Overview of Power Management for Triboelectric Nanogenerators

Triboelectric nanogenerators (TENGs) have demonstrated enormous potential applications for acquiring human motion energy and ambient mechanical energy, which is the foundation of energy for the new era. However, with alternating current (AC) pulse and huge inherent impedance, the TENGs usually exhib...

Full description

Saved in:
Bibliographic Details
Published inAdvanced intelligent systems Vol. 2; no. 2
Main Authors Fang, Chunlong, Tong, Tong, Bu, Tianzhao, Cao, Yuanzhi, Xu, Shaohang, Qi, Youchao, Zhang, Chi
Format Journal Article
LanguageEnglish
Published Wiley 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triboelectric nanogenerators (TENGs) have demonstrated enormous potential applications for acquiring human motion energy and ambient mechanical energy, which is the foundation of energy for the new era. However, with alternating current (AC) pulse and huge inherent impedance, the TENGs usually exhibit low‐energy supply efficiency when either powering conventional electronics or charging energy storage devices directly. Efficient power management has always been a technical bottleneck for the TENGs toward practical applications in self‐powered microsystems. Over the past years, several strategies of power management have been proposed, such as rectification, electromagnetic transformation, capacitive transformation, and direct current (DC) conversion, which can be used for voltage regulation, impedance matching, and efficiency improvement for electronics. Herein, the recent advances on power management for TENGs are systematically reviewed and analyzed, which has exhibited manageable triboelectric power by electronics as an important research issue of TENGs. Finally, the existing challenges and future perspectives in this field are discussed. An overview of power management for triboelectric nanogenerators (TENGs) is presented, including two main sections. The first is a systematic summary and comparison of the recent advances on power management for TENGs. The second is an outlook of TENGs with the power management module to power various advanced intelligent systems.
AbstractList Triboelectric nanogenerators (TENGs) have demonstrated enormous potential applications for acquiring human motion energy and ambient mechanical energy, which is the foundation of energy for the new era. However, with alternating current (AC) pulse and huge inherent impedance, the TENGs usually exhibit low‐energy supply efficiency when either powering conventional electronics or charging energy storage devices directly. Efficient power management has always been a technical bottleneck for the TENGs toward practical applications in self‐powered microsystems. Over the past years, several strategies of power management have been proposed, such as rectification, electromagnetic transformation, capacitive transformation, and direct current (DC) conversion, which can be used for voltage regulation, impedance matching, and efficiency improvement for electronics. Herein, the recent advances on power management for TENGs are systematically reviewed and analyzed, which has exhibited manageable triboelectric power by electronics as an important research issue of TENGs. Finally, the existing challenges and future perspectives in this field are discussed. An overview of power management for triboelectric nanogenerators (TENGs) is presented, including two main sections. The first is a systematic summary and comparison of the recent advances on power management for TENGs. The second is an outlook of TENGs with the power management module to power various advanced intelligent systems.
Triboelectric nanogenerators (TENGs) have demonstrated enormous potential applications for acquiring human motion energy and ambient mechanical energy, which is the foundation of energy for the new era. However, with alternating current (AC) pulse and huge inherent impedance, the TENGs usually exhibit low‐energy supply efficiency when either powering conventional electronics or charging energy storage devices directly. Efficient power management has always been a technical bottleneck for the TENGs toward practical applications in self‐powered microsystems. Over the past years, several strategies of power management have been proposed, such as rectification, electromagnetic transformation, capacitive transformation, and direct current (DC) conversion, which can be used for voltage regulation, impedance matching, and efficiency improvement for electronics. Herein, the recent advances on power management for TENGs are systematically reviewed and analyzed, which has exhibited manageable triboelectric power by electronics as an important research issue of TENGs. Finally, the existing challenges and future perspectives in this field are discussed.
Author Tong, Tong
Xu, Shaohang
Bu, Tianzhao
Zhang, Chi
Fang, Chunlong
Cao, Yuanzhi
Qi, Youchao
Author_xml – sequence: 1
  givenname: Chunlong
  surname: Fang
  fullname: Fang, Chunlong
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Tong
  surname: Tong
  fullname: Tong, Tong
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Tianzhao
  surname: Bu
  fullname: Bu, Tianzhao
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yuanzhi
  surname: Cao
  fullname: Cao, Yuanzhi
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Shaohang
  surname: Xu
  fullname: Xu, Shaohang
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Youchao
  surname: Qi
  fullname: Qi, Youchao
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Chi
  orcidid: 0000-0002-7511-805X
  surname: Zhang
  fullname: Zhang, Chi
  email: czhang@binn.cas.cn
  organization: Guangxi University
BookMark eNqFkE1LAzEQhoNUsNZePe8f2Jqv_cjBQyl-FKoVrAdPYTaZlJTtRrJLS_-9WyvqzdMMw_s8DO8lGTShQUKuGZ0wSvkN-PYw4ZQpShlXZ2TIc0lTmeXF4M9-QcZtu6E9wApGeTEkt8sdxp3HfRJc8hL2GJMnaGCNW2y6xIWYrKKvAtZouuhN8gxNWGODEboQ2yty7qBucfw9R-Tt_m41e0wXy4f5bLpIjVBMpWBYARwyZZBzS2meCahKlkMlRdb_IazNDMgSi9IyCpblrOIopTESpUUnRmR-8toAG_0R_RbiQQfw-usQ4lpD7LypUZfMVgYzQOVK6ZQChyDKHLixRe6Y6F2Tk8vE0LYR3Y-PUX3sUh-71D9d9oA6AXtf4-GftJ7OX99_2U-GX3sR
CitedBy_id crossref_primary_10_1021_acsbiomaterials_3c01633
crossref_primary_10_1016_j_nanoen_2023_108792
crossref_primary_10_2516_stet_2024026
crossref_primary_10_3390_s22041668
crossref_primary_10_3390_eng5020052
crossref_primary_10_1016_j_matt_2020_10_018
crossref_primary_10_3390_electronics12214477
crossref_primary_10_3390_nanoenergyadv4020010
crossref_primary_10_1002_admt_202300672
crossref_primary_10_1002_smll_202300401
crossref_primary_10_1016_j_nanoen_2021_106757
crossref_primary_10_1088_1361_6528_acd789
crossref_primary_10_1002_adfm_202305106
crossref_primary_10_1021_acsenergylett_1c01508
crossref_primary_10_1002_admt_202201294
crossref_primary_10_3390_nanoenergyadv2010004
crossref_primary_10_1016_j_nanoen_2021_106154
crossref_primary_10_1016_j_nanoen_2024_109724
crossref_primary_10_1016_j_nanoen_2022_107964
crossref_primary_10_1088_1361_6439_ac168e
crossref_primary_10_1016_j_nanoen_2023_108475
crossref_primary_10_1021_acsnano_3c09077
crossref_primary_10_1016_j_jsamd_2022_100461
crossref_primary_10_1007_s40820_021_00644_0
crossref_primary_10_1002_aenm_202400481
crossref_primary_10_1002_inf2_12428
crossref_primary_10_1039_D3SE00714F
crossref_primary_10_1016_j_nanoen_2021_105811
crossref_primary_10_1016_j_bios_2020_112569
crossref_primary_10_1038_s41578_022_00441_0
crossref_primary_10_1002_adsr_202300163
crossref_primary_10_1007_s11664_024_11223_5
crossref_primary_10_1016_j_cej_2024_148640
crossref_primary_10_1039_D2SE01698B
crossref_primary_10_1088_1674_4926_42_10_101601
crossref_primary_10_1039_D4EE01119H
crossref_primary_10_1155_2023_5568046
crossref_primary_10_1155_2023_1495217
Cites_doi 10.1016/j.nanoen.2014.11.050
10.1016/j.nanoen.2018.02.013
10.1016/j.nanoen.2018.06.034
10.1016/j.nanoen.2018.05.011
10.1016/j.nanoen.2019.04.047
10.1016/j.enconman.2009.02.020
10.1038/ncomms9376
10.1016/j.rser.2011.01.004
10.1177/1045389X05056859
10.1016/j.nanoen.2016.01.009
10.1021/nn403151t
10.1016/j.nanoen.2018.01.004
10.1016/j.nanoen.2014.05.018
10.1038/ncomms4426
10.1126/science.aam6960
10.1002/adsu.201700178
10.1016/j.nanoen.2018.10.045
10.1109/TPEL.2019.2963358
10.1016/j.nanoen.2016.11.025
10.1016/j.nanoen.2017.11.062
10.1039/c3ee42571a
10.1038/scientificamerican1004-76
10.1016/j.nanoen.2014.11.034
10.1039/C6EE01137C
10.1016/j.nanoen.2017.05.063
10.1002/adfm.201807241
10.1016/j.nanoen.2019.04.026
10.1049/el.2017.3434
10.1177/0144598716650552
10.1016/j.nanoen.2019.01.088
10.1016/j.enconman.2017.02.070
10.1002/advs.201500255
10.1038/ncomms12985
10.1088/0960-1317/16/11/026
10.1016/j.nanoen.2017.05.027
10.1002/adma.201404059
10.1038/ncomms9975
10.1016/j.rser.2016.07.034
10.1016/j.nanoen.2018.06.038
10.1038/ncomms10987
10.1007/s40820-019-0343-4
10.1016/j.enconman.2010.07.024
10.1016/j.nanoen.2011.11.004
10.1016/j.nanoen.2019.04.043
10.1021/acsnano.6b01569
10.1021/acsnano.5b00308
10.1016/j.rser.2010.11.032
10.1016/j.nanoen.2017.06.035
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1002/aisy.201900129
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_81dbce5ae9f84f99afea386a2cd76f13
10_1002_aisy_201900129
AISY201900129
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51922023; 61874011
– fundername: Beijing Natural Science Foundation
  funderid: 4192070
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0202704
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
M~E
OK1
PIMPY
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3919-ac17a2a59ce22d00653ab816ab4351023dd5ca48e78d10ad161b2e44cc4e4def3
IEDL.DBID DOA
ISSN 2640-4567
IngestDate Thu Jul 04 21:09:11 EDT 2024
Thu Sep 26 19:49:15 EDT 2024
Sat Aug 24 01:07:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3919-ac17a2a59ce22d00653ab816ab4351023dd5ca48e78d10ad161b2e44cc4e4def3
ORCID 0000-0002-7511-805X
OpenAccessLink https://doaj.org/article/81dbce5ae9f84f99afea386a2cd76f13
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_81dbce5ae9f84f99afea386a2cd76f13
crossref_primary_10_1002_aisy_201900129
wiley_primary_10_1002_aisy_201900129_AISY201900129
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Advanced intelligent systems
PublicationYear 2020
Publisher Wiley
Publisher_xml – name: Wiley
References 2009; 45
2017; 7
2013; 25
2017; 3
2013; 2
2013; 24
2019; 55
2004; 28
2019; 58
2011; 52
2014; 26
2014; 25
2011; 12
2011; 15
2014; 176
2013; 7
2018; 45
2014; 62
2018; 44
2012; 12
2017; 356
2013; 6
2018; 49
2016; 34
2018; 46
2017; 31
2018; 8
2010; 20
2014; 5
2018; 3
2014; 4
2018; 2
2019; 61
2004; 291
2017; 37
2009; 50
2013; 13
2017; 39
2017; 38
2019; 29
2014; 8
2017; 20
2015; 14
2019; 9
2018; 28
2015; 6
2011
2006; 16
2016; 10
2020; 35
2015; 9
2016; 6
2016; 7
2007; 316
2015; 27
2016; 1
2012; 1
2016; 3
2016; 65
2017; 140
2018; 51
2018; 12
2005; 16
2018; 54
2018; 10
2016; 9
2016; 22
e_1_2_10_23_1
e_1_2_10_46_1
Zhang X.-S. (e_1_2_10_48_1) 2013; 13
e_1_2_10_40_1
Wang S. (e_1_2_10_56_1) 2013; 7
Wang Z. L. (e_1_2_10_66_1) 2017; 20
Wang Z. L. (e_1_2_10_13_1) 2011
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
Su Y. (e_1_2_10_55_1) 2013; 24
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_34_1
Yang W. (e_1_2_10_35_1) 2013; 7
Liu G. X. (e_1_2_10_36_1) 2018; 2
e_1_2_10_30_1
e_1_2_10_51_1
Qin H. (e_1_2_10_83_1) 2018; 28
Xu W. (e_1_2_10_26_1) 2017; 7
Tang W. (e_1_2_10_61_1) 2014; 25
Fan F.-R. (e_1_2_10_72_1) 2014; 25
Wang S. (e_1_2_10_44_1) 2014; 26
Chen J. (e_1_2_10_49_1) 2013; 25
Guo T. (e_1_2_10_65_1) 2018; 3
Zhang C. (e_1_2_10_71_1) 2014; 26
Wang J. (e_1_2_10_57_1) 2015; 27
Xu L. (e_1_2_10_74_1) 2018; 12
Yang L. (e_1_2_10_8_1) 2018; 8
Riffat S. B. (e_1_2_10_11_1) 2004; 28
e_1_2_10_82_1
Kim H. S. (e_1_2_10_14_1) 2011; 12
Yang Y. (e_1_2_10_43_1) 2013; 25
e_1_2_10_84_1
e_1_2_10_63_1
e_1_2_10_86_1
Zhang C. (e_1_2_10_89_1) 2019; 29
Wang X. (e_1_2_10_37_1) 2007; 316
e_1_2_10_88_1
e_1_2_10_67_1
Yang Y. (e_1_2_10_25_1) 2013; 7
e_1_2_10_24_1
e_1_2_10_22_1
Wang Z. L. (e_1_2_10_21_1) 2014; 176
e_1_2_10_20_1
e_1_2_10_41_1
Zhang K. (e_1_2_10_58_1) 2015; 9
Zhu G. (e_1_2_10_33_1) 2013; 2
Wu C. (e_1_2_10_52_1) 2019; 9
Bai P. (e_1_2_10_32_1) 2013; 7
Ahiska R. (e_1_2_10_12_1) 2014; 4
Comba P. (e_1_2_10_29_1) 2009; 45
e_1_2_10_90_1
e_1_2_10_73_1
e_1_2_10_3_1
e_1_2_10_75_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
Wang D. A. (e_1_2_10_19_1) 2010; 20
Wang S. (e_1_2_10_47_1) 2012; 12
Wang S. (e_1_2_10_42_1) 2013; 13
e_1_2_10_50_1
Xie Y. (e_1_2_10_27_1) 2014; 26
Chen J. (e_1_2_10_38_1) 2016; 1
Xu S. (e_1_2_10_80_1) 2019; 9
Niu S. (e_1_2_10_54_1) 2014; 62
Lee H. (e_1_2_10_31_1) 2017; 3
e_1_2_10_60_1
Niu S. (e_1_2_10_69_1) 2013; 25
e_1_2_10_81_1
Chen S. (e_1_2_10_45_1) 2016; 6
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_87_1
Zhang X. (e_1_2_10_78_1) 2018; 10
e_1_2_10_68_1
References_xml – volume: 15
  start-page: 5
  year: 2011
  publication-title: Renew. Sust. Energ. Rev.
– year: 2011
– volume: 16,
  start-page: 10
  year: 2005
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 2,
  start-page: 12
  year: 2018
  publication-title: Adv. Sustainable Syst.
– volume: 51,
  start-page: 173
  year: 2018
  publication-title: Nano Energy
– volume: 25,
  start-page: 43
  year: 2013
  publication-title: Adv. Mater.
– volume: 25,
  start-page: 13
  year: 2014
  publication-title: Nanotechnology
– volume: 3,
  start-page: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 1,
  start-page: 10
  year: 2016
  publication-title: Nat. Energy
– volume: 31,
  start-page: 302
  year: 2017
  publication-title: Nano Energy
– volume: 26,
  start-page: 18
  year: 2014
  publication-title: Adv. Mater.
– volume: 29,
  start-page: 41
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3,
  start-page: 1
  year: 2016
  publication-title: Adv. Sci.
– volume: 7,
  start-page: 12
  year: 2013
  publication-title: ACS Nano
– volume: 2,
  start-page: 5
  year: 2013
  publication-title: Nano Energy
– volume: 20,
  start-page: 2
  year: 2010
  publication-title: J. Micromech. Microeng.
– volume: 22,
  start-page: 87
  year: 2016
  publication-title: Nano Energy
– volume: 6,
  start-page: 8
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28,
  start-page: 51
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 52,
  start-page: 1
  year: 2011
  publication-title: Energy Convers. Manage.
– volume: 291
  start-page: 4
  year: 2004
  publication-title: Sci. Am.
– volume: 9,
  start-page: 3
  year: 2015
  publication-title: ACS Nano
– volume: 4,
  start-page: 1
  year: 2014
  publication-title: Int. J. Energ. Res.
– volume: 62,
  start-page: 2
  year: 2014
  publication-title: IEEE Trans. Electron Devices
– volume: 12,
  start-page: 10
  year: 2018
  publication-title: ACS Nano
– volume: 38,
  start-page: 438
  year: 2017
  publication-title: Nano Energy
– volume: 12,
  start-page: 9
  year: 2012
  publication-title: Nano Lett.
– volume: 61,
  start-page: 69
  year: 2019
  publication-title: Nano Energy
– volume: 25,
  start-page: 42
  year: 2013
  publication-title: Adv. Mater.
– volume: 58,
  start-page: 499
  year: 2019
  publication-title: Nano Energy
– volume: 14,
  start-page: 126
  year: 2015
  publication-title: Nano Energy
– volume: 8
  start-page: 6
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 50,
  start-page: 7
  year: 2009
  publication-title: Energy Convers. Manage.
– volume: 6,
  start-page: 8975
  year: 2015
  publication-title: Nat. Commun.
– volume: 34
  start-page: 4
  year: 2016
  publication-title: Energy Explor. Exploit.
– volume: 140
  start-page: 167
  year: 2017
  publication-title: Energy Convers. Manage.
– volume: 61,
  start-page: 111
  year: 2019
  publication-title: Nano Energy
– volume: 1,
  start-page: 2
  year: 2012
  publication-title: Nano Energy
– volume: 39,
  start-page: 9
  year: 2017
  publication-title: Nano Energy
– volume: 27,
  start-page: 15
  year: 2015
  publication-title: Adv. Mater.
– volume: 25,
  start-page: 22
  year: 2014
  publication-title: Nanotechnology
– volume: 61,
  start-page: 1
  year: 2019
  publication-title: Nano Energy
– volume: 6,
  start-page: 12
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 3
  year: 2011
  publication-title: Renew. Sust. Energ. Rev.
– volume: 5,
  start-page: 3426
  year: 2014
  publication-title: Nat. Commun.
– volume: 13,
  start-page: 5
  year: 2013
  publication-title: Nano Lett.
– volume: 49,
  start-page: 625
  year: 2018
  publication-title: Nano Energy
– volume: 7,
  start-page: 10
  year: 2013
  publication-title: ACS Nano
– volume: 12,
  start-page: 12
  year: 2012
  publication-title: Nano Lett.
– volume: 65
  start-page: 698
  year: 2016
  publication-title: Renew. Sust. Energ. Rev.
– volume: 7,
  start-page: 1
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7,
  start-page: 10987
  year: 2016
  publication-title: Nat. Commun.
– volume: 44,
  start-page: 208
  year: 2018
  publication-title: Nano Energy
– volume: 25,
  start-page: 45
  year: 2013
  publication-title: Adv. Mater.
– volume: 26,
  start-page: 22
  year: 2014
  publication-title: Adv. Mater.
– volume: 316,
  start-page: 5821
  year: 2007
  publication-title: Science
– volume: 3,
  start-page: 8
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 6,
  start-page: 8376
  year: 2015
  publication-title: Nat. Commun.
– volume: 54,
  start-page: 6
  year: 2018
  publication-title: Electron. Lett
– volume: 28,
  start-page: 9
  year: 2004
  publication-title: Int. J. Energ. Res.
– volume: 7,
  start-page: 12985
  year: 2016
  publication-title: Nat. Commun.
– volume: 2,
  start-page: 5
  year: 2018
  publication-title: Adv. Sustainable Syst.
– volume: 37,
  start-page: 168
  year: 2017
  publication-title: Nano Energy
– volume: 10,
  start-page: 4
  year: 2016
  publication-title: ACS Nano
– volume: 7,
  start-page: 8
  year: 2013
  publication-title: ACS Nano
– volume: 55
  start-page: 29
  year: 2019
  publication-title: Nano Energy
– volume: 16,
  start-page: 11
  year: 2006
  publication-title: J. Micromech. Microeng.
– volume: 20,
  start-page: 2
  year: 2017
  publication-title: Mater. Today
– volume: 45,
  start-page: 266
  year: 2018
  publication-title: Nano Energy
– volume: 46,
  start-page: 220
  year: 2018
  publication-title: Nano Energy
– volume: 7,
  start-page: 4
  year: 2013
  publication-title: ACS Nano
– volume: 35
  start-page: 1
  year: 2020
  publication-title: IEEE Trans. Power Electron.
– volume: 8,
  start-page: 150
  year: 2014
  publication-title: Nano Energy
– volume: 9,
  start-page: 30
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 12,
  start-page: 6
  year: 2011
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 10,
  start-page: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 176,
  start-page: 0
  year: 2014
  publication-title: Faraday Discuss.
– volume: 27,
  start-page: 33
  year: 2015
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1807241
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13,
  start-page: 3
  year: 2013
  publication-title: Nano Lett.
– volume: 9,
  start-page: 4
  year: 2015
  publication-title: ACS Nano
– volume: 26,
  start-page: 38
  year: 2014
  publication-title: Adv. Mater.
– volume: 24,
  start-page: 29
  year: 2013
  publication-title: Nanotechnology
– volume: 9,
  start-page: 1
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 10
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 45,
  start-page: 3
  year: 2009
  publication-title: Ann. Ist. Super. Sanita
– volume: 51,
  start-page: 10
  year: 2018
  publication-title: Nano Energy
– volume: 14,
  start-page: 161
  year: 2015
  publication-title: Nano Energy
– volume: 356
  start-page: 6337
  year: 2017
  publication-title: Science
– ident: e_1_2_10_22_1
  doi: 10.1016/j.nanoen.2014.11.050
– ident: e_1_2_10_85_1
  doi: 10.1016/j.nanoen.2018.02.013
– volume: 25
  start-page: 22
  year: 2014
  ident: e_1_2_10_61_1
  publication-title: Nanotechnology
  contributor:
    fullname: Tang W.
– ident: e_1_2_10_75_1
  doi: 10.1016/j.nanoen.2018.06.034
– ident: e_1_2_10_28_1
  doi: 10.1016/j.nanoen.2018.05.011
– ident: e_1_2_10_51_1
  doi: 10.1016/j.nanoen.2019.04.047
– volume: 9
  start-page: 1
  year: 2019
  ident: e_1_2_10_52_1
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wu C.
– ident: e_1_2_10_17_1
  doi: 10.1016/j.enconman.2009.02.020
– volume: 8
  start-page: 6
  year: 2018
  ident: e_1_2_10_8_1
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Yang L.
– volume: 9
  start-page: 4
  year: 2015
  ident: e_1_2_10_58_1
  publication-title: ACS Nano
  contributor:
    fullname: Zhang K.
– ident: e_1_2_10_79_1
  doi: 10.1038/ncomms9376
– ident: e_1_2_10_6_1
  doi: 10.1016/j.rser.2011.01.004
– ident: e_1_2_10_15_1
  doi: 10.1177/1045389X05056859
– ident: e_1_2_10_23_1
  doi: 10.1016/j.nanoen.2016.01.009
– volume: 10
  start-page: 10
  year: 2018
  ident: e_1_2_10_78_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Zhang X.
– ident: e_1_2_10_81_1
  doi: 10.1021/nn403151t
– ident: e_1_2_10_73_1
  doi: 10.1016/j.nanoen.2018.01.004
– ident: e_1_2_10_68_1
  doi: 10.1016/j.nanoen.2014.05.018
– ident: e_1_2_10_59_1
  doi: 10.1038/ncomms4426
– volume: 25
  start-page: 43
  year: 2013
  ident: e_1_2_10_69_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Niu S.
– volume: 28
  start-page: 51
  year: 2018
  ident: e_1_2_10_83_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Qin H.
– volume: 6
  start-page: 8
  year: 2016
  ident: e_1_2_10_45_1
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Chen S.
– ident: e_1_2_10_2_1
  doi: 10.1126/science.aam6960
– ident: e_1_2_10_90_1
  doi: 10.1002/adsu.201700178
– volume: 26
  start-page: 22
  year: 2014
  ident: e_1_2_10_71_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Zhang C.
– ident: e_1_2_10_88_1
  doi: 10.1016/j.nanoen.2018.10.045
– volume: 25
  start-page: 13
  year: 2014
  ident: e_1_2_10_72_1
  publication-title: Nanotechnology
  contributor:
    fullname: Fan F.-R.
– volume: 7
  start-page: 1
  year: 2017
  ident: e_1_2_10_26_1
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Xu W.
– volume: 1
  start-page: 10
  year: 2016
  ident: e_1_2_10_38_1
  publication-title: Nat. Energy
  contributor:
    fullname: Chen J.
– ident: e_1_2_10_40_1
  doi: 10.1109/TPEL.2019.2963358
– volume: 25
  start-page: 45
  year: 2013
  ident: e_1_2_10_43_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Yang Y.
– ident: e_1_2_10_62_1
  doi: 10.1016/j.nanoen.2016.11.025
– volume-title: Nanogenerators for Self-Powered Devices and Systems
  year: 2011
  ident: e_1_2_10_13_1
  contributor:
    fullname: Wang Z. L.
– volume: 20
  start-page: 2
  year: 2017
  ident: e_1_2_10_66_1
  publication-title: Mater. Today
  contributor:
    fullname: Wang Z. L.
– volume: 45
  start-page: 3
  year: 2009
  ident: e_1_2_10_29_1
  publication-title: Ann. Ist. Super. Sanita
  contributor:
    fullname: Comba P.
– ident: e_1_2_10_84_1
  doi: 10.1016/j.nanoen.2017.11.062
– volume: 2
  start-page: 5
  year: 2013
  ident: e_1_2_10_33_1
  publication-title: Nano Energy
  contributor:
    fullname: Zhu G.
– ident: e_1_2_10_70_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_10_3_1
  doi: 10.1038/scientificamerican1004-76
– volume: 13
  start-page: 3
  year: 2013
  ident: e_1_2_10_48_1
  publication-title: Nano Lett.
  contributor:
    fullname: Zhang X.-S.
– ident: e_1_2_10_53_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_10_4_1
  doi: 10.1039/C6EE01137C
– volume: 7
  start-page: 12
  year: 2013
  ident: e_1_2_10_56_1
  publication-title: ACS Nano
  contributor:
    fullname: Wang S.
– volume: 7
  start-page: 12
  year: 2013
  ident: e_1_2_10_35_1
  publication-title: ACS Nano
  contributor:
    fullname: Yang W.
– ident: e_1_2_10_87_1
  doi: 10.1016/j.nanoen.2017.05.063
– volume: 25
  start-page: 42
  year: 2013
  ident: e_1_2_10_49_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Chen J.
– volume: 316
  start-page: 5821
  year: 2007
  ident: e_1_2_10_37_1
  publication-title: Science
  contributor:
    fullname: Wang X.
– volume: 24
  start-page: 29
  year: 2013
  ident: e_1_2_10_55_1
  publication-title: Nanotechnology
  contributor:
    fullname: Su Y.
– ident: e_1_2_10_91_1
  doi: 10.1002/adfm.201807241
– ident: e_1_2_10_64_1
  doi: 10.1016/j.nanoen.2019.04.026
– ident: e_1_2_10_77_1
  doi: 10.1049/el.2017.3434
– volume: 12
  start-page: 10
  year: 2018
  ident: e_1_2_10_74_1
  publication-title: ACS Nano
  contributor:
    fullname: Xu L.
– volume: 176
  start-page: 0
  year: 2014
  ident: e_1_2_10_21_1
  publication-title: Faraday Discuss.
  contributor:
    fullname: Wang Z. L.
– volume: 20
  start-page: 2
  year: 2010
  ident: e_1_2_10_19_1
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Wang D. A.
– volume: 26
  start-page: 38
  year: 2014
  ident: e_1_2_10_27_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Xie Y.
– volume: 12
  start-page: 12
  year: 2012
  ident: e_1_2_10_47_1
  publication-title: Nano Lett.
  contributor:
    fullname: Wang S.
– ident: e_1_2_10_7_1
  doi: 10.1177/0144598716650552
– volume: 7
  start-page: 10
  year: 2013
  ident: e_1_2_10_25_1
  publication-title: ACS Nano
  contributor:
    fullname: Yang Y.
– volume: 27
  start-page: 33
  year: 2015
  ident: e_1_2_10_57_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Wang J.
– ident: e_1_2_10_39_1
  doi: 10.1016/j.nanoen.2019.01.088
– volume: 9
  start-page: 30
  year: 2019
  ident: e_1_2_10_80_1
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Xu S.
– ident: e_1_2_10_10_1
  doi: 10.1016/j.enconman.2017.02.070
– volume: 28
  start-page: 9
  year: 2004
  ident: e_1_2_10_11_1
  publication-title: Int. J. Energ. Res.
  contributor:
    fullname: Riffat S. B.
– ident: e_1_2_10_60_1
  doi: 10.1002/advs.201500255
– volume: 7
  start-page: 4
  year: 2013
  ident: e_1_2_10_32_1
  publication-title: ACS Nano
  contributor:
    fullname: Bai P.
– ident: e_1_2_10_30_1
  doi: 10.1038/ncomms12985
– volume: 13
  start-page: 5
  year: 2013
  ident: e_1_2_10_42_1
  publication-title: Nano Lett.
  contributor:
    fullname: Wang S.
– ident: e_1_2_10_16_1
  doi: 10.1088/0960-1317/16/11/026
– ident: e_1_2_10_63_1
  doi: 10.1016/j.nanoen.2017.05.027
– ident: e_1_2_10_34_1
  doi: 10.1002/adma.201404059
– ident: e_1_2_10_86_1
  doi: 10.1038/ncomms9975
– volume: 29
  start-page: 41
  year: 2019
  ident: e_1_2_10_89_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Zhang C.
– volume: 62
  start-page: 2
  year: 2014
  ident: e_1_2_10_54_1
  publication-title: IEEE Trans. Electron Devices
  contributor:
    fullname: Niu S.
– ident: e_1_2_10_9_1
  doi: 10.1016/j.rser.2016.07.034
– ident: e_1_2_10_76_1
  doi: 10.1016/j.nanoen.2018.06.038
– ident: e_1_2_10_82_1
  doi: 10.1038/ncomms10987
– ident: e_1_2_10_41_1
  doi: 10.1007/s40820-019-0343-4
– ident: e_1_2_10_18_1
  doi: 10.1016/j.enconman.2010.07.024
– volume: 3
  start-page: 8
  year: 2018
  ident: e_1_2_10_65_1
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Guo T.
– ident: e_1_2_10_20_1
  doi: 10.1016/j.nanoen.2011.11.004
– ident: e_1_2_10_46_1
  doi: 10.1016/j.nanoen.2019.04.043
– volume: 3
  start-page: 3
  year: 2017
  ident: e_1_2_10_31_1
  publication-title: Sci. Adv.
  contributor:
    fullname: Lee H.
– volume: 2
  start-page: 12
  year: 2018
  ident: e_1_2_10_36_1
  publication-title: Adv. Sustainable Syst.
  contributor:
    fullname: Liu G. X.
– volume: 26
  start-page: 18
  year: 2014
  ident: e_1_2_10_44_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Wang S.
– ident: e_1_2_10_50_1
  doi: 10.1021/acsnano.6b01569
– ident: e_1_2_10_24_1
  doi: 10.1021/acsnano.5b00308
– ident: e_1_2_10_5_1
  doi: 10.1016/j.rser.2010.11.032
– volume: 12
  start-page: 6
  year: 2011
  ident: e_1_2_10_14_1
  publication-title: Int. J. Precis. Eng. Manuf.
  contributor:
    fullname: Kim H. S.
– ident: e_1_2_10_67_1
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 4
  start-page: 1
  year: 2014
  ident: e_1_2_10_12_1
  publication-title: Int. J. Energ. Res.
  contributor:
    fullname: Ahiska R.
SSID ssj0002171027
Score 2.384189
Snippet Triboelectric nanogenerators (TENGs) have demonstrated enormous potential applications for acquiring human motion energy and ambient mechanical energy, which...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms energy for the new era
power management
power tribotronics
self-powered microsystems
triboelectric nanogenerators
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDzosXUVScv8hB8FTWpmmbHDxMcUxBHehgnsrLr7HLKttU_O_NS7fqToLHlrZpX5O8b19fPo-Qi8z4WT-DOLKg4ohnhYxEnqZR7lycama41BjveHjM-0N-P8pGv1bx13yIJuCGIyPM1zjAQc07P9BQmMy_MDVLhljKJtny2kZgv2Z80ERZvOD2HhTXTHvHj_eSFytyY8w665dY80wB4L8uWIPH6e2SnaVUpN363e6RDTvdJ1dPHzi67SetHB1giTP6k8FCvQKlyAKp6uo2E0397FmNA1oay-ockGHv9uWmHy1LIEQ6lYmMQCcFMMiktoyZAJIFJZIclJc5SF0wJkMuuS2ESWIwXr8pZjnXmlturEsPSWtaTe0RoQUAV4ZnichjrDfslZFgBrAZhf_j2uRy9fjlW026KGumMSvRUGVjqDa5Rus0RyGhOuyoZuNy2eFLr4OVthlY6QR3UoKzkIocmDZF7pK0TViw7R9tld2759dm6_g_J52QbYYfySHV-pS0FrN3e-aVxEKdh87yDWdhvy8
  priority: 102
  providerName: Wiley-Blackwell
Title Overview of Power Management for Triboelectric Nanogenerators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.201900129
https://doaj.org/article/81dbce5ae9f84f99afea386a2cd76f13
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NS8NAEIYX7cmLKCrWj7IHwVNostlNsgcPVVqqUC1ooZ7C7Jf00ohWxYu_3Z1NW9tTL14CCYFJZpLZd3eHZwi5EMZnfQFxZEHFERe5jIosTaPMuTjVzHCpcb1jcJ_1R_xuLMYrrb6wJqzGA9eOa3s9pbQVYKUruJMSnIW0yIBpk2cuqTmfiViZTGEO9kLbj5z5gtIYszZM3r-xkkuGpZe1USjA-tfFaRhdentkdy4Laad-nH2yZacH5OrhE_9k-0UrR4fYzoz-VatQrzYpcj-qupPNRFOfKauXgJHGFjqHZNTrPt30o3m7g0inMpER6CQHBkJqy5gJ0FhQRZKB8pIGCQvGCGSQ27wwSQzGazXFLOdac8uNdekRaUyrqT0mNAfgynCRFFmMvYW9CiqYATSjcO-tSS4Xr1--1lSLsuYXsxIdVS4d1STX6J3lXUijDhd8jMp5jMpNMWoSFny7wVbZuX18Xp6d_IflU7LDcIIcyqzPSGP29mHPvYqYqRbZZnzYCp-NPw5-ur9PwcXa
link.rule.ids 315,786,790,870,2115,11589,27957,27958,46087,46511,50849,50958
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT4MwFMcb3Q56MRo1zp8cTDyRQWkLPXiYxmXqNk0cRr2Q0h_LLsPMqfG_t68wlp1MPEKAwqPt-_J4_TyEzqmysz4Vga9FHviExtxPWBT5zJggklgRLiHeMRiyXkruXugimxDWwpR8iDrgBiPDzdcwwCEg3V5SQ8Xk4wdys7gLpqyjpvV9NGmgZuc5fUvrQIvV3NaJwrJp6_vhdli8gDcGuL16kRXn5Bj-q5rVOZ3uNtqq1KLXKV_vDlrT0110-fAFA1x_e4XxHqHKmbdMYvGsCPUAB1KUBW4m0rMTaDF2dGmorLOH0u7N6LrnV1UQfBnxkPtChrHAgnKpMVaOJSvyJGQit0oHwAtKUUCT6zhRYSCUlXA51oRISTRR2kT7qDEtpvoAebEQJFeEhgkLoOSwFUcJVgKayeGXXAtdLB4_ey9hF1mJNcYZGCqrDdVCV2Cd-iiAVLsdxWycVX0-s1I4l5oKzU1CDOfCaBElTGCpYmbCqIWws-0fbWWd26fXeuvwPyedoY3eaNDP-rfD-yO0ieGb2WVeH6PGfPapT6ywmOenVdf5BaKKxGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMctaCXEgkCAKE8PSExRE8d5eGAoj6q8SiUoKiyW40fVpalKAfHt8TlpSickxkRJnFxs3z-X8-8QOo2UnfUj4XtaZL5Ho4R5aRyGXmyMH0qiKJMQ73joxp0-vR1Eg1-r-As-RBVwg5Hh5msY4BNlmgtoqBi9f0NqFnOxlFVUt1KD2n5db7303_pVnMVKbutDYdW0df1wN3EyZzf6pLl8kSXf5BD-y5LV-Zz2JtooxSJuFW93C63o8TY6f_yE8a2_cG5wD4qc4UUOC7YaFAMNJC_q24wktvNnPnRwaSiss4P67evny45XFkHwZMgC5gkZJIKIiElNiHIoWZGlQSwyK3SAu6BUBGRynaQq8IWyCi4jmlIpqaZKm3AX1cb5WO8hnAhBM0WjII19qDhstVFKlIBmMvgj10Bn88fnk4J1wQuqMeFgKF4ZqoEuwDrVUcCodjvy6ZCXXZ5bJZxJHQnNTEoNY8JoEaaxIFIlsQnCBiLOtn-0xVs3T6_V1v5_TjpBa72rNr-_6d4doHUCX8wu7_oQ1WbTD31kZcUsOy57zg-XLcOR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+Power+Management+for+Triboelectric+Nanogenerators&rft.jtitle=Advanced+intelligent+systems&rft.au=Fang%2C+Chunlong&rft.au=Tong%2C+Tong&rft.au=Bu%2C+Tianzhao&rft.au=Cao%2C+Yuanzhi&rft.date=2020-02-01&rft.issn=2640-4567&rft.eissn=2640-4567&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Faisy.201900129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aisy_201900129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon