Probiotics importance and their immunomodulatory properties

Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probioti...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 6; pp. 8008 - 8018
Main Authors Yousefi, Bahman, Eslami, Majid, Ghasemian, Abdolmajid, Kokhaei, Parviz, Salek Farrokhi, Amir, Darabi, Narges
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor‐κB (NF‐κβ) pathway, possibly related to alterations in mitogen‐activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF‐κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.
AbstractList Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor-κB (NF-κβ) pathway, possibly related to alterations in mitogen-activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF-κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor-κB (NF-κβ) pathway, possibly related to alterations in mitogen-activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF-κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.
Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor-κB (NF-κβ) pathway, possibly related to alterations in mitogen-activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF-κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.
Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor‐κB (NF‐κβ) pathway, possibly related to alterations in mitogen‐activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF‐κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.
Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and protective role against the colonization of intestinal pathogenic microbes and increase mucosal integrity by stimulating epithelial cells. Probiotics have innate capabilities in many ways, including receptor antagonism, receptor expression, binding and expression of adapter proteins, expression of negative regulatory signal molecules, induction of microRNAs, endotoxin tolerance, and ultimately secretion of immunomodulatory proteins, lipids, and metabolites to modulate the immune system. Probiotic bacteria can affect homeostasis, inflammation, and immunopathology through direct or indirect effects on signaling pathways as immunosuppressant or activators. Probiotics suppress inflammation by inhibiting various signaling pathways such as the nuclear factor‐κB (NF‐κβ) pathway, possibly related to alterations in mitogen‐activated protein kinases and pattern recognition receptors pathways. Probiotics can also inhibit the binding of lipopolysaccharides to the CD14 receptor, thereby reducing the overall activation of NF‐κβ and producing proinflammatory cytokines. Some effects of modulation by probiotics include cytokine production by epithelial cells, increased mucin secretion, increased activity of phagocytosis, and activation of T and natural killer T cells, stimulation of immunoglobulin A production and decreased T cell proliferation. Intestinal microbiota has a major impact on the systemic immune system. Specific microbiota controls the differentiation of cells in lamina propria, in which Th17 cells secrete interleukin 17. The presence of Th17 and Treg cells in the small intestine is associated with intestinal microbiota, with the preferential Treg differentiation and the absence of Th17 cells, possibly reflecting alterations in the lamina propria cytokines and the intestinal gut microbiota.
Author Ghasemian, Abdolmajid
Kokhaei, Parviz
Salek Farrokhi, Amir
Yousefi, Bahman
Eslami, Majid
Darabi, Narges
Author_xml – sequence: 1
  givenname: Bahman
  surname: Yousefi
  fullname: Yousefi, Bahman
  organization: Semnan University of Medical Sciences
– sequence: 2
  givenname: Majid
  orcidid: 0000-0001-6440-4424
  surname: Eslami
  fullname: Eslami, Majid
  email: M.eslami@semums.ac.ir
  organization: Semnan University of Medical Sciences
– sequence: 3
  givenname: Abdolmajid
  surname: Ghasemian
  fullname: Ghasemian, Abdolmajid
  organization: Fasa University of Medical Sciences
– sequence: 4
  givenname: Parviz
  surname: Kokhaei
  fullname: Kokhaei, Parviz
  organization: Cancer Centre Karolinska, Karolinska University Hospital
– sequence: 5
  givenname: Amir
  surname: Salek Farrokhi
  fullname: Salek Farrokhi, Amir
  organization: Semnan University of Medical Sciences
– sequence: 6
  givenname: Narges
  surname: Darabi
  fullname: Darabi, Narges
  organization: Semnan University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30317594$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:140348146$$DView record from Swedish Publication Index
BookMark eNp90UtLxDAQAOAgiq6Pg39AFrzooTp59BE8yeITQQ96Dmk7xaxtU5OUZf-90V09CHpKmHwzzGR2yWZveyTkkMIZBWDn82o4Y3mayg0yoSDzRGQp2yST-EYTmQq6Q3a9nwOAlJxvkx0OnOapFBNy8eRsaWwwlZ-abrAu6L7Cqe7raXhF42KwG3vb2XpsdbBuOR2cHdAFg36fbDW69XiwPvfIy_XV8-w2eXi8uZtdPiQVl1QmQtc1FjzVAMhK1oiylE1WFzkVRQO51pjmRVaWGYgMOUXGctCCaw08r6PmeyRZ1fULHMZSDc502i2V1UatQ2_xhkoUQlIe_cnKx1bfR_RBdcZX2La6Rzt6xSgDBkIWEOnxLzq3o-vjNFEVXBYpzbKojtZqLDusfxr4_sYITlegctZ7h80PoaA-V6TiitTXiqI9_2UrE3Qwtg9Om_a_jIVpcfl3aXU_e1plfAA_OKHE
CitedBy_id crossref_primary_10_1016_j_medmic_2019_100002
crossref_primary_10_23736_S2724_542X_21_02759_2
crossref_primary_10_1016_j_lfs_2024_122921
crossref_primary_10_1016_j_foodcont_2024_111102
crossref_primary_10_1016_j_micpath_2020_104675
crossref_primary_10_1186_s12866_022_02491_4
crossref_primary_10_3389_fnut_2024_1372755
crossref_primary_10_1016_j_heliyon_2023_e23144
crossref_primary_10_1017_S0954422421000317
crossref_primary_10_1007_s12602_022_10015_9
crossref_primary_10_1007_s00217_021_03904_w
crossref_primary_10_1016_j_repbre_2022_10_002
crossref_primary_10_1016_j_procbio_2023_09_009
crossref_primary_10_3390_antibiotics14030301
crossref_primary_10_1186_s13063_019_4040_x
crossref_primary_10_3389_fmicb_2020_604462
crossref_primary_10_3389_fphar_2020_00998
crossref_primary_10_22207_JPAM_13_3_11
crossref_primary_10_3390_life13091833
crossref_primary_10_1007_s00203_021_02700_0
crossref_primary_10_1186_s12575_021_00160_w
crossref_primary_10_14202_vetworld_2021_1915_1921
crossref_primary_10_3390_ph16040528
crossref_primary_10_1002_mnfr_201900496
crossref_primary_10_1002_jcp_28473
crossref_primary_10_1016_j_fbio_2023_102473
crossref_primary_10_1016_j_jafr_2024_101189
crossref_primary_10_1016_j_nmni_2021_100887
crossref_primary_10_1002_jcp_28870
crossref_primary_10_1016_j_cyto_2023_156232
crossref_primary_10_1016_j_tifs_2023_06_007
crossref_primary_10_1007_s10068_024_01638_5
crossref_primary_10_3390_biology11101405
crossref_primary_10_3390_nu12041039
crossref_primary_10_1007_s00406_024_01864_2
crossref_primary_10_1111_dme_14415
crossref_primary_10_1186_s12865_022_00484_6
crossref_primary_10_1080_10408398_2023_2278155
crossref_primary_10_3390_cells12010184
crossref_primary_10_1016_j_medmic_2021_100036
crossref_primary_10_3390_nu13041225
crossref_primary_10_1007_s40097_020_00331_3
crossref_primary_10_1111_jfpp_15597
crossref_primary_10_1080_21645515_2019_1633877
crossref_primary_10_1371_journal_pone_0257097
crossref_primary_10_4014_jmb_2309_09007
crossref_primary_10_1016_j_jff_2021_104762
crossref_primary_10_1099_acmi_0_000299
crossref_primary_10_1016_j_aqrep_2024_102282
crossref_primary_10_1080_10408398_2020_1792826
crossref_primary_10_1155_2022_8529578
crossref_primary_10_1016_j_geogeo_2025_100361
crossref_primary_10_1016_j_neubiorev_2021_10_046
crossref_primary_10_1128_AEM_01448_20
crossref_primary_10_3389_fimmu_2022_895636
crossref_primary_10_3390_microorganisms11040967
crossref_primary_10_3389_fmicb_2024_1440241
crossref_primary_10_3390_ani13030381
crossref_primary_10_1016_j_lfs_2024_122748
crossref_primary_10_1007_s00203_023_03632_7
crossref_primary_10_1007_s12029_019_00329_3
crossref_primary_10_1111_1750_3841_17460
crossref_primary_10_3390_life11111275
crossref_primary_10_3390_nu16223955
crossref_primary_10_2147_JMDH_S501056
crossref_primary_10_3390_applmicrobiol4010004
crossref_primary_10_3390_beverages9030061
crossref_primary_10_1039_D0FO02124E
crossref_primary_10_12677_hjfns_2024_134053
crossref_primary_10_1007_s12602_021_09743_1
crossref_primary_10_3920_BM2019_0121
crossref_primary_10_21285_2227_2925_2022_12_1_76_86
crossref_primary_10_1155_2023_6506244
crossref_primary_10_1177_03946320241291276
crossref_primary_10_3390_ijms26041773
crossref_primary_10_1186_s12951_025_03141_3
crossref_primary_10_1016_j_neubiorev_2023_105296
crossref_primary_10_3390_ph16040504
crossref_primary_10_1002_jcp_28333
crossref_primary_10_1038_s41598_024_57489_x
crossref_primary_10_1186_s12906_024_04576_1
crossref_primary_10_1186_s13048_020_00668_x
crossref_primary_10_1016_j_fbio_2023_103180
crossref_primary_10_3390_foods13132058
crossref_primary_10_1039_D4FO05846A
crossref_primary_10_1097_MRM_0000000000000328
crossref_primary_10_1007_s12602_023_10183_2
crossref_primary_10_1016_j_jsps_2023_04_023
crossref_primary_10_3390_microorganisms10091705
crossref_primary_10_1007_s10620_020_06062_3
crossref_primary_10_1039_C9FO01698H
crossref_primary_10_3390_su15010501
crossref_primary_10_1093_femsle_fnab125
crossref_primary_10_3390_gels9030244
crossref_primary_10_1007_s12602_025_10462_0
crossref_primary_10_3389_fnut_2022_889040
crossref_primary_10_3390_foods12030584
crossref_primary_10_3390_genes11091075
crossref_primary_10_1016_j_clnesp_2023_07_087
crossref_primary_10_3390_ani12060719
crossref_primary_10_1080_10408398_2025_2455954
crossref_primary_10_1016_j_fbio_2024_103770
crossref_primary_10_1016_j_fsi_2020_10_021
crossref_primary_10_2139_ssrn_4189526
crossref_primary_10_3389_fmicb_2022_929346
crossref_primary_10_3390_antibiotics13100967
crossref_primary_10_3389_fmicb_2022_926756
crossref_primary_10_3748_wjg_v28_i12_1204
crossref_primary_10_1038_s41598_022_09263_0
crossref_primary_10_3389_fmicb_2022_820484
crossref_primary_10_1016_j_clnu_2025_02_007
crossref_primary_10_3389_fnut_2024_1484499
crossref_primary_10_3390_microorganisms12061203
crossref_primary_10_1016_j_aninu_2023_08_004
crossref_primary_10_1177_0271678X19882788
crossref_primary_10_3390_polysaccharides5030030
crossref_primary_10_1007_s10238_023_01006_3
crossref_primary_10_1007_s12033_020_00274_8
crossref_primary_10_1080_10408398_2020_1765310
crossref_primary_10_3389_fnut_2023_1200926
crossref_primary_10_3389_fdmed_2021_708666
crossref_primary_10_1007_s12602_019_09592_z
crossref_primary_10_1007_s12649_024_02603_3
crossref_primary_10_1038_s41598_025_85806_5
crossref_primary_10_3390_biomedicines11030782
crossref_primary_10_1111_lam_13660
crossref_primary_10_1016_j_fshw_2022_09_001
crossref_primary_10_1016_j_psj_2023_103394
crossref_primary_10_3390_ijms23073489
crossref_primary_10_1007_s12088_024_01421_4
crossref_primary_10_1016_j_aller_2020_04_005
crossref_primary_10_17221_35_2024_VETMED
crossref_primary_10_1016_j_tifs_2023_06_013
crossref_primary_10_1080_14787210_2022_1990041
crossref_primary_10_1016_j_ejphar_2025_177521
crossref_primary_10_1038_s41598_020_59125_w
crossref_primary_10_3746_jkfn_2021_50_5_445
crossref_primary_10_1016_j_cirep_2024_200171
crossref_primary_10_1155_2023_7369034
crossref_primary_10_1590_s0004_2803_202000000_72
crossref_primary_10_1002_iid3_635
crossref_primary_10_1007_s12223_024_01155_2
crossref_primary_10_3390_app13084726
crossref_primary_10_3390_nu16234221
crossref_primary_10_1080_1828051X_2024_2391084
crossref_primary_10_1016_j_fbio_2020_100838
crossref_primary_10_3390_ijms25116022
crossref_primary_10_3390_nu16213706
crossref_primary_10_3389_fcimb_2024_1430586
crossref_primary_10_3389_fonc_2021_638148
crossref_primary_10_3389_fimmu_2024_1468873
crossref_primary_10_4014_jmb_2002_02032
crossref_primary_10_1002_adhm_202403476
crossref_primary_10_5812_jmb_143521
crossref_primary_10_1016_j_jri_2023_103828
crossref_primary_10_3390_bacteria1040019
crossref_primary_10_35732_ctlabp_2022_8_1_39
crossref_primary_10_1016_j_heliyon_2023_e21431
crossref_primary_10_1016_j_tice_2023_102293
crossref_primary_10_1007_s12602_024_10443_9
crossref_primary_10_52711_0974_360X_2023_00864
crossref_primary_10_1007_s12029_019_00338_2
crossref_primary_10_1111_febs_15217
crossref_primary_10_1016_j_tice_2022_101747
crossref_primary_10_1080_13543776_2020_1781816
crossref_primary_10_1002_iid3_1045
crossref_primary_10_1002_1873_3468_14966
crossref_primary_10_1002_jcp_28925
crossref_primary_10_1016_j_jand_2019_05_015
crossref_primary_10_1016_j_fsi_2025_110148
Cites_doi 10.3345/kjp.2013.56.9.369
10.3748/wjg.v20.i37.13258
10.3109/08923973.2011.641971
10.3409/fb62_3.277
10.1016/j.jnutbio.2013.01.006
10.1159/000354907
10.3389/fcimb.2012.00083
10.1016/j.clim.2014.04.008
10.1111/jam.12521
10.1001/jama.2012.3507
10.1016/j.it.2013.01.005
10.1139/cjm-2012-0446
10.1016/j.clim.2013.01.001
10.3389/fmicb.2016.01981
10.3390/nu5041417
10.1038/nrgastro.2014.66
10.1038/nrmicro2297
10.3109/08830185.2015.1096937
10.1097/01.MIB.0000437495.30052.be
10.1128/CVI.00199-12
10.1007/s11894-012-0265-5
10.1590/1414-431X20143932
10.1016/j.tim.2011.09.004
10.1080/10408398.2011.619671
10.3382/ps/pev291
10.1017/S0007114512004801
10.1016/j.anaerobe.2014.01.003
10.1016/j.crohns.2013.04.002
10.1111/j.1365-2672.2006.02963.x
10.1038/nrmicro2974
10.4049/jimmunol.1102661
10.1371/journal.pone.0132304
10.1016/j.atherosclerosis.2014.05.798
10.4014/jmb.1205.05018
10.5021/ad.2012.24.2.189
10.1371/journal.ppat.1002714
10.1016/j.biocel.2011.11.006
10.1186/1471-2180-11-177
10.1017/S0007114511005824
10.1016/S0958-6946(01)00099-1
10.1016/j.anaerobe.2012.08.005
10.1016/j.nut.2013.09.007
10.1007/s11882-012-0313-0
10.1099/jmm.0.017541-0
10.1016/j.foodres.2011.09.020
10.3389/fimmu.2014.00060
10.3748/wjg.v20.i42.15632
10.1186/1471-2180-14-126
10.3920/BM2012.0065
10.1016/j.jff.2014.04.005
10.1097/MOG.0b013e32835a68ea
10.1016/j.trsl.2016.04.009
10.1001/jamadermatol.2013.1495
10.1038/nrmicro2690
10.1111/j.1572-0241.2006.00465.x
10.1016/j.jff.2014.12.040
10.1111/j.1600-6143.2012.04224.x
10.3389/fimmu.2013.00512
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ADTPV
AOWAS
DOI 10.1002/jcp.27559
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 8018
ExternalDocumentID oai_swepub_ki_se_484913
30317594
10_1002_jcp_27559
JCP27559
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Semnan University
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ADTPV
AOWAS
ID FETCH-LOGICAL-c3919-4adde835a00e2b2f4bb9f6d87148f07aae5786bb6046e31e2270a43aa037df4b3
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Mon Aug 25 03:33:28 EDT 2025
Fri Jul 11 01:04:20 EDT 2025
Fri Jul 25 22:43:06 EDT 2025
Thu Apr 03 07:07:07 EDT 2025
Tue Jul 01 01:31:55 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Wed Jan 22 17:10:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords microbiota
immunomodulation
probiotics
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3919-4adde835a00e2b2f4bb9f6d87148f07aae5786bb6046e31e2270a43aa037df4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6440-4424
PMID 30317594
PQID 2183985166
PQPubID 1006363
PageCount 11
ParticipantIDs swepub_primary_oai_swepub_ki_se_484913
proquest_miscellaneous_2120204980
proquest_journals_2183985166
pubmed_primary_30317594
crossref_primary_10_1002_jcp_27559
crossref_citationtrail_10_1002_jcp_27559
wiley_primary_10_1002_jcp_27559_JCP27559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_15_1_51_1
e_1_2_15_1_34_1
e_1_2_15_1_55_1
e_1_2_15_1_11_1
e_1_2_15_1_32_1
e_1_2_15_1_53_1
e_1_2_15_1_15_1
e_1_2_15_1_38_1
e_1_2_15_1_59_1
e_1_2_15_1_13_1
e_1_2_15_1_36_1
e_1_2_15_1_57_1
e_1_2_15_1_19_1
e_1_2_15_1_17_1
Ghouri Y. A. (e_1_2_15_1_21_1) 2014; 7
e_1_2_15_1_40_1
e_1_2_15_1_65_1
e_1_2_15_1_67_1
e_1_2_15_1_23_1
e_1_2_15_1_44_1
e_1_2_15_1_61_1
e_1_2_15_1_42_1
e_1_2_15_1_63_1
e_1_2_15_1_27_1
Mykhal’chyshyn H. P. (e_1_2_15_1_45_1) 2013
e_1_2_15_1_48_1
e_1_2_15_1_2_1
e_1_2_15_1_25_1
e_1_2_15_1_46_1
e_1_2_15_1_8_1
e_1_2_15_1_6_1
e_1_2_15_1_29_1
Habil N. Y. (e_1_2_15_1_22_1) 2015; 12
e_1_2_15_1_52_1
e_1_2_15_1_50_1
e_1_2_15_1_10_1
Kayama H. (e_1_2_15_1_30_1) 2014; 50
e_1_2_15_1_33_1
e_1_2_15_1_56_1
e_1_2_15_1_31_1
e_1_2_15_1_54_1
e_1_2_15_1_37_1
e_1_2_15_1_16_1
e_1_2_15_1_35_1
e_1_2_15_1_58_1
e_1_2_15_1_14_1
e_1_2_15_1_18_1
e_1_2_15_1_39_1
e_1_2_15_1_41_1
e_1_2_15_1_64_1
e_1_2_15_1_66_1
e_1_2_15_1_60_1
e_1_2_15_1_20_1
e_1_2_15_1_43_1
e_1_2_15_1_62_1
e_1_2_15_1_26_1
e_1_2_15_1_49_1
e_1_2_15_1_5_1
e_1_2_15_1_24_1
e_1_2_15_1_47_1
e_1_2_15_1_3_1
e_1_2_15_1_9_1
e_1_2_15_1_68_1
e_1_2_15_1_7_1
e_1_2_15_1_28_1
Chen Y.‐J (e_1_2_15_1_12_1) 2008; 14
Anukam K. C. (e_1_2_15_1_4_1) 2007; 1
References_xml – ident: e_1_2_15_1_32_1
  doi: 10.3345/kjp.2013.56.9.369
– ident: e_1_2_15_1_54_1
  doi: 10.3748/wjg.v20.i37.13258
– ident: e_1_2_15_1_2_1
  doi: 10.3109/08923973.2011.641971
– ident: e_1_2_15_1_58_1
  doi: 10.3409/fb62_3.277
– ident: e_1_2_15_1_62_1
  doi: 10.1016/j.jnutbio.2013.01.006
– ident: e_1_2_15_1_66_1
  doi: 10.1159/000354907
– ident: e_1_2_15_1_40_1
  doi: 10.3389/fcimb.2012.00083
– start-page: 56
  issue: 2
  year: 2013
  ident: e_1_2_15_1_45_1
  article-title: Effect of probiotics on proinflammatory cytokines level in patients with type 2 diabetes and nonalcoholic fatty liver disease
  publication-title: Likars’ ka sprava
– ident: e_1_2_15_1_33_1
  doi: 10.1016/j.clim.2014.04.008
– ident: e_1_2_15_1_31_1
  doi: 10.1111/jam.12521
– ident: e_1_2_15_1_23_1
  doi: 10.1001/jama.2012.3507
– ident: e_1_2_15_1_6_1
  doi: 10.1016/j.it.2013.01.005
– ident: e_1_2_15_1_10_1
  doi: 10.1139/cjm-2012-0446
– volume: 12
  start-page: 484
  issue: 2
  year: 2015
  ident: e_1_2_15_1_22_1
  article-title: Probiotic induce macrophage cytokine production via activation of STAT‐3 pathway
  publication-title: Medical Journal of Babylon
– ident: e_1_2_15_1_36_1
  doi: 10.1016/j.clim.2013.01.001
– ident: e_1_2_15_1_3_1
  doi: 10.3389/fmicb.2016.01981
– ident: e_1_2_15_1_56_1
  doi: 10.3390/nu5041417
– ident: e_1_2_15_1_25_1
  doi: 10.1038/nrgastro.2014.66
– ident: e_1_2_15_1_38_1
  doi: 10.1038/nrmicro2297
– ident: e_1_2_15_1_15_1
  doi: 10.3109/08830185.2015.1096937
– volume: 50
  year: 2014
  ident: e_1_2_15_1_30_1
  article-title: Probiotics and innate immunity: Implications in chronic disease prevention
  publication-title: ECAB Probiotics in Prevention of Lifestyle Disorders‐E‐Book
– ident: e_1_2_15_1_55_1
  doi: 10.1097/01.MIB.0000437495.30052.be
– ident: e_1_2_15_1_65_1
  doi: 10.1128/CVI.00199-12
– volume: 1
  start-page: 466
  year: 2007
  ident: e_1_2_15_1_4_1
  article-title: Probiotics: 100 years (1907‐2007) after Elie Metchnikoff’s observation
  publication-title: Communicating Current Research and Educational Topics and Trends in Applied Microbiology
– ident: e_1_2_15_1_60_1
  doi: 10.1007/s11894-012-0265-5
– ident: e_1_2_15_1_7_1
  doi: 10.1590/1414-431X20143932
– ident: e_1_2_15_1_37_1
  doi: 10.1016/j.tim.2011.09.004
– ident: e_1_2_15_1_5_1
  doi: 10.1080/10408398.2011.619671
– volume: 7
  start-page: 473
  year: 2014
  ident: e_1_2_15_1_21_1
  article-title: Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease
  publication-title: Clinical and Experimental Gastroenterology
– ident: e_1_2_15_1_41_1
  doi: 10.3382/ps/pev291
– ident: e_1_2_15_1_46_1
  doi: 10.1017/S0007114512004801
– ident: e_1_2_15_1_42_1
– ident: e_1_2_15_1_24_1
  doi: 10.1016/j.anaerobe.2014.01.003
– ident: e_1_2_15_1_50_1
  doi: 10.1016/j.crohns.2013.04.002
– ident: e_1_2_15_1_47_1
  doi: 10.1111/j.1365-2672.2006.02963.x
– ident: e_1_2_15_1_26_1
– ident: e_1_2_15_1_57_1
  doi: 10.1038/nrmicro2974
– ident: e_1_2_15_1_28_1
  doi: 10.4049/jimmunol.1102661
– ident: e_1_2_15_1_39_1
  doi: 10.1371/journal.pone.0132304
– ident: e_1_2_15_1_9_1
  doi: 10.1016/j.atherosclerosis.2014.05.798
– ident: e_1_2_15_1_53_1
  doi: 10.4014/jmb.1205.05018
– ident: e_1_2_15_1_68_1
  doi: 10.5021/ad.2012.24.2.189
– ident: e_1_2_15_1_29_1
  doi: 10.1371/journal.ppat.1002714
– ident: e_1_2_15_1_61_1
  doi: 10.1016/j.biocel.2011.11.006
– ident: e_1_2_15_1_11_1
  doi: 10.1186/1471-2180-11-177
– ident: e_1_2_15_1_13_1
  doi: 10.1017/S0007114511005824
– ident: e_1_2_15_1_43_1
  doi: 10.1016/S0958-6946(01)00099-1
– ident: e_1_2_15_1_35_1
  doi: 10.1016/j.anaerobe.2012.08.005
– ident: e_1_2_15_1_59_1
  doi: 10.1016/j.nut.2013.09.007
– ident: e_1_2_15_1_14_1
  doi: 10.1007/s11882-012-0313-0
– ident: e_1_2_15_1_27_1
  doi: 10.1099/jmm.0.017541-0
– ident: e_1_2_15_1_18_1
  doi: 10.1016/j.foodres.2011.09.020
– ident: e_1_2_15_1_34_1
  doi: 10.3389/fimmu.2014.00060
– ident: e_1_2_15_1_49_1
  doi: 10.3748/wjg.v20.i42.15632
– ident: e_1_2_15_1_63_1
  doi: 10.1186/1471-2180-14-126
– ident: e_1_2_15_1_19_1
– ident: e_1_2_15_1_20_1
  doi: 10.3920/BM2012.0065
– ident: e_1_2_15_1_48_1
  doi: 10.1016/j.jff.2014.04.005
– ident: e_1_2_15_1_52_1
  doi: 10.1097/MOG.0b013e32835a68ea
– ident: e_1_2_15_1_67_1
  doi: 10.1016/j.trsl.2016.04.009
– ident: e_1_2_15_1_17_1
  doi: 10.1001/jamadermatol.2013.1495
– ident: e_1_2_15_1_8_1
  doi: 10.1038/nrmicro2690
– ident: e_1_2_15_1_44_1
  doi: 10.1111/j.1572-0241.2006.00465.x
– volume: 14
  start-page: 028
  year: 2008
  ident: e_1_2_15_1_12_1
  article-title: Effects of probiotics on feeding intolerance and early growth and development in premature infants
  publication-title: Journal of Applied Clinical Pediatrics
– ident: e_1_2_15_1_16_1
  doi: 10.1016/j.jff.2014.12.040
– ident: e_1_2_15_1_51_1
  doi: 10.1111/j.1600-6143.2012.04224.x
– ident: e_1_2_15_1_64_1
  doi: 10.3389/fimmu.2013.00512
SSID ssj0009933
Score 2.6446447
SecondaryResourceType review_article
Snippet Mammalian intestine contains a large diversity of commensal microbiota, which is far more than the number of host cells. Probiotics play an insecure and...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8008
SubjectTerms Adapter proteins
Adapters
Adaptor proteins
Bacteria - drug effects
Bacteria - immunology
Bacteria - pathogenicity
Bacterial Infections - drug therapy
Bacterial Infections - immunology
Bacterial Infections - microbiology
Binding
CD14 antigen
Cell activation
Cell proliferation
Colonization
Cytokines
Differentiation (biology)
Endotoxins
Epithelial cells
Gastrointestinal Microbiome - drug effects
Gastrointestinal Microbiome - immunology
Helper cells
Homeostasis
Humans
Immune system
Immunoglobulin A
Immunologic Factors - immunology
Immunologic Factors - therapeutic use
Immunological tolerance
Immunomodulation
Immunomodulation - drug effects
Immunomodulators
Inflammation
Interleukin 17
Intestinal microflora
Intestinal Mucosa - drug effects
Intestinal Mucosa - immunology
Kinases
Lamina propria
Lipid metabolism
Lipids
Lipopolysaccharide Receptors - genetics
Lipopolysaccharide Receptors - immunology
Lymphocytes
Lymphocytes T
Metabolites
Microbiota
Mucosa
Natural killer cells
NF-kappa B - genetics
NF-kappa B - immunology
Pattern recognition
Phagocytosis
Probiotics
Probiotics - therapeutic use
Proteins
Receptors
Signal transduction
Signal Transduction - drug effects
Signaling
Small intestine
Th17 Cells - immunology
Th17 Cells - microbiology
Title Probiotics importance and their immunomodulatory properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27559
https://www.ncbi.nlm.nih.gov/pubmed/30317594
https://www.proquest.com/docview/2183985166
https://www.proquest.com/docview/2120204980
http://kipublications.ki.se/Default.aspx?queryparsed=id:140348146
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoJBLH0kf26bFLSX04o0sjR8ipxAaQiAllAZyKBi9DE269rLZPWx_fUeS7ZC2gdCbkMZYr5G-kUbfAHzUOZlVjRUpE4qnaBDTKtekeAqNYejQ5v6989mX4uQCTy_zyw04GN7CRH6I8cDNa0ZYr72CK32zf0saemXmU14SIKb11_tqeUD09ZY6SvZh5IMLQo7ZwCrE-P745d296C-AObKH3gWuYec5fgLfhzpHh5Pr6Wqpp-bXH3SO_9mop_C4R6TJYZxCz2DDtduwc9iSNT5bJ3tJ8BENh-_b8CiGrlzvwMF5IHDyJM_Jj1kA8TR9EtXaJNw9UOZs1Xazzvr4YN1incz9sf_C87c-h4vjz9-OTtI-EENqhMxkin4RJKimGHNc8wa1lk1hydbCqmGlUo70vtC6IGPbicxxXjKFQikmSkvS4gVstl3rXkGijcistcahZlg2lXKWVY1krimdxYZN4NMwJLXpWcp9sIyfdeRX5jV1UR26aAIfRtF5pOb4l9DuMK51r503dYCFBDWLYgLvx2LSK39ZolrXrbwM9--GZUVVehnnw_gX2vYJdUmcwF6cIGOJJ-vus64p5WqsUGaCWhVG_f561qdH5yHx-uGib2CL4JuMjmu7sLlcrNxbgkhL_S7owm_9bg3I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIgQvHC3HQoGAUMVLto7tHBa8VIVqKW1VoVbqC7J8RYKyyWrZfVh-PWM7SVUOCfFm2RPFx4z9jY9vAF7pHN2q2rKUMEVTbjhPq1yj4SluDOGO29y_dz46LiZn_OA8P1-Dt_1bmMgPMWy4ecsI87U3cL8hvXPJGvrVzMa0RER8Da77iN6eOf_dp0vyKNEFkg-XEHKe9bxChO4Mn15djX6DmAN_6FXoGtae_Tvwua91vHJyMV4u9Nj8-IXQ8X-bdRdud6A02Y1adA_WXLMBm7sNOuTTVbKdhGuiYf99A27E6JWrTXhzEjicPM9z8mUacDxqUKIam4TjB8ycLpt22lofIqydr5KZ3_mfewrX-3C2__50b5J2sRhSw0QmUu7nQURrihBHNa251qIuLLpbvKpJqZRD0y-0LtDfdixzlJZEcaYUYaVFafYA1pu2cY8g0YZl1lrjuCa8rCvlLKlqQVxdOstrMoLX_ZhI0xGV-3gZ32SkWKYSu0iGLhrBy0F0Ftk5_iS01Q-s7Az0uwzIENFmUYzgxVCMpuXPS1Tj2qWXof7psKiwSg-jQgx_wZUfgZfgI9iOGjKUeL7uLusCU07yiouMYavCsP-9nvJg7yQkHv-76HO4OTk9OpSHH44_PoFbiOZEvMe2BeuL-dI9RcS00M-CYfwExV8R5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIhAvHC3HQoGAUMVLtk48Oaw-VS2rUqBaISr1ASnyKUHZZLXsPiy_nrFzVOWQEG-WPVF8jf2NPf4G4JXKyKxyhseMyzRGjRiXmSLFk6g1Q4sm8--dP5zmx2d4cp6db8B-_xam5YcYDty8ZoT12iv43Li9S9LQr3o-TgsCxNfgOuZM-LgNRx8vuaNEF0c--CBkmPS0QizdGz69uhn9hjAH-tCryDVsPZM78LmvdOtxcjFeLdVY__iFz_E_W3UXbneQNDpo59A92LD1Fmwf1GSOz9bRbhScRMPp-xbcaGNXrrdhfxoYnDzLc_RlFlA8zZ9I1iYKlw-UOVvVzawxPkBYs1hHc3_uv_AErvfhbPLm0-Fx3EViiDUXiYjRr4KE1SRjNlWpQ6WEyw0ZW1g6VkhpSfFzpXKyti1PbJoWTCKXkvHCkDR_AJt1U9tHECnNE2OMtqgYFq6U1rDSCWZdYQ06NoLX_ZBUuqMp99EyvlUtwXJaURdVoYtG8HIQnbfcHH8S2unHterU83sVcCFhzTwfwYuhmBTL35bI2jYrL5P6h8OipCo9bOfD8Bfa9wl2CRzBbjtBhhLP1t1lXVDKVliiSDi1Koz63-tZnRxOQ-Lxv4s-h5vTo0n1_u3puydwi6CcaJ3YdmBzuVjZpwSXlupZUIufi0IQkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probiotics+importance+and+their+immunomodulatory+properties&rft.jtitle=Journal+of+cellular+physiology&rft.au=Yousefi%2C+Bahman&rft.au=Eslami%2C+Majid&rft.au=Ghasemian%2C+Abdolmajid&rft.au=Kokhaei%2C+Parviz&rft.date=2019-06-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=6&rft.spage=8008&rft.epage=8018&rft_id=info:doi/10.1002%2Fjcp.27559&rft.externalDBID=10.1002%252Fjcp.27559&rft.externalDocID=JCP27559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon