Probiotics importance and their immunomodulatory properties
Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probioti...
Saved in:
Published in | Journal of cellular physiology Vol. 234; no. 6; pp. 8008 - 8018 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor‐κB (NF‐κβ) pathway, possibly related to alterations in mitogen‐activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF‐κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.
Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. |
---|---|
AbstractList | Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor-κB (NF-κβ) pathway, possibly related to alterations in mitogen-activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF-κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor-κB (NF-κβ) pathway, possibly related to alterations in mitogen-activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF-κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor-κB (NF-κβ) pathway, possibly related to alterations in mitogen-activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF-κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor‐κB (NF‐κβ) pathway, possibly related to alterations in mitogen‐activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF‐κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor‐κB (NF‐κβ) pathway, possibly related to alterations in mitogen‐activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF‐κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. |
Author | Ghasemian, Abdolmajid Kokhaei, Parviz Salek Farrokhi, Amir Yousefi, Bahman Eslami, Majid Darabi, Narges |
Author_xml | – sequence: 1 givenname: Bahman surname: Yousefi fullname: Yousefi, Bahman organization: Semnan University of Medical Sciences – sequence: 2 givenname: Majid orcidid: 0000-0001-6440-4424 surname: Eslami fullname: Eslami, Majid email: M.eslami@semums.ac.ir organization: Semnan University of Medical Sciences – sequence: 3 givenname: Abdolmajid surname: Ghasemian fullname: Ghasemian, Abdolmajid organization: Fasa University of Medical Sciences – sequence: 4 givenname: Parviz surname: Kokhaei fullname: Kokhaei, Parviz organization: Cancer Centre Karolinska, Karolinska University Hospital – sequence: 5 givenname: Amir surname: Salek Farrokhi fullname: Salek Farrokhi, Amir organization: Semnan University of Medical Sciences – sequence: 6 givenname: Narges surname: Darabi fullname: Darabi, Narges organization: Semnan University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30317594$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:140348146$$DView record from Swedish Publication Index |
BookMark | eNp90UtLxDAQAOAgiq6Pg39AFrzooTp59BE8yeITQQ96Dmk7xaxtU5OUZf-90V09CHpKmHwzzGR2yWZveyTkkMIZBWDn82o4Y3mayg0yoSDzRGQp2yST-EYTmQq6Q3a9nwOAlJxvkx0OnOapFBNy8eRsaWwwlZ-abrAu6L7Cqe7raXhF42KwG3vb2XpsdbBuOR2cHdAFg36fbDW69XiwPvfIy_XV8-w2eXi8uZtdPiQVl1QmQtc1FjzVAMhK1oiylE1WFzkVRQO51pjmRVaWGYgMOUXGctCCaw08r6PmeyRZ1fULHMZSDc502i2V1UatQ2_xhkoUQlIe_cnKx1bfR_RBdcZX2La6Rzt6xSgDBkIWEOnxLzq3o-vjNFEVXBYpzbKojtZqLDusfxr4_sYITlegctZ7h80PoaA-V6TiitTXiqI9_2UrE3Qwtg9Om_a_jIVpcfl3aXU_e1plfAA_OKHE |
CitedBy_id | crossref_primary_10_1016_j_medmic_2019_100002 crossref_primary_10_23736_S2724_542X_21_02759_2 crossref_primary_10_1016_j_lfs_2024_122921 crossref_primary_10_1016_j_foodcont_2024_111102 crossref_primary_10_1016_j_micpath_2020_104675 crossref_primary_10_1186_s12866_022_02491_4 crossref_primary_10_3389_fnut_2024_1372755 crossref_primary_10_1016_j_heliyon_2023_e23144 crossref_primary_10_1017_S0954422421000317 crossref_primary_10_1007_s12602_022_10015_9 crossref_primary_10_1007_s00217_021_03904_w crossref_primary_10_1016_j_repbre_2022_10_002 crossref_primary_10_1016_j_procbio_2023_09_009 crossref_primary_10_3390_antibiotics14030301 crossref_primary_10_1186_s13063_019_4040_x crossref_primary_10_3389_fmicb_2020_604462 crossref_primary_10_3389_fphar_2020_00998 crossref_primary_10_22207_JPAM_13_3_11 crossref_primary_10_3390_life13091833 crossref_primary_10_1007_s00203_021_02700_0 crossref_primary_10_1186_s12575_021_00160_w crossref_primary_10_14202_vetworld_2021_1915_1921 crossref_primary_10_3390_ph16040528 crossref_primary_10_1002_mnfr_201900496 crossref_primary_10_1002_jcp_28473 crossref_primary_10_1016_j_fbio_2023_102473 crossref_primary_10_1016_j_jafr_2024_101189 crossref_primary_10_1016_j_nmni_2021_100887 crossref_primary_10_1002_jcp_28870 crossref_primary_10_1016_j_cyto_2023_156232 crossref_primary_10_1016_j_tifs_2023_06_007 crossref_primary_10_1007_s10068_024_01638_5 crossref_primary_10_3390_biology11101405 crossref_primary_10_3390_nu12041039 crossref_primary_10_1007_s00406_024_01864_2 crossref_primary_10_1111_dme_14415 crossref_primary_10_1186_s12865_022_00484_6 crossref_primary_10_1080_10408398_2023_2278155 crossref_primary_10_3390_cells12010184 crossref_primary_10_1016_j_medmic_2021_100036 crossref_primary_10_3390_nu13041225 crossref_primary_10_1007_s40097_020_00331_3 crossref_primary_10_1111_jfpp_15597 crossref_primary_10_1080_21645515_2019_1633877 crossref_primary_10_1371_journal_pone_0257097 crossref_primary_10_4014_jmb_2309_09007 crossref_primary_10_1016_j_jff_2021_104762 crossref_primary_10_1099_acmi_0_000299 crossref_primary_10_1016_j_aqrep_2024_102282 crossref_primary_10_1080_10408398_2020_1792826 crossref_primary_10_1155_2022_8529578 crossref_primary_10_1016_j_geogeo_2025_100361 crossref_primary_10_1016_j_neubiorev_2021_10_046 crossref_primary_10_1128_AEM_01448_20 crossref_primary_10_3389_fimmu_2022_895636 crossref_primary_10_3390_microorganisms11040967 crossref_primary_10_3389_fmicb_2024_1440241 crossref_primary_10_3390_ani13030381 crossref_primary_10_1016_j_lfs_2024_122748 crossref_primary_10_1007_s00203_023_03632_7 crossref_primary_10_1007_s12029_019_00329_3 crossref_primary_10_1111_1750_3841_17460 crossref_primary_10_3390_life11111275 crossref_primary_10_3390_nu16223955 crossref_primary_10_2147_JMDH_S501056 crossref_primary_10_3390_applmicrobiol4010004 crossref_primary_10_3390_beverages9030061 crossref_primary_10_1039_D0FO02124E crossref_primary_10_12677_hjfns_2024_134053 crossref_primary_10_1007_s12602_021_09743_1 crossref_primary_10_3920_BM2019_0121 crossref_primary_10_21285_2227_2925_2022_12_1_76_86 crossref_primary_10_1155_2023_6506244 crossref_primary_10_1177_03946320241291276 crossref_primary_10_3390_ijms26041773 crossref_primary_10_1186_s12951_025_03141_3 crossref_primary_10_1016_j_neubiorev_2023_105296 crossref_primary_10_3390_ph16040504 crossref_primary_10_1002_jcp_28333 crossref_primary_10_1038_s41598_024_57489_x crossref_primary_10_1186_s12906_024_04576_1 crossref_primary_10_1186_s13048_020_00668_x crossref_primary_10_1016_j_fbio_2023_103180 crossref_primary_10_3390_foods13132058 crossref_primary_10_1039_D4FO05846A crossref_primary_10_1097_MRM_0000000000000328 crossref_primary_10_1007_s12602_023_10183_2 crossref_primary_10_1016_j_jsps_2023_04_023 crossref_primary_10_3390_microorganisms10091705 crossref_primary_10_1007_s10620_020_06062_3 crossref_primary_10_1039_C9FO01698H crossref_primary_10_3390_su15010501 crossref_primary_10_1093_femsle_fnab125 crossref_primary_10_3390_gels9030244 crossref_primary_10_1007_s12602_025_10462_0 crossref_primary_10_3389_fnut_2022_889040 crossref_primary_10_3390_foods12030584 crossref_primary_10_3390_genes11091075 crossref_primary_10_1016_j_clnesp_2023_07_087 crossref_primary_10_3390_ani12060719 crossref_primary_10_1080_10408398_2025_2455954 crossref_primary_10_1016_j_fbio_2024_103770 crossref_primary_10_1016_j_fsi_2020_10_021 crossref_primary_10_2139_ssrn_4189526 crossref_primary_10_3389_fmicb_2022_929346 crossref_primary_10_3390_antibiotics13100967 crossref_primary_10_3389_fmicb_2022_926756 crossref_primary_10_3748_wjg_v28_i12_1204 crossref_primary_10_1038_s41598_022_09263_0 crossref_primary_10_3389_fmicb_2022_820484 crossref_primary_10_1016_j_clnu_2025_02_007 crossref_primary_10_3389_fnut_2024_1484499 crossref_primary_10_3390_microorganisms12061203 crossref_primary_10_1016_j_aninu_2023_08_004 crossref_primary_10_1177_0271678X19882788 crossref_primary_10_3390_polysaccharides5030030 crossref_primary_10_1007_s10238_023_01006_3 crossref_primary_10_1007_s12033_020_00274_8 crossref_primary_10_1080_10408398_2020_1765310 crossref_primary_10_3389_fnut_2023_1200926 crossref_primary_10_3389_fdmed_2021_708666 crossref_primary_10_1007_s12602_019_09592_z crossref_primary_10_1007_s12649_024_02603_3 crossref_primary_10_1038_s41598_025_85806_5 crossref_primary_10_3390_biomedicines11030782 crossref_primary_10_1111_lam_13660 crossref_primary_10_1016_j_fshw_2022_09_001 crossref_primary_10_1016_j_psj_2023_103394 crossref_primary_10_3390_ijms23073489 crossref_primary_10_1007_s12088_024_01421_4 crossref_primary_10_1016_j_aller_2020_04_005 crossref_primary_10_17221_35_2024_VETMED crossref_primary_10_1016_j_tifs_2023_06_013 crossref_primary_10_1080_14787210_2022_1990041 crossref_primary_10_1016_j_ejphar_2025_177521 crossref_primary_10_1038_s41598_020_59125_w crossref_primary_10_3746_jkfn_2021_50_5_445 crossref_primary_10_1016_j_cirep_2024_200171 crossref_primary_10_1155_2023_7369034 crossref_primary_10_1590_s0004_2803_202000000_72 crossref_primary_10_1002_iid3_635 crossref_primary_10_1007_s12223_024_01155_2 crossref_primary_10_3390_app13084726 crossref_primary_10_3390_nu16234221 crossref_primary_10_1080_1828051X_2024_2391084 crossref_primary_10_1016_j_fbio_2020_100838 crossref_primary_10_3390_ijms25116022 crossref_primary_10_3390_nu16213706 crossref_primary_10_3389_fcimb_2024_1430586 crossref_primary_10_3389_fonc_2021_638148 crossref_primary_10_3389_fimmu_2024_1468873 crossref_primary_10_4014_jmb_2002_02032 crossref_primary_10_1002_adhm_202403476 crossref_primary_10_5812_jmb_143521 crossref_primary_10_1016_j_jri_2023_103828 crossref_primary_10_3390_bacteria1040019 crossref_primary_10_35732_ctlabp_2022_8_1_39 crossref_primary_10_1016_j_heliyon_2023_e21431 crossref_primary_10_1016_j_tice_2023_102293 crossref_primary_10_1007_s12602_024_10443_9 crossref_primary_10_52711_0974_360X_2023_00864 crossref_primary_10_1007_s12029_019_00338_2 crossref_primary_10_1111_febs_15217 crossref_primary_10_1016_j_tice_2022_101747 crossref_primary_10_1080_13543776_2020_1781816 crossref_primary_10_1002_iid3_1045 crossref_primary_10_1002_1873_3468_14966 crossref_primary_10_1002_jcp_28925 crossref_primary_10_1016_j_jand_2019_05_015 crossref_primary_10_1016_j_fsi_2025_110148 |
Cites_doi | 10.3345/kjp.2013.56.9.369 10.3748/wjg.v20.i37.13258 10.3109/08923973.2011.641971 10.3409/fb62_3.277 10.1016/j.jnutbio.2013.01.006 10.1159/000354907 10.3389/fcimb.2012.00083 10.1016/j.clim.2014.04.008 10.1111/jam.12521 10.1001/jama.2012.3507 10.1016/j.it.2013.01.005 10.1139/cjm-2012-0446 10.1016/j.clim.2013.01.001 10.3389/fmicb.2016.01981 10.3390/nu5041417 10.1038/nrgastro.2014.66 10.1038/nrmicro2297 10.3109/08830185.2015.1096937 10.1097/01.MIB.0000437495.30052.be 10.1128/CVI.00199-12 10.1007/s11894-012-0265-5 10.1590/1414-431X20143932 10.1016/j.tim.2011.09.004 10.1080/10408398.2011.619671 10.3382/ps/pev291 10.1017/S0007114512004801 10.1016/j.anaerobe.2014.01.003 10.1016/j.crohns.2013.04.002 10.1111/j.1365-2672.2006.02963.x 10.1038/nrmicro2974 10.4049/jimmunol.1102661 10.1371/journal.pone.0132304 10.1016/j.atherosclerosis.2014.05.798 10.4014/jmb.1205.05018 10.5021/ad.2012.24.2.189 10.1371/journal.ppat.1002714 10.1016/j.biocel.2011.11.006 10.1186/1471-2180-11-177 10.1017/S0007114511005824 10.1016/S0958-6946(01)00099-1 10.1016/j.anaerobe.2012.08.005 10.1016/j.nut.2013.09.007 10.1007/s11882-012-0313-0 10.1099/jmm.0.017541-0 10.1016/j.foodres.2011.09.020 10.3389/fimmu.2014.00060 10.3748/wjg.v20.i42.15632 10.1186/1471-2180-14-126 10.3920/BM2012.0065 10.1016/j.jff.2014.04.005 10.1097/MOG.0b013e32835a68ea 10.1016/j.trsl.2016.04.009 10.1001/jamadermatol.2013.1495 10.1038/nrmicro2690 10.1111/j.1572-0241.2006.00465.x 10.1016/j.jff.2014.12.040 10.1111/j.1600-6143.2012.04224.x 10.3389/fimmu.2013.00512 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 ADTPV AOWAS |
DOI | 10.1002/jcp.27559 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 8018 |
ExternalDocumentID | oai_swepub_ki_se_484913 30317594 10_1002_jcp_27559 JCP27559 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Semnan University |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 ADTPV AOWAS |
ID | FETCH-LOGICAL-c3919-4adde835a00e2b2f4bb9f6d87148f07aae5786bb6046e31e2270a43aa037df4b3 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Mon Aug 25 03:33:28 EDT 2025 Fri Jul 11 01:04:20 EDT 2025 Fri Jul 25 22:43:06 EDT 2025 Thu Apr 03 07:07:07 EDT 2025 Tue Jul 01 01:31:55 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Wed Jan 22 17:10:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | microbiota immunomodulation probiotics |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3919-4adde835a00e2b2f4bb9f6d87148f07aae5786bb6046e31e2270a43aa037df4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6440-4424 |
PMID | 30317594 |
PQID | 2183985166 |
PQPubID | 1006363 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_484913 proquest_miscellaneous_2120204980 proquest_journals_2183985166 pubmed_primary_30317594 crossref_primary_10_1002_jcp_27559 crossref_citationtrail_10_1002_jcp_27559 wiley_primary_10_1002_jcp_27559_JCP27559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_15_1_51_1 e_1_2_15_1_34_1 e_1_2_15_1_55_1 e_1_2_15_1_11_1 e_1_2_15_1_32_1 e_1_2_15_1_53_1 e_1_2_15_1_15_1 e_1_2_15_1_38_1 e_1_2_15_1_59_1 e_1_2_15_1_13_1 e_1_2_15_1_36_1 e_1_2_15_1_57_1 e_1_2_15_1_19_1 e_1_2_15_1_17_1 Ghouri Y. A. (e_1_2_15_1_21_1) 2014; 7 e_1_2_15_1_40_1 e_1_2_15_1_65_1 e_1_2_15_1_67_1 e_1_2_15_1_23_1 e_1_2_15_1_44_1 e_1_2_15_1_61_1 e_1_2_15_1_42_1 e_1_2_15_1_63_1 e_1_2_15_1_27_1 Mykhal’chyshyn H. P. (e_1_2_15_1_45_1) 2013 e_1_2_15_1_48_1 e_1_2_15_1_2_1 e_1_2_15_1_25_1 e_1_2_15_1_46_1 e_1_2_15_1_8_1 e_1_2_15_1_6_1 e_1_2_15_1_29_1 Habil N. Y. (e_1_2_15_1_22_1) 2015; 12 e_1_2_15_1_52_1 e_1_2_15_1_50_1 e_1_2_15_1_10_1 Kayama H. (e_1_2_15_1_30_1) 2014; 50 e_1_2_15_1_33_1 e_1_2_15_1_56_1 e_1_2_15_1_31_1 e_1_2_15_1_54_1 e_1_2_15_1_37_1 e_1_2_15_1_16_1 e_1_2_15_1_35_1 e_1_2_15_1_58_1 e_1_2_15_1_14_1 e_1_2_15_1_18_1 e_1_2_15_1_39_1 e_1_2_15_1_41_1 e_1_2_15_1_64_1 e_1_2_15_1_66_1 e_1_2_15_1_60_1 e_1_2_15_1_20_1 e_1_2_15_1_43_1 e_1_2_15_1_62_1 e_1_2_15_1_26_1 e_1_2_15_1_49_1 e_1_2_15_1_5_1 e_1_2_15_1_24_1 e_1_2_15_1_47_1 e_1_2_15_1_3_1 e_1_2_15_1_9_1 e_1_2_15_1_68_1 e_1_2_15_1_7_1 e_1_2_15_1_28_1 Chen Y.‐J (e_1_2_15_1_12_1) 2008; 14 Anukam K. C. (e_1_2_15_1_4_1) 2007; 1 |
References_xml | – ident: e_1_2_15_1_32_1 doi: 10.3345/kjp.2013.56.9.369 – ident: e_1_2_15_1_54_1 doi: 10.3748/wjg.v20.i37.13258 – ident: e_1_2_15_1_2_1 doi: 10.3109/08923973.2011.641971 – ident: e_1_2_15_1_58_1 doi: 10.3409/fb62_3.277 – ident: e_1_2_15_1_62_1 doi: 10.1016/j.jnutbio.2013.01.006 – ident: e_1_2_15_1_66_1 doi: 10.1159/000354907 – ident: e_1_2_15_1_40_1 doi: 10.3389/fcimb.2012.00083 – start-page: 56 issue: 2 year: 2013 ident: e_1_2_15_1_45_1 article-title: Effect of probiotics on proinflammatory cytokines level in patients with type 2 diabetes and nonalcoholic fatty liver disease publication-title: Likars’ ka sprava – ident: e_1_2_15_1_33_1 doi: 10.1016/j.clim.2014.04.008 – ident: e_1_2_15_1_31_1 doi: 10.1111/jam.12521 – ident: e_1_2_15_1_23_1 doi: 10.1001/jama.2012.3507 – ident: e_1_2_15_1_6_1 doi: 10.1016/j.it.2013.01.005 – ident: e_1_2_15_1_10_1 doi: 10.1139/cjm-2012-0446 – volume: 12 start-page: 484 issue: 2 year: 2015 ident: e_1_2_15_1_22_1 article-title: Probiotic induce macrophage cytokine production via activation of STAT‐3 pathway publication-title: Medical Journal of Babylon – ident: e_1_2_15_1_36_1 doi: 10.1016/j.clim.2013.01.001 – ident: e_1_2_15_1_3_1 doi: 10.3389/fmicb.2016.01981 – ident: e_1_2_15_1_56_1 doi: 10.3390/nu5041417 – ident: e_1_2_15_1_25_1 doi: 10.1038/nrgastro.2014.66 – ident: e_1_2_15_1_38_1 doi: 10.1038/nrmicro2297 – ident: e_1_2_15_1_15_1 doi: 10.3109/08830185.2015.1096937 – volume: 50 year: 2014 ident: e_1_2_15_1_30_1 article-title: Probiotics and innate immunity: Implications in chronic disease prevention publication-title: ECAB Probiotics in Prevention of Lifestyle Disorders‐E‐Book – ident: e_1_2_15_1_55_1 doi: 10.1097/01.MIB.0000437495.30052.be – ident: e_1_2_15_1_65_1 doi: 10.1128/CVI.00199-12 – volume: 1 start-page: 466 year: 2007 ident: e_1_2_15_1_4_1 article-title: Probiotics: 100 years (1907‐2007) after Elie Metchnikoff’s observation publication-title: Communicating Current Research and Educational Topics and Trends in Applied Microbiology – ident: e_1_2_15_1_60_1 doi: 10.1007/s11894-012-0265-5 – ident: e_1_2_15_1_7_1 doi: 10.1590/1414-431X20143932 – ident: e_1_2_15_1_37_1 doi: 10.1016/j.tim.2011.09.004 – ident: e_1_2_15_1_5_1 doi: 10.1080/10408398.2011.619671 – volume: 7 start-page: 473 year: 2014 ident: e_1_2_15_1_21_1 article-title: Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease publication-title: Clinical and Experimental Gastroenterology – ident: e_1_2_15_1_41_1 doi: 10.3382/ps/pev291 – ident: e_1_2_15_1_46_1 doi: 10.1017/S0007114512004801 – ident: e_1_2_15_1_42_1 – ident: e_1_2_15_1_24_1 doi: 10.1016/j.anaerobe.2014.01.003 – ident: e_1_2_15_1_50_1 doi: 10.1016/j.crohns.2013.04.002 – ident: e_1_2_15_1_47_1 doi: 10.1111/j.1365-2672.2006.02963.x – ident: e_1_2_15_1_26_1 – ident: e_1_2_15_1_57_1 doi: 10.1038/nrmicro2974 – ident: e_1_2_15_1_28_1 doi: 10.4049/jimmunol.1102661 – ident: e_1_2_15_1_39_1 doi: 10.1371/journal.pone.0132304 – ident: e_1_2_15_1_9_1 doi: 10.1016/j.atherosclerosis.2014.05.798 – ident: e_1_2_15_1_53_1 doi: 10.4014/jmb.1205.05018 – ident: e_1_2_15_1_68_1 doi: 10.5021/ad.2012.24.2.189 – ident: e_1_2_15_1_29_1 doi: 10.1371/journal.ppat.1002714 – ident: e_1_2_15_1_61_1 doi: 10.1016/j.biocel.2011.11.006 – ident: e_1_2_15_1_11_1 doi: 10.1186/1471-2180-11-177 – ident: e_1_2_15_1_13_1 doi: 10.1017/S0007114511005824 – ident: e_1_2_15_1_43_1 doi: 10.1016/S0958-6946(01)00099-1 – ident: e_1_2_15_1_35_1 doi: 10.1016/j.anaerobe.2012.08.005 – ident: e_1_2_15_1_59_1 doi: 10.1016/j.nut.2013.09.007 – ident: e_1_2_15_1_14_1 doi: 10.1007/s11882-012-0313-0 – ident: e_1_2_15_1_27_1 doi: 10.1099/jmm.0.017541-0 – ident: e_1_2_15_1_18_1 doi: 10.1016/j.foodres.2011.09.020 – ident: e_1_2_15_1_34_1 doi: 10.3389/fimmu.2014.00060 – ident: e_1_2_15_1_49_1 doi: 10.3748/wjg.v20.i42.15632 – ident: e_1_2_15_1_63_1 doi: 10.1186/1471-2180-14-126 – ident: e_1_2_15_1_19_1 – ident: e_1_2_15_1_20_1 doi: 10.3920/BM2012.0065 – ident: e_1_2_15_1_48_1 doi: 10.1016/j.jff.2014.04.005 – ident: e_1_2_15_1_52_1 doi: 10.1097/MOG.0b013e32835a68ea – ident: e_1_2_15_1_67_1 doi: 10.1016/j.trsl.2016.04.009 – ident: e_1_2_15_1_17_1 doi: 10.1001/jamadermatol.2013.1495 – ident: e_1_2_15_1_8_1 doi: 10.1038/nrmicro2690 – ident: e_1_2_15_1_44_1 doi: 10.1111/j.1572-0241.2006.00465.x – volume: 14 start-page: 028 year: 2008 ident: e_1_2_15_1_12_1 article-title: Effects of probiotics on feeding intolerance and early growth and development in premature infants publication-title: Journal of Applied Clinical Pediatrics – ident: e_1_2_15_1_16_1 doi: 10.1016/j.jff.2014.12.040 – ident: e_1_2_15_1_51_1 doi: 10.1111/j.1600-6143.2012.04224.x – ident: e_1_2_15_1_64_1 doi: 10.3389/fimmu.2013.00512 |
SSID | ssj0009933 |
Score | 2.6446447 |
SecondaryResourceType | review_article |
Snippet | Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8008 |
SubjectTerms | Adapter proteins Adapters Adaptor proteins Bacteria - drug effects Bacteria - immunology Bacteria - pathogenicity Bacterial Infections - drug therapy Bacterial Infections - immunology Bacterial Infections - microbiology Binding CD14 antigen Cell activation Cell proliferation Colonization Cytokines Differentiation (biology) Endotoxins Epithelial cells Gastrointestinal Microbiome - drug effects Gastrointestinal Microbiome - immunology Helper cells Homeostasis Humans Immune system Immunoglobulin A Immunologic Factors - immunology Immunologic Factors - therapeutic use Immunological tolerance Immunomodulation Immunomodulation - drug effects Immunomodulators Inflammation Interleukin 17 Intestinal microflora Intestinal Mucosa - drug effects Intestinal Mucosa - immunology Kinases Lamina propria Lipid metabolism Lipids Lipopolysaccharide Receptors - genetics Lipopolysaccharide Receptors - immunology Lymphocytes Lymphocytes T Metabolites Microbiota Mucosa Natural killer cells NF-kappa B - genetics NF-kappa B - immunology Pattern recognition Phagocytosis Probiotics Probiotics - therapeutic use Proteins Receptors Signal transduction Signal Transduction - drug effects Signaling Small intestine Th17 Cells - immunology Th17 Cells - microbiology |
Title | Probiotics importance and their immunomodulatory properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27559 https://www.ncbi.nlm.nih.gov/pubmed/30317594 https://www.proquest.com/docview/2183985166 https://www.proquest.com/docview/2120204980 http://kipublications.ki.se/Default.aspx?queryparsed=id:140348146 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoJBLH0kf26bFLSX04o0sjR8ipxAaQiAllAZyKBi9DE269rLZPWx_fUeS7ZC2gdCbkMZYr5G-kUbfAHzUOZlVjRUpE4qnaBDTKtekeAqNYejQ5v6989mX4uQCTy_zyw04GN7CRH6I8cDNa0ZYr72CK32zf0saemXmU14SIKb11_tqeUD09ZY6SvZh5IMLQo7ZwCrE-P745d296C-AObKH3gWuYec5fgLfhzpHh5Pr6Wqpp-bXH3SO_9mop_C4R6TJYZxCz2DDtduwc9iSNT5bJ3tJ8BENh-_b8CiGrlzvwMF5IHDyJM_Jj1kA8TR9EtXaJNw9UOZs1Xazzvr4YN1incz9sf_C87c-h4vjz9-OTtI-EENqhMxkin4RJKimGHNc8wa1lk1hydbCqmGlUo70vtC6IGPbicxxXjKFQikmSkvS4gVstl3rXkGijcistcahZlg2lXKWVY1krimdxYZN4NMwJLXpWcp9sIyfdeRX5jV1UR26aAIfRtF5pOb4l9DuMK51r503dYCFBDWLYgLvx2LSK39ZolrXrbwM9--GZUVVehnnw_gX2vYJdUmcwF6cIGOJJ-vus64p5WqsUGaCWhVG_f561qdH5yHx-uGib2CL4JuMjmu7sLlcrNxbgkhL_S7owm_9bg3I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIgQvHC3HQoGAUMVLto7tHBa8VIVqKW1VoVbqC7J8RYKyyWrZfVh-PWM7SVUOCfFm2RPFx4z9jY9vAF7pHN2q2rKUMEVTbjhPq1yj4SluDOGO29y_dz46LiZn_OA8P1-Dt_1bmMgPMWy4ecsI87U3cL8hvXPJGvrVzMa0RER8Da77iN6eOf_dp0vyKNEFkg-XEHKe9bxChO4Mn15djX6DmAN_6FXoGtae_Tvwua91vHJyMV4u9Nj8-IXQ8X-bdRdud6A02Y1adA_WXLMBm7sNOuTTVbKdhGuiYf99A27E6JWrTXhzEjicPM9z8mUacDxqUKIam4TjB8ycLpt22lofIqydr5KZ3_mfewrX-3C2__50b5J2sRhSw0QmUu7nQURrihBHNa251qIuLLpbvKpJqZRD0y-0LtDfdixzlJZEcaYUYaVFafYA1pu2cY8g0YZl1lrjuCa8rCvlLKlqQVxdOstrMoLX_ZhI0xGV-3gZ32SkWKYSu0iGLhrBy0F0Ftk5_iS01Q-s7Az0uwzIENFmUYzgxVCMpuXPS1Tj2qWXof7psKiwSg-jQgx_wZUfgZfgI9iOGjKUeL7uLusCU07yiouMYavCsP-9nvJg7yQkHv-76HO4OTk9OpSHH44_PoFbiOZEvMe2BeuL-dI9RcS00M-CYfwExV8R5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIhAvHC3HQoGAUMVLtk48Oaw-VS2rUqBaISr1ASnyKUHZZLXsPiy_nrFzVOWQEG-WPVF8jf2NPf4G4JXKyKxyhseMyzRGjRiXmSLFk6g1Q4sm8--dP5zmx2d4cp6db8B-_xam5YcYDty8ZoT12iv43Li9S9LQr3o-TgsCxNfgOuZM-LgNRx8vuaNEF0c--CBkmPS0QizdGz69uhn9hjAH-tCryDVsPZM78LmvdOtxcjFeLdVY__iFz_E_W3UXbneQNDpo59A92LD1Fmwf1GSOz9bRbhScRMPp-xbcaGNXrrdhfxoYnDzLc_RlFlA8zZ9I1iYKlw-UOVvVzawxPkBYs1hHc3_uv_AErvfhbPLm0-Fx3EViiDUXiYjRr4KE1SRjNlWpQ6WEyw0ZW1g6VkhpSfFzpXKyti1PbJoWTCKXkvHCkDR_AJt1U9tHECnNE2OMtqgYFq6U1rDSCWZdYQ06NoLX_ZBUuqMp99EyvlUtwXJaURdVoYtG8HIQnbfcHH8S2unHterU83sVcCFhzTwfwYuhmBTL35bI2jYrL5P6h8OipCo9bOfD8Bfa9wl2CRzBbjtBhhLP1t1lXVDKVliiSDi1Koz63-tZnRxOQ-Lxv4s-h5vTo0n1_u3puydwi6CcaJ3YdmBzuVjZpwSXlupZUIufi0IQkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probiotics+importance+and+their+immunomodulatory+properties&rft.jtitle=Journal+of+cellular+physiology&rft.au=Yousefi%2C+Bahman&rft.au=Eslami%2C+Majid&rft.au=Ghasemian%2C+Abdolmajid&rft.au=Kokhaei%2C+Parviz&rft.date=2019-06-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=6&rft.spage=8008&rft.epage=8018&rft_id=info:doi/10.1002%2Fjcp.27559&rft.externalDBID=10.1002%252Fjcp.27559&rft.externalDocID=JCP27559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |