Muscle 3243A→G mutation load and capacity of the mitochondrial energy-generating system
Objective The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production...
Saved in:
Published in | Annals of neurology Vol. 63; no. 4; pp. 473 - 481 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2008
Willey-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the “MEGS capacity.” Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A→G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome.
Methods
In muscle tissue of 24 patients with the 3243A→G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A→G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible.
Results
We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS‐related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients.
Interpretation
The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity. Ann Neurol 2008 |
---|---|
AbstractList | Objective
The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the “MEGS capacity.” Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A→G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome.
Methods
In muscle tissue of 24 patients with the 3243A→G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A→G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible.
Results
We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS‐related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients.
Interpretation
The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity. Ann Neurol 2008 OBJECTIVEThe mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the "MEGS capacity." Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A-->G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome.METHODSIn muscle tissue of 24 patients with the 3243A-->G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A-->G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible.RESULTSWe found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS-related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients.INTERPRETATIONThe results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity. The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the "MEGS capacity." Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A-->G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome. In muscle tissue of 24 patients with the 3243A-->G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A-->G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible. We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS-related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients. The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity. |
Author | Ter Laak, Henk van Engelen, Baziel G. M. Sengers, Rob C. A. Lucke, Barbara Van Spronsen, Francjan J. Hol, Frans A. Smits, Bart W. Janssen, Antoon J. M. Smeitink, Jan A. M. van der Knaap, Marjo S. Siers, Marloes H. Schuelke, Markus Wintjes, Liesbeth T. M. Rodenburg, Richard J. T. Morava, Eva Trijbels, Frans J. M. van den Heuvel, Lambert P. |
Author_xml | – sequence: 1 givenname: Antoon J. M. surname: Janssen fullname: Janssen, Antoon J. M. organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 2 givenname: Markus surname: Schuelke fullname: Schuelke, Markus organization: Department of Neuropediatrics, Charité University Medical Centre, Berlin, Germany – sequence: 3 givenname: Jan A. M. surname: Smeitink fullname: Smeitink, Jan A. M. organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 4 givenname: Frans J. M. surname: Trijbels fullname: Trijbels, Frans J. M. organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 5 givenname: Rob C. A. surname: Sengers fullname: Sengers, Rob C. A. organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 6 givenname: Barbara surname: Lucke fullname: Lucke, Barbara organization: Department of Neuropediatrics, Charité University Medical Centre, Berlin, Germany – sequence: 7 givenname: Liesbeth T. M. surname: Wintjes fullname: Wintjes, Liesbeth T. M. organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 8 givenname: Eva surname: Morava fullname: Morava, Eva organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 9 givenname: Baziel G. M. surname: van Engelen fullname: van Engelen, Baziel G. M. organization: Department of Neurology, VU University Medical Centre, Amsterdam – sequence: 10 givenname: Bart W. surname: Smits fullname: Smits, Bart W. organization: Department of Neurology, VU University Medical Centre, Amsterdam – sequence: 11 givenname: Frans A. surname: Hol fullname: Hol, Frans A. organization: Department of Human Genetics, VU University Medical Centre, Amsterdam – sequence: 12 givenname: Marloes H. surname: Siers fullname: Siers, Marloes H. organization: Department of Human Genetics, VU University Medical Centre, Amsterdam – sequence: 13 givenname: Henk surname: Ter Laak fullname: Ter Laak, Henk organization: Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 14 givenname: Marjo S. surname: van der Knaap fullname: van der Knaap, Marjo S. organization: Department of Child Neurology, VU University Medical Centre, Amsterdam – sequence: 15 givenname: Francjan J. surname: Van Spronsen fullname: Van Spronsen, Francjan J. organization: Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands – sequence: 16 givenname: Richard J. T. surname: Rodenburg fullname: Rodenburg, Richard J. T. organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands – sequence: 17 givenname: Lambert P. surname: van den Heuvel fullname: van den Heuvel, Lambert P. email: b.vandenheuvel@cukz.umcn.nl organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20290731$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18306232$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1u1DAUhS1URKeFBS-AvAGJRVr_xHayHFV0QGoHqQJVrKw7_pkaEnuwE0FegAfgEXkSUmYoK1Z3851zdL8TdBRTdAg9p-SMEsLOIcIZo5w1j9CCCk6rhtXtEVoQLutKUF4fo5NSPhNCWknJE3RMG04k42yBPl2PxXQOc1bz5a8fP1e4HwcYQoq4S2AxRIsN7MCEYcLJ4-HO4T4MydylaHOADrvo8naqtvd3DsYtLlMZXP8UPfbQFffscE_Rx8s3Hy7eVlfvV-8ulleV4S1tKqGMZbJW3svGW-Gprx0w0bBWGaJqKpwSTkhviQJpa9IY2sJmIywDtgEB_BS92vfucvo6ujLoPhTjug6iS2PRsqVCKt7M4Os9aHIqJTuvdzn0kCdNib73qGeP-o_HmX1xKB03vbP_yIO4GXh5AKAY6HyGaEJ54BhhLVGcztz5nvsWOjf9f1Ev18u_09U-EWaL3x8SkL_o-Q0l9O16pdeXN-r2hnJ9zX8DgcGaqQ |
CODEN | ANNED3 |
CitedBy_id | crossref_primary_10_1159_000475467 crossref_primary_10_1152_ajpregu_00377_2013 crossref_primary_10_1093_humrep_dey114 crossref_primary_10_1016_j_biochi_2019_10_004 crossref_primary_10_1152_ajpregu_00001_2011 crossref_primary_10_1016_j_bbabio_2009_09_005 crossref_primary_10_15406_mojcsr_2016_03_00043 crossref_primary_10_1016_j_mito_2011_05_005 crossref_primary_10_1002_mus_21541 crossref_primary_10_1016_j_ymgme_2021_11_012 crossref_primary_10_1007_s10545_010_9081_y crossref_primary_10_1038_mt_2014_90 crossref_primary_10_1038_ejhg_2010_208 crossref_primary_10_1093_brain_awp259 crossref_primary_10_1016_j_jns_2010_06_029 crossref_primary_10_1016_j_mito_2017_06_007 crossref_primary_10_1016_j_bbadis_2015_08_027 crossref_primary_10_1186_s12887_020_1912_x crossref_primary_10_1212_WNL_0000000000000578 |
Cites_doi | 10.1007/s00415-005-0827-7 10.1007/s00383-005-1471-0 10.1016/j.pediatrneurol.2004.05.009 10.1073/pnas.0500563102 10.1016/S0022-510X(98)00179-8 10.1016/S0006-291X(05)80860-5 10.1093/jnen/61.10.885 10.1038/sj.ejhg.5201056 10.1002/ana.410160409 10.1016/S0022-3476(87)80158-0 10.1016/j.bbabio.2006.05.006 10.1159/000050770 10.1212/WNL.56.8.1101 10.1172/JCI104637 10.1002/mus.880181424 10.1038/72708 10.1093/nar/gkj010 10.1002/(SICI)1096-8628(19980605)77:5<395::AID-AJMG8>3.0.CO;2-M 10.1111/j.1432-1033.1995.0909p.x 10.1016/j.biopsych.2004.11.041 10.1002/ajmg.10767 10.1212/WNL.47.1.243 10.1007/s00246-003-0490-7 10.1373/clinchem.2005.062414 10.1093/ndt/gfh546 10.1016/j.ajo.2004.06.026 10.2337/diab.43.6.746 10.1016/0925-4439(95)00034-2 10.1136/jnnp.2003.026278 10.1016/j.jpeds.2003.10.023 10.1375/twin.10.3.486 10.1074/jbc.M908734199 10.1016/0009-8981(86)90246-9 10.1016/S0035-3787(04)71038-3 10.1016/S0021-9258(18)44883-1 10.1055/s-2001-17372 10.1007/BF00878873 10.1016/0076-6879(69)13005-0 10.1212/WNL.42.3.545 10.1023/A:1010791204961 10.1021/bi026882r 10.1002/ana.10734 10.1038/348651a0 10.1093/nar/29.15.e74 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Neurological Association 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 American Neurological Association – notice: 2008 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/ana.21328 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 481 |
ExternalDocumentID | 10_1002_ana_21328 18306232 20290731 ANA21328 ark_67375_WNG_NFR7WR13_M |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: European Community's Sixth Framework Program for Research, Priority 1 “Life sciences, genomics and biotechnology for health” funderid: LSHM‐CT‐2004‐503116 – fundername: Deutsche Forschungsgemeinschaft funderid: SFB 577 TP4 “Genetic variability of mitochondrial disorders – fundername: Mitocircle, Specific Targeted Research Project financed by the European Community funderid: SHB‐CT‐2004‐005260 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRZS ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 08R AAJUZ AAPBV AAUGY AAVGM ABCVL ABHUG ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IQODW ZA5 CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7X8 |
ID | FETCH-LOGICAL-c3918-57cd2647ff68fd5f1f4ea258297c07415e75e56fd07a6d408c19abb5d2a2ba5a3 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 |
IngestDate | Wed Dec 04 07:13:27 EST 2024 Fri Dec 06 04:43:33 EST 2024 Sat Sep 28 07:45:14 EDT 2024 Sun Oct 22 16:08:35 EDT 2023 Sat Aug 24 01:06:54 EDT 2024 Wed Oct 30 09:58:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Mitochondria Nervous system diseases Mutation |
Language | English |
License | CC BY 4.0 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3918-57cd2647ff68fd5f1f4ea258297c07415e75e56fd07a6d408c19abb5d2a2ba5a3 |
Notes | ark:/67375/WNG-NFR7WR13-M ArticleID:ANA21328 European Community's Sixth Framework Program for Research, Priority 1 "Life sciences, genomics and biotechnology for health" - No. LSHM-CT-2004-503116 istex:92A3BFDB0576F4D2735578428DDC4A831E9EC7FD Mitocircle, Specific Targeted Research Project financed by the European Community - No. SHB-CT-2004-005260 Deutsche Forschungsgemeinschaft - No. SFB 577 TP4 "Genetic variability of mitochondrial disorders Dr Rob C. A. Sengers is deceased. A.J.M.J. and M.S. contributed equally to this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18306232 |
PQID | 69156738 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_69156738 crossref_primary_10_1002_ana_21328 pubmed_primary_18306232 pascalfrancis_primary_20290731 wiley_primary_10_1002_ana_21328_ANA21328 istex_primary_ark_67375_WNG_NFR7WR13_M |
PublicationCentury | 2000 |
PublicationDate | April 2008 |
PublicationDateYYYYMMDD | 2008-04-01 |
PublicationDate_xml | – month: 04 year: 2008 text: April 2008 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Willey-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Willey-Liss |
References | Lev D, Nissenkorn A, Leshinsky-Silver E, et al. Clinical presentations of mitochondrial cardiomyopathies. Pediatr Cardiol 2004; 25: 443-450. Janssen AJM, Trijbels JMF, Sengers RCA, et al. Determination of the mitochondrial energy generating capacity in human muscle mitochondria: diagnostic procedure and application to human pathology. Clin Chem 2006; 52: 860-871. Ingman M, Gyllensten U. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res 2006; 34: 749-751. Chomyn A, Enriquez JA, Micol V, et al. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem 2000; 275: 19198-19209. Bentlage HACM, de Coo R, ter Laak HJ, et al. Human diseases with defects in oxidative phosphorylation. I. Decreased amounts of assembled oxidative phosphorylation complexes in mitochondrial encephalomyopathies. Eur J Biochem 1995; 227: 909-915. Pons RP, Andreu AL, Checcarelli N, et al. Mitochondrial DNA abnormalities and autistic spectrum disorders. J Pediatr 2004; 144: 81-85. Liang MH, Wong LJ. Yield of mtDNA mutation analysis in 2,000 patients. Am J Med Genet 1998; 77: 395-400. Vielhaber S, Varlamov DA, Kudina TA, et al. Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients harbouring the 3243A>G point mutation or large scale deletions of mitochondrial DNA. J Neuropathol Exp Neurol 2002; 61: 885-895. Srere PA. Citrate synthase, EC 4.1.3.7. citrate oxaloacetate lyase (CoA-acetylating). Methods Enzymol 1969; 13: 3-11. Wittig I, Carrozzo R, Santorelli FM, Schägger H. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 2006; 1757: 1066-1072. Kornblum C, Broicher R, Walther E, et al. Sensorineural hearing loss in patients with chronic progressive external ophthalmoplegia or Kearns-Sayre syndrome. J Neurol 2005; 252: 1101-1107. Detjen AK, Tinschert S, Kaufmann D, et al. Analysis of mitochondrial DNA in discordant monozygotic twins with neurofibromatosis type 1. Twin Res Hum Genet 2007; 10: 486-495. Finsterer J, Stollberger C, Wanschitz J, et al. Nail-patella syndrome associated with respiratory chain disorder. Eur Neurol 2001; 46: 92-95. Luft R, Ikkos D, Palmieri G, et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962; 41: 1776-1804. Durand-Dubief F, Ryvlin P, Mauguiere F. Polymorphism of epilepsy associated with the 3243A>G mutation of mitochondrial DNA (MELAS): reasons for delayed diagnosis. Rev Neurol 2004; 160: 824-829. Sangkhathat S, Kusafuka T, Yoneda A, et al. Renal cell carcinoma in a pediatric patient with an inherited mitochondrial mutation. Pediatr Surg Int 2005; 21: 745-748. Chomyn A. Mitochondrial genetic control of assembly and function of complex I in mammalian cells. J Bioenerg Biomembr 2001; 33: 251-257. Kobayashi M, Morishita H, Sugiyama N, et al. Two cases of NADH-coenzyme Q reductase deficiency: relationship to MELAS syndrome. J Pediatr 1987; 110: 223-227. Chang TM, Chi CS, Tsai CR, et al. Paralytic ileus in MELAS with phenotypic features of MNGIE. Pediatr Neurol 2004; 31: 374-377. Park H, Davidson E, King MP. The pathogenic 3243A>G mutation in human mitochondrial tRNALeu(UUR) decreases the efficiency of aminoacylation. Biochemistry 2003; 42: 958-964. Mariotti C, Savarese N, Suomalainen A, et al. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the 3243A>G mutation of mitochondrial DNA. J Neurol 1995; 242: 304-312. Kirino Y, Goto Y, Campos Y, et al. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA 2005; 102: 7127-7132. Pavlakis SG, Phillips PC, DiMauro S, et al. Mitochondrial myopathy encephalopathy, lactic acidosis, and stroke-like episodes: a distinctive clinical syndrome. Ann Neurol 1984; 16: 481-488. van den Ouweland JMW, Lemkes HHPJ, Trembath RC, et al. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associated with a single point mutation in the mitochondrial tRNAleu(UUR) gene. Diabetes 1994; 43: 746-751. Goto Y, Horai S, Matsuoka T, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology 1992; 42: 545-550. Cooperstein S, Lazarow A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 1951; 189: 665-670. Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 2000; 18: 233-234. Goto Y, Nonaka I, Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348: 651-653. Okhuijsen-Kroes EJ, Trijbels JMF, Sengers RCA, et al. Infantile presentation of the mtDNA 3243A>G tRNALeu(UUR) mutation. Neuropediatrics 2001; 32: 183-190. Jones M, Mitchell P, Wang JJ, Sue C. MELAS 3243A>G mitochondrial DNA mutation and age related maculopathy. Am J Ophthalmol 2004; 138: 1051-1053. Kobayashi Y, Momoi MY, Tominaga K, et al. A point mutation in the mitochondrial tRNALeu(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 1990; 173: 816-822. Löwik MM, Hol FA, Steenbergen EJ, et al. Mitochondrial tRNALeu(UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol Dial Transplant 2005; 20: 336-341. Sue CM, Quigley A, Katsabanis S, et al. Detection of MELAS A3243G point mutation in muscle, blood and hair follicles. J Neurol Sci 1998; 161: 36-39. Koga Y, Davidson M, Schon EA, King MP. Analysis of cybrids harboring MELAS mutations in the mitochondrial tRNALeu(UUR) gene. Muscle Nerve 1995; 3: S119-S123. Bentlage HACM, Wendel U, Schägger H, et al. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology 1996; 47: 243-248. Crimi M, Del Bo R, Galbiati S, et al. Mitochondrial A12308G polymorphism affects clinical features in patients with single mtDNA macrodeletion. Eur J Hum Genet 2003; 11: 896-898. Taylor RW, Taylor GA, Durham SE, Turnbull DM. The determination of complete human mitochondrial DNA sequences in single cells: implication for the study of somatic mitochondrial DNA point mutations. Nucleic Acids Res 2001; 29: e74. Munakata K, Iwamoto K, Bundo M, Kato T. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatr 2005; 57: 525-532. Attardi G, Yoneda M, Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta 1995; 1271: 241-248. Fischer JC, Ruitenbeek W, Trijbels JMF, et al. Estimation of NADH oxidation in human skeletal muscle mitochondria. Clin Chim Acta 1986; 155: 263-273. Ugalde C, Triepels RH, Coenen MJH, et al. Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 2003; 54: 665-669. Wong LC, Liang MH, Kwon H, et al. A cystic fibrosis patient with two novel mutations in the mitochondrial DNA: mild disease led to delayed diagnosis both disorders. Am J Med Genet 2002; 113: 59-64. Chinnery PF, Taylor DJ, Manners D, et al. No correlation between muscle 3243A>G mutation load and mitochondrial function in vivo. Neurology 2001; 56: 1101-1104. Deschauer M, Chinnery PF, Schaefer AM, et al. No association of the mitochondrial DNA A12308G polymorphism with increased risk of stroke in patients with the 3243A>G mutation. J Neurol Neurosurg Psychiatr 2004; 75: 1200-1207. 2004; 144 2006; 52 1990; 348 2005; 252 2006; 34 1986; 155 2004; 25 2002; 113 2004; 160 2008 2005; 20 2005; 21 1969; 13 2000; 275 2001; 29 2007; 10 2001; 46 1995; 3 1951; 189 2003; 54 1994; 43 2003; 11 2004; 31 2004; 75 2004; 138 1995; 1271 2000; 18 1987; 110 1984; 16 2002; 61 2005; 102 2006; 1757 1995; 227 1996; 47 1992; 42 1995; 242 2001; 33 1962; 41 2001; 56 2003; 42 1998; 77 1998; 161 2005; 57 1990; 173 2001; 32 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 144 start-page: 81 year: 2004 end-page: 85 article-title: Mitochondrial DNA abnormalities and autistic spectrum disorders publication-title: J Pediatr – volume: 242 start-page: 304 year: 1995 end-page: 312 article-title: Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the 3243A>G mutation of mitochondrial DNA publication-title: J Neurol – volume: 47 start-page: 243 year: 1996 end-page: 248 article-title: Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle publication-title: Neurology – volume: 77 start-page: 395 year: 1998 end-page: 400 article-title: Yield of mtDNA mutation analysis in 2,000 patients publication-title: Am J Med Genet – volume: 61 start-page: 885 year: 2002 end-page: 895 article-title: Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients harbouring the 3243A>G point mutation or large scale deletions of mitochondrial DNA publication-title: J Neuropathol Exp Neurol – volume: 75 start-page: 1200 year: 2004 end-page: 1207 article-title: No association of the mitochondrial DNA A12308G polymorphism with increased risk of stroke in patients with the 3243A>G mutation publication-title: J Neurol Neurosurg Psychiatr – volume: 173 start-page: 816 year: 1990 end-page: 822 article-title: A point mutation in the mitochondrial tRNA gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke‐like episodes) publication-title: Biochem Biophys Res Commun – volume: 29 start-page: e74 year: 2001 article-title: The determination of complete human mitochondrial DNA sequences in single cells: implication for the study of somatic mitochondrial DNA point mutations publication-title: Nucleic Acids Res – volume: 21 start-page: 745 year: 2005 end-page: 748 article-title: Renal cell carcinoma in a pediatric patient with an inherited mitochondrial mutation publication-title: Pediatr Surg Int – volume: 1271 start-page: 241 year: 1995 end-page: 248 article-title: Complementation and segregation behavior of disease‐causing mitochondrial DNA mutations in cellular model systems publication-title: Biochim Biophys Acta – volume: 155 start-page: 263 year: 1986 end-page: 273 article-title: Estimation of NADH oxidation in human skeletal muscle mitochondria publication-title: Clin Chim Acta – volume: 13 start-page: 3 year: 1969 end-page: 11 article-title: Citrate synthase, EC 4.1.3.7. citrate oxaloacetate lyase (CoA‐acetylating) publication-title: Methods Enzymol – volume: 33 start-page: 251 year: 2001 end-page: 257 article-title: Mitochondrial genetic control of assembly and function of complex I in mammalian cells publication-title: J Bioenerg Biomembr – volume: 1757 start-page: 1066 year: 2006 end-page: 1072 article-title: Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation publication-title: Biochim Biophys Acta – volume: 57 start-page: 525 year: 2005 end-page: 532 article-title: Mitochondrial DNA 3243A>G mutation and increased expression of gene in the brains of patients with bipolar disorder and schizophrenia publication-title: Biol Psychiatr – volume: 32 start-page: 183 year: 2001 end-page: 190 article-title: Infantile presentation of the mtDNA 3243A>G tRNA mutation publication-title: Neuropediatrics – volume: 16 start-page: 481 year: 1984 end-page: 488 article-title: Mitochondrial myopathy encephalopathy, lactic acidosis, and stroke‐like episodes: a distinctive clinical syndrome publication-title: Ann Neurol – volume: 3 start-page: S119 year: 1995 end-page: S123 article-title: Analysis of cybrids harboring MELAS mutations in the mitochondrial tRNA gene publication-title: Muscle Nerve – volume: 113 start-page: 59 year: 2002 end-page: 64 article-title: A cystic fibrosis patient with two novel mutations in the mitochondrial DNA: mild disease led to delayed diagnosis both disorders publication-title: Am J Med Genet – volume: 43 start-page: 746 year: 1994 end-page: 751 article-title: Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associated with a single point mutation in the mitochondrial tRNA gene publication-title: Diabetes – volume: 34 start-page: 749 year: 2006 end-page: 751 article-title: mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences publication-title: Nucleic Acids Res – volume: 42 start-page: 958 year: 2003 end-page: 964 article-title: The pathogenic 3243A>G mutation in human mitochondrial tRNA decreases the efficiency of aminoacylation publication-title: Biochemistry – volume: 161 start-page: 36 year: 1998 end-page: 39 article-title: Detection of MELAS A3243G point mutation in muscle, blood and hair follicles publication-title: J Neurol Sci – volume: 42 start-page: 545 year: 1992 end-page: 550 article-title: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke‐like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation publication-title: Neurology – volume: 102 start-page: 7127 year: 2005 end-page: 7132 article-title: Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease publication-title: Proc Natl Acad Sci USA – volume: 52 start-page: 860 year: 2006 end-page: 871 article-title: Determination of the mitochondrial energy generating capacity in human muscle mitochondria: diagnostic procedure and application to human pathology publication-title: Clin Chem – volume: 54 start-page: 665 year: 2003 end-page: 669 article-title: Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene publication-title: Ann Neurol – volume: 110 start-page: 223 year: 1987 end-page: 227 article-title: Two cases of NADH‐coenzyme Q reductase deficiency: relationship to MELAS syndrome publication-title: J Pediatr – volume: 11 start-page: 896 year: 2003 end-page: 898 article-title: Mitochondrial A12308G polymorphism affects clinical features in patients with single mtDNA macrodeletion publication-title: Eur J Hum Genet – volume: 252 start-page: 1101 year: 2005 end-page: 1107 article-title: Sensorineural hearing loss in patients with chronic progressive external ophthalmoplegia or Kearns‐Sayre syndrome publication-title: J Neurol – volume: 275 start-page: 19198 year: 2000 end-page: 19209 article-title: The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke‐like episode syndrome associated human mitochondrial tRNA mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes publication-title: J Biol Chem – volume: 138 start-page: 1051 year: 2004 end-page: 1053 article-title: MELAS 3243A>G mitochondrial DNA mutation and age related maculopathy publication-title: Am J Ophthalmol – volume: 189 start-page: 665 year: 1951 end-page: 670 article-title: A microspectrophotometric method for the determination of cytochrome oxidase publication-title: J Biol Chem – year: 2008 – volume: 56 start-page: 1101 year: 2001 end-page: 1104 article-title: No correlation between muscle 3243A>G mutation load and mitochondrial function in vivo publication-title: Neurology – volume: 10 start-page: 486 year: 2007 end-page: 495 article-title: Analysis of mitochondrial DNA in discordant monozygotic twins with neurofibromatosis type 1 publication-title: Twin Res Hum Genet – volume: 18 start-page: 233 year: 2000 end-page: 234 article-title: An economic method for the fluorescent labeling of PCR fragments publication-title: Nat Biotechnol – volume: 20 start-page: 336 year: 2005 end-page: 341 article-title: Mitochondrial tRNA mutation in a patient with steroid‐resistant nephrotic syndrome and focal segmental glomerulosclerosis publication-title: Nephrol Dial Transplant – volume: 348 start-page: 651 year: 1990 end-page: 653 article-title: A mutation in the tRNA gene associated with the MELAS subgroup of mitochondrial encephalomyopathies publication-title: Nature – volume: 25 start-page: 443 year: 2004 end-page: 450 article-title: Clinical presentations of mitochondrial cardiomyopathies publication-title: Pediatr Cardiol – volume: 160 start-page: 824 year: 2004 end-page: 829 article-title: Polymorphism of epilepsy associated with the 3243A>G mutation of mitochondrial DNA (MELAS): reasons for delayed diagnosis publication-title: Rev Neurol – volume: 46 start-page: 92 year: 2001 end-page: 95 article-title: Nail‐patella syndrome associated with respiratory chain disorder publication-title: Eur Neurol – volume: 41 start-page: 1776 year: 1962 end-page: 1804 article-title: A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study publication-title: J Clin Invest – volume: 31 start-page: 374 year: 2004 end-page: 377 article-title: Paralytic ileus in MELAS with phenotypic features of MNGIE publication-title: Pediatr Neurol – volume: 227 start-page: 909 year: 1995 end-page: 915 article-title: Human diseases with defects in oxidative phosphorylation. I. Decreased amounts of assembled oxidative phosphorylation complexes in mitochondrial encephalomyopathies publication-title: Eur J Biochem – ident: e_1_2_6_15_2 doi: 10.1007/s00415-005-0827-7 – ident: e_1_2_6_16_2 doi: 10.1007/s00383-005-1471-0 – ident: e_1_2_6_9_2 doi: 10.1016/j.pediatrneurol.2004.05.009 – ident: e_1_2_6_44_2 doi: 10.1073/pnas.0500563102 – ident: e_1_2_6_39_2 doi: 10.1016/S0022-510X(98)00179-8 – ident: e_1_2_6_5_2 doi: 10.1016/S0006-291X(05)80860-5 – ident: e_1_2_6_21_2 doi: 10.1093/jnen/61.10.885 – ident: e_1_2_6_37_2 doi: 10.1038/sj.ejhg.5201056 – ident: e_1_2_6_2_2 doi: 10.1002/ana.410160409 – ident: e_1_2_6_3_2 doi: 10.1016/S0022-3476(87)80158-0 – ident: e_1_2_6_45_2 doi: 10.1016/j.bbabio.2006.05.006 – ident: e_1_2_6_13_2 doi: 10.1159/000050770 – ident: e_1_2_6_6_2 – ident: e_1_2_6_24_2 doi: 10.1212/WNL.56.8.1101 – ident: e_1_2_6_46_2 doi: 10.1172/JCI104637 – ident: e_1_2_6_25_2 doi: 10.1002/mus.880181424 – ident: e_1_2_6_32_2 doi: 10.1038/72708 – ident: e_1_2_6_36_2 doi: 10.1093/nar/gkj010 – ident: e_1_2_6_18_2 doi: 10.1002/(SICI)1096-8628(19980605)77:5<395::AID-AJMG8>3.0.CO;2-M – ident: e_1_2_6_22_2 doi: 10.1111/j.1432-1033.1995.0909p.x – ident: e_1_2_6_14_2 doi: 10.1016/j.biopsych.2004.11.041 – ident: e_1_2_6_23_2 doi: 10.1002/ajmg.10767 – ident: e_1_2_6_29_2 doi: 10.1212/WNL.47.1.243 – ident: e_1_2_6_7_2 doi: 10.1007/s00246-003-0490-7 – ident: e_1_2_6_27_2 doi: 10.1373/clinchem.2005.062414 – ident: e_1_2_6_17_2 doi: 10.1093/ndt/gfh546 – ident: e_1_2_6_12_2 doi: 10.1016/j.ajo.2004.06.026 – ident: e_1_2_6_8_2 doi: 10.2337/diab.43.6.746 – ident: e_1_2_6_26_2 doi: 10.1016/0925-4439(95)00034-2 – ident: e_1_2_6_38_2 doi: 10.1136/jnnp.2003.026278 – ident: e_1_2_6_11_2 doi: 10.1016/j.jpeds.2003.10.023 – ident: e_1_2_6_33_2 doi: 10.1375/twin.10.3.486 – ident: e_1_2_6_19_2 doi: 10.1074/jbc.M908734199 – ident: e_1_2_6_28_2 doi: 10.1016/0009-8981(86)90246-9 – ident: e_1_2_6_10_2 doi: 10.1016/S0035-3787(04)71038-3 – ident: e_1_2_6_30_2 doi: 10.1016/S0021-9258(18)44883-1 – ident: e_1_2_6_35_2 doi: 10.1055/s-2001-17372 – ident: e_1_2_6_41_2 doi: 10.1007/BF00878873 – ident: e_1_2_6_31_2 doi: 10.1016/0076-6879(69)13005-0 – ident: e_1_2_6_40_2 doi: 10.1212/WNL.42.3.545 – ident: e_1_2_6_42_2 doi: 10.1023/A:1010791204961 – ident: e_1_2_6_20_2 doi: 10.1021/bi026882r – ident: e_1_2_6_43_2 doi: 10.1002/ana.10734 – ident: e_1_2_6_4_2 doi: 10.1038/348651a0 – ident: e_1_2_6_34_2 doi: 10.1093/nar/29.15.e74 |
SSID | ssj0009610 |
Score | 2.089159 |
Snippet | Objective
The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of... The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine... OBJECTIVEThe mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 473 |
SubjectTerms | Adenosine - genetics Adolescent Adult Biological and medical sciences Child Child, Preschool Diseases of striated muscles. Neuromuscular diseases DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Electron Transport - genetics Energy Metabolism - genetics Female Guanine - physiology Humans Infant Male Medical sciences MELAS Syndrome - diagnosis MELAS Syndrome - genetics MELAS Syndrome - metabolism Middle Aged Mitochondria, Muscle - genetics Mitochondria, Muscle - metabolism Muscle, Skeletal - pathology Muscle, Skeletal - physiology Mutation - genetics Neurology |
Title | Muscle 3243A→G mutation load and capacity of the mitochondrial energy-generating system |
URI | https://api.istex.fr/ark:/67375/WNG-NFR7WR13-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21328 https://www.ncbi.nlm.nih.gov/pubmed/18306232 https://search.proquest.com/docview/69156738 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-lgnjx-2PU1iAiXmY7-ZrM0NOibouwe1gsLSiEJJP0UDsr3R0QTz31LP6J_Ut8SXZ2WVEQbwOZMMl7Ly-_zHvvF4Rewa6qi9LwXDahJKewZa6l8LmkxlcWWoiPCbKT8vCIfzgRJ1tov6-FSfwQqx9uYWVEfx0WuDbzvTVpqG71gMJZKhT6EiZDOt-76Zo6qi4jE0EIs-WCMN6zChV0b9VzYy-6EcT6LeRG6jmIx6d7Lf4EPDdxbNyIRnfQ534KKf_kbNAtzMB-_43d8T_neBfdXgJUPEwWdQ9tufY-ujlehuAfoE_jbg4NGCASG15f_TzA510K5-MvM91g3TbYwg5sAd7jmccAMPE5uA1ws20TrB27WG54ffnjNFJeh7xrnAilH6Kj0fuPbw_z5Q0NuWU1qXIhbQOISnpfVr4RnnjuNBWhXNdGrOKkcKL0TSF12fCisqTWxoiGamq00OwR2m5nrXuCsA7haFJ68DeOU0cqyRhz1nDJNHecZ-hlryv1NRFxqES5TBWISUUxZeh11OLqDX1xFjLXpFDHkwM1GU3l8ZQwNc7Q7oaaVx1oQWvweiRDL3q9K1hwIYqiWzfr5qqs4cgrGXzrcTKH9XAqOH8BQs3Qm6jUv49TDSfD-PD03199hm6lXJWQNfQcbS8uOrcDgGhhdqPl_wK95AWa |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1BfXi98f40QYR8TLbyddkBrws6nbV7h6WlhZEQiaT9NB2Vro7IJ48eRb_xP4lviQ7u6woiLeBJEzyXt7LL3kvvyD0HFZVneUVT2Xtr-RkJk-1FC6VtHKFgRLiQoLsOB8e8vfH4ngDveruwkR-iOWBm7eM4K-9gfsD6d0Va6hudI_CZqq4grbA3IlP6HozWZFHlXngIvCBtlQQxjteoYzuLpuurUZbXrBffHaknoGAXHzZ4k_Qcx3JhqVocBN96gYRM1BOe-286pmvv_E7_u8ob6EbC4yK-3FS3UYbtrmDro4WUfi76OOonUEBBpTE-pfff-7h8zZG9PHZVNdYNzU2sAgbQPh46jBgTHwOngM8bVP7CY9tuHF4-e3HSWC99qnXOHJK30OHg7cHr4fp4pGG1LCSFKmQpgZQJZ3LC1cLRxy3mgp_Y9cEuGKlsCJ3dSZ1XvOsMKTUVSVqqmmlhWb30WYzbexDhLWPSJPcgcuxnFpSSMaYNRWXTHPLeYKedcpSnyMXh4qsy1SBmFQQU4JeBDUua-iLU5-8JoU6Gu-p8WAijyaEqVGCttf0vGxAM1qC4yMJ2ukUr8DmfCBFN3bazlRewq5XMvjXgzgfVt0pYAsGIDVBL4NW_95P1R_3w8ejf6-6g64ND0b7av_d-MNjdD2mrvgkoidoc37R2qeAj-bVdjCDXxpeCbs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpAqGXvh9O20SUUnrxxpb1sOlpabpJH2vK0pBAA0LWo4ck3pDdhdJTTz2X_sT8ko6k9S5bWii9GWRhaUYz-uSZ-YTQM9hVVcYbmgrjS3IyzVMlmEsFaVypoSV3IUG25geH9O0xO15DL7tamMgPsfjh5i0j-Gtv4BfG7S5JQ1WregTOUuU1tEE5qTxx_t5oyR1V8UBF4ONsKcsL2tEKZWR30XVlM9rwcv3ikyPVBOTj4sUWf0Keq0A27ESDm-ikm0NMQDntzaZNT3_9jd7xPyd5C92YI1Tcj0vqNlqz7R20OZzH4O-iT8PZBBowYKSif_X95z4-n8V4Pj4bK4NVa7CGLVgDvsdjhwFh4nPwG-BnW-OXO7ah3vDq24_PgfPaJ17jyCh9Dx0OXn98dZDOr2hIdVHlZcqENgCphHO8dIa53FGrCPP1ujqAFSuYZdyZTChuaFbqvFJNwwxRpFFMFffRejtu7UOElY9H59yBw7GU2LwURVFY3VBRKGopTdDTTlfyIjJxyMi5TCSISQYxJeh50OLiDXV56lPXBJNH9b6sByNxNMoLOUzQ9oqaFx1IRipwe3mCdjq9S7A4H0ZRrR3PJpJXcOYVBXzrQVwOy-GUcAADiJqgF0Gpfx-n7Nf98LD176_uoM0PewP5_k397hG6HvNWfAbRY7Q-vZzZJwCOps12MIJf_EcIag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+3243A--%3EG+mutation+load+and+capacity+of+the+mitochondrial+energy-generating+system&rft.jtitle=Annals+of+neurology&rft.au=Janssen%2C+Antoon+J+M&rft.au=Schuelke%2C+Markus&rft.au=Smeitink%2C+Jan+A+M&rft.au=Trijbels%2C+Frans+J+M&rft.date=2008-04-01&rft.eissn=1531-8249&rft.volume=63&rft.issue=4&rft.spage=473&rft.epage=481&rft_id=info:doi/10.1002%2Fana.21328&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |