Immunobiology of hepatitis B virus infection

The adaptive immune response, particularly the virus‐specific CD8+ T‐cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus (HBV) infection. The HBV‐specific CD8+ T‐cell response is vigorous, polyclonal and multispecific in acutely infected patien...

Full description

Saved in:
Bibliographic Details
Published inHepatology research Vol. 45; no. 2; pp. 179 - 189
Main Authors Isogawa, Masanori, Tanaka, Yasuhito
Format Journal Article
LanguageEnglish
Published Netherlands Blackwell Publishing Ltd 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adaptive immune response, particularly the virus‐specific CD8+ T‐cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus (HBV) infection. The HBV‐specific CD8+ T‐cell response is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focused in chronically infected patients. The immunological basis for this dichotomy is unclear. A recent study using HBV transgenic mice and HBV‐specific T‐cell receptor transgenic mice suggests that intrahepatic antigen presentation by HBV positive hepatocytes suppresses HBV‐specific CD8+ T‐cell responses through a co‐inhibitory molecule, programmed cell death 1 (PD‐1). In contrast, antigen presentation by activated professional antigen‐presenting cells induces functional differentiation of HBV‐specific CD8+ T cells. These findings suggest that the outcome of T‐cell priming is largely dependent on the nature of antigen‐presenting cells. Another study suggests that the timing of HBV‐specific CD4+ T‐cell priming regulates the magnitude of the HBV‐specific CD8+ T‐cell response. Other factors that could regulate HBV‐specific cellular immune responses are high viral loads, mutational epitope inactivation, T‐cell receptor antagonism and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective cellular immune response, which is therefore the fundamental underlying cause. Understanding the cellular and molecular mechanisms by which HBV evades host immune responses will eventually help develop new immunotherapeutic strategies designed to terminate chronic HBV infection.
AbstractList The adaptive immune response, particularly the virus-specific CD8(+) T-cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus (HBV) infection. The HBV-specific CD8(+) T-cell response is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focused in chronically infected patients. The immunological basis for this dichotomy is unclear. A recent study using HBV transgenic mice and HBV-specific T-cell receptor transgenic mice suggests that intrahepatic antigen presentation by HBV positive hepatocytes suppresses HBV-specific CD8(+) T-cell responses through a co-inhibitory molecule, programmed cell death 1 (PD-1). In contrast, antigen presentation by activated professional antigen-presenting cells induces functional differentiation of HBV-specific CD8(+) T cells. These findings suggest that the outcome of T-cell priming is largely dependent on the nature of antigen-presenting cells. Another study suggests that the timing of HBV-specific CD4(+) T-cell priming regulates the magnitude of the HBV-specific CD8(+) T-cell response. Other factors that could regulate HBV-specific cellular immune responses are high viral loads, mutational epitope inactivation, T-cell receptor antagonism and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective cellular immune response, which is therefore the fundamental underlying cause. Understanding the cellular and molecular mechanisms by which HBV evades host immune responses will eventually help develop new immunotherapeutic strategies designed to terminate chronic HBV infection.The adaptive immune response, particularly the virus-specific CD8(+) T-cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus (HBV) infection. The HBV-specific CD8(+) T-cell response is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focused in chronically infected patients. The immunological basis for this dichotomy is unclear. A recent study using HBV transgenic mice and HBV-specific T-cell receptor transgenic mice suggests that intrahepatic antigen presentation by HBV positive hepatocytes suppresses HBV-specific CD8(+) T-cell responses through a co-inhibitory molecule, programmed cell death 1 (PD-1). In contrast, antigen presentation by activated professional antigen-presenting cells induces functional differentiation of HBV-specific CD8(+) T cells. These findings suggest that the outcome of T-cell priming is largely dependent on the nature of antigen-presenting cells. Another study suggests that the timing of HBV-specific CD4(+) T-cell priming regulates the magnitude of the HBV-specific CD8(+) T-cell response. Other factors that could regulate HBV-specific cellular immune responses are high viral loads, mutational epitope inactivation, T-cell receptor antagonism and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective cellular immune response, which is therefore the fundamental underlying cause. Understanding the cellular and molecular mechanisms by which HBV evades host immune responses will eventually help develop new immunotherapeutic strategies designed to terminate chronic HBV infection.
The adaptive immune response, particularly the virus‐specific CD8 + T ‐cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus ( HBV ) infection. The HBV ‐specific CD8 + T ‐cell response is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focused in chronically infected patients. The immunological basis for this dichotomy is unclear. A recent study using HBV transgenic mice and HBV ‐specific T ‐cell receptor transgenic mice suggests that intrahepatic antigen presentation by HBV positive hepatocytes suppresses HBV ‐specific CD8 + T ‐cell responses through a co‐inhibitory molecule, programmed cell death 1 ( PD ‐1). In contrast, antigen presentation by activated professional antigen‐presenting cells induces functional differentiation of HBV ‐specific CD8 + T cells. These findings suggest that the outcome of T ‐cell priming is largely dependent on the nature of antigen‐presenting cells. Another study suggests that the timing of HBV ‐specific CD4 + T ‐cell priming regulates the magnitude of the HBV ‐specific CD8 + T ‐cell response. Other factors that could regulate HBV ‐specific cellular immune responses are high viral loads, mutational epitope inactivation, T ‐cell receptor antagonism and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective cellular immune response, which is therefore the fundamental underlying cause. Understanding the cellular and molecular mechanisms by which HBV evades host immune responses will eventually help develop new immunotherapeutic strategies designed to terminate chronic HBV infection.
The adaptive immune response, particularly the virus-specific CD8(+) T-cell response, is largely responsible for viral clearance and disease pathogenesis during hepatitis B virus (HBV) infection. The HBV-specific CD8(+) T-cell response is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focused in chronically infected patients. The immunological basis for this dichotomy is unclear. A recent study using HBV transgenic mice and HBV-specific T-cell receptor transgenic mice suggests that intrahepatic antigen presentation by HBV positive hepatocytes suppresses HBV-specific CD8(+) T-cell responses through a co-inhibitory molecule, programmed cell death 1 (PD-1). In contrast, antigen presentation by activated professional antigen-presenting cells induces functional differentiation of HBV-specific CD8(+) T cells. These findings suggest that the outcome of T-cell priming is largely dependent on the nature of antigen-presenting cells. Another study suggests that the timing of HBV-specific CD4(+) T-cell priming regulates the magnitude of the HBV-specific CD8(+) T-cell response. Other factors that could regulate HBV-specific cellular immune responses are high viral loads, mutational epitope inactivation, T-cell receptor antagonism and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective cellular immune response, which is therefore the fundamental underlying cause. Understanding the cellular and molecular mechanisms by which HBV evades host immune responses will eventually help develop new immunotherapeutic strategies designed to terminate chronic HBV infection.
Author Isogawa, Masanori
Tanaka, Yasuhito
Author_xml – sequence: 1
  givenname: Masanori
  surname: Isogawa
  fullname: Isogawa, Masanori
  organization: Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
– sequence: 2
  givenname: Yasuhito
  surname: Tanaka
  fullname: Tanaka, Yasuhito
  email: ytanaka@med.nagoya-cu.ac.jp
  organization: Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25331910$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPwzAQhC1URMvjwg9AOSJEwI4TOznSiqfKQwhUxMWyExsMSVzsBOi_xyUtB4TYy-7hm9HOrINebWoJwDaCB8jP4bOc2gMUxThbAQOU0iiEOH7o-RunJCQ4Jn2w7twLhIjCKF4D_SjBGGUIDsD-eVW1tRHalOZpFhgVeDfe6Ea7YBi8a9u6QNdK5o029SZYVbx0cmuxN8D9yfHd6CwcX5-ej47GYY4zlIVxouJU8RRzkWUQCeSPXCRKEVFE_oEkzlNcUEEhhByLlEIikBQyJzRDBVZ4A-x2vlNr3lrpGlZpl8uy5LU0rWOIJD6tD0E8urNAW1HJgk2trridsWVCD8AOyK1xzkrFct3weZrGcl0yBNm8RDYvkX2X6CV7vyRL1z9h1MEfupSzf0h2dnxzu9SEnUa7Rn7-aLh9ZYRimrDJ1Sm7uKTx4-VkyDD-AkhikA8
CitedBy_id crossref_primary_10_1111_hepr_13472
crossref_primary_10_1186_s12876_019_1004_2
crossref_primary_10_3390_vaccines10020257
crossref_primary_10_1136_jitc_2020_001377
crossref_primary_10_1038_cmi_2016_4
crossref_primary_10_1111_hepr_13952
crossref_primary_10_1152_ajpgi_00064_2019
crossref_primary_10_1038_s41598_018_31065_6
crossref_primary_10_14218_JCTH_2021_00209
crossref_primary_10_3389_fimmu_2021_721975
crossref_primary_10_1089_vim_2015_0079
crossref_primary_10_1098_rspb_2020_2715
crossref_primary_10_1016_j_intimp_2022_108982
crossref_primary_10_1021_acs_jmedchem_6b01442
crossref_primary_10_2217_fvl_2018_0164
crossref_primary_10_1097_MD_0000000000003405
crossref_primary_10_1016_j_antiviral_2020_104816
crossref_primary_10_1097_MD_0000000000008219
crossref_primary_10_1016_j_alcohol_2020_05_002
crossref_primary_10_12677_ACM_2022_122151
crossref_primary_10_1007_s10096_015_2464_0
crossref_primary_10_4254_wjh_v7_i30_2980
crossref_primary_10_1002_jmv_25612
crossref_primary_10_1111_hepr_12513
crossref_primary_10_3390_ijms24087651
crossref_primary_10_1128_JVI_00920_18
crossref_primary_10_1002_jmv_24350
crossref_primary_10_1002_jmv_25265
crossref_primary_10_1055_s_0041_1731708
crossref_primary_10_1186_s12879_019_3853_2
crossref_primary_10_1007_s00705_021_05062_6
crossref_primary_10_1016_j_cyto_2024_156818
crossref_primary_10_1155_2018_1020925
crossref_primary_10_14218_JCTH_2016_00019
crossref_primary_10_3389_fimmu_2022_847105
crossref_primary_10_5633_amm_2017_0408
Cites_doi 10.1172/JCI200113787
10.1073/pnas.0504273102
10.1084/jem.183.4.1917
10.1111/j.1365-2249.2011.04445.x
10.1038/82161
10.1128/JVI.76.7.3570-3574.2002
10.1016/S1473-3099(11)70314-0
10.1016/j.immuni.2005.05.005
10.1038/32588
10.1038/nm.2811
10.1053/j.gastro.2008.10.048
10.1093/infdis/jit561
10.1084/jem.20061287
10.1128/JVI.77.1.68-76.2003
10.1128/JVI.78.9.4566-4572.2004
10.1016/j.jhep.2010.07.009
10.1126/science.3491425
10.1146/annurev.pathol.1.110304.100230
10.1002/jmv.1890230310
10.1128/CMR.14.4.778-809.2001
10.1002/hep.26938
10.1146/annurev.immunol.20.100101.151926
10.1056/NEJMra031087
10.1073/pnas.0406282101
10.4049/jimmunol.166.9.5430
10.1136/gut.37.4.568
10.1007/s00535-010-0331-4
10.4049/jimmunol.1303432
10.1002/hep.23273
10.4049/jimmunol.153.2.482
10.1128/JVI.79.15.9369-9380.2005
10.1371/journal.ppat.1003490
10.1016/S1074-7613(02)00305-9
10.1038/mtna.2013.43
10.1016/j.jhep.2010.12.031
10.1371/journal.pone.0049135
10.1016/S0002-9440(10)64980-2
10.1128/JVI.79.11.7269-7272.2005
10.1073/pnas.0308340100
10.1016/S0092-8674(00)80952-6
10.4049/jimmunol.177.1.739
10.1016/0092-8674(82)90157-X
10.1038/281646a0
10.1016/S0140-6736(86)90829-9
10.1371/journal.ppat.1002594
10.1136/gut.2008.163600
10.4049/jimmunol.158.12.5692
10.1128/JVI.79.5.3016-3027.2005
10.4049/jimmunol.145.10.3442
10.1002/hep.21345
10.1126/science.284.5415.825
10.1016/S1074-7613(00)80295-2
10.1084/jem.20121172
10.1093/infdis/163.3.454
10.1084/jem.192.7.921
10.1073/pnas.0401771101
10.1084/jem.20011723
10.1146/annurev.immunol.23.021704.115825
10.1128/JVI.01022-08
10.1016/j.jhep.2005.11.015
10.1053/j.gastro.2009.05.047
10.1038/ng.348
10.1038/nrc2355
10.1016/j.jhep.2009.12.017
10.1073/pnas.87.17.6599
10.1128/jvi.69.10.6158-6169.1995
10.1002/hep.21249
10.1038/nri981
10.1172/JCI116281
10.1084/jem.191.8.1269
10.1172/JCI118592
10.1073/pnas.202608199
10.1126/science.3865369
10.1016/j.tibtech.2011.04.009
10.1172/JCI115280
10.4049/jimmunol.171.4.1775
10.1002/(SICI)1521-4141(199901)29:01<284::AID-IMMU284>3.0.CO;2-C
10.1038/nri2858
10.1053/jhep.2001.23045
10.1053/j.gastro.2011.06.051
10.1128/JVI.74.9.4165-4173.2000
10.1053/j.gastro.2009.06.054
10.1128/jvi.68.3.2026-2030.1994
10.1371/journal.pone.0047648
10.1084/jem.20072076
10.1128/MMBR.64.1.51-68.2000
10.1128/JVI.00867-09
10.1146/annurev.iy.13.040195.000333
10.1128/JVI.80.7.3532-3540.2006
10.1128/JVI.78.11.5707-5719.2004
10.1128/JVI.76.17.8609-8620.2002
ContentType Journal Article
Copyright 2014 The Japan Society of Hepatology
2014 The Japan Society of Hepatology.
Copyright_xml – notice: 2014 The Japan Society of Hepatology
– notice: 2014 The Japan Society of Hepatology.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
DOI 10.1111/hepr.12439
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-034X
EndPage 189
ExternalDocumentID 25331910
10_1111_hepr_12439
HEPR12439
ark_67375_WNG_JM74ZMWB_3
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: Ministry of Health, Labor and Welfare of Japan
– fundername: Ministry of Education, Culture, Sports, Science and Technology, Japan
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OC
1~5
29I
31~
33P
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
G-Q
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
R2-
RIG
ROL
RPZ
RX1
SEW
SSZ
SUPJJ
TEORI
TUS
UB1
UHS
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ABWVN
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ACVFH
ADCNI
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
ID FETCH-LOGICAL-c3919-45f48fa83ab9901b13abcb5ff6bd202454c83d7b7000a3b8706b1ebec6791d3f3
IEDL.DBID DR2
ISSN 1386-6346
IngestDate Fri Jul 11 06:30:22 EDT 2025
Mon Jul 21 06:06:59 EDT 2025
Tue Jul 01 01:58:14 EDT 2025
Thu Apr 24 23:10:50 EDT 2025
Wed Jan 22 16:53:07 EST 2025
Wed Oct 30 09:52:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords T cells
immune response
hepatitis B virus
immunological priming
immunotherapy
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 The Japan Society of Hepatology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3919-45f48fa83ab9901b13abcb5ff6bd202454c83d7b7000a3b8706b1ebec6791d3f3
Notes Ministry of Health, Labor and Welfare of Japan
istex:E1F95FF8CED7B6A047E331FCA7BD9929148C3251
ArticleID:HEPR12439
ark:/67375/WNG-JM74ZMWB-3
Ministry of Education, Culture, Sports, Science and Technology, Japan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25331910
PQID 1652432536
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1652432536
pubmed_primary_25331910
crossref_citationtrail_10_1111_hepr_12439
crossref_primary_10_1111_hepr_12439
wiley_primary_10_1111_hepr_12439_HEPR12439
istex_primary_ark_67375_WNG_JM74ZMWB_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Hepatology research
PublicationTitleAlternate Hepatol Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Das A, Hoare M, Davies N et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med 2008; 205: 2111-2124.
Su A, Pezacki J, Wodicka L et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A 2002; 99: 15669-15674.
Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 1994; 68: 2026-2030.
Wieland SF, Eustaquio A, Whitten-Bauer C, Boyd B, Chisari FV. Interferon prevents formation of replication-competent hepatitis B virus RNA-containing nucleocapsids. Proc Natl Acad Sci U S A 2005; 102: 9913-9917.
Zeissig S, Murata K, Sweet L et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 2012; 18: 1060-1068.
Guy CS, Mulrooney-Cousins PM, Churchill ND, Michalak TI. Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. J Virol 2008; 82: 8579-8591.
Kong X, Sun R, Chen Y, Wei H, Tian Z. T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193: 1645-1653.
Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16: 583-594.
Chen M, Billaud J, Sallberg M et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci U S A 2004; 101: 14913-14918.
Nebbia G, Peppa D, Schurich A et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS ONE 2012; 7: e47648.
Nakamoto Y, Guidotti L, Pasquetto V, Schreiber R, Chisari F. Differential target cell sensitivity to CTL-activated death pathways in hepatitis B virus transgenic mice. J Immunol 1997; 158: 5692-5697.
Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 2000; 192: 921-930.
Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825-829.
Ganem D, Prince AM. Hepatitis B virus infection - natural history and clinical consequences. N Engl J Med 2004; 350: 1118-1129.
Fisicaro P, Valdatta C, Boni C et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 2009; 58: 974-982.
Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10: 753-766.
Maini MK, Schurich A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. J Hepatol 2010; 52: 616-619.
Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 2005; 79: 7269-7272.
Koh S, Shimasaki N, Suwanarusk R et al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol Ther Nucleic Acids 2013; 2: e114.
Ozasa A, Tanaka Y, Orito E et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology 2006; 44: 326-334.
Yoo JY, Howard R, Waggoner JG, Hoofnagle JH. Peroxidase-anti-peroxidase detection of hepatitis B surface and core antigen in liver biopsy specimens from patients with chronic type B hepatitis. J Med Virol 1987; 23: 273-281.
Castellino F, Germain R. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519-540.
Robek MD, Wieland SF, Chisari FV. Inhibition of hepatitis B virus replication by interferon requires proteasome activity. J Virol 2002; 76: 3570-3574.
Lanzavecchia A, Lezzi G, Viola A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 1999; 96: 1-4.
Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity 2005; 23: 53-63.
Michel M-L, Deng Q, Mancini-Bourgine M. Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: perspectives and challenges. J Hepatol 2011; 54: 1286-1296.
Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29: 550-557.
Chen M, Sällberg M, Hughes J et al. Immune tolerance split between hepatitis B virus precore and core proteins. J Virol 2005; 79: 3016-3027.
Milich D, McLachlan A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 1986; 234: 1398-1401.
Ehata T, Omata M, Chuang WL et al. Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis. J Clin Invest 1993; 91: 1206-1213.
Reignat S, Webster GJM, Brown D et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J Exp Med 2002; 195: 1089-1101.
Dunn C, Peppa D, Khanna P et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 2009; 137: 1289-1300.
Peppa D, Gill US, Reynolds G et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 2013; 210: 99-114.
Hadler SC, Judson FN, O'Malley PM et al. Outcome of hepatitis B virus infection in homosexual men and its relation to prior human immunodeficiency virus infection. J Infect Dis 1991; 163: 454-459.
Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299-308.
Chisari FV, Pinkert CA, Milich DR et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 1985; 230: 1157-1160.
Sugiyama M, Tanaka Y, Kurbanov F et al. Direct cytopathic effects of particular hepatitis B virus genotypes in severe combined immunodeficiency transgenic with urokinase-type plasminogen activator mouse with human hepatocytes. Gastroenterology 2009; 136: 652-662.
Boettler T, Panther E, Bengsch B et al. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection. J Virol 2006; 80: 3532-3540.
Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 1990; 87: 6599-6603.
Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B. Antigen-specific primary activation of CD8+ T cells within the liver. J Immunol 2001; 166: 5430-5438.
Robek MD, Boyd BS, Wieland SF, Chisari FV. Signal transduction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci U S A 2004; 101: 1743-1747.
Zhang Z, Protzer U, Hu Z, Jacob J, Liang TJ. Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX-dependent manner. J Virol 2004; 78: 4566-4572.
Asabe S, Wieland SF, Chattopadhyay PK et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol 2009; 83: 9652-9662.
Sugiyama M, Tanaka Y, Kato T et al. Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens. Hepatology 2006; 44: 915-924.
Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature 1979; 281: 646-650.
Kamatani Y, Wattanapokayakit S, Ochi H et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009; 41: 591-595.
Zhang Z, Torii N, Hu Z, Jacob J, Liang TJ. X-deficient woodchuck hepatitis virus mutants behave like attenuated viruses and induce protective immunity in vivo. J Clin Invest 2001; 108: 1523-1531.
Puoti M, Torti C, Bruno R, Filice G, Carosi G. Natural history of chronic hepatitis B in co-infected patients. J Hepatol 2006; 44: S65-70.
Zhang J-Y, Zhang Z, Lin F et al. Interleukin-17-producing CD4+ T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 2009; 51: 81-91.
Ando K, Guidotti LG, Cerny A, Ishikawa T, Chisari FV. CTL access to tissue antigen is restricted in vivo. J Immunol 1994; 153: 482-488.
Sprent J, Surh CD. T cell memory. Annu Rev Immunol 2002; 20: 551-579.
Tjwa ETTL, van Oord GW, Hegmans JP, Janssen HLA, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011; 54: 209-218.
Rehermann B, Lau D, Hoofnagle JH, Chisari FV. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest 1996; 97: 1655-1665.
Lunemann S, Malone DFG, Hengst J et al. Compromised function of natural killer cells in acute and chronic viral hepatitis. J Infect Dis 2014; 209: 1362-1373.
Chen S, Akbar SMF, Abe M, Hiasa Y, Onji M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 2011; 166: 134-142.
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245-252.
Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 2004; 101: 6669-6674.
Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000; 64: 51-68.
Dunn C, Brunetto M, Reynolds G et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007; 204: 667-680.
Kusumoto S, Tanaka Y, Ueda R, Mi
2002; 16
1997; 158
2010; 10
2009; 41
2013; 2
2000; 6
2009; 83
1995; 37
2002; 195
2002; 99
1996; 183
2011; 54
1999; 284
1994; 68
2008; 8
2012; 18
1990; 145
2001; 108
2012; 12
2005; 23
1998; 392
2006; 177
2013; 9
2009; 58
1986; 1
1990; 87
2009; 51
1982; 29
2014; 209
2006; 24
1995; 69
1991; 88
2005; 102
2004; 78
2003; 3
2014; 59
1999; 96
1996; 4
1979; 281
2001; 14
2011; 29
2011; 166
2005; 79
2004; 101
2001; 166
1986; 234
2007; 204
1999; 29
1995; 13
1994; 153
2002; 76
2000; 64
2003; 171
2008; 205
1993; 91
2006; 1
2000; 156
2014; 193
2009; 136
2009; 137
1996; 97
2003; 77
2000; 191
2000; 192
1991; 163
1987; 23
2006; 80
2002; 20
2006; 44
2004; 350
2000; 74
2013; 210
2011; 46
2001; 33
2011; 141
2012; 7
2008; 82
2010; 52
1985; 230
2012; 8
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Ferrari C (e_1_2_10_42_1) 1990; 145
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
Ando K (e_1_2_10_66_1) 1994; 153
e_1_2_10_20_1
e_1_2_10_41_1
Guidotti LG (e_1_2_10_4_1) 1995; 69
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Nakamoto Y (e_1_2_10_60_1) 1997; 158
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – reference: Sun C, Fu B, Gao Y et al. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012; 8: e1002594.
– reference: Wieland SF, Guidotti LG, Chisari FV. Intrahepatic induction of alpha/beta interferon eliminates viral RNA-containing capsids in hepatitis B virus transgenic mice. J Virol 2000; 74: 4165-4173.
– reference: Valitutti S, Muller S, Dessing M, Lanzavecchia A. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 1996; 183: 1917-1921.
– reference: Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000; 64: 51-68.
– reference: Tjwa ETTL, van Oord GW, Hegmans JP, Janssen HLA, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011; 54: 209-218.
– reference: Stefan F, Wieland FVC. Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 2005; 79: 9369-9380.
– reference: Sugiyama M, Tanaka Y, Kato T et al. Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens. Hepatology 2006; 44: 915-924.
– reference: Dunn C, Brunetto M, Reynolds G et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007; 204: 667-680.
– reference: Isogawa M, Chung J, Murata Y, Kakimi K, Chisari FV. CD40 activation rescues antiviral CD8+ T cells from PD-1-mediated exhaustion. PLoS Pathog 2013; 9: e1003490.
– reference: Lunemann S, Malone DFG, Hengst J et al. Compromised function of natural killer cells in acute and chronic viral hepatitis. J Infect Dis 2014; 209: 1362-1373.
– reference: Robek MD, Wieland SF, Chisari FV. Inhibition of hepatitis B virus replication by interferon requires proteasome activity. J Virol 2002; 76: 3570-3574.
– reference: Kakimi K, Isogawa M, Chung J, Sette A, Chisari FV. Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections. J Virol 2002; 76: 8609-8620.
– reference: Fisicaro P, Valdatta C, Boni C et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 2009; 58: 974-982.
– reference: Nakamoto Y, Guidotti L, Pasquetto V, Schreiber R, Chisari F. Differential target cell sensitivity to CTL-activated death pathways in hepatitis B virus transgenic mice. J Immunol 1997; 158: 5692-5697.
– reference: Sugiyama M, Tanaka Y, Kurbanov F et al. Direct cytopathic effects of particular hepatitis B virus genotypes in severe combined immunodeficiency transgenic with urokinase-type plasminogen activator mouse with human hepatocytes. Gastroenterology 2009; 136: 652-662.
– reference: Kusumoto S, Tanaka Y, Ueda R, Mizokami M. Reactivation of hepatitis B virus following rituximab-plus-steroid combination chemotherapy. J Gastroenterol 2011; 46: 9-16.
– reference: Yoo JY, Howard R, Waggoner JG, Hoofnagle JH. Peroxidase-anti-peroxidase detection of hepatitis B surface and core antigen in liver biopsy specimens from patients with chronic type B hepatitis. J Med Virol 1987; 23: 273-281.
– reference: Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996; 4: 25-36.
– reference: Boettler T, Panther E, Bengsch B et al. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection. J Virol 2006; 80: 3532-3540.
– reference: Ehata T, Omata M, Chuang WL et al. Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis. J Clin Invest 1993; 91: 1206-1213.
– reference: Sprent J, Surh CD. T cell memory. Annu Rev Immunol 2002; 20: 551-579.
– reference: Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245-252.
– reference: Boni C, Penna A, Ogg GS et al. Lamivudine treatment can overcome cytotoxic T-cell hyporesponsiveness in chronic hepatitis B: new perspectives for immune therapy. Hepatology 2001; 33: 963-971.
– reference: Rehermann B, Lau D, Hoofnagle JH, Chisari FV. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest 1996; 97: 1655-1665.
– reference: Summers J, Mason W. Replication of the genome of a hepatitis B - like virus by reverse transcription of an RNA intermediate. Cell 1982; 29: 403-415.
– reference: Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10: 753-766.
– reference: Xu D, Fu J, Jin L et al. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol 2006; 177: 739-747.
– reference: Chen S, Akbar SMF, Abe M, Hiasa Y, Onji M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 2011; 166: 134-142.
– reference: Puoti M, Torti C, Bruno R, Filice G, Carosi G. Natural history of chronic hepatitis B in co-infected patients. J Hepatol 2006; 44: S65-70.
– reference: Dunn C, Peppa D, Khanna P et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 2009; 137: 1289-1300.
– reference: Koh S, Shimasaki N, Suwanarusk R et al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol Ther Nucleic Acids 2013; 2: e114.
– reference: Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 2000; 192: 921-930.
– reference: Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14: 778-809, table of contents.
– reference: Tillmann H, Trautwein C, Walker D et al. Clinical relevance of mutations in the precore genome of the hepatitis B virus. Gut 1995; 37: 568-573.
– reference: Zhang J-Y, Zhang Z, Lin F et al. Interleukin-17-producing CD4+ T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 2009; 51: 81-91.
– reference: Kamatani Y, Wattanapokayakit S, Ochi H et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009; 41: 591-595.
– reference: Guy CS, Mulrooney-Cousins PM, Churchill ND, Michalak TI. Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. J Virol 2008; 82: 8579-8591.
– reference: Lanzavecchia A, Lezzi G, Viola A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 1999; 96: 1-4.
– reference: Su A, Pezacki J, Wodicka L et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A 2002; 99: 15669-15674.
– reference: Nebbia G, Peppa D, Schurich A et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS ONE 2012; 7: e47648.
– reference: Reignat S, Webster GJM, Brown D et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J Exp Med 2002; 195: 1089-1101.
– reference: Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29: 550-557.
– reference: Maini MK, Boni C, Lee CK et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 2000; 191: 1269-1280.
– reference: Kong X, Sun R, Chen Y, Wei H, Tian Z. T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193: 1645-1653.
– reference: Alexander GJ, Eddleston AL. Does maternal antibody to core antigen prevent recognition of transplacental transmission of hepatitis-B-virus infection? Lancet 1986; 1: 296-297.
– reference: Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity 2005; 23: 53-63.
– reference: Castellino F, Germain R. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519-540.
– reference: Chisari FV. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 2000; 156: 1-16.
– reference: Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 2005; 79: 7269-7272.
– reference: Ozasa A, Tanaka Y, Orito E et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology 2006; 44: 326-334.
– reference: Oliviero B, Varchetta S, Paudice E et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 2009; 137: 1151-1160.
– reference: Kenna T, Mason LG, Porcelli SA et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171: 1775-1779.
– reference: Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 1990; 87: 6599-6603.
– reference: Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P. Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature 1979; 281: 646-650.
– reference: Asabe S, Wieland SF, Chattopadhyay PK et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol 2009; 83: 9652-9662.
– reference: Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299-308.
– reference: Zimmermann C, Prevost-Blondel A, Blaser C, Pircher H. Kinetics of the response of naive and memory CD8 T cells to antigen: similarities and differences. Eur J Immunol 1999; 29: 284-290.
– reference: Ando K, Guidotti LG, Cerny A, Ishikawa T, Chisari FV. CTL access to tissue antigen is restricted in vivo. J Immunol 1994; 153: 482-488.
– reference: Zhang Z, Protzer U, Hu Z, Jacob J, Liang TJ. Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX-dependent manner. J Virol 2004; 78: 4566-4572.
– reference: Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 1994; 68: 2026-2030.
– reference: Robek MD, Boyd BS, Wieland SF, Chisari FV. Signal transduction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci U S A 2004; 101: 1743-1747.
– reference: Michel M-L, Deng Q, Mancini-Bourgine M. Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: perspectives and challenges. J Hepatol 2011; 54: 1286-1296.
– reference: Ferrari C, Bertoletti A, Penna A et al. Identification of immunodominant T cell epitopes of the hepatitis B virus nucleocapsid antigen. J Clin Invest 1991; 88: 214-222.
– reference: Crispe I. Hepatic T cells and liver tolerance. Nat Rev Immunol 2003; 3: 51-62.
– reference: Zhao J, Li Y, Jin L et al. Natural killer cells are characterized by the concomitantly increased interferon-γ and cytotoxicity in acute resolved hepatitis B patients. PLoS ONE 2012; 7: e49135.
– reference: Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 2004; 101: 6669-6674.
– reference: Chen M, Billaud J, Sallberg M et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci U S A 2004; 101: 14913-14918.
– reference: Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825-829.
– reference: Zhang Z, Torii N, Hu Z, Jacob J, Liang TJ. X-deficient woodchuck hepatitis virus mutants behave like attenuated viruses and induce protective immunity in vivo. J Clin Invest 2001; 108: 1523-1531.
– reference: Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16: 583-594.
– reference: Chisari FV, Pinkert CA, Milich DR et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 1985; 230: 1157-1160.
– reference: Dolina JS, Braciale TJ, Hahn YS. Liver-primed CD8 +T cells suppress antiviral adaptive immunity through galectin-9-independent T-Cell immunoglobulin and mucin 3 engagement of high-mobility group box 1 in mice. Hepatology 2014; 59: 1351-1365.
– reference: Ganem D, Prince AM. Hepatitis B virus infection - natural history and clinical consequences. N Engl J Med 2004; 350: 1118-1129.
– reference: Wieland SF, Eustaquio A, Whitten-Bauer C, Boyd B, Chisari FV. Interferon prevents formation of replication-competent hepatitis B virus RNA-containing nucleocapsids. Proc Natl Acad Sci U S A 2005; 102: 9913-9917.
– reference: Das A, Hoare M, Davies N et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med 2008; 205: 2111-2124.
– reference: Zhang Y, Cobleigh MA, Lian JQ et al. A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology 2011; 141: 1897-1906.
– reference: Maini MK, Schurich A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. J Hepatol 2010; 52: 616-619.
– reference: Chen M, Sällberg M, Hughes J et al. Immune tolerance split between hepatitis B virus precore and core proteins. J Virol 2005; 79: 3016-3027.
– reference: Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B. Antigen-specific primary activation of CD8+ T cells within the liver. J Immunol 2001; 166: 5430-5438.
– reference: Gish R, Jia J-D, Locarnini S, Zoulim F. Selection of chronic hepatitis B therapy with high barrier to resistance. Lancet Infect Dis 2012; 12: 341-353.
– reference: Zeissig S, Murata K, Sweet L et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 2012; 18: 1060-1068.
– reference: Ferrari C, Penna A, Bertoletti A et al. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol 1990; 145: 3442-3449.
– reference: Milich D, McLachlan A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 1986; 234: 1398-1401.
– reference: Guidotti LG, Matzke B, Schaller H, Chisari F. V. High-level hepatitis B virus replication in transgenic mice. J Virol 1995; 69: 6158-6169.
– reference: Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 2006; 1: 23-61.
– reference: Hadler SC, Judson FN, O'Malley PM et al. Outcome of hepatitis B virus infection in homosexual men and its relation to prior human immunodeficiency virus infection. J Infect Dis 1991; 163: 454-459.
– reference: Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 1995; 13: 29-60.
– reference: Limmer A, Ohl J, Kurts C et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 2000; 6: 1348-1354.
– reference: Thimme R, Wieland S, Steiger C et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003; 77: 68-76.
– reference: Peppa D, Gill US, Reynolds G et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 2013; 210: 99-114.
– reference: Webster GJM, Reignat S, Brown D et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol 2004; 78: 5707-5719.
– volume: 44
  start-page: 326
  year: 2006
  end-page: 334
  article-title: Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection
  publication-title: Hepatology
– volume: 205
  start-page: 2111
  year: 2008
  end-page: 2124
  article-title: Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection
  publication-title: J Exp Med
– volume: 13
  start-page: 29
  year: 1995
  end-page: 60
  article-title: Hepatitis B virus immunopathogenesis
  publication-title: Annu Rev Immunol
– volume: 77
  start-page: 68
  year: 2003
  end-page: 76
  article-title: CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection
  publication-title: J Virol
– volume: 64
  start-page: 51
  year: 2000
  end-page: 68
  article-title: Hepatitis B virus biology
  publication-title: Microbiol Mol Biol Rev
– volume: 58
  start-page: 974
  year: 2009
  end-page: 982
  article-title: Early kinetics of innate and adaptive immune responses during hepatitis B virus infection
  publication-title: Gut
– volume: 209
  start-page: 1362
  year: 2014
  end-page: 1373
  article-title: Compromised function of natural killer cells in acute and chronic viral hepatitis
  publication-title: J Infect Dis
– volume: 76
  start-page: 3570
  year: 2002
  end-page: 3574
  article-title: Inhibition of hepatitis B virus replication by interferon requires proteasome activity
  publication-title: J Virol
– volume: 33
  start-page: 963
  year: 2001
  end-page: 971
  article-title: Lamivudine treatment can overcome cytotoxic T‐cell hyporesponsiveness in chronic hepatitis B: new perspectives for immune therapy
  publication-title: Hepatology
– volume: 234
  start-page: 1398
  year: 1986
  end-page: 1401
  article-title: The nucleocapsid of hepatitis B virus is both a T‐cell‐independent and a T‐cell‐dependent antigen
  publication-title: Science
– volume: 12
  start-page: 341
  year: 2012
  end-page: 353
  article-title: Selection of chronic hepatitis B therapy with high barrier to resistance
  publication-title: Lancet Infect Dis
– volume: 79
  start-page: 3016
  year: 2005
  end-page: 3027
  article-title: Immune tolerance split between hepatitis B virus precore and core proteins
  publication-title: J Virol
– volume: 204
  start-page: 667
  year: 2007
  end-page: 680
  article-title: Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell‐mediated liver damage
  publication-title: J Exp Med
– volume: 108
  start-page: 1523
  year: 2001
  end-page: 1531
  article-title: X‐deficient woodchuck hepatitis virus mutants behave like attenuated viruses and induce protective immunity in vivo
  publication-title: J Clin Invest
– volume: 24
  start-page: 519
  year: 2006
  end-page: 540
  article-title: Cooperation between CD4+ and CD8+ T cells: when, where, and how
  publication-title: Annu Rev Immunol
– volume: 7
  start-page: e47648
  year: 2012
  article-title: Upregulation of the Tim‐3/galectin‐9 pathway of T cell exhaustion in chronic hepatitis B virus infection
  publication-title: PLoS ONE
– volume: 137
  start-page: 1289
  year: 2009
  end-page: 1300
  article-title: Temporal analysis of early immune responses in patients with acute hepatitis B virus infection
  publication-title: Gastroenterology
– volume: 158
  start-page: 5692
  year: 1997
  end-page: 5697
  article-title: Differential target cell sensitivity to CTL‐activated death pathways in hepatitis B virus transgenic mice
  publication-title: J Immunol
– volume: 153
  start-page: 482
  year: 1994
  end-page: 488
  article-title: CTL access to tissue antigen is restricted in vivo
  publication-title: J Immunol
– volume: 195
  start-page: 1089
  year: 2002
  end-page: 1101
  article-title: Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection
  publication-title: J Exp Med
– volume: 29
  start-page: 403
  year: 1982
  end-page: 415
  article-title: Replication of the genome of a hepatitis B – like virus by reverse transcription of an RNA intermediate
  publication-title: Cell
– volume: 87
  start-page: 6599
  year: 1990
  end-page: 6603
  article-title: Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero?
  publication-title: Proc Natl Acad Sci U S A
– volume: 78
  start-page: 4566
  year: 2004
  end-page: 4572
  article-title: Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX‐dependent manner
  publication-title: J Virol
– volume: 8
  start-page: e1002594
  year: 2012
  article-title: TGF‐β1 down‐regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence
  publication-title: PLoS Pathog
– volume: 1
  start-page: 23
  year: 2006
  end-page: 61
  article-title: Immunobiology and pathogenesis of viral hepatitis
  publication-title: Annu Rev Pathol
– volume: 9
  start-page: e1003490
  year: 2013
  article-title: CD40 activation rescues antiviral CD8+ T cells from PD‐1‐mediated exhaustion
  publication-title: PLoS Pathog
– volume: 74
  start-page: 4165
  year: 2000
  end-page: 4173
  article-title: Intrahepatic induction of alpha/beta interferon eliminates viral RNA‐containing capsids in hepatitis B virus transgenic mice
  publication-title: J Virol
– volume: 37
  start-page: 568
  year: 1995
  end-page: 573
  article-title: Clinical relevance of mutations in the precore genome of the hepatitis B virus
  publication-title: Gut
– volume: 44
  start-page: 915
  year: 2006
  end-page: 924
  article-title: Influence of hepatitis B virus genotypes on the intra‐ and extracellular expression of viral DNA and antigens
  publication-title: Hepatology
– volume: 41
  start-page: 591
  year: 2009
  end-page: 595
  article-title: A genome‐wide association study identifies variants in the HLA‐DP locus associated with chronic hepatitis B in Asians
  publication-title: Nat Genet
– volume: 91
  start-page: 1206
  year: 1993
  end-page: 1213
  article-title: Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis
  publication-title: J Clin Invest
– volume: 230
  start-page: 1157
  year: 1985
  end-page: 1160
  article-title: A transgenic mouse model of the chronic hepatitis B surface antigen carrier state
  publication-title: Science
– volume: 350
  start-page: 1118
  year: 2004
  end-page: 1129
  article-title: Hepatitis B virus infection – natural history and clinical consequences
  publication-title: N Engl J Med
– volume: 46
  start-page: 9
  year: 2011
  end-page: 16
  article-title: Reactivation of hepatitis B virus following rituximab‐plus‐steroid combination chemotherapy
  publication-title: J Gastroenterol
– volume: 78
  start-page: 5707
  year: 2004
  end-page: 5719
  article-title: Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy
  publication-title: J Virol
– volume: 3
  start-page: 51
  year: 2003
  end-page: 62
  article-title: Hepatic T cells and liver tolerance
  publication-title: Nat Rev Immunol
– volume: 1
  start-page: 296
  year: 1986
  end-page: 297
  article-title: Does maternal antibody to core antigen prevent recognition of transplacental transmission of hepatitis‐B‐virus infection?
  publication-title: Lancet
– volume: 83
  start-page: 9652
  year: 2009
  end-page: 9662
  article-title: The size of the viral inoculum contributes to the outcome of hepatitis B virus infection
  publication-title: J Virol
– volume: 99
  start-page: 15669
  year: 2002
  end-page: 15674
  article-title: Genomic analysis of the host response to hepatitis C virus infection
  publication-title: Proc Natl Acad Sci U S A
– volume: 96
  start-page: 1
  year: 1999
  end-page: 4
  article-title: From TCR engagement to T cell activation: a kinetic view of T cell behavior
  publication-title: Cell
– volume: 8
  start-page: 299
  year: 2008
  end-page: 308
  article-title: Adoptive cell transfer: a clinical path to effective cancer immunotherapy
  publication-title: Nat Rev Cancer
– volume: 2
  start-page: e114
  year: 2013
  article-title: A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus
  publication-title: Mol Ther Nucleic Acids
– volume: 97
  start-page: 1655
  year: 1996
  end-page: 1665
  article-title: Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection
  publication-title: J Clin Invest
– volume: 136
  start-page: 652
  year: 2009
  end-page: 662
  article-title: Direct cytopathic effects of particular hepatitis B virus genotypes in severe combined immunodeficiency transgenic with urokinase‐type plasminogen activator mouse with human hepatocytes
  publication-title: Gastroenterology
– volume: 18
  start-page: 1060
  year: 2012
  end-page: 1068
  article-title: Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity
  publication-title: Nat Med
– volume: 29
  start-page: 550
  year: 2011
  end-page: 557
  article-title: Treating cancer with genetically engineered T cells
  publication-title: Trends Biotechnol
– volume: 284
  start-page: 825
  year: 1999
  end-page: 829
  article-title: Viral clearance without destruction of infected cells during acute HBV infection
  publication-title: Science
– volume: 166
  start-page: 5430
  year: 2001
  end-page: 5438
  article-title: Antigen‐specific primary activation of CD8+ T cells within the liver
  publication-title: J Immunol
– volume: 51
  start-page: 81
  year: 2009
  end-page: 91
  article-title: Interleukin‐17‐producing CD4+ T cells increase with severity of liver damage in patients with chronic hepatitis B
  publication-title: Hepatology
– volume: 88
  start-page: 214
  year: 1991
  end-page: 222
  article-title: Identification of immunodominant T cell epitopes of the hepatitis B virus nucleocapsid antigen
  publication-title: J Clin Invest
– volume: 14
  start-page: 778
  year: 2001
  end-page: 809
  article-title: Antiviral actions of interferons
  publication-title: Clin Microbiol Rev
– volume: 281
  start-page: 646
  year: 1979
  end-page: 650
  article-title: Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli
  publication-title: Nature
– volume: 145
  start-page: 3442
  year: 1990
  end-page: 3449
  article-title: Cellular immune response to hepatitis B virus‐encoded antigens in acute and chronic hepatitis B virus infection
  publication-title: J Immunol
– volume: 80
  start-page: 3532
  year: 2006
  end-page: 3540
  article-title: Expression of the interleukin‐7 receptor alpha chain (CD127) on virus‐specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection
  publication-title: J Virol
– volume: 76
  start-page: 8609
  year: 2002
  end-page: 8620
  article-title: Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections
  publication-title: J Virol
– volume: 102
  start-page: 9913
  year: 2005
  end-page: 9917
  article-title: Interferon prevents formation of replication‐competent hepatitis B virus RNA‐containing nucleocapsids
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 25
  year: 1996
  end-page: 36
  article-title: Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes
  publication-title: Immunity
– volume: 156
  start-page: 1
  year: 2000
  end-page: 16
  article-title: Rous‐Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B
  publication-title: Am J Pathol
– volume: 392
  start-page: 245
  year: 1998
  end-page: 252
  article-title: Dendritic cells and the control of immunity
  publication-title: Nature
– volume: 59
  start-page: 1351
  year: 2014
  end-page: 1365
  article-title: Liver‐primed CD8 +T cells suppress antiviral adaptive immunity through galectin‐9‐independent T‐Cell immunoglobulin and mucin 3 engagement of high‐mobility group box 1 in mice
  publication-title: Hepatology
– volume: 23
  start-page: 273
  year: 1987
  end-page: 281
  article-title: Peroxidase‐anti‐peroxidase detection of hepatitis B surface and core antigen in liver biopsy specimens from patients with chronic type B hepatitis
  publication-title: J Med Virol
– volume: 23
  start-page: 53
  year: 2005
  end-page: 63
  article-title: Oscillating CD8(+) T cell effector functions after antigen recognition in the liver
  publication-title: Immunity
– volume: 52
  start-page: 616
  year: 2010
  end-page: 619
  article-title: The molecular basis of the failed immune response in chronic HBV: therapeutic implications
  publication-title: J Hepatol
– volume: 7
  start-page: e49135
  year: 2012
  article-title: Natural killer cells are characterized by the concomitantly increased interferon‐γ and cytotoxicity in acute resolved hepatitis B patients
  publication-title: PLoS ONE
– volume: 101
  start-page: 6669
  year: 2004
  end-page: 6674
  article-title: Genomic analysis of the host response to hepatitis B virus infection
  publication-title: Proc Natl Acad Sci U S A
– volume: 54
  start-page: 1286
  year: 2011
  end-page: 1296
  article-title: Therapeutic vaccines and immune‐based therapies for the treatment of chronic hepatitis B: perspectives and challenges
  publication-title: J Hepatol
– volume: 141
  start-page: 1897
  year: 2011
  end-page: 1906
  article-title: A proinflammatory role for interleukin‐22 in the immune response to hepatitis B virus
  publication-title: Gastroenterology
– volume: 79
  start-page: 7269
  year: 2005
  end-page: 7272
  article-title: Toll‐like receptor signaling inhibits hepatitis B virus replication in vivo
  publication-title: J Virol
– volume: 16
  start-page: 583
  year: 2002
  end-page: 594
  article-title: Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection
  publication-title: Immunity
– volume: 29
  start-page: 284
  year: 1999
  end-page: 290
  article-title: Kinetics of the response of naive and memory CD8 T cells to antigen: similarities and differences
  publication-title: Eur J Immunol
– volume: 171
  start-page: 1775
  year: 2003
  end-page: 1779
  article-title: NKT cells from normal and tumor‐bearing human livers are phenotypically and functionally distinct from murine NKT cells
  publication-title: J Immunol
– volume: 166
  start-page: 134
  year: 2011
  end-page: 142
  article-title: Immunosuppressive functions of hepatic myeloid‐derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus
  publication-title: Clin Exp Immunol
– volume: 193
  start-page: 1645
  year: 2014
  end-page: 1653
  article-title: T cells drive myeloid‐derived suppressor cell‐mediated CD8+ T cell exhaustion in hepatitis B virus‐induced immunotolerance
  publication-title: J Immunol
– volume: 163
  start-page: 454
  year: 1991
  end-page: 459
  article-title: Outcome of hepatitis B virus infection in homosexual men and its relation to prior human immunodeficiency virus infection
  publication-title: J Infect Dis
– volume: 69
  start-page: 6158
  year: 1995
  end-page: 6169
  article-title: V. High‐level hepatitis B virus replication in transgenic mice
  publication-title: J Virol
– volume: 20
  start-page: 551
  year: 2002
  end-page: 579
  article-title: T cell memory
  publication-title: Annu Rev Immunol
– volume: 79
  start-page: 9369
  year: 2005
  end-page: 9380
  article-title: Stealth and cunning: hepatitis B and hepatitis C viruses
  publication-title: J Virol
– volume: 82
  start-page: 8579
  year: 2008
  end-page: 8591
  article-title: Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus
  publication-title: J Virol
– volume: 54
  start-page: 209
  year: 2011
  end-page: 218
  article-title: Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B
  publication-title: J Hepatol
– volume: 183
  start-page: 1917
  year: 1996
  end-page: 1921
  article-title: Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy
  publication-title: J Exp Med
– volume: 68
  start-page: 2026
  year: 1994
  end-page: 2030
  article-title: Woodchuck hepatitis virus X protein is required for viral infection in vivo
  publication-title: J Virol
– volume: 10
  start-page: 753
  year: 2010
  end-page: 766
  article-title: Antigen‐presenting cell function in the tolerogenic liver environment
  publication-title: Nat Rev Immunol
– volume: 6
  start-page: 1348
  year: 2000
  end-page: 1354
  article-title: Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen‐specific T‐cell tolerance
  publication-title: Nat Med
– volume: 137
  start-page: 1151
  year: 2009
  end-page: 1160
  article-title: Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections
  publication-title: Gastroenterology
– volume: 191
  start-page: 1269
  year: 2000
  end-page: 1280
  article-title: The role of virus‐specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection
  publication-title: J Exp Med
– volume: 101
  start-page: 14913
  year: 2004
  end-page: 14918
  article-title: A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen
  publication-title: Proc Natl Acad Sci U S A
– volume: 101
  start-page: 1743
  year: 2004
  end-page: 1747
  article-title: Signal transduction pathways that inhibit hepatitis B virus replication
  publication-title: Proc Natl Acad Sci U S A
– volume: 44
  start-page: S65
  year: 2006
  end-page: 70
  article-title: Natural history of chronic hepatitis B in co‐infected patients
  publication-title: J Hepatol
– volume: 177
  start-page: 739
  year: 2006
  end-page: 747
  article-title: Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B
  publication-title: J Immunol
– volume: 210
  start-page: 99
  year: 2013
  end-page: 114
  article-title: Up‐regulation of a death receptor renders antiviral T cells susceptible to NK cell‐mediated deletion
  publication-title: J Exp Med
– volume: 192
  start-page: 921
  year: 2000
  end-page: 930
  article-title: Natural killer T cell activation inhibits hepatitis B virus replication in vivo
  publication-title: J Exp Med
– ident: e_1_2_10_78_1
  doi: 10.1172/JCI200113787
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.0504273102
– ident: e_1_2_10_62_1
  doi: 10.1084/jem.183.4.1917
– ident: e_1_2_10_86_1
  doi: 10.1111/j.1365-2249.2011.04445.x
– ident: e_1_2_10_47_1
  doi: 10.1038/82161
– ident: e_1_2_10_57_1
  doi: 10.1128/JVI.76.7.3570-3574.2002
– ident: e_1_2_10_88_1
  doi: 10.1016/S1473-3099(11)70314-0
– ident: e_1_2_10_11_1
  doi: 10.1016/j.immuni.2005.05.005
– ident: e_1_2_10_65_1
  doi: 10.1038/32588
– ident: e_1_2_10_37_1
  doi: 10.1038/nm.2811
– ident: e_1_2_10_5_1
  doi: 10.1053/j.gastro.2008.10.048
– ident: e_1_2_10_28_1
  doi: 10.1093/infdis/jit561
– ident: e_1_2_10_31_1
  doi: 10.1084/jem.20061287
– ident: e_1_2_10_44_1
  doi: 10.1128/JVI.77.1.68-76.2003
– ident: e_1_2_10_79_1
  doi: 10.1128/JVI.78.9.4566-4572.2004
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jhep.2010.07.009
– ident: e_1_2_10_39_1
  doi: 10.1126/science.3491425
– ident: e_1_2_10_59_1
  doi: 10.1146/annurev.pathol.1.110304.100230
– ident: e_1_2_10_54_1
  doi: 10.1002/jmv.1890230310
– ident: e_1_2_10_18_1
  doi: 10.1128/CMR.14.4.778-809.2001
– ident: e_1_2_10_81_1
  doi: 10.1002/hep.26938
– ident: e_1_2_10_64_1
  doi: 10.1146/annurev.immunol.20.100101.151926
– ident: e_1_2_10_2_1
  doi: 10.1056/NEJMra031087
– ident: e_1_2_10_14_1
  doi: 10.1073/pnas.0406282101
– ident: e_1_2_10_46_1
  doi: 10.4049/jimmunol.166.9.5430
– ident: e_1_2_10_73_1
  doi: 10.1136/gut.37.4.568
– ident: e_1_2_10_41_1
  doi: 10.1007/s00535-010-0331-4
– ident: e_1_2_10_87_1
  doi: 10.4049/jimmunol.1303432
– ident: e_1_2_10_49_1
  doi: 10.1002/hep.23273
– volume: 153
  start-page: 482
  year: 1994
  ident: e_1_2_10_66_1
  article-title: CTL access to tissue antigen is restricted in vivo
  publication-title: J Immunol
  doi: 10.4049/jimmunol.153.2.482
– ident: e_1_2_10_19_1
  doi: 10.1128/JVI.79.15.9369-9380.2005
– ident: e_1_2_10_12_1
  doi: 10.1371/journal.ppat.1003490
– ident: e_1_2_10_36_1
  doi: 10.1016/S1074-7613(02)00305-9
– ident: e_1_2_10_92_1
  doi: 10.1038/mtna.2013.43
– ident: e_1_2_10_89_1
  doi: 10.1016/j.jhep.2010.12.031
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pone.0049135
– ident: e_1_2_10_3_1
  doi: 10.1016/S0002-9440(10)64980-2
– ident: e_1_2_10_25_1
  doi: 10.1128/JVI.79.11.7269-7272.2005
– ident: e_1_2_10_58_1
  doi: 10.1073/pnas.0308340100
– ident: e_1_2_10_61_1
  doi: 10.1016/S0092-8674(00)80952-6
– ident: e_1_2_10_85_1
  doi: 10.4049/jimmunol.177.1.739
– ident: e_1_2_10_21_1
  doi: 10.1016/0092-8674(82)90157-X
– ident: e_1_2_10_23_1
  doi: 10.1038/281646a0
– ident: e_1_2_10_71_1
  doi: 10.1016/S0140-6736(86)90829-9
– ident: e_1_2_10_83_1
  doi: 10.1371/journal.ppat.1002594
– ident: e_1_2_10_34_1
  doi: 10.1136/gut.2008.163600
– volume: 158
  start-page: 5692
  year: 1997
  ident: e_1_2_10_60_1
  article-title: Differential target cell sensitivity to CTL‐activated death pathways in hepatitis B virus transgenic mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.12.5692
– ident: e_1_2_10_13_1
  doi: 10.1128/JVI.79.5.3016-3027.2005
– volume: 145
  start-page: 3442
  year: 1990
  ident: e_1_2_10_42_1
  article-title: Cellular immune response to hepatitis B virus‐encoded antigens in acute and chronic hepatitis B virus infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.145.10.3442
– ident: e_1_2_10_17_1
  doi: 10.1002/hep.21345
– ident: e_1_2_10_53_1
  doi: 10.1126/science.284.5415.825
– ident: e_1_2_10_55_1
  doi: 10.1016/S1074-7613(00)80295-2
– ident: e_1_2_10_32_1
  doi: 10.1084/jem.20121172
– ident: e_1_2_10_8_1
  doi: 10.1093/infdis/163.3.454
– ident: e_1_2_10_33_1
  doi: 10.1084/jem.192.7.921
– ident: e_1_2_10_6_1
  doi: 10.1073/pnas.0401771101
– ident: e_1_2_10_76_1
  doi: 10.1084/jem.20011723
– ident: e_1_2_10_45_1
  doi: 10.1146/annurev.immunol.23.021704.115825
– ident: e_1_2_10_35_1
  doi: 10.1128/JVI.01022-08
– ident: e_1_2_10_9_1
  doi: 10.1016/j.jhep.2005.11.015
– ident: e_1_2_10_30_1
  doi: 10.1053/j.gastro.2009.05.047
– ident: e_1_2_10_48_1
  doi: 10.1038/ng.348
– ident: e_1_2_10_90_1
  doi: 10.1038/nrc2355
– ident: e_1_2_10_82_1
  doi: 10.1016/j.jhep.2009.12.017
– ident: e_1_2_10_70_1
  doi: 10.1073/pnas.87.17.6599
– volume: 69
  start-page: 6158
  year: 1995
  ident: e_1_2_10_4_1
  article-title: V. High‐level hepatitis B virus replication in transgenic mice
  publication-title: J Virol
  doi: 10.1128/jvi.69.10.6158-6169.1995
– ident: e_1_2_10_16_1
  doi: 10.1002/hep.21249
– ident: e_1_2_10_67_1
  doi: 10.1038/nri981
– ident: e_1_2_10_74_1
  doi: 10.1172/JCI116281
– ident: e_1_2_10_52_1
  doi: 10.1084/jem.191.8.1269
– ident: e_1_2_10_51_1
  doi: 10.1172/JCI118592
– ident: e_1_2_10_20_1
  doi: 10.1073/pnas.202608199
– ident: e_1_2_10_72_1
  doi: 10.1126/science.3865369
– ident: e_1_2_10_91_1
  doi: 10.1016/j.tibtech.2011.04.009
– ident: e_1_2_10_43_1
  doi: 10.1172/JCI115280
– ident: e_1_2_10_38_1
  doi: 10.4049/jimmunol.171.4.1775
– ident: e_1_2_10_63_1
  doi: 10.1002/(SICI)1521-4141(199901)29:01<284::AID-IMMU284>3.0.CO;2-C
– ident: e_1_2_10_68_1
  doi: 10.1038/nri2858
– ident: e_1_2_10_10_1
  doi: 10.1053/jhep.2001.23045
– ident: e_1_2_10_50_1
  doi: 10.1053/j.gastro.2011.06.051
– ident: e_1_2_10_24_1
  doi: 10.1128/JVI.74.9.4165-4173.2000
– ident: e_1_2_10_26_1
  doi: 10.1053/j.gastro.2009.06.054
– ident: e_1_2_10_77_1
  doi: 10.1128/jvi.68.3.2026-2030.1994
– ident: e_1_2_10_80_1
  doi: 10.1371/journal.pone.0047648
– ident: e_1_2_10_84_1
  doi: 10.1084/jem.20072076
– ident: e_1_2_10_22_1
  doi: 10.1128/MMBR.64.1.51-68.2000
– ident: e_1_2_10_7_1
  doi: 10.1128/JVI.00867-09
– ident: e_1_2_10_40_1
  doi: 10.1146/annurev.iy.13.040195.000333
– ident: e_1_2_10_69_1
  doi: 10.1128/JVI.80.7.3532-3540.2006
– ident: e_1_2_10_75_1
  doi: 10.1128/JVI.78.11.5707-5719.2004
– ident: e_1_2_10_15_1
  doi: 10.1128/JVI.76.17.8609-8620.2002
SSID ssj0017024
Score 2.2895813
SecondaryResourceType review_article
Snippet The adaptive immune response, particularly the virus‐specific CD8+ T‐cell response, is largely responsible for viral clearance and disease pathogenesis during...
The adaptive immune response, particularly the virus‐specific CD8 + T ‐cell response, is largely responsible for viral clearance and disease pathogenesis...
The adaptive immune response, particularly the virus-specific CD8(+) T-cell response, is largely responsible for viral clearance and disease pathogenesis...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms hepatitis B virus
immune response
immunological priming
immunotherapy
T cells
Title Immunobiology of hepatitis B virus infection
URI https://api.istex.fr/ark:/67375/WNG-JM74ZMWB-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fhepr.12439
https://www.ncbi.nlm.nih.gov/pubmed/25331910
https://www.proquest.com/docview/1652432536
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED9EQfzi-1FfVBRBsWNtmrQFvzh1zsGGiKIIEpI2xTHpxh4i_vXm-vKBCPqtlEtIcrnLr727XwD2HMcPaRRSLFEOLFewwAo8J7JUlfmCEoTIGNFttVnj1m3e0_sJOC5qYTJ-iPKHG1pG6q_RwIUcfjLyJ9UfVPTpRLB6D5O1EBFdl9xRtlfNb7T1mcWIy3JuUkzj-Wj65TSawoV9_QlqfkWu6dFTn4PHYtBZxkm3Mh7JSvj2jc_xv7Oah9kck5on2SZagAmVLMJ0K4-6L8HRJRaRFHxNZi82dXvcZp2hWTNfOoPx0CySupJluK2f35w2rPyWBSskga31Q2PXj4VPhMQYmbT1QyhpHDMZORiYdUOfRJ70tPMURGJcVNqoeuYFdkRisgKTSS9Ra2AGRMWBhySGytEOOJaOosJ2JENUJ1hkwEGx2jzMKcjxJoxnXnyK4PR5On0DdkvZfka88aPUfqq0UkQMupiq5lF-177gzZbnPrTuapwYsFNolWsDwqiISFRvPOQ2o7onhxJmwGqm7rI3_Va7KLtqwGGqtF9GwhvnV9fp0_pfhDdgRkMwmuWBb8LkaDBWWxrmjOQ2TJ3Uzmr17XRbvwNKwPaW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkEovFFqgaaGkaosEIquNHTvJgUMpj10gqwqBQFyMnTgCUWXRPvrgP_FX-E148iogVKkHDtysaGRN7HnZM_4G4DMhQcySmOET5dDxJA-d0CeJo5s8kIxiiIwZ3ajDW4fezjE7HoHr6i1MgQ9RX7ihZuT2GhUcL6TvaPmZvuw1jHuiYVlTuav__DIntv5ae8Ns7xdCtjYPvrWcsqmAE9PQNeyw1AtSGVCpMCWkXDOIFUtTrhKCeUgvDmjiK9_YCkkVpgGVi3_K_dBNaErNvKMwji3EEap_Y79Gq3L9ZtlDN-AOpx4v0VCxcOgvr_f83zhu5e_Hgtv7sXLu7LZewU21TEWNy0VjOFCN-OoBguSzWccpmCzDbvtroSfTMKKz1_AiKgsL3sBqG9_JVJBUdje1Db-oSed9e93-ed4b9u2qbi2bgcMn4XUWxrJupt-CHVKdhj7iNGpifEyqiGbSJYpj4Cp5YsFytb0iLlHWsdnHD1GdtnC5Rb7cFnyqaS8LbJFHqZZyKalJZO8Cq_F8Jo4622In8r2T6GhdUAs-VmIkjI3AxI_MdHfYFy5nZibCKLdgrpCvejbz1Vhht2nBSi4l_-BEtDa_7-ejd_9DvAgTrYNoT-y1O7vv4aWJOFlR9j4PY4PeUC-YqG6gPuS6ZMPpUwvdLYYVU2k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVqq4FMozQCGIhwQiq40dO_GhB9rtstuyq6qiasXF2ImtVkXZ1T549Df1r_Q_1ZMXFFVIHHrgZkUjazKeVzLjbwBeEpKkLEsZXlEWQaS4CERMssC0eaIYxRQZK7qDIe_tR9uH7HABzuq7MCU-RPPDDS2j8Ndo4OPM_mbkR2Y8abnoREXVUrljfn53H2zT9X7Hne4rQrpbnzZ7QTVTIEipCB03zEaJVQlVGitCOnSLVDNruc4IliGjNKFZrGPnKhTVWAXUIb4oj0WYUUvdvjdgKeJtgYMiOnsNWFUYt6sRugkPOI14BYaKfUO_eL0U_pbwJH9cldteTpWLWNe9Bee1lMoWl5PWfKZb6ekfAJL_ixhvw0qVdPvvSytZhQWT34HlQdVWcBfe9fGWTA1I5Y-s7_hFOzqe-hv-t-PJfOrXXWv5Pdi_Fl7vw2I-ys1D8AU1VsSI0miIizBWE8NUSDTHtFXxzIM39enKtMJYx1EfX2X9rYXiloW4PXjR0I5LZJErqV4XStKQqMkJ9uLFTB4MP8jtQRx9HhxsSOrB81qLpPMQWPZRuRnNpzLkzO1EGOUePCjVq9nNPXU-OGx78LZQkr9wIntbu3vF6tG_ED-D5d1OV37sD3cew02XbrKy5_0JLM4mc7PmUrqZflpYkg9frlvnLgAbb1IY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunobiology+of+hepatitis+B+virus+infection&rft.jtitle=Hepatology+research&rft.au=Isogawa%2C+Masanori&rft.au=Tanaka%2C+Yasuhito&rft.date=2015-02-01&rft.issn=1386-6346&rft.eissn=1872-034X&rft.volume=45&rft.issue=2&rft.spage=179&rft.epage=189&rft_id=info:doi/10.1111%2Fhepr.12439&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_hepr_12439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-6346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-6346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-6346&client=summon