Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture
Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet ( Setaria italica L...
Saved in:
Published in | Plant and soil Vol. 472; no. 1-2; pp. 279 - 293 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim
Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (
Setaria italica
L.) and chickpea (
Cicer arietinum
L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF).
Methods
Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species
Funneliformis mosseae
. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver.
Results
Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver.
Conclusion
Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect. |
---|---|
AbstractList | Aim
Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (
Setaria italica
L.) and chickpea (
Cicer arietinum
L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF).
Methods
Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species
Funneliformis mosseae
. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver.
Results
Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver.
Conclusion
Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect. AIM: Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (Setaria italica L.) and chickpea (Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF). METHODS: Microcosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver. RESULTS: Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver. CONCLUSION: Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect. Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (Setaria italica L.) and chickpea (Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF). Methods Microcosms with two compartments were used, separated by a 30-[mu]m nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver. Results Inoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver. Conclusion Our study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect. AimCereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to investigate the role of arbuscular mycorrhizal (AM) fungal common mycorrhizal networks (CMNs) in overyielding by the millet (Setaria italica L.) and chickpea (Cicer arietinum L.) mixture and to find out if the effect of a CMN depends on which of the two species was first colonized by AM fungi (AMF).MethodsMicrocosms with two compartments were used, separated by a 30-μm nylon mesh. Both compartments contained either chickpea or millet, in monoculture or mixed. One or none of the two compartments was inoculated with the AMF species Funneliformis mosseae. The plant in the inoculated compartment was referred to as the donor, and the plant in the neighboring, non-inoculated compartment as the receiver.ResultsInoculation in one compartment resulted in mycorrhiza formation in the other compartment, providing evidence for the formation of CMNs. Inoculation of chickpea in the mixture increased N and P acquisition and biomass of both chickpea (donor) and millet (receiver) leading to overyielding of the mixture, whereas inoculation of millet increased biomass of chickpea (receiver) only, but did not increase N or P acquisition by any of the two species, and there was no overyielding. Chickpea as donor had higher numbers of phosphate-solubilizing bacteria in its rhizosphere compared to chickpea as receiver. The shoot N:P ratio of chickpea as donor was lower than as receiver.ConclusionOur study demonstrated asymmetry in nutrient gains by a mixture of a cereal and a legume, dependent on which plant species was the donor or receiver. This suggests that initiating mycorrhizal networks by legumes in intercropping could be an important factor contributing to the magnitude of the intercropping effect. |
Audience | Academic |
Author | Zhang, Fusuo Li, Haigang Zhang, Junling Li, Chunjie Hoffland, Ellis Kuyper, Thomas W. |
Author_xml | – sequence: 1 givenname: Chunjie surname: Li fullname: Li, Chunjie organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Soil Biology Group, Wageningen University – sequence: 2 givenname: Haigang orcidid: 0000-0003-3889-919X surname: Li fullname: Li, Haigang email: haigangli@cau.edu.cn organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Key Laboratory of Grassland Resource (IMAU), Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University – sequence: 3 givenname: Ellis surname: Hoffland fullname: Hoffland, Ellis organization: Soil Biology Group, Wageningen University – sequence: 4 givenname: Fusuo surname: Zhang fullname: Zhang, Fusuo organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University – sequence: 5 givenname: Junling surname: Zhang fullname: Zhang, Junling email: junlingz@cau.edu.cn organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University – sequence: 6 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. organization: Soil Biology Group, Wageningen University |
BookMark | eNp9kU9v1DAQxS1UJLYLX4CTJS5c0tpJbCfHasU_qQIOIHGzJs7s1q3tbO2kkF77xXEIAqmHygfLT-8345l3Sk7CEJCQ15ydccbUeeKcs7pgJS-YKKuyYM_IhgtVFYJV8oRsGFtE1f54QU5TumbLm8sNedgN3g-B-tkMMV7Ze3A04PhziDeJQpq9xzFaA87N1PpjHO6Qmitrbo4I9DOF0NOvFMztZJMdbS60KAamhDRb42zR9TYcaDdToN46h-P5P97bX-MU8SV5vgeX8NXfe0u-v3_3bfexuPzy4dPu4rIwVcvHgpes7XjXgACGsmW8MZ0SIKEVbSsF4xzbXiLWtRIoGyl513UceoV9Jyooqy15u9bNY9xOmEbtbTLoHAQcpqRLWTeNUFxU2frmkfV6mGLIv1tcTDRK5cVuydnqOoBDbcN-GCOYfHr01uSE9jbrF7JVnIlaLWWbFTBxSCniXhs7wrK3DFqnOdNLnHqNU-c49Z849dKrfIQeo_UQ56ehaoVSNocDxv9jPEH9Bka-tbc |
CitedBy_id | crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1016_j_apsoil_2024_105274 crossref_primary_10_1016_j_tplants_2024_04_010 crossref_primary_10_4236_as_2024_1511063 crossref_primary_10_3389_fmicb_2023_1284648 crossref_primary_10_1007_s11104_024_07018_6 crossref_primary_10_1007_s11104_024_06925_y crossref_primary_10_1016_j_fcr_2024_109434 crossref_primary_10_3389_fpls_2022_1047270 |
Cites_doi | 10.1007/s00572-011-0381-3 10.1890/10-1915.1 10.1016/0038-0717(93)90104-J 10.1111/j.1469-8137.2004.01192.x 10.1016/S0007-1536(70)80110-3 10.1111/1365-2664.13739 10.1111/j.1574-6941.2007.00337.x 10.1016/j.agee.2017.02.019 10.1111/nph.14041 10.1111/nph.13132 10.1007/s11104-008-9751-9 10.1111/nph.13092 10.1080/713608315 10.1111/nph.13838 10.1038/s41396-018-0171-4 10.1073/pnas.1523580113 10.1111/nph.12778 10.1023/A:1015798428743 10.1080/17429145.2018.1550218 10.1016/j.apsoil.2015.10.006 10.1007/s11104-010-0538-4 10.1071/PP9860699 10.1093/Aob/Mch140 10.1111/nph.15833 10.1111/nph.13113 10.3732/ajb.1600142 10.1093/aob/mcv182 10.1007/BF00333217 10.3389/fpls.2019.00157 10.1016/j.fcr.2016.12.020 10.1016/s0168-6496(01)00134-9 10.1111/j.1365-3040.2012.02547.x 10.1007/s00374-004-0797-4 10.1007/s11368-018-2198-6 10.1007/s11104-016-2863-8 10.1007/s10658-019-01711-4 10.1038/35021046 10.1016/0378-3774(90)90069-B 10.1007/s00572-017-0801-0 10.1016/j.soilbio.2011.11.015 10.1007/s11104-018-3732-4 10.1016/j.fcr.2021.108127 10.1126/science.1208473 10.3389/fpls.2015.00339 10.1111/nph.12125 10.1093/aob/mch135 10.1104/pp.112.195727 10.1016/j.apsoil.2014.12.008 10.1038/s41477-020-0680-9 10.1080/17429145.2017.1308569 10.1016/0038-0717(94)00190-C 10.1007/s11104-006-0019-y 10.1016/bs.agron.2015.06.003 10.1038/srep08122 10.1007/s42832-021-0107-1 10.1016/j.eja.2019.125987 10.1016/S1002-0160(21)60076-0 10.1038/srep18663 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-021-05232-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 293 |
ExternalDocumentID | A697105473 10_1007_s11104_021_05232_0 |
GeographicLocations | Netherlands China |
GeographicLocations_xml | – name: Netherlands – name: China |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c391t-1209b1b8a5a0e69018cb75a6a959965011e9d6ee4475e68661bbb1ad7edb53a23 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 03:11:15 EDT 2025 Fri Jul 25 19:08:18 EDT 2025 Tue Jun 10 21:03:56 EDT 2025 Tue Jul 01 01:47:15 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Fri Feb 21 02:48:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Rhizosphere Nutrient Intercrop Mycorrhiza Overyielding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-1209b1b8a5a0e69018cb75a6a959965011e9d6ee4475e68661bbb1ad7edb53a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3889-919X |
PQID | 2640587750 |
PQPubID | 54098 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2648857153 proquest_journals_2640587750 gale_infotracacademiconefile_A697105473 crossref_citationtrail_10_1007_s11104_021_05232_0 crossref_primary_10_1007_s11104_021_05232_0 springer_journals_10_1007_s11104_021_05232_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Li, Kuyper, van der Werf, Zhang, Li, Zhang, Hoffland (CR24) 2019; 439 Lopez-Bellido, Lopez-Bellido, Redondo, Lopez-Bellido (CR32) 2010; 337 Frey, Schüepp (CR10) 1993; 25 Moora, Zobel (CR34) 1996; 108 Xing, Gao, Zhuo, Hu, Li (CR58) 2016; 32 Phillips, Hayman (CR36) 1970; 55 CR38 Li, Hoffland, van der Werf, Zhang, Li, Sun, Zhang, Kuyper (CR23) 2021; 265 CR37 CR35 Willey (CR56) 1990; 17 Wang, Ye, Zhang, Koziol, Bever, Li (CR47) 2019; 14 Wang, Deng, Pu, Song, Yong, Yang, Sun, Liu, Yan, Du (CR49) 2017; 204 Duchene, Vian, Celette (CR7) 2017; 240 Kiers, Duhamel, Beesetty, Mensah, Franken, Verbruggen, Fellbaum, Kowalchuk, Hart, Bago, Palmer, West, Vandenkoornhuyse, Jansa, Buecking (CR17) 2011; 333 Li, Tilman, Lambers, Zhang (CR27) 2014; 203 Li, Li, Zhang, Tang (CR29) 2004; 94 Zhang, Feng, Declerck (CR61) 2018; 12 Shearer, Kohl (CR41) 1986; 13 Smith, Read (CR42) 2008 Zhang, Dong, Tang, Zheng, Makowski, Yu, Zhang, van der Werf (CR60) 2019; 154 Vitousek, Cassman, Cleveland, Crews, Field, Grimm, Howarth, Marino, Martinelli, Rastetter, Sprent (CR44) 2002; 57 CR9 Hu, Li, Liu, Zhao, Lin (CR14) 2019; 19 Xue, Xia, Christie, Zhang, Li, Tang (CR59) 2016; 117 Li (CR20) 2020 Weremijewicz, Sternberg, Janos (CR52) 2016; 212 Cheng, Baumgartner (CR4) 2004; 40 Workman, Cruzan (CR57) 2016; 103 Ding, Sui, Wang, Gao, He, Zhang, Yang, Feng (CR6) 2012; 22 Jia, Gray, Straker (CR16) 2004; 94 Betencourt, Duputel, Colomb, Desclaux, Hinsinger (CR1) 2012; 46 He, Critchley, Bledsoe (CR13) 2003; 22 Zhang, Xu, Liu, Zhang, Hodge, Feng (CR62) 2016; 210 Daniell, Husband, Fitter, Young (CR5) 2001; 36 Güsewell (CR12) 2004; 164 Li, Li, Wu, Zhang, Li, Li, Lambers, Li (CR19) 2016; 113 Illmer, Schinner (CR15) 1995; 27 Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (CR22) 2020; 6 Weremijewicz, Sternberg, Janos (CR53) 2018; 28 Legay, Grassein, Binet, Arnoldi, Personeni, Perigon, Poly, Pommier, Puissant, Clement, Lavorel, Mouhamadou (CR18) 2016; 98 Liu, Qin, Xiao, Tang, Wei, Wei, Zheng (CR31) 2017; 12 Wen, Li, Shen, Tang, Xiong, Li, Pang, Ryan, Lambers, Shen (CR50) 2019; 223 Weremijewicz, Janos (CR51) 2013; 198 Fan, Zhang, Song, Sun, Bao, Guo, Li (CR8) 2006; 283 Wagg, Jansa, Stadler, Schmid, van der Heijden (CR45) 2011; 92 Walder, Niemann, Natarajan, Lehmann, Boller, Wiemken (CR46) 2012; 159 CR28 Wang, Hoffland, Feng, Kuyper (CR48) 2020; 57 Zhu, Chen, Fan, Wang, Li, Chen, Fan, Yang, Hu, Leung (CR63) 2000; 406 CR26 CR25 Werner, Kiers (CR54) 2015; 205 Canarini, Kaiser, Merchant, Richter, Wanek (CR3) 2019; 10 CR21 Gahan, Schmalenberger (CR11) 2015; 89 Meng, Zhang, Wang, Han, Wang, Li (CR33) 2015; 6 Werner, Kiers (CR55) 2015; 205 Ryan, Tibbett, Edmonds-Tibbett, Suriyagoda, Lambers, Cawthray, Pang (CR40) 2012; 35 Qiao, Bei, Li, Christie, Zhang, Zhang (CR39) 2016; 406 Li, Ran, Zhang, Sun, Xu (CR30) 2009; 315 Brooker, Bennett, Cong, Daniell, George, Hallett, Hawes, Iannetta, Jones, Karley, Li, McKenzie, Pakeman, Paterson, Schöb, Shen, Squire, Watson, Zhang, Zhang, Zhang, White (CR2) 2015; 206 Toljander, Lindahl, Paul, Elfstrand, Finlay (CR43) 2007; 61 5232_CR35 S Güsewell (5232_CR12) 2004; 164 5232_CR37 SE Smith (5232_CR42) 2008 5232_CR38 F Walder (5232_CR46) 2012; 159 L Zhang (5232_CR61) 2018; 12 C Wagg (5232_CR45) 2011; 92 Z Wen (5232_CR50) 2019; 223 B Li (5232_CR19) 2016; 113 G Wang (5232_CR47) 2019; 14 X Ding (5232_CR6) 2012; 22 C Li (5232_CR23) 2021; 265 B Frey (5232_CR10) 1993; 25 5232_CR21 X Cheng (5232_CR4) 2004; 40 5232_CR25 X-H He (5232_CR13) 2003; 22 5232_CR26 YF Li (5232_CR30) 2009; 315 GDA Werner (5232_CR55) 2015; 205 5232_CR28 J Weremijewicz (5232_CR51) 2013; 198 5232_CR9 SM Li (5232_CR29) 2004; 94 MH Ryan (5232_CR40) 2012; 35 FJ Lopez-Bellido (5232_CR32) 2010; 337 G Shearer (5232_CR41) 1986; 13 Y Xue (5232_CR59) 2016; 117 L Li (5232_CR27) 2014; 203 JF Toljander (5232_CR43) 2007; 61 C Zhang (5232_CR60) 2019; 154 RW Brooker (5232_CR2) 2015; 206 JL Hu (5232_CR14) 2019; 19 ET Kiers (5232_CR17) 2011; 333 C Li (5232_CR24) 2019; 439 GDA Werner (5232_CR54) 2015; 205 J Gahan (5232_CR11) 2015; 89 M Moora (5232_CR34) 1996; 108 RW Willey (5232_CR56) 1990; 17 TJ Daniell (5232_CR5) 2001; 36 N Legay (5232_CR18) 2016; 98 A Canarini (5232_CR3) 2019; 10 FL Fan (5232_CR8) 2006; 283 O Duchene (5232_CR7) 2017; 240 P Illmer (5232_CR15) 1995; 27 E Betencourt (5232_CR1) 2012; 46 L Meng (5232_CR33) 2015; 6 J Weremijewicz (5232_CR53) 2018; 28 C Li (5232_CR22) 2020; 6 L Zhang (5232_CR62) 2016; 210 J Phillips (5232_CR36) 1970; 55 RE Workman (5232_CR57) 2016; 103 X Qiao (5232_CR39) 2016; 406 Y Zhu (5232_CR63) 2000; 406 Y Jia (5232_CR16) 2004; 94 C Li (5232_CR20) 2020 PM Vitousek (5232_CR44) 2002; 57 X-X Wang (5232_CR48) 2020; 57 J Weremijewicz (5232_CR52) 2016; 212 X Wang (5232_CR49) 2017; 204 F Xing (5232_CR58) 2016; 32 YC Liu (5232_CR31) 2017; 12 |
References_xml | – volume: 22 start-page: 51 issue: 1 year: 2012 end-page: 58 ident: CR6 article-title: Synergistic interactions between and in enhancing proton release from nodules and hyphae publication-title: Mycorrhiza doi: 10.1007/s00572-011-0381-3 – volume: 92 start-page: 1303 issue: 6 year: 2011 end-page: 1313 ident: CR45 article-title: Mycorrhizal fungal identity and diversity relaxes plant-plant competition publication-title: Ecology doi: 10.1890/10-1915.1 – volume: 25 start-page: 651 issue: 6 year: 1993 end-page: 658 ident: CR10 article-title: A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(93)90104-J – volume: 164 start-page: 243 issue: 2 year: 2004 end-page: 266 ident: CR12 article-title: N : P ratios in terrestrial plants: variation and functional significance publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01192.x – volume: 55 start-page: 158 year: 1970 end-page: 160 ident: CR36 article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection publication-title: Trans Br Mycol Soc doi: 10.1016/S0007-1536(70)80110-3 – ident: CR35 – volume: 57 start-page: 2203 issue: 11 year: 2020 end-page: 2211 ident: CR48 article-title: Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures publication-title: J Appl Ecol doi: 10.1111/1365-2664.13739 – volume: 61 start-page: 295 issue: 2 year: 2007 end-page: 304 ident: CR43 article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00337.x – volume: 240 start-page: 148 year: 2017 end-page: 161 ident: CR7 article-title: Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms publication-title: A review Agr Ecosyst Environ doi: 10.1016/j.agee.2017.02.019 – ident: CR25 – volume: 212 start-page: 461 issue: 2 year: 2016 end-page: 471 ident: CR52 article-title: Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants publication-title: New Phytol doi: 10.1111/nph.14041 – volume: 206 start-page: 106 issue: 1 year: 2015 end-page: 117 ident: CR2 article-title: Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology publication-title: New Phytol doi: 10.1111/nph.13132 – ident: CR21 – volume: 315 start-page: 285 issue: 1–2 year: 2009 end-page: 296 ident: CR30 article-title: Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system publication-title: Plant Soil doi: 10.1007/s11104-008-9751-9 – volume: 205 start-page: 1515 issue: 4 year: 2015 end-page: 1524 ident: CR54 article-title: Order of arrival structures arbuscular mycorrhizal colonization of plants publication-title: New Phytol doi: 10.1111/nph.13092 – volume: 22 start-page: 531 issue: 6 year: 2003 end-page: 567 ident: CR13 article-title: Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs) publication-title: Crit Rev Plant Sci doi: 10.1080/713608315 – volume: 210 start-page: 1022 issue: 3 year: 2016 end-page: 1032 ident: CR62 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium publication-title: New Phytol doi: 10.1111/nph.13838 – volume: 12 start-page: 2339 issue: 10 year: 2018 end-page: 2351 ident: CR61 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: Isme J doi: 10.1038/s41396-018-0171-4 – volume: 113 start-page: 6496 issue: 23 year: 2016 end-page: 6501 ident: CR19 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N fixation publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1523580113 – ident: CR9 – volume: 203 start-page: 63 issue: 1 year: 2014 end-page: 69 ident: CR27 article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture publication-title: New Phytol doi: 10.1111/nph.12778 – volume: 57 start-page: 1 issue: 1 year: 2002 end-page: 45 ident: CR44 article-title: Towards an ecological understanding of biological nitrogen fixation publication-title: Biogeochemistry doi: 10.1023/A:1015798428743 – volume: 14 start-page: 10 issue: 1 year: 2019 end-page: 20 ident: CR47 article-title: Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping publication-title: J Plant Interact doi: 10.1080/17429145.2018.1550218 – volume: 98 start-page: 132 year: 2016 end-page: 139 ident: CR18 article-title: Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.10.006 – volume: 337 start-page: 425 issue: 1–2 year: 2010 end-page: 434 ident: CR32 article-title: B value and isotopic fractionation in N-2 fixation by chickpea ( L.) and faba bean ( L.) publication-title: Plant Soil doi: 10.1007/s11104-010-0538-4 – year: 2020 ident: CR20 publication-title: Phosphorus acquisition and yield gain in intercropping: empirical studies and meta-analysis – volume: 13 start-page: 699 issue: 6 year: 1986 end-page: 756 ident: CR41 article-title: N -fixation in field settings: estimations based on natural N abundance publication-title: Aust J Plant Physiol doi: 10.1071/PP9860699 – volume: 94 start-page: 297 issue: 2 year: 2004 end-page: 303 ident: CR29 article-title: Acid phosphatase role in chickpea/maize intercropping publication-title: Ann Bot-London doi: 10.1093/Aob/Mch140 – volume: 223 start-page: 882 year: 2019 end-page: 895 ident: CR50 article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species publication-title: New Phytol doi: 10.1111/nph.15833 – volume: 205 start-page: 1437 issue: 4 year: 2015 end-page: 1442 ident: CR55 article-title: Partner selection in the mycorrhizal mutualism publication-title: New Phytol doi: 10.1111/nph.13113 – volume: 103 start-page: 1041 issue: 6 year: 2016 end-page: 1049 ident: CR57 article-title: Common mycelial networks impact competition in an invasive grass publication-title: Amer J Bot doi: 10.3732/ajb.1600142 – volume: 117 start-page: 363 issue: 3 year: 2016 end-page: 377 ident: CR59 article-title: Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review publication-title: Ann Bot-London doi: 10.1093/aob/mcv182 – volume: 108 start-page: 79 issue: 1 year: 1996 end-page: 84 ident: CR34 article-title: Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species publication-title: Oecologia doi: 10.1007/BF00333217 – volume: 10 start-page: 157 year: 2019 ident: CR3 article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00157 – volume: 204 start-page: 12 year: 2017 end-page: 22 ident: CR49 article-title: Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems publication-title: Field Crops Res doi: 10.1016/j.fcr.2016.12.020 – ident: CR26 – volume: 36 start-page: 203 issue: 2–3 year: 2001 end-page: 209 ident: CR5 article-title: Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops publication-title: FEMS Microbiol Ecol doi: 10.1016/s0168-6496(01)00134-9 – ident: CR37 – volume: 35 start-page: 2170 issue: 12 year: 2012 end-page: 2180 ident: CR40 article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02547.x – volume: 40 start-page: 406 issue: 6 year: 2004 end-page: 412 ident: CR4 article-title: Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines publication-title: Biol Fert Soils doi: 10.1007/s00374-004-0797-4 – volume: 19 start-page: 1632 issue: 4 year: 2019 end-page: 1639 ident: CR14 article-title: Intercropping with sweet corn ( L. .) expands P acquisition channels of chili pepper ( L.) via arbuscular mycorrhizal hyphal networks publication-title: J Soils Sediments doi: 10.1007/s11368-018-2198-6 – volume: 32 start-page: 119 year: 2016 end-page: 124 ident: CR58 article-title: Screening and identification of phosphate solubilizing bacteria in maize rhizosphere and their characteristics of phosphate solubilizing publication-title: Chin Agric Sci Bulletin (in Chinese) – volume: 406 start-page: 173 issue: 1–2 year: 2016 end-page: 185 ident: CR39 article-title: Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems publication-title: Plant Soil doi: 10.1007/s11104-016-2863-8 – volume: 154 start-page: 931 issue: 4 year: 2019 end-page: 942 ident: CR60 article-title: Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis publication-title: Eur J Plant Pathol doi: 10.1007/s10658-019-01711-4 – volume: 406 start-page: 718 issue: 6797 year: 2000 end-page: 722 ident: CR63 article-title: Genetic diversity and disease control in rice publication-title: Nature doi: 10.1038/35021046 – volume: 17 start-page: 215 issue: 1–3 year: 1990 end-page: 231 ident: CR56 article-title: Resource use in intercropping systems publication-title: Agr Water Manage doi: 10.1016/0378-3774(90)90069-B – volume: 28 start-page: 71 issue: 1 year: 2018 end-page: 83 ident: CR53 article-title: Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses publication-title: Mycorrhiza doi: 10.1007/s00572-017-0801-0 – volume: 46 start-page: 181 year: 2012 end-page: 190 ident: CR1 article-title: Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.11.015 – volume: 439 start-page: 163 issue: 1–2 year: 2019 end-page: 177 ident: CR24 article-title: Testing for complementarity in phosphorus resource use by mixtures of crop species publication-title: Plant Soil doi: 10.1007/s11104-018-3732-4 – ident: CR38 – volume: 265 start-page: 108127 year: 2021 ident: CR23 article-title: Complementarity and facilitation with respect to P acquisition do not drive overyielding by intercropping publication-title: Field Crops Res doi: 10.1016/j.fcr.2021.108127 – volume: 333 start-page: 880 issue: 6044 year: 2011 end-page: 882 ident: CR17 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science doi: 10.1126/science.1208473 – volume: 6 start-page: 1 issue: May year: 2015 end-page: 10 ident: CR33 article-title: Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00339 – volume: 198 start-page: 203 issue: 1 year: 2013 end-page: 213 ident: CR51 article-title: Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures publication-title: New Phytol doi: 10.1111/nph.12125 – volume: 94 start-page: 251 issue: 2 year: 2004 end-page: 258 ident: CR16 article-title: The influence of and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by publication-title: Ann Bot-London doi: 10.1093/aob/mch135 – volume: 159 start-page: 789 issue: 2 year: 2012 end-page: 797 ident: CR46 article-title: Mycorrhizal networks: common goods of plants shared under unequal terms of trade publication-title: Plant Physiol doi: 10.1104/pp.112.195727 – volume: 89 start-page: 113 year: 2015 end-page: 121 ident: CR11 article-title: Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2014.12.008 – ident: CR28 – volume: 6 start-page: 653 year: 2020 end-page: 660 ident: CR22 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nat Plants doi: 10.1038/s41477-020-0680-9 – volume: 12 start-page: 187 issue: 1 year: 2017 end-page: 192 ident: CR31 article-title: Intercropping influences component and content change of flavonoids in root exudates and nodulation of Faba bean publication-title: J Plant Interact doi: 10.1080/17429145.2017.1308569 – year: 2008 ident: CR42 publication-title: Mycorrhizal Symbiosis – volume: 27 start-page: 257 issue: 3 year: 1995 end-page: 263 ident: CR15 article-title: Solubilization of inorganic calcium phosphates - Solubilization mechanisms publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(94)00190-C – volume: 283 start-page: 275 issue: 1–2 year: 2006 end-page: 286 ident: CR8 article-title: Nitrogen fixation of faba bean ( L.) interacting with a non-legume in two contrasting intercropping systems publication-title: Plant Soil doi: 10.1007/s11104-006-0019-y – volume: 98 start-page: 132 year: 2016 ident: 5232_CR18 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.10.006 – volume-title: Mycorrhizal Symbiosis year: 2008 ident: 5232_CR42 – volume: 28 start-page: 71 issue: 1 year: 2018 ident: 5232_CR53 publication-title: Mycorrhiza doi: 10.1007/s00572-017-0801-0 – volume: 14 start-page: 10 issue: 1 year: 2019 ident: 5232_CR47 publication-title: J Plant Interact doi: 10.1080/17429145.2018.1550218 – volume: 22 start-page: 51 issue: 1 year: 2012 ident: 5232_CR6 publication-title: Mycorrhiza doi: 10.1007/s00572-011-0381-3 – volume: 203 start-page: 63 issue: 1 year: 2014 ident: 5232_CR27 publication-title: New Phytol doi: 10.1111/nph.12778 – ident: 5232_CR9 doi: 10.1016/bs.agron.2015.06.003 – volume: 159 start-page: 789 issue: 2 year: 2012 ident: 5232_CR46 publication-title: Plant Physiol doi: 10.1104/pp.112.195727 – volume: 103 start-page: 1041 issue: 6 year: 2016 ident: 5232_CR57 publication-title: Amer J Bot doi: 10.3732/ajb.1600142 – volume: 6 start-page: 653 year: 2020 ident: 5232_CR22 publication-title: Nat Plants doi: 10.1038/s41477-020-0680-9 – volume: 406 start-page: 173 issue: 1–2 year: 2016 ident: 5232_CR39 publication-title: Plant Soil doi: 10.1007/s11104-016-2863-8 – volume: 19 start-page: 1632 issue: 4 year: 2019 ident: 5232_CR14 publication-title: J Soils Sediments doi: 10.1007/s11368-018-2198-6 – volume: 6 start-page: 1 issue: May year: 2015 ident: 5232_CR33 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00339 – volume-title: Phosphorus acquisition and yield gain in intercropping: empirical studies and meta-analysis year: 2020 ident: 5232_CR20 – volume: 223 start-page: 882 year: 2019 ident: 5232_CR50 publication-title: New Phytol doi: 10.1111/nph.15833 – volume: 17 start-page: 215 issue: 1–3 year: 1990 ident: 5232_CR56 publication-title: Agr Water Manage doi: 10.1016/0378-3774(90)90069-B – volume: 13 start-page: 699 issue: 6 year: 1986 ident: 5232_CR41 publication-title: Aust J Plant Physiol doi: 10.1071/PP9860699 – volume: 32 start-page: 119 year: 2016 ident: 5232_CR58 publication-title: Chin Agric Sci Bulletin (in Chinese) – volume: 113 start-page: 6496 issue: 23 year: 2016 ident: 5232_CR19 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1523580113 – volume: 265 start-page: 108127 year: 2021 ident: 5232_CR23 publication-title: Field Crops Res doi: 10.1016/j.fcr.2021.108127 – volume: 154 start-page: 931 issue: 4 year: 2019 ident: 5232_CR60 publication-title: Eur J Plant Pathol doi: 10.1007/s10658-019-01711-4 – volume: 22 start-page: 531 issue: 6 year: 2003 ident: 5232_CR13 publication-title: Crit Rev Plant Sci doi: 10.1080/713608315 – volume: 108 start-page: 79 issue: 1 year: 1996 ident: 5232_CR34 publication-title: Oecologia doi: 10.1007/BF00333217 – volume: 12 start-page: 2339 issue: 10 year: 2018 ident: 5232_CR61 publication-title: Isme J doi: 10.1038/s41396-018-0171-4 – volume: 36 start-page: 203 issue: 2–3 year: 2001 ident: 5232_CR5 publication-title: FEMS Microbiol Ecol doi: 10.1016/s0168-6496(01)00134-9 – volume: 204 start-page: 12 year: 2017 ident: 5232_CR49 publication-title: Field Crops Res doi: 10.1016/j.fcr.2016.12.020 – ident: 5232_CR38 doi: 10.1038/srep08122 – volume: 57 start-page: 2203 issue: 11 year: 2020 ident: 5232_CR48 publication-title: J Appl Ecol doi: 10.1111/1365-2664.13739 – volume: 406 start-page: 718 issue: 6797 year: 2000 ident: 5232_CR63 publication-title: Nature doi: 10.1038/35021046 – volume: 27 start-page: 257 issue: 3 year: 1995 ident: 5232_CR15 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(94)00190-C – volume: 240 start-page: 148 year: 2017 ident: 5232_CR7 publication-title: A review Agr Ecosyst Environ doi: 10.1016/j.agee.2017.02.019 – volume: 94 start-page: 251 issue: 2 year: 2004 ident: 5232_CR16 publication-title: Ann Bot-London doi: 10.1093/aob/mch135 – volume: 198 start-page: 203 issue: 1 year: 2013 ident: 5232_CR51 publication-title: New Phytol doi: 10.1111/nph.12125 – volume: 205 start-page: 1437 issue: 4 year: 2015 ident: 5232_CR55 publication-title: New Phytol doi: 10.1111/nph.13113 – volume: 315 start-page: 285 issue: 1–2 year: 2009 ident: 5232_CR30 publication-title: Plant Soil doi: 10.1007/s11104-008-9751-9 – volume: 57 start-page: 1 issue: 1 year: 2002 ident: 5232_CR44 publication-title: Biogeochemistry doi: 10.1023/A:1015798428743 – volume: 333 start-page: 880 issue: 6044 year: 2011 ident: 5232_CR17 publication-title: Science doi: 10.1126/science.1208473 – volume: 46 start-page: 181 year: 2012 ident: 5232_CR1 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.11.015 – volume: 40 start-page: 406 issue: 6 year: 2004 ident: 5232_CR4 publication-title: Biol Fert Soils doi: 10.1007/s00374-004-0797-4 – volume: 10 start-page: 157 year: 2019 ident: 5232_CR3 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00157 – volume: 92 start-page: 1303 issue: 6 year: 2011 ident: 5232_CR45 publication-title: Ecology doi: 10.1890/10-1915.1 – volume: 439 start-page: 163 issue: 1–2 year: 2019 ident: 5232_CR24 publication-title: Plant Soil doi: 10.1007/s11104-018-3732-4 – volume: 12 start-page: 187 issue: 1 year: 2017 ident: 5232_CR31 publication-title: J Plant Interact doi: 10.1080/17429145.2017.1308569 – volume: 25 start-page: 651 issue: 6 year: 1993 ident: 5232_CR10 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(93)90104-J – volume: 89 start-page: 113 year: 2015 ident: 5232_CR11 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2014.12.008 – volume: 61 start-page: 295 issue: 2 year: 2007 ident: 5232_CR43 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00337.x – ident: 5232_CR28 doi: 10.1007/s42832-021-0107-1 – ident: 5232_CR35 – volume: 117 start-page: 363 issue: 3 year: 2016 ident: 5232_CR59 publication-title: Ann Bot-London doi: 10.1093/aob/mcv182 – volume: 205 start-page: 1515 issue: 4 year: 2015 ident: 5232_CR54 publication-title: New Phytol doi: 10.1111/nph.13092 – volume: 283 start-page: 275 issue: 1–2 year: 2006 ident: 5232_CR8 publication-title: Plant Soil doi: 10.1007/s11104-006-0019-y – ident: 5232_CR37 – volume: 206 start-page: 106 issue: 1 year: 2015 ident: 5232_CR2 publication-title: New Phytol doi: 10.1111/nph.13132 – volume: 35 start-page: 2170 issue: 12 year: 2012 ident: 5232_CR40 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02547.x – volume: 337 start-page: 425 issue: 1–2 year: 2010 ident: 5232_CR32 publication-title: Plant Soil doi: 10.1007/s11104-010-0538-4 – ident: 5232_CR21 doi: 10.1016/j.eja.2019.125987 – ident: 5232_CR25 doi: 10.1016/S1002-0160(21)60076-0 – volume: 164 start-page: 243 issue: 2 year: 2004 ident: 5232_CR12 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01192.x – volume: 212 start-page: 461 issue: 2 year: 2016 ident: 5232_CR52 publication-title: New Phytol doi: 10.1111/nph.14041 – volume: 55 start-page: 158 year: 1970 ident: 5232_CR36 publication-title: Trans Br Mycol Soc doi: 10.1016/S0007-1536(70)80110-3 – volume: 210 start-page: 1022 issue: 3 year: 2016 ident: 5232_CR62 publication-title: New Phytol doi: 10.1111/nph.13838 – ident: 5232_CR26 doi: 10.1038/srep18663 – volume: 94 start-page: 297 issue: 2 year: 2004 ident: 5232_CR29 publication-title: Ann Bot-London doi: 10.1093/Aob/Mch140 |
SSID | ssj0003216 |
Score | 2.4435399 |
Snippet | Aim
Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to... Aim Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to... AimCereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to... AIM: Cereal/legume intercropping often increases yield, partly because of increased nitrogen (N) and phosphorus (P) acquisition. The aim of this paper was to... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 279 |
SubjectTerms | Agricultural practices Agriculture Analysis Arbuscular mycorrhizas Asymmetry Biomass Biomedical and Life Sciences Chickpea Chickpeas Cicer arietinum Closed ecological systems Compartments Cropping systems Ecology Fungi Glomus mosseae Growth Identification and classification Inoculation Intercropping Legumes Life Sciences Mesocosms Methods Microcosms Millet millets Mixtures Monoculture Networks Nitrogen nylon Phosphorus Plant Physiology Plant Sciences Plant species Regular Article Rhizosphere Setaria italica soil Soil Science & Conservation Species vesicular arbuscular mycorrhizae |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7kVNAH0VWx5ykRBB802KZNm31c5Y5D8PDBhX0LSTrqcrfdc7sL9l79x53Jtrv4E3wrbRJCvyTzJZn5BuB56r1KgzISWayyUCGVxqlcmix4XTssXTzMeX9Wnk6LdzM964PC2sHbfbiSjCv1PtiNLFUh2aWAjzKVpI36dU17d3bkmqrJbv3NVUx4yg8yrcazPlTmz238ZI5-XZR_ux2NRufkLtzp2aKYbOG9B9ewGcHtyedVr5iBI7jxZkn8rhvBzeMoQN3dh-8c9bFsxKKjreXqy_yKmmi27t6tcG23WHAaLQLnohPzeKiAglOinF-iE2fCNbX4IFz4uplvHbrim-A2LQp2-OzY6Y26K3wnnOC0Rbh-vau_mH_jjj2A6cnxx7ensk-2IEM-ztaSY2h95o3TLkXOUmWCr7QjrFjARdMygOO6RGSBQCwNmXXvfebqCmuvc4L3IRw0ywYfgciMJ1YZfJoHVfhaOaIdmnif_1QWpkCXQDb8cxt6JXJOiHFh9xrKjJMlnGzEyaYJvNzVudzqcPyz9AuG0vIkpZaD62MNqH8sd2Un5ZiYFaddTuBoQNv2s7e1RBJTbSoiUwk8232meceXKa7B5SaWMUZXZDASeDWMkn0Tf-_b4f8Vfwy3FEdcRLe3IzhYrzb4hHjQ2j-Nw_4HIo79fg priority: 102 providerName: Springer Nature |
Title | Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture |
URI | https://link.springer.com/article/10.1007/s11104-021-05232-0 https://www.proquest.com/docview/2640587750 https://www.proquest.com/docview/2648857153 |
Volume | 472 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2xLQc4IFhABJbKSEgcINp8OXFPKIWWFYhqhahUTpHteKFim3SbViJc-ePMOG4rQOwpURwnVp49MxnPzAN4HigVBToSvqFilUmkA1_IKPZFqBUvpUmldeZ8nKZns-T9nM-dw61xYZU7mWgFdVlr8pGfouIOuMhQwb1eXfnEGkW7q45C4wj6KIKF6EF_NJ6ef9rL4jiy5Kd04gfZcO7SZrrkOdR8iU8hCuQaxfY_VNPfAvqfnVKrgCZ34Y6zHFneQX0PbpjqGG7nX9eueoY5hpujGm299j78oryPumLLFn8u198WP7Fj1QV8N0w27XJJRFoIz2XLFtatYBiRonxfGcmmTFYlO2dSX20XXUiXvaLltjGMQj5bCnvDQTLVMsmIuMhsTvf9l4sfNJwHMJuMP7858x3dgq_jYbjxKYtWhUpILgNDPFVCq4xLRItKuHAUBGZYpsZQiUCTClTsSqlQlpkpFY8R4IfQq-rKPAIWCoV2pVZBrKNElZFEw4Oj5acu0kQkRnoQ7r50oV0tcqLEuCwOVZQJnQLRKSw6ReDBy32fVVeJ49q7XxCABS1TfLKWLtsAx0cFr4o8HaJtRcTLHpzsMC7c-m2Kw2zz4Nm-GVcebafIytRbe48QPEOV4cGr3dw4POL_Y3t8_RufwK2IcixsoNsJ9DbrrXmKls9GDaCfj96OJnR89-XDeOCm-wCOZlH-G2XBAz0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VKRJwQKWAMLSwSCAOYNVevzYHhFJoldI2qlAr5bbdXS80amOncSJwr_0__EZm_EgEiN56s2yvPfKMZ2Z3Z74P4LWnNfcMF64lsMqQG88Vigeu8I2OUmVjVS3mHA7i_kn4ZRgNV-BX2wtDZZWtT6wcdZobWiPfwsDtRSLBAPdxcukSaxTtrrYUGrVZ7NvyB07Zig97n1G_bzjf3Tn-1HcbVgHXBF1_5lKzqPa1UJHyLNExCaOTSKFQhFQSob3bbhpbS0h4NhYYv7TWvkoTm-ooUAR0gC5_NQxij3dgdXtncPR14fsDXpGt0oHrJd1h06ZTN-thpA1dKomgpVi8_kco_Dsg_LMzWwW83TV40GSqrFeb1kNYsdk63O99nzZoHXYd7mznmFuWj-Ca-kzyjI1LnMxOz0ZXODCrC8wLpopyPCbiLjSHi5KNqmUMy4iE5XxiFRswlaXsiClzOR_VJWTVGaPmhWVUYlpSmR0KyXTJFCOiJDvbWowfj36SOI_h5FYU8QQ6WZ7Zp8B8oTGPNdoLDA91yhUmOhFmmvpbHIrQKgf89ktL02CfEwXHhVyiNpN2JGpHVtqRngPvFmMmNfLHjXe_JQVKcgv4ZKOa7gaUjwC2ZC_uYi5HRM8ObLQ6lo2_KOTSuh14tbiMfzpt36jM5vPqHiGiBEOUA-9b21g-4v-yPbv5jS_hbv_48EAe7A32n8M9Tv0dVZHdBnRm07ndxKxrpl80ps7g9Lb_rt-wbzuN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VKUL0gEoBYWhhkUAcwIq9fm0OCKW0UUshihCVclt219sS0dhpnAjMlX_Fr2PGj0SA6K03K_bao8zsfLO7M_MBPPO05p7hwrXUrDLkxnOF4oErfKOjVNlYVZs5H4bx0Wn4bhyNN-BXWwtDaZWtT6wcdZob2iPvInB7kUgQ4LpnTVrE6GDwZnbpEoMUnbS2dBq1iZzY8hsu34rXxweo6-ecDw4_vT1yG4YB1wQ9f-FS4aj2tVCR8ixRMwmjk0ihgNS1JELbt700tpa64tlYIJZprX2VJjbVUaCo6QG6_82EVkUd2Nw_HI4-rnAg4BXxKl24XtIbNyU7deEeom7oUnoEbcvi_T9g8W9w-OeUtgK_wTbcbqJW1q_N7A5s2GwHtvrn86Zzh92BG_s5xpnlXfhJNSd5xqYlLmznXyY_cGBWJ5sXTBXldEokXmgaFyWbVFsalhEhy9eZVWzIVJayEVPmcjmp08mqX4xaFpZRumlJKXcoJNMlU4xIk-yiuxo_nXwnce7B6bUo4j50sjyzD4D5QmNMa7QXGB7qlCsMeiKMOvVZHIrQKgf89p-WpumDTnQcF3LdwZm0I1E7stKO9Bx4uRozq7uAXPn0C1KgJBeBbzaqqXRA-ajZluzHPYzriPTZgd1Wx7LxHYVcW7oDT1e3cdbTUY7KbL6snhEiShCuHHjV2sb6Ff-X7eHVX3wCN3FWyffHw5NHcItTqUeVb7cLncV8afcwAFvox42lM_h83ZPrN4N6P8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+mycorrhizal+networks+asymmetrically+improve+chickpea+N+and+P+acquisition+and+cause+overyielding+by+a+millet%2Fchickpea+mixture&rft.jtitle=Plant+and+soil&rft.au=Li%2C+Chunjie&rft.au=Li%2C+Haigang&rft.au=Hoffland%2C+Ellis&rft.au=Zhang%2C+Fusuo&rft.date=2022-03-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=472&rft.issue=1-2&rft.spage=279&rft.epage=293&rft_id=info:doi/10.1007%2Fs11104-021-05232-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_021_05232_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |