID 54098
PageCount 15
ParticipantIDs proquest_miscellaneous_2648857153
proquest_journals_2640587750
gale_infotracacademiconefile_A697105473
crossref_citationtrail_10_1007_s11104_021_05232_0
crossref_primary_10_1007_s11104_021_05232_0
springer_journals_10_1007_s11104_021_05232_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2022
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Li, Kuyper, van der Werf, Zhang, Li, Zhang, Hoffland (CR24) 2019; 439
Lopez-Bellido, Lopez-Bellido, Redondo, Lopez-Bellido (CR32) 2010; 337
Frey, Schüepp (CR10) 1993; 25
Moora, Zobel (CR34) 1996; 108
Xing, Gao, Zhuo, Hu, Li (CR58) 2016; 32
Phillips, Hayman (CR36) 1970; 55
CR38
Li, Hoffland, van der Werf, Zhang, Li, Sun, Zhang, Kuyper (CR23) 2021; 265
CR37
CR35
Willey (CR56) 1990; 17
Wang, Ye, Zhang, Koziol, Bever, Li (CR47) 2019; 14
Wang, Deng, Pu, Song, Yong, Yang, Sun, Liu, Yan, Du (CR49) 2017; 204
Duchene, Vian, Celette (CR7) 2017; 240
Kiers, Duhamel, Beesetty, Mensah, Franken, Verbruggen, Fellbaum, Kowalchuk, Hart, Bago, Palmer, West, Vandenkoornhuyse, Jansa, Buecking (CR17) 2011; 333
Li, Tilman, Lambers, Zhang (CR27) 2014; 203
Li, Li, Zhang, Tang (CR29) 2004; 94
Zhang, Feng, Declerck (CR61) 2018; 12
Shearer, Kohl (CR41) 1986; 13
Smith, Read (CR42) 2008
Zhang, Dong, Tang, Zheng, Makowski, Yu, Zhang, van der Werf (CR60) 2019; 154
Vitousek, Cassman, Cleveland, Crews, Field, Grimm, Howarth, Marino, Martinelli, Rastetter, Sprent (CR44) 2002; 57
CR9
Hu, Li, Liu, Zhao, Lin (CR14) 2019; 19
Xue, Xia, Christie, Zhang, Li, Tang (CR59) 2016; 117
Li (CR20) 2020
Weremijewicz, Sternberg, Janos (CR52) 2016; 212
Cheng, Baumgartner (CR4) 2004; 40
Workman, Cruzan (CR57) 2016; 103
Ding, Sui, Wang, Gao, He, Zhang, Yang, Feng (CR6) 2012; 22
Jia, Gray, Straker (CR16) 2004; 94
Betencourt, Duputel, Colomb, Desclaux, Hinsinger (CR1) 2012; 46
He, Critchley, Bledsoe (CR13) 2003; 22
Zhang, Xu, Liu, Zhang, Hodge, Feng (CR62) 2016; 210
Daniell, Husband, Fitter, Young (CR5) 2001; 36
Güsewell (CR12) 2004; 164
Li, Li, Wu, Zhang, Li, Li, Lambers, Li (CR19) 2016; 113
Illmer, Schinner (CR15) 1995; 27
Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (CR22) 2020; 6
Weremijewicz, Sternberg, Janos (CR53) 2018; 28
Legay, Grassein, Binet, Arnoldi, Personeni, Perigon, Poly, Pommier, Puissant, Clement, Lavorel, Mouhamadou (CR18) 2016; 98
Liu, Qin, Xiao, Tang, Wei, Wei, Zheng (CR31) 2017; 12
Wen, Li, Shen, Tang, Xiong, Li, Pang, Ryan, Lambers, Shen (CR50) 2019; 223
Weremijewicz, Janos (CR51) 2013; 198
Fan, Zhang, Song, Sun, Bao, Guo, Li (CR8) 2006; 283
Wagg, Jansa, Stadler, Schmid, van der Heijden (CR45) 2011; 92
Walder, Niemann, Natarajan, Lehmann, Boller, Wiemken (CR46) 2012; 159
CR28
Wang, Hoffland, Feng, Kuyper (CR48) 2020; 57
Zhu, Chen, Fan, Wang, Li, Chen, Fan, Yang, Hu, Leung (CR63) 2000; 406
CR26
CR25
Werner, Kiers (CR54) 2015; 205
Canarini, Kaiser, Merchant, Richter, Wanek (CR3) 2019; 10
CR21
Gahan, Schmalenberger (CR11) 2015; 89
Meng, Zhang, Wang, Han, Wang, Li (CR33) 2015; 6
Werner, Kiers (CR55) 2015; 205
Ryan, Tibbett, Edmonds-Tibbett, Suriyagoda, Lambers, Cawthray, Pang (CR40) 2012; 35
Qiao, Bei, Li, Christie, Zhang, Zhang (CR39) 2016; 406
Li, Ran, Zhang, Sun, Xu (CR30) 2009; 315
Brooker, Bennett, Cong, Daniell, George, Hallett, Hawes, Iannetta, Jones, Karley, Li, McKenzie, Pakeman, Paterson, Schöb, Shen, Squire, Watson, Zhang, Zhang, Zhang, White (CR2) 2015; 206
Toljander, Lindahl, Paul, Elfstrand, Finlay (CR43) 2007; 61
5232_CR35
S Güsewell (5232_CR12) 2004; 164
5232_CR37
SE Smith (5232_CR42) 2008
5232_CR38
F Walder (5232_CR46) 2012; 159
L Zhang (5232_CR61) 2018; 12
C Wagg (5232_CR45) 2011; 92
Z Wen (5232_CR50) 2019; 223
B Li (5232_CR19) 2016; 113
G Wang (5232_CR47) 2019; 14
X Ding (5232_CR6) 2012; 22
C Li (5232_CR23) 2021; 265
B Frey (5232_CR10) 1993; 25
5232_CR21
X Cheng (5232_CR4) 2004; 40
5232_CR25
X-H He (5232_CR13) 2003; 22
5232_CR26
YF Li (5232_CR30) 2009; 315
GDA Werner (5232_CR55) 2015; 205
5232_CR28
J Weremijewicz (5232_CR51) 2013; 198
5232_CR9
SM Li (5232_CR29) 2004; 94
MH Ryan (5232_CR40) 2012; 35
FJ Lopez-Bellido (5232_CR32) 2010; 337
G Shearer (5232_CR41) 1986; 13
Y Xue (5232_CR59) 2016; 117
L Li (5232_CR27) 2014; 203
JF Toljander (5232_CR43) 2007; 61
C Zhang (5232_CR60) 2019; 154
RW Brooker (5232_CR2) 2015; 206
JL Hu (5232_CR14) 2019; 19
ET Kiers (5232_CR17) 2011; 333
C Li (5232_CR24) 2019; 439
GDA Werner (5232_CR54) 2015; 205
J Gahan (5232_CR11) 2015; 89
M Moora (5232_CR34) 1996; 108
RW Willey (5232_CR56) 1990; 17
TJ Daniell (5232_CR5) 2001; 36
N Legay (5232_CR18) 2016; 98
A Canarini (5232_CR3) 2019; 10
FL Fan (5232_CR8) 2006; 283
O Duchene (5232_CR7) 2017; 240
P Illmer (5232_CR15) 1995; 27
E Betencourt (5232_CR1) 2012; 46
L Meng (5232_CR33) 2015; 6
J Weremijewicz (5232_CR53) 2018; 28
C Li (5232_CR22) 2020; 6
L Zhang (5232_CR62) 2016; 210
J Phillips (5232_CR36) 1970; 55
RE Workman (5232_CR57) 2016; 103
X Qiao (5232_CR39) 2016; 406
Y Zhu (5232_CR63) 2000; 406
Y Jia (5232_CR16) 2004; 94
C Li (5232_CR20) 2020
PM Vitousek (5232_CR44) 2002; 57
X-X Wang (5232_CR48) 2020; 57
J Weremijewicz (5232_CR52) 2016; 212
X Wang (5232_CR49) 2017; 204
F Xing (5232_CR58) 2016; 32
YC Liu (5232_CR31) 2017; 12
References_xml – volume: 22
  start-page: 51
  issue: 1
  year: 2012
  end-page: 58
  ident: CR6
  article-title: Synergistic interactions between and in enhancing proton release from nodules and hyphae
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-011-0381-3
– volume: 92
  start-page: 1303
  issue: 6
  year: 2011
  end-page: 1313
  ident: CR45
  article-title: Mycorrhizal fungal identity and diversity relaxes plant-plant competition
  publication-title: Ecology
  doi: 10.1890/10-1915.1
– volume: 25
  start-page: 651
  issue: 6
  year: 1993
  end-page: 658
  ident: CR10
  article-title: A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(93)90104-J
– volume: 164
  start-page: 243
  issue: 2
  year: 2004
  end-page: 266
  ident: CR12
  article-title: N : P ratios in terrestrial plants: variation and functional significance
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01192.x
– volume: 55
  start-page: 158
  year: 1970
  end-page: 160
  ident: CR36
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Trans Br Mycol Soc
  doi: 10.1016/S0007-1536(70)80110-3
– ident: CR35
– volume: 57
  start-page: 2203
  issue: 11
  year: 2020
  end-page: 2211
  ident: CR48
  article-title: Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.13739
– volume: 61
  start-page: 295
  issue: 2
  year: 2007
  end-page: 304
  ident: CR43
  article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00337.x
– volume: 240
  start-page: 148
  year: 2017
  end-page: 161
  ident: CR7
  article-title: Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms
  publication-title: A review Agr Ecosyst Environ
  doi: 10.1016/j.agee.2017.02.019
– ident: CR25
– volume: 212
  start-page: 461
  issue: 2
  year: 2016
  end-page: 471
  ident: CR52
  article-title: Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants
  publication-title: New Phytol
  doi: 10.1111/nph.14041
– volume: 206
  start-page: 106
  issue: 1
  year: 2015
  end-page: 117
  ident: CR2
  article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology
  publication-title: New Phytol
  doi: 10.1111/nph.13132
– ident: CR21
– volume: 315
  start-page: 285
  issue: 1–2
  year: 2009
  end-page: 296
  ident: CR30
  article-title: Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9751-9
– volume: 205
  start-page: 1515
  issue: 4
  year: 2015
  end-page: 1524
  ident: CR54
  article-title: Order of arrival structures arbuscular mycorrhizal colonization of plants
  publication-title: New Phytol
  doi: 10.1111/nph.13092
– volume: 22
  start-page: 531
  issue: 6
  year: 2003
  end-page: 567
  ident: CR13
  article-title: Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs)
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/713608315
– volume: 210
  start-page: 1022
  issue: 3
  year: 2016
  end-page: 1032
  ident: CR62
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium
  publication-title: New Phytol
  doi: 10.1111/nph.13838
– volume: 12
  start-page: 2339
  issue: 10
  year: 2018
  end-page: 2351
  ident: CR61
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: Isme J
  doi: 10.1038/s41396-018-0171-4
– volume: 113
  start-page: 6496
  issue: 23
  year: 2016
  end-page: 6501
  ident: CR19
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N fixation
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1523580113
– ident: CR9
– volume: 203
  start-page: 63
  issue: 1
  year: 2014
  end-page: 69
  ident: CR27
  article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture
  publication-title: New Phytol
  doi: 10.1111/nph.12778
– volume: 57
  start-page: 1
  issue: 1
  year: 2002
  end-page: 45
  ident: CR44
  article-title: Towards an ecological understanding of biological nitrogen fixation
  publication-title: Biogeochemistry
  doi: 10.1023/A:1015798428743
– volume: 14
  start-page: 10
  issue: 1
  year: 2019
  end-page: 20
  ident: CR47
  article-title: Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping
  publication-title: J Plant Interact
  doi: 10.1080/17429145.2018.1550218
– volume: 98
  start-page: 132
  year: 2016
  end-page: 139
  ident: CR18
  article-title: Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2015.10.006
– volume: 337
  start-page: 425
  issue: 1–2
  year: 2010
  end-page: 434
  ident: CR32
  article-title: B value and isotopic fractionation in N-2 fixation by chickpea ( L.) and faba bean ( L.)
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0538-4
– year: 2020
  ident: CR20
  publication-title: Phosphorus acquisition and yield gain in intercropping: empirical studies and meta-analysis
– volume: 13
  start-page: 699
  issue: 6
  year: 1986
  end-page: 756
  ident: CR41
  article-title: N -fixation in field settings: estimations based on natural N abundance
  publication-title: Aust J Plant Physiol
  doi: 10.1071/PP9860699
– volume: 94
  start-page: 297
  issue: 2
  year: 2004
  end-page: 303
  ident: CR29
  article-title: Acid phosphatase role in chickpea/maize intercropping
  publication-title: Ann Bot-London
  doi: 10.1093/Aob/Mch140
– volume: 223
  start-page: 882
  year: 2019
  end-page: 895
  ident: CR50
  article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
  publication-title: New Phytol
  doi: 10.1111/nph.15833
– volume: 205
  start-page: 1437
  issue: 4
  year: 2015
  end-page: 1442
  ident: CR55
  article-title: Partner selection in the mycorrhizal mutualism
  publication-title: New Phytol
  doi: 10.1111/nph.13113
– volume: 103
  start-page: 1041
  issue: 6
  year: 2016
  end-page: 1049
  ident: CR57
  article-title: Common mycelial networks impact competition in an invasive grass
  publication-title: Amer J Bot
  doi: 10.3732/ajb.1600142
– volume: 117
  start-page: 363
  issue: 3
  year: 2016
  end-page: 377
  ident: CR59
  article-title: Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mcv182
– volume: 108
  start-page: 79
  issue: 1
  year: 1996
  end-page: 84
  ident: CR34
  article-title: Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species
  publication-title: Oecologia
  doi: 10.1007/BF00333217
– volume: 10
  start-page: 157
  year: 2019
  ident: CR3
  article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00157
– volume: 204
  start-page: 12
  year: 2017
  end-page: 22
  ident: CR49
  article-title: Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2016.12.020
– ident: CR26
– volume: 36
  start-page: 203
  issue: 2–3
  year: 2001
  end-page: 209
  ident: CR5
  article-title: Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/s0168-6496(01)00134-9
– ident: CR37
– volume: 35
  start-page: 2170
  issue: 12
  year: 2012
  end-page: 2180
  ident: CR40
  article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2012.02547.x
– volume: 40
  start-page: 406
  issue: 6
  year: 2004
  end-page: 412
  ident: CR4
  article-title: Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-004-0797-4
– volume: 19
  start-page: 1632
  issue: 4
  year: 2019
  end-page: 1639
  ident: CR14
  article-title: Intercropping with sweet corn ( L. .) expands P acquisition channels of chili pepper ( L.) via arbuscular mycorrhizal hyphal networks
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-018-2198-6
– volume: 32
  start-page: 119
  year: 2016
  end-page: 124
  ident: CR58
  article-title: Screening and identification of phosphate solubilizing bacteria in maize rhizosphere and their characteristics of phosphate solubilizing
  publication-title: Chin Agric Sci Bulletin (in Chinese)
– volume: 406
  start-page: 173
  issue: 1–2
  year: 2016
  end-page: 185
  ident: CR39
  article-title: Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2863-8
– volume: 154
  start-page: 931
  issue: 4
  year: 2019
  end-page: 942
  ident: CR60
  article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-019-01711-4
– volume: 406
  start-page: 718
  issue: 6797
  year: 2000
  end-page: 722
  ident: CR63
  article-title: Genetic diversity and disease control in rice
  publication-title: Nature
  doi: 10.1038/35021046
– volume: 17
  start-page: 215
  issue: 1–3
  year: 1990
  end-page: 231
  ident: CR56
  article-title: Resource use in intercropping systems
  publication-title: Agr Water Manage
  doi: 10.1016/0378-3774(90)90069-B
– volume: 28
  start-page: 71
  issue: 1
  year: 2018
  end-page: 83
  ident: CR53
  article-title: Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-017-0801-0
– volume: 46
  start-page: 181
  year: 2012
  end-page: 190
  ident: CR1
  article-title: Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.11.015
– volume: 439
  start-page: 163
  issue: 1–2
  year: 2019
  end-page: 177
  ident: CR24
  article-title: Testing for complementarity in phosphorus resource use by mixtures of crop species
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3732-4
– ident: CR38
– volume: 265
  start-page: 108127
  year: 2021
  ident: CR23
  article-title: Complementarity and facilitation with respect to P acquisition do not drive overyielding by intercropping
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2021.108127
– volume: 333
  start-page: 880
  issue: 6044
  year: 2011
  end-page: 882
  ident: CR17
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
  doi: 10.1126/science.1208473
– volume: 6
  start-page: 1
  issue: May
  year: 2015
  end-page: 10
  ident: CR33
  article-title: Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00339
– volume: 198
  start-page: 203
  issue: 1
  year: 2013
  end-page: 213
  ident: CR51
  article-title: Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures
  publication-title: New Phytol
  doi: 10.1111/nph.12125
– volume: 94
  start-page: 251
  issue: 2
  year: 2004
  end-page: 258
  ident: CR16
  article-title: The influence of and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mch135
– volume: 159
  start-page: 789
  issue: 2
  year: 2012
  end-page: 797
  ident: CR46
  article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.195727
– volume: 89
  start-page: 113
  year: 2015
  end-page: 121
  ident: CR11
  article-title: Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2014.12.008
– ident: CR28
– volume: 6
  start-page: 653
  year: 2020
  end-page: 660
  ident: CR22
  article-title: Syndromes of production in intercropping impact yield gains
  publication-title: Nat Plants
  doi: 10.1038/s41477-020-0680-9
– volume: 12
  start-page: 187
  issue: 1
  year: 2017
  end-page: 192
  ident: CR31
  article-title: Intercropping influences component and content change of flavonoids in root exudates and nodulation of Faba bean
  publication-title: J Plant Interact
  doi: 10.1080/17429145.2017.1308569
– year: 2008
  ident: CR42
  publication-title: Mycorrhizal Symbiosis
– volume: 27
  start-page: 257
  issue: 3
  year: 1995
  end-page: 263
  ident: CR15
  article-title: Solubilization of inorganic calcium phosphates - Solubilization mechanisms
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(94)00190-C
– volume: 283
  start-page: 275
  issue: 1–2
  year: 2006
  end-page: 286
  ident: CR8
  article-title: Nitrogen fixation of faba bean ( L.) interacting with a non-legume in two contrasting intercropping systems
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0019-y
– volume: 98
  start-page: 132
  year: 2016
  ident: 5232_CR18
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2015.10.006
– volume-title: Mycorrhizal Symbiosis
  year: 2008
  ident: 5232_CR42
– volume: 28
  start-page: 71
  issue: 1
  year: 2018
  ident: 5232_CR53
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-017-0801-0
– volume: 14
  start-page: 10
  issue: 1
  year: 2019
  ident: 5232_CR47
  publication-title: J Plant Interact
  doi: 10.1080/17429145.2018.1550218
– volume: 22
  start-page: 51
  issue: 1
  year: 2012
  ident: 5232_CR6
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-011-0381-3
– volume: 203
  start-page: 63
  issue: 1
  year: 2014
  ident: 5232_CR27
  publication-title: New Phytol
  doi: 10.1111/nph.12778
– ident: 5232_CR9
  doi: 10.1016/bs.agron.2015.06.003
– volume: 159
  start-page: 789
  issue: 2
  year: 2012
  ident: 5232_CR46
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.195727
– volume: 103
  start-page: 1041
  issue: 6
  year: 2016
  ident: 5232_CR57
  publication-title: Amer J Bot
  doi: 10.3732/ajb.1600142
– volume: 6
  start-page: 653
  year: 2020
  ident: 5232_CR22
  publication-title: Nat Plants
  doi: 10.1038/s41477-020-0680-9
– volume: 406
  start-page: 173
  issue: 1–2
  year: 2016
  ident: 5232_CR39
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2863-8
– volume: 19
  start-page: 1632
  issue: 4
  year: 2019
  ident: 5232_CR14
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-018-2198-6
– volume: 6
  start-page: 1
  issue: May
  year: 2015
  ident: 5232_CR33
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00339
– volume-title: Phosphorus acquisition and yield gain in intercropping: empirical studies and meta-analysis
  year: 2020
  ident: 5232_CR20
– volume: 223
  start-page: 882
  year: 2019
  ident: 5232_CR50
  publication-title: New Phytol
  doi: 10.1111/nph.15833
– volume: 17
  start-page: 215
  issue: 1–3
  year: 1990
  ident: 5232_CR56
  publication-title: Agr Water Manage
  doi: 10.1016/0378-3774(90)90069-B
– volume: 13
  start-page: 699
  issue: 6
  year: 1986
  ident: 5232_CR41
  publication-title: Aust J Plant Physiol
  doi: 10.1071/PP9860699
– volume: 32
  start-page: 119
  year: 2016
  ident: 5232_CR58
  publication-title: Chin Agric Sci Bulletin (in Chinese)
– volume: 113
  start-page: 6496
  issue: 23
  year: 2016
  ident: 5232_CR19
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1523580113
– volume: 265
  start-page: 108127
  year: 2021
  ident: 5232_CR23
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2021.108127
– volume: 154
  start-page: 931
  issue: 4
  year: 2019
  ident: 5232_CR60
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-019-01711-4
– volume: 22
  start-page: 531
  issue: 6
  year: 2003
  ident: 5232_CR13
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/713608315
– volume: 108
  start-page: 79
  issue: 1
  year: 1996
  ident: 5232_CR34
  publication-title: Oecologia
  doi: 10.1007/BF00333217
– volume: 12
  start-page: 2339
  issue: 10
  year: 2018
  ident: 5232_CR61
  publication-title: Isme J
  doi: 10.1038/s41396-018-0171-4
– volume: 36
  start-page: 203
  issue: 2–3
  year: 2001
  ident: 5232_CR5
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/s0168-6496(01)00134-9
– volume: 204
  start-page: 12
  year: 2017
  ident: 5232_CR49
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2016.12.020
– ident: 5232_CR38
  doi: 10.1038/srep08122
– volume: 57
  start-page: 2203
  issue: 11
  year: 2020
  ident: 5232_CR48
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.13739
– volume: 406
  start-page: 718
  issue: 6797
  year: 2000
  ident: 5232_CR63
  publication-title: Nature
  doi: 10.1038/35021046
– volume: 27
  start-page: 257
  issue: 3
  year: 1995
  ident: 5232_CR15
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(94)00190-C
– volume: 240
  start-page: 148
  year: 2017
  ident: 5232_CR7
  publication-title: A review Agr Ecosyst Environ
  doi: 10.1016/j.agee.2017.02.019
– volume: 94
  start-page: 251
  issue: 2
  year: 2004
  ident: 5232_CR16
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mch135
– volume: 198
  start-page: 203
  issue: 1
  year: 2013
  ident: 5232_CR51
  publication-title: New Phytol
  doi: 10.1111/nph.12125
– volume: 205
  start-page: 1437
  issue: 4
  year: 2015
  ident: 5232_CR55
  publication-title: New Phytol
  doi: 10.1111/nph.13113
– volume: 315
  start-page: 285
  issue: 1–2
  year: 2009
  ident: 5232_CR30
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9751-9
– volume: 57
  start-page: 1
  issue: 1
  year: 2002
  ident: 5232_CR44
  publication-title: Biogeochemistry
  doi: 10.1023/A:1015798428743
– volume: 333
  start-page: 880
  issue: 6044
  year: 2011
  ident: 5232_CR17
  publication-title: Science
  doi: 10.1126/science.1208473
– volume: 46
  start-page: 181
  year: 2012
  ident: 5232_CR1
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.11.015
– volume: 40
  start-page: 406
  issue: 6
  year: 2004
  ident: 5232_CR4
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-004-0797-4
– volume: 10
  start-page: 157
  year: 2019
  ident: 5232_CR3
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00157
– volume: 92
  start-page: 1303
  issue: 6
  year: 2011
  ident: 5232_CR45
  publication-title: Ecology
  doi: 10.1890/10-1915.1
– volume: 439
  start-page: 163
  issue: 1–2
  year: 2019
  ident: 5232_CR24
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3732-4
– volume: 12
  start-page: 187
  issue: 1
  year: 2017
  ident: 5232_CR31
  publication-title: J Plant Interact
  doi: 10.1080/17429145.2017.1308569
– volume: 25
  start-page: 651
  issue: 6
  year: 1993
  ident: 5232_CR10
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(93)90104-J
– volume: 89
  start-page: 113
  year: 2015
  ident: 5232_CR11
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2014.12.008
– volume: 61
  start-page: 295
  issue: 2
  year: 2007
  ident: 5232_CR43
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00337.x
– ident: 5232_CR28
  doi: 10.1007/s42832-021-0107-1
– ident: 5232_CR35
– volume: 117
  start-page: 363
  issue: 3
  year: 2016
  ident: 5232_CR59
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mcv182
– volume: 205
  start-page: 1515
  issue: 4
  year: 2015
  ident: 5232_CR54
  publication-title: New Phytol
  doi: 10.1111/nph.13092
– volume: 283
  start-page: 275
  issue: 1–2
  year: 2006
  ident: 5232_CR8
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0019-y
– ident: 5232_CR37
– volume: 206
  start-page: 106
  issue: 1
  year: 2015
  ident: 5232_CR2
  publication-title: New Phytol
  doi: 10.1111/nph.13132
– volume: 35
  start-page: 2170
  issue: 12
  year: 2012
  ident: 5232_CR40
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2012.02547.x
– volume: 337
  start-page: 425
  issue: 1–2
  year: 2010
  ident: 5232_CR32
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0538-4
– ident: 5232_CR21
  doi: 10.1016/j.eja.2019.125987
– ident: 5232_CR25
  doi: 10.1016/S1002-0160(21)60076-0
– volume: 164
  start-page: 243
  issue: 2
  year: 2004
  ident: 5232_CR12
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01192.x
– volume: 212
  start-page: 461
  issue: 2
  year: 2016
  ident: 5232_CR52
  publication-title: New Phytol
  doi: 10.1111/nph.14041
– volume: 55
  start-page: 158
  year: 1970
  ident: 5232_CR36
  publication-title: Trans Br Mycol Soc
  doi: 10.1016/S0007-1536(70)80110-3
– volume: 210
  start-page: 1022
  issue: 3
  year: 2016
  ident: 5232_CR62
  publication-title: New Phytol
  doi: 10.1111/nph.13838
– ident: 5232_CR26
  doi: 10.1038/srep18663
– volume: 94
  start-page: 297
  issue: 2
  year: 2004
  ident: 5232_CR29
  publication-title: Ann Bot-London
  doi: 10.1093/Aob/Mch140
SSID ssj0003216
Score 2.4435399
Snippet Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to...
Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to...
AimCereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to...
AIM: Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Agricultural practices
Agriculture
Analysis
Arbuscular mycorrhizas
Asymmetry
Biomass
Biomedical and Life Sciences
Chickpea
Chickpeas
Cicer arietinum
Closed ecological systems
Compartments
Cropping systems
Ecology
Fungi
Glomus mosseae
Growth
Identification and classification
Inoculation
Intercropping
Legumes
Life Sciences
Mesocosms
Methods
Microcosms
Millet
millets
Mixtures
Monoculture
Networks
Nitrogen
nylon
Phosphorus
Plant Physiology
Plant Sciences
Plant species
Regular Article
Rhizosphere
Setaria italica
soil
Soil Science & Conservation
Species
vesicular arbuscular mycorrhizae
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7kVNAH0VWx5ykRBB802KZNm31c5Y5D8PDBhX0LSTrqcrfdc7sL9l79x53Jtrv4E3wrbRJCvyTzJZn5BuB56r1KgzISWayyUCGVxqlcmix4XTssXTzMeX9Wnk6LdzM964PC2sHbfbiSjCv1PtiNLFUh2aWAjzKVpI36dU17d3bkmqrJbv3NVUx4yg8yrcazPlTmz238ZI5-XZR_ux2NRufkLtzp2aKYbOG9B9ewGcHtyedVr5iBI7jxZkn8rhvBzeMoQN3dh-8c9bFsxKKjreXqy_yKmmi27t6tcG23WHAaLQLnohPzeKiAglOinF-iE2fCNbX4IFz4uplvHbrim-A2LQp2-OzY6Y26K3wnnOC0Rbh-vau_mH_jjj2A6cnxx7ensk-2IEM-ztaSY2h95o3TLkXOUmWCr7QjrFjARdMygOO6RGSBQCwNmXXvfebqCmuvc4L3IRw0ywYfgciMJ1YZfJoHVfhaOaIdmnif_1QWpkCXQDb8cxt6JXJOiHFh9xrKjJMlnGzEyaYJvNzVudzqcPyz9AuG0vIkpZaD62MNqH8sd2Un5ZiYFaddTuBoQNv2s7e1RBJTbSoiUwk8232meceXKa7B5SaWMUZXZDASeDWMkn0Tf-_b4f8Vfwy3FEdcRLe3IzhYrzb4hHjQ2j-Nw_4HIo79fg
  priority: 102
  providerName: Springer Nature
Title Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture
URI https://link.springer.com/article/10.1007/s11104-021-05232-0
https://www.proquest.com/docview/2640587750
https://www.proquest.com/docview/2648857153
Volume 472
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2xLQc4IFhABJbKSEgcINp8OXFPKIWWFYhqhahUTpHteKFim3SbViJc-ePMOG4rQOwpURwnVp49MxnPzAN4HigVBToSvqFilUmkA1_IKPZFqBUvpUmldeZ8nKZns-T9nM-dw61xYZU7mWgFdVlr8pGfouIOuMhQwb1eXfnEGkW7q45C4wj6KIKF6EF_NJ6ef9rL4jiy5Kd04gfZcO7SZrrkOdR8iU8hCuQaxfY_VNPfAvqfnVKrgCZ34Y6zHFneQX0PbpjqGG7nX9eueoY5hpujGm299j78oryPumLLFn8u198WP7Fj1QV8N0w27XJJRFoIz2XLFtatYBiRonxfGcmmTFYlO2dSX20XXUiXvaLltjGMQj5bCnvDQTLVMsmIuMhsTvf9l4sfNJwHMJuMP7858x3dgq_jYbjxKYtWhUpILgNDPFVCq4xLRItKuHAUBGZYpsZQiUCTClTsSqlQlpkpFY8R4IfQq-rKPAIWCoV2pVZBrKNElZFEw4Oj5acu0kQkRnoQ7r50oV0tcqLEuCwOVZQJnQLRKSw6ReDBy32fVVeJ49q7XxCABS1TfLKWLtsAx0cFr4o8HaJtRcTLHpzsMC7c-m2Kw2zz4Nm-GVcebafIytRbe48QPEOV4cGr3dw4POL_Y3t8_RufwK2IcixsoNsJ9DbrrXmKls9GDaCfj96OJnR89-XDeOCm-wCOZlH-G2XBAz0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VKRJwQKWAMLSwSCAOYNVevzYHhFJoldI2qlAr5bbdXS80amOncSJwr_0__EZm_EgEiN56s2yvPfKMZ2Z3Z74P4LWnNfcMF64lsMqQG88Vigeu8I2OUmVjVS3mHA7i_kn4ZRgNV-BX2wtDZZWtT6wcdZobWiPfwsDtRSLBAPdxcukSaxTtrrYUGrVZ7NvyB07Zig97n1G_bzjf3Tn-1HcbVgHXBF1_5lKzqPa1UJHyLNExCaOTSKFQhFQSob3bbhpbS0h4NhYYv7TWvkoTm-ooUAR0gC5_NQxij3dgdXtncPR14fsDXpGt0oHrJd1h06ZTN-thpA1dKomgpVi8_kco_Dsg_LMzWwW83TV40GSqrFeb1kNYsdk63O99nzZoHXYd7mznmFuWj-Ca-kzyjI1LnMxOz0ZXODCrC8wLpopyPCbiLjSHi5KNqmUMy4iE5XxiFRswlaXsiClzOR_VJWTVGaPmhWVUYlpSmR0KyXTJFCOiJDvbWowfj36SOI_h5FYU8QQ6WZ7Zp8B8oTGPNdoLDA91yhUmOhFmmvpbHIrQKgf89ktL02CfEwXHhVyiNpN2JGpHVtqRngPvFmMmNfLHjXe_JQVKcgv4ZKOa7gaUjwC2ZC_uYi5HRM8ObLQ6lo2_KOTSuh14tbiMfzpt36jM5vPqHiGiBEOUA-9b21g-4v-yPbv5jS_hbv_48EAe7A32n8M9Tv0dVZHdBnRm07ndxKxrpl80ps7g9Lb_rt-wbzuN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VKUL0gEoBYWhhkUAcwIq9fm0OCKW0UUshihCVclt219sS0dhpnAjMlX_Fr2PGj0SA6K03K_bao8zsfLO7M_MBPPO05p7hwrXUrDLkxnOF4oErfKOjVNlYVZs5H4bx0Wn4bhyNN-BXWwtDaZWtT6wcdZob2iPvInB7kUgQ4LpnTVrE6GDwZnbpEoMUnbS2dBq1iZzY8hsu34rXxweo6-ecDw4_vT1yG4YB1wQ9f-FS4aj2tVCR8ixRMwmjk0ihgNS1JELbt700tpa64tlYIJZprX2VJjbVUaCo6QG6_82EVkUd2Nw_HI4-rnAg4BXxKl24XtIbNyU7deEeom7oUnoEbcvi_T9g8W9w-OeUtgK_wTbcbqJW1q_N7A5s2GwHtvrn86Zzh92BG_s5xpnlXfhJNSd5xqYlLmznXyY_cGBWJ5sXTBXldEokXmgaFyWbVFsalhEhy9eZVWzIVJayEVPmcjmp08mqX4xaFpZRumlJKXcoJNMlU4xIk-yiuxo_nXwnce7B6bUo4j50sjyzD4D5QmNMa7QXGB7qlCsMeiKMOvVZHIrQKgf89p-WpumDTnQcF3LdwZm0I1E7stKO9Bx4uRozq7uAXPn0C1KgJBeBbzaqqXRA-ajZluzHPYzriPTZgd1Wx7LxHYVcW7oDT1e3cdbTUY7KbL6snhEiShCuHHjV2sb6Ff-X7eHVX3wCN3FWyffHw5NHcItTqUeVb7cLncV8afcwAFvox42lM_h83ZPrN4N6P8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+mycorrhizal+networks+asymmetrically+improve+chickpea+N+and+P+acquisition+and+cause+overyielding+by+a+millet%2Fchickpea+mixture&rft.jtitle=Plant+and+soil&rft.au=Li%2C+Chunjie&rft.au=Li%2C+Haigang&rft.au=Hoffland%2C+Ellis&rft.au=Zhang%2C+Fusuo&rft.date=2022-03-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=472&rft.issue=1-2&rft.spage=279&rft.epage=293&rft_id=info:doi/10.1007%2Fs11104-021-05232-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_021_05232_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon