Muscle 3243A→G mutation load and capacity of the mitochondrial energy-generating system

Objective The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 63; no. 4; pp. 473 - 481
Main Authors Janssen, Antoon J. M., Schuelke, Markus, Smeitink, Jan A. M., Trijbels, Frans J. M., Sengers, Rob C. A., Lucke, Barbara, Wintjes, Liesbeth T. M., Morava, Eva, van Engelen, Baziel G. M., Smits, Bart W., Hol, Frans A., Siers, Marloes H., Ter Laak, Henk, van der Knaap, Marjo S., Van Spronsen, Francjan J., Rodenburg, Richard J. T., van den Heuvel, Lambert P.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2008
Willey-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the “MEGS capacity.” Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A→G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome. Methods In muscle tissue of 24 patients with the 3243A→G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A→G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible. Results We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS‐related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients. Interpretation The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity. Ann Neurol 2008
AbstractList Objective The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the “MEGS capacity.” Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A→G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome. Methods In muscle tissue of 24 patients with the 3243A→G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A→G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible. Results We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS‐related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients. Interpretation The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity. Ann Neurol 2008
OBJECTIVEThe mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the "MEGS capacity." Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A-->G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome.METHODSIn muscle tissue of 24 patients with the 3243A-->G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A-->G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible.RESULTSWe found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS-related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients.INTERPRETATIONThe results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity.
The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate production rates, which we refer to as the "MEGS capacity." Currently, little is known about MEGS pathology in patients with mutations in the mitochondrial DNA. Because MEGS capacity is an indicator for the overall mitochondrial function related to energy production, we searched for a correlation between MEGS capacity and 3243A-->G mutation load in muscle of patients with the MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome. In muscle tissue of 24 patients with the 3243A-->G mutation, we investigated the MEGS capacity, the respiratory chain enzymatic activities, and the 3243A-->G mutation load. To exclude coinciding mutations, we sequenced all 22 mitochondrial transfer RNA genes in the patients, if possible. We found highly significant differences between patients and control subjects with respect to the MEGS capacity and complex I, III, and IV activities. MEGS-related measurements correlated considerably better with the mutation load than respiratory chain enzyme activities. We found no additional mutations in the mitochondrial transfer RNA genes of the patients. The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity.
Author Ter Laak, Henk
van Engelen, Baziel G. M.
Sengers, Rob C. A.
Lucke, Barbara
Van Spronsen, Francjan J.
Hol, Frans A.
Smits, Bart W.
Janssen, Antoon J. M.
Smeitink, Jan A. M.
van der Knaap, Marjo S.
Siers, Marloes H.
Schuelke, Markus
Wintjes, Liesbeth T. M.
Rodenburg, Richard J. T.
Morava, Eva
Trijbels, Frans J. M.
van den Heuvel, Lambert P.
Author_xml – sequence: 1
  givenname: Antoon J. M.
  surname: Janssen
  fullname: Janssen, Antoon J. M.
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 2
  givenname: Markus
  surname: Schuelke
  fullname: Schuelke, Markus
  organization: Department of Neuropediatrics, Charité University Medical Centre, Berlin, Germany
– sequence: 3
  givenname: Jan A. M.
  surname: Smeitink
  fullname: Smeitink, Jan A. M.
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 4
  givenname: Frans J. M.
  surname: Trijbels
  fullname: Trijbels, Frans J. M.
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 5
  givenname: Rob C. A.
  surname: Sengers
  fullname: Sengers, Rob C. A.
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 6
  givenname: Barbara
  surname: Lucke
  fullname: Lucke, Barbara
  organization: Department of Neuropediatrics, Charité University Medical Centre, Berlin, Germany
– sequence: 7
  givenname: Liesbeth T. M.
  surname: Wintjes
  fullname: Wintjes, Liesbeth T. M.
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 8
  givenname: Eva
  surname: Morava
  fullname: Morava, Eva
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 9
  givenname: Baziel G. M.
  surname: van Engelen
  fullname: van Engelen, Baziel G. M.
  organization: Department of Neurology, VU University Medical Centre, Amsterdam
– sequence: 10
  givenname: Bart W.
  surname: Smits
  fullname: Smits, Bart W.
  organization: Department of Neurology, VU University Medical Centre, Amsterdam
– sequence: 11
  givenname: Frans A.
  surname: Hol
  fullname: Hol, Frans A.
  organization: Department of Human Genetics, VU University Medical Centre, Amsterdam
– sequence: 12
  givenname: Marloes H.
  surname: Siers
  fullname: Siers, Marloes H.
  organization: Department of Human Genetics, VU University Medical Centre, Amsterdam
– sequence: 13
  givenname: Henk
  surname: Ter Laak
  fullname: Ter Laak, Henk
  organization: Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 14
  givenname: Marjo S.
  surname: van der Knaap
  fullname: van der Knaap, Marjo S.
  organization: Department of Child Neurology, VU University Medical Centre, Amsterdam
– sequence: 15
  givenname: Francjan J.
  surname: Van Spronsen
  fullname: Van Spronsen, Francjan J.
  organization: Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
– sequence: 16
  givenname: Richard J. T.
  surname: Rodenburg
  fullname: Rodenburg, Richard J. T.
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
– sequence: 17
  givenname: Lambert P.
  surname: van den Heuvel
  fullname: van den Heuvel, Lambert P.
  email: b.vandenheuvel@cukz.umcn.nl
  organization: Department of Pediatrics and Laboratory of Pediatrics and Neurology, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20290731$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18306232$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1u1DAUhS1URKeFBS-AvAGJRVr_xHayHFV0QGoHqQJVrKw7_pkaEnuwE0FegAfgEXkSUmYoK1Z3851zdL8TdBRTdAg9p-SMEsLOIcIZo5w1j9CCCk6rhtXtEVoQLutKUF4fo5NSPhNCWknJE3RMG04k42yBPl2PxXQOc1bz5a8fP1e4HwcYQoq4S2AxRIsN7MCEYcLJ4-HO4T4MydylaHOADrvo8naqtvd3DsYtLlMZXP8UPfbQFffscE_Rx8s3Hy7eVlfvV-8ulleV4S1tKqGMZbJW3svGW-Gprx0w0bBWGaJqKpwSTkhviQJpa9IY2sJmIywDtgEB_BS92vfucvo6ujLoPhTjug6iS2PRsqVCKt7M4Os9aHIqJTuvdzn0kCdNib73qGeP-o_HmX1xKB03vbP_yIO4GXh5AKAY6HyGaEJ54BhhLVGcztz5nvsWOjf9f1Ev18u_09U-EWaL3x8SkL_o-Q0l9O16pdeXN-r2hnJ9zX8DgcGaqQ
CODEN ANNED3
CitedBy_id crossref_primary_10_1159_000475467
crossref_primary_10_1152_ajpregu_00377_2013
crossref_primary_10_1093_humrep_dey114
crossref_primary_10_1016_j_biochi_2019_10_004
crossref_primary_10_1152_ajpregu_00001_2011
crossref_primary_10_1016_j_bbabio_2009_09_005
crossref_primary_10_15406_mojcsr_2016_03_00043
crossref_primary_10_1016_j_mito_2011_05_005
crossref_primary_10_1002_mus_21541
crossref_primary_10_1016_j_ymgme_2021_11_012
crossref_primary_10_1007_s10545_010_9081_y
crossref_primary_10_1038_mt_2014_90
crossref_primary_10_1038_ejhg_2010_208
crossref_primary_10_1093_brain_awp259
crossref_primary_10_1016_j_jns_2010_06_029
crossref_primary_10_1016_j_mito_2017_06_007
crossref_primary_10_1016_j_bbadis_2015_08_027
crossref_primary_10_1186_s12887_020_1912_x
crossref_primary_10_1212_WNL_0000000000000578
Cites_doi 10.1007/s00415-005-0827-7
10.1007/s00383-005-1471-0
10.1016/j.pediatrneurol.2004.05.009
10.1073/pnas.0500563102
10.1016/S0022-510X(98)00179-8
10.1016/S0006-291X(05)80860-5
10.1093/jnen/61.10.885
10.1038/sj.ejhg.5201056
10.1002/ana.410160409
10.1016/S0022-3476(87)80158-0
10.1016/j.bbabio.2006.05.006
10.1159/000050770
10.1212/WNL.56.8.1101
10.1172/JCI104637
10.1002/mus.880181424
10.1038/72708
10.1093/nar/gkj010
10.1002/(SICI)1096-8628(19980605)77:5<395::AID-AJMG8>3.0.CO;2-M
10.1111/j.1432-1033.1995.0909p.x
10.1016/j.biopsych.2004.11.041
10.1002/ajmg.10767
10.1212/WNL.47.1.243
10.1007/s00246-003-0490-7
10.1373/clinchem.2005.062414
10.1093/ndt/gfh546
10.1016/j.ajo.2004.06.026
10.2337/diab.43.6.746
10.1016/0925-4439(95)00034-2
10.1136/jnnp.2003.026278
10.1016/j.jpeds.2003.10.023
10.1375/twin.10.3.486
10.1074/jbc.M908734199
10.1016/0009-8981(86)90246-9
10.1016/S0035-3787(04)71038-3
10.1016/S0021-9258(18)44883-1
10.1055/s-2001-17372
10.1007/BF00878873
10.1016/0076-6879(69)13005-0
10.1212/WNL.42.3.545
10.1023/A:1010791204961
10.1021/bi026882r
10.1002/ana.10734
10.1038/348651a0
10.1093/nar/29.15.e74
ContentType Journal Article
Copyright Copyright © 2008 American Neurological Association
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 American Neurological Association
– notice: 2008 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/ana.21328
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 481
ExternalDocumentID 10_1002_ana_21328
18306232
20290731
ANA21328
ark_67375_WNG_NFR7WR13_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: European Community's Sixth Framework Program for Research, Priority 1 “Life sciences, genomics and biotechnology for health”
  funderid: LSHM‐CT‐2004‐503116
– fundername: Deutsche Forschungsgemeinschaft
  funderid: SFB 577 TP4 “Genetic variability of mitochondrial disorders
– fundername: Mitocircle, Specific Targeted Research Project financed by the European Community
  funderid: SHB‐CT‐2004‐005260
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
08R
AAJUZ
AAPBV
AAUGY
AAVGM
ABCVL
ABHUG
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7X8
ID FETCH-LOGICAL-c3918-57cd2647ff68fd5f1f4ea258297c07415e75e56fd07a6d408c19abb5d2a2ba5a3
IEDL.DBID DR2
ISSN 0364-5134
IngestDate Wed Dec 04 07:13:27 EST 2024
Fri Dec 06 04:43:33 EST 2024
Sat Sep 28 07:45:14 EDT 2024
Sun Oct 22 16:08:35 EDT 2023
Sat Aug 24 01:06:54 EDT 2024
Wed Oct 30 09:58:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Mitochondria
Nervous system diseases
Mutation
Language English
License CC BY 4.0
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3918-57cd2647ff68fd5f1f4ea258297c07415e75e56fd07a6d408c19abb5d2a2ba5a3
Notes ark:/67375/WNG-NFR7WR13-M
ArticleID:ANA21328
European Community's Sixth Framework Program for Research, Priority 1 "Life sciences, genomics and biotechnology for health" - No. LSHM-CT-2004-503116
istex:92A3BFDB0576F4D2735578428DDC4A831E9EC7FD
Mitocircle, Specific Targeted Research Project financed by the European Community - No. SHB-CT-2004-005260
Deutsche Forschungsgemeinschaft - No. SFB 577 TP4 "Genetic variability of mitochondrial disorders
Dr Rob C. A. Sengers is deceased.
A.J.M.J. and M.S. contributed equally to this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18306232
PQID 69156738
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_69156738
crossref_primary_10_1002_ana_21328
pubmed_primary_18306232
pascalfrancis_primary_20290731
wiley_primary_10_1002_ana_21328_ANA21328
istex_primary_ark_67375_WNG_NFR7WR13_M
PublicationCentury 2000
PublicationDate April 2008
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: April 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Willey-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Willey-Liss
References Lev D, Nissenkorn A, Leshinsky-Silver E, et al. Clinical presentations of mitochondrial cardiomyopathies. Pediatr Cardiol 2004; 25: 443-450.
Janssen AJM, Trijbels JMF, Sengers RCA, et al. Determination of the mitochondrial energy generating capacity in human muscle mitochondria: diagnostic procedure and application to human pathology. Clin Chem 2006; 52: 860-871.
Ingman M, Gyllensten U. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res 2006; 34: 749-751.
Chomyn A, Enriquez JA, Micol V, et al. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem 2000; 275: 19198-19209.
Bentlage HACM, de Coo R, ter Laak HJ, et al. Human diseases with defects in oxidative phosphorylation. I. Decreased amounts of assembled oxidative phosphorylation complexes in mitochondrial encephalomyopathies. Eur J Biochem 1995; 227: 909-915.
Pons RP, Andreu AL, Checcarelli N, et al. Mitochondrial DNA abnormalities and autistic spectrum disorders. J Pediatr 2004; 144: 81-85.
Liang MH, Wong LJ. Yield of mtDNA mutation analysis in 2,000 patients. Am J Med Genet 1998; 77: 395-400.
Vielhaber S, Varlamov DA, Kudina TA, et al. Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients harbouring the 3243A>G point mutation or large scale deletions of mitochondrial DNA. J Neuropathol Exp Neurol 2002; 61: 885-895.
Srere PA. Citrate synthase, EC 4.1.3.7. citrate oxaloacetate lyase (CoA-acetylating). Methods Enzymol 1969; 13: 3-11.
Wittig I, Carrozzo R, Santorelli FM, Schägger H. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 2006; 1757: 1066-1072.
Kornblum C, Broicher R, Walther E, et al. Sensorineural hearing loss in patients with chronic progressive external ophthalmoplegia or Kearns-Sayre syndrome. J Neurol 2005; 252: 1101-1107.
Detjen AK, Tinschert S, Kaufmann D, et al. Analysis of mitochondrial DNA in discordant monozygotic twins with neurofibromatosis type 1. Twin Res Hum Genet 2007; 10: 486-495.
Finsterer J, Stollberger C, Wanschitz J, et al. Nail-patella syndrome associated with respiratory chain disorder. Eur Neurol 2001; 46: 92-95.
Luft R, Ikkos D, Palmieri G, et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962; 41: 1776-1804.
Durand-Dubief F, Ryvlin P, Mauguiere F. Polymorphism of epilepsy associated with the 3243A>G mutation of mitochondrial DNA (MELAS): reasons for delayed diagnosis. Rev Neurol 2004; 160: 824-829.
Sangkhathat S, Kusafuka T, Yoneda A, et al. Renal cell carcinoma in a pediatric patient with an inherited mitochondrial mutation. Pediatr Surg Int 2005; 21: 745-748.
Chomyn A. Mitochondrial genetic control of assembly and function of complex I in mammalian cells. J Bioenerg Biomembr 2001; 33: 251-257.
Kobayashi M, Morishita H, Sugiyama N, et al. Two cases of NADH-coenzyme Q reductase deficiency: relationship to MELAS syndrome. J Pediatr 1987; 110: 223-227.
Chang TM, Chi CS, Tsai CR, et al. Paralytic ileus in MELAS with phenotypic features of MNGIE. Pediatr Neurol 2004; 31: 374-377.
Park H, Davidson E, King MP. The pathogenic 3243A>G mutation in human mitochondrial tRNALeu(UUR) decreases the efficiency of aminoacylation. Biochemistry 2003; 42: 958-964.
Mariotti C, Savarese N, Suomalainen A, et al. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the 3243A>G mutation of mitochondrial DNA. J Neurol 1995; 242: 304-312.
Kirino Y, Goto Y, Campos Y, et al. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA 2005; 102: 7127-7132.
Pavlakis SG, Phillips PC, DiMauro S, et al. Mitochondrial myopathy encephalopathy, lactic acidosis, and stroke-like episodes: a distinctive clinical syndrome. Ann Neurol 1984; 16: 481-488.
van den Ouweland JMW, Lemkes HHPJ, Trembath RC, et al. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associated with a single point mutation in the mitochondrial tRNAleu(UUR) gene. Diabetes 1994; 43: 746-751.
Goto Y, Horai S, Matsuoka T, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology 1992; 42: 545-550.
Cooperstein S, Lazarow A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 1951; 189: 665-670.
Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 2000; 18: 233-234.
Goto Y, Nonaka I, Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348: 651-653.
Okhuijsen-Kroes EJ, Trijbels JMF, Sengers RCA, et al. Infantile presentation of the mtDNA 3243A>G tRNALeu(UUR) mutation. Neuropediatrics 2001; 32: 183-190.
Jones M, Mitchell P, Wang JJ, Sue C. MELAS 3243A>G mitochondrial DNA mutation and age related maculopathy. Am J Ophthalmol 2004; 138: 1051-1053.
Kobayashi Y, Momoi MY, Tominaga K, et al. A point mutation in the mitochondrial tRNALeu(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 1990; 173: 816-822.
Löwik MM, Hol FA, Steenbergen EJ, et al. Mitochondrial tRNALeu(UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol Dial Transplant 2005; 20: 336-341.
Sue CM, Quigley A, Katsabanis S, et al. Detection of MELAS A3243G point mutation in muscle, blood and hair follicles. J Neurol Sci 1998; 161: 36-39.
Koga Y, Davidson M, Schon EA, King MP. Analysis of cybrids harboring MELAS mutations in the mitochondrial tRNALeu(UUR) gene. Muscle Nerve 1995; 3: S119-S123.
Bentlage HACM, Wendel U, Schägger H, et al. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology 1996; 47: 243-248.
Crimi M, Del Bo R, Galbiati S, et al. Mitochondrial A12308G polymorphism affects clinical features in patients with single mtDNA macrodeletion. Eur J Hum Genet 2003; 11: 896-898.
Taylor RW, Taylor GA, Durham SE, Turnbull DM. The determination of complete human mitochondrial DNA sequences in single cells: implication for the study of somatic mitochondrial DNA point mutations. Nucleic Acids Res 2001; 29: e74.
Munakata K, Iwamoto K, Bundo M, Kato T. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatr 2005; 57: 525-532.
Attardi G, Yoneda M, Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta 1995; 1271: 241-248.
Fischer JC, Ruitenbeek W, Trijbels JMF, et al. Estimation of NADH oxidation in human skeletal muscle mitochondria. Clin Chim Acta 1986; 155: 263-273.
Ugalde C, Triepels RH, Coenen MJH, et al. Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 2003; 54: 665-669.
Wong LC, Liang MH, Kwon H, et al. A cystic fibrosis patient with two novel mutations in the mitochondrial DNA: mild disease led to delayed diagnosis both disorders. Am J Med Genet 2002; 113: 59-64.
Chinnery PF, Taylor DJ, Manners D, et al. No correlation between muscle 3243A>G mutation load and mitochondrial function in vivo. Neurology 2001; 56: 1101-1104.
Deschauer M, Chinnery PF, Schaefer AM, et al. No association of the mitochondrial DNA A12308G polymorphism with increased risk of stroke in patients with the 3243A>G mutation. J Neurol Neurosurg Psychiatr 2004; 75: 1200-1207.
2004; 144
2006; 52
1990; 348
2005; 252
2006; 34
1986; 155
2004; 25
2002; 113
2004; 160
2008
2005; 20
2005; 21
1969; 13
2000; 275
2001; 29
2007; 10
2001; 46
1995; 3
1951; 189
2003; 54
1994; 43
2003; 11
2004; 31
2004; 75
2004; 138
1995; 1271
2000; 18
1987; 110
1984; 16
2002; 61
2005; 102
2006; 1757
1995; 227
1996; 47
1992; 42
1995; 242
2001; 33
1962; 41
2001; 56
2003; 42
1998; 77
1998; 161
2005; 57
1990; 173
2001; 32
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 144
  start-page: 81
  year: 2004
  end-page: 85
  article-title: Mitochondrial DNA abnormalities and autistic spectrum disorders
  publication-title: J Pediatr
– volume: 242
  start-page: 304
  year: 1995
  end-page: 312
  article-title: Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the 3243A>G mutation of mitochondrial DNA
  publication-title: J Neurol
– volume: 47
  start-page: 243
  year: 1996
  end-page: 248
  article-title: Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle
  publication-title: Neurology
– volume: 77
  start-page: 395
  year: 1998
  end-page: 400
  article-title: Yield of mtDNA mutation analysis in 2,000 patients
  publication-title: Am J Med Genet
– volume: 61
  start-page: 885
  year: 2002
  end-page: 895
  article-title: Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients harbouring the 3243A>G point mutation or large scale deletions of mitochondrial DNA
  publication-title: J Neuropathol Exp Neurol
– volume: 75
  start-page: 1200
  year: 2004
  end-page: 1207
  article-title: No association of the mitochondrial DNA A12308G polymorphism with increased risk of stroke in patients with the 3243A>G mutation
  publication-title: J Neurol Neurosurg Psychiatr
– volume: 173
  start-page: 816
  year: 1990
  end-page: 822
  article-title: A point mutation in the mitochondrial tRNA gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke‐like episodes)
  publication-title: Biochem Biophys Res Commun
– volume: 29
  start-page: e74
  year: 2001
  article-title: The determination of complete human mitochondrial DNA sequences in single cells: implication for the study of somatic mitochondrial DNA point mutations
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 745
  year: 2005
  end-page: 748
  article-title: Renal cell carcinoma in a pediatric patient with an inherited mitochondrial mutation
  publication-title: Pediatr Surg Int
– volume: 1271
  start-page: 241
  year: 1995
  end-page: 248
  article-title: Complementation and segregation behavior of disease‐causing mitochondrial DNA mutations in cellular model systems
  publication-title: Biochim Biophys Acta
– volume: 155
  start-page: 263
  year: 1986
  end-page: 273
  article-title: Estimation of NADH oxidation in human skeletal muscle mitochondria
  publication-title: Clin Chim Acta
– volume: 13
  start-page: 3
  year: 1969
  end-page: 11
  article-title: Citrate synthase, EC 4.1.3.7. citrate oxaloacetate lyase (CoA‐acetylating)
  publication-title: Methods Enzymol
– volume: 33
  start-page: 251
  year: 2001
  end-page: 257
  article-title: Mitochondrial genetic control of assembly and function of complex I in mammalian cells
  publication-title: J Bioenerg Biomembr
– volume: 1757
  start-page: 1066
  year: 2006
  end-page: 1072
  article-title: Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation
  publication-title: Biochim Biophys Acta
– volume: 57
  start-page: 525
  year: 2005
  end-page: 532
  article-title: Mitochondrial DNA 3243A>G mutation and increased expression of gene in the brains of patients with bipolar disorder and schizophrenia
  publication-title: Biol Psychiatr
– volume: 32
  start-page: 183
  year: 2001
  end-page: 190
  article-title: Infantile presentation of the mtDNA 3243A>G tRNA mutation
  publication-title: Neuropediatrics
– volume: 16
  start-page: 481
  year: 1984
  end-page: 488
  article-title: Mitochondrial myopathy encephalopathy, lactic acidosis, and stroke‐like episodes: a distinctive clinical syndrome
  publication-title: Ann Neurol
– volume: 3
  start-page: S119
  year: 1995
  end-page: S123
  article-title: Analysis of cybrids harboring MELAS mutations in the mitochondrial tRNA gene
  publication-title: Muscle Nerve
– volume: 113
  start-page: 59
  year: 2002
  end-page: 64
  article-title: A cystic fibrosis patient with two novel mutations in the mitochondrial DNA: mild disease led to delayed diagnosis both disorders
  publication-title: Am J Med Genet
– volume: 43
  start-page: 746
  year: 1994
  end-page: 751
  article-title: Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associated with a single point mutation in the mitochondrial tRNA gene
  publication-title: Diabetes
– volume: 34
  start-page: 749
  year: 2006
  end-page: 751
  article-title: mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences
  publication-title: Nucleic Acids Res
– volume: 42
  start-page: 958
  year: 2003
  end-page: 964
  article-title: The pathogenic 3243A>G mutation in human mitochondrial tRNA decreases the efficiency of aminoacylation
  publication-title: Biochemistry
– volume: 161
  start-page: 36
  year: 1998
  end-page: 39
  article-title: Detection of MELAS A3243G point mutation in muscle, blood and hair follicles
  publication-title: J Neurol Sci
– volume: 42
  start-page: 545
  year: 1992
  end-page: 550
  article-title: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke‐like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation
  publication-title: Neurology
– volume: 102
  start-page: 7127
  year: 2005
  end-page: 7132
  article-title: Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease
  publication-title: Proc Natl Acad Sci USA
– volume: 52
  start-page: 860
  year: 2006
  end-page: 871
  article-title: Determination of the mitochondrial energy generating capacity in human muscle mitochondria: diagnostic procedure and application to human pathology
  publication-title: Clin Chem
– volume: 54
  start-page: 665
  year: 2003
  end-page: 669
  article-title: Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene
  publication-title: Ann Neurol
– volume: 110
  start-page: 223
  year: 1987
  end-page: 227
  article-title: Two cases of NADH‐coenzyme Q reductase deficiency: relationship to MELAS syndrome
  publication-title: J Pediatr
– volume: 11
  start-page: 896
  year: 2003
  end-page: 898
  article-title: Mitochondrial A12308G polymorphism affects clinical features in patients with single mtDNA macrodeletion
  publication-title: Eur J Hum Genet
– volume: 252
  start-page: 1101
  year: 2005
  end-page: 1107
  article-title: Sensorineural hearing loss in patients with chronic progressive external ophthalmoplegia or Kearns‐Sayre syndrome
  publication-title: J Neurol
– volume: 275
  start-page: 19198
  year: 2000
  end-page: 19209
  article-title: The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke‐like episode syndrome associated human mitochondrial tRNA mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes
  publication-title: J Biol Chem
– volume: 138
  start-page: 1051
  year: 2004
  end-page: 1053
  article-title: MELAS 3243A>G mitochondrial DNA mutation and age related maculopathy
  publication-title: Am J Ophthalmol
– volume: 189
  start-page: 665
  year: 1951
  end-page: 670
  article-title: A microspectrophotometric method for the determination of cytochrome oxidase
  publication-title: J Biol Chem
– year: 2008
– volume: 56
  start-page: 1101
  year: 2001
  end-page: 1104
  article-title: No correlation between muscle 3243A>G mutation load and mitochondrial function in vivo
  publication-title: Neurology
– volume: 10
  start-page: 486
  year: 2007
  end-page: 495
  article-title: Analysis of mitochondrial DNA in discordant monozygotic twins with neurofibromatosis type 1
  publication-title: Twin Res Hum Genet
– volume: 18
  start-page: 233
  year: 2000
  end-page: 234
  article-title: An economic method for the fluorescent labeling of PCR fragments
  publication-title: Nat Biotechnol
– volume: 20
  start-page: 336
  year: 2005
  end-page: 341
  article-title: Mitochondrial tRNA mutation in a patient with steroid‐resistant nephrotic syndrome and focal segmental glomerulosclerosis
  publication-title: Nephrol Dial Transplant
– volume: 348
  start-page: 651
  year: 1990
  end-page: 653
  article-title: A mutation in the tRNA gene associated with the MELAS subgroup of mitochondrial encephalomyopathies
  publication-title: Nature
– volume: 25
  start-page: 443
  year: 2004
  end-page: 450
  article-title: Clinical presentations of mitochondrial cardiomyopathies
  publication-title: Pediatr Cardiol
– volume: 160
  start-page: 824
  year: 2004
  end-page: 829
  article-title: Polymorphism of epilepsy associated with the 3243A>G mutation of mitochondrial DNA (MELAS): reasons for delayed diagnosis
  publication-title: Rev Neurol
– volume: 46
  start-page: 92
  year: 2001
  end-page: 95
  article-title: Nail‐patella syndrome associated with respiratory chain disorder
  publication-title: Eur Neurol
– volume: 41
  start-page: 1776
  year: 1962
  end-page: 1804
  article-title: A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study
  publication-title: J Clin Invest
– volume: 31
  start-page: 374
  year: 2004
  end-page: 377
  article-title: Paralytic ileus in MELAS with phenotypic features of MNGIE
  publication-title: Pediatr Neurol
– volume: 227
  start-page: 909
  year: 1995
  end-page: 915
  article-title: Human diseases with defects in oxidative phosphorylation. I. Decreased amounts of assembled oxidative phosphorylation complexes in mitochondrial encephalomyopathies
  publication-title: Eur J Biochem
– ident: e_1_2_6_15_2
  doi: 10.1007/s00415-005-0827-7
– ident: e_1_2_6_16_2
  doi: 10.1007/s00383-005-1471-0
– ident: e_1_2_6_9_2
  doi: 10.1016/j.pediatrneurol.2004.05.009
– ident: e_1_2_6_44_2
  doi: 10.1073/pnas.0500563102
– ident: e_1_2_6_39_2
  doi: 10.1016/S0022-510X(98)00179-8
– ident: e_1_2_6_5_2
  doi: 10.1016/S0006-291X(05)80860-5
– ident: e_1_2_6_21_2
  doi: 10.1093/jnen/61.10.885
– ident: e_1_2_6_37_2
  doi: 10.1038/sj.ejhg.5201056
– ident: e_1_2_6_2_2
  doi: 10.1002/ana.410160409
– ident: e_1_2_6_3_2
  doi: 10.1016/S0022-3476(87)80158-0
– ident: e_1_2_6_45_2
  doi: 10.1016/j.bbabio.2006.05.006
– ident: e_1_2_6_13_2
  doi: 10.1159/000050770
– ident: e_1_2_6_6_2
– ident: e_1_2_6_24_2
  doi: 10.1212/WNL.56.8.1101
– ident: e_1_2_6_46_2
  doi: 10.1172/JCI104637
– ident: e_1_2_6_25_2
  doi: 10.1002/mus.880181424
– ident: e_1_2_6_32_2
  doi: 10.1038/72708
– ident: e_1_2_6_36_2
  doi: 10.1093/nar/gkj010
– ident: e_1_2_6_18_2
  doi: 10.1002/(SICI)1096-8628(19980605)77:5<395::AID-AJMG8>3.0.CO;2-M
– ident: e_1_2_6_22_2
  doi: 10.1111/j.1432-1033.1995.0909p.x
– ident: e_1_2_6_14_2
  doi: 10.1016/j.biopsych.2004.11.041
– ident: e_1_2_6_23_2
  doi: 10.1002/ajmg.10767
– ident: e_1_2_6_29_2
  doi: 10.1212/WNL.47.1.243
– ident: e_1_2_6_7_2
  doi: 10.1007/s00246-003-0490-7
– ident: e_1_2_6_27_2
  doi: 10.1373/clinchem.2005.062414
– ident: e_1_2_6_17_2
  doi: 10.1093/ndt/gfh546
– ident: e_1_2_6_12_2
  doi: 10.1016/j.ajo.2004.06.026
– ident: e_1_2_6_8_2
  doi: 10.2337/diab.43.6.746
– ident: e_1_2_6_26_2
  doi: 10.1016/0925-4439(95)00034-2
– ident: e_1_2_6_38_2
  doi: 10.1136/jnnp.2003.026278
– ident: e_1_2_6_11_2
  doi: 10.1016/j.jpeds.2003.10.023
– ident: e_1_2_6_33_2
  doi: 10.1375/twin.10.3.486
– ident: e_1_2_6_19_2
  doi: 10.1074/jbc.M908734199
– ident: e_1_2_6_28_2
  doi: 10.1016/0009-8981(86)90246-9
– ident: e_1_2_6_10_2
  doi: 10.1016/S0035-3787(04)71038-3
– ident: e_1_2_6_30_2
  doi: 10.1016/S0021-9258(18)44883-1
– ident: e_1_2_6_35_2
  doi: 10.1055/s-2001-17372
– ident: e_1_2_6_41_2
  doi: 10.1007/BF00878873
– ident: e_1_2_6_31_2
  doi: 10.1016/0076-6879(69)13005-0
– ident: e_1_2_6_40_2
  doi: 10.1212/WNL.42.3.545
– ident: e_1_2_6_42_2
  doi: 10.1023/A:1010791204961
– ident: e_1_2_6_20_2
  doi: 10.1021/bi026882r
– ident: e_1_2_6_43_2
  doi: 10.1002/ana.10734
– ident: e_1_2_6_4_2
  doi: 10.1038/348651a0
– ident: e_1_2_6_34_2
  doi: 10.1093/nar/29.15.e74
SSID ssj0009610
Score 2.089159
Snippet Objective The mitochondrial energy‐generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of...
The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine...
OBJECTIVEThe mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 473
SubjectTerms Adenosine - genetics
Adolescent
Adult
Biological and medical sciences
Child
Child, Preschool
Diseases of striated muscles. Neuromuscular diseases
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Electron Transport - genetics
Energy Metabolism - genetics
Female
Guanine - physiology
Humans
Infant
Male
Medical sciences
MELAS Syndrome - diagnosis
MELAS Syndrome - genetics
MELAS Syndrome - metabolism
Middle Aged
Mitochondria, Muscle - genetics
Mitochondria, Muscle - metabolism
Muscle, Skeletal - pathology
Muscle, Skeletal - physiology
Mutation - genetics
Neurology
Title Muscle 3243A→G mutation load and capacity of the mitochondrial energy-generating system
URI https://api.istex.fr/ark:/67375/WNG-NFR7WR13-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21328
https://www.ncbi.nlm.nih.gov/pubmed/18306232
https://search.proquest.com/docview/69156738
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-lgnjx-2PU1iAiXmY7-ZrM0NOibouwe1gsLSiEJJP0UDsr3R0QTz31LP6J_Ut8SXZ2WVEQbwOZMMl7Ly-_zHvvF4Rewa6qi9LwXDahJKewZa6l8LmkxlcWWoiPCbKT8vCIfzgRJ1tov6-FSfwQqx9uYWVEfx0WuDbzvTVpqG71gMJZKhT6EiZDOt-76Zo6qi4jE0EIs-WCMN6zChV0b9VzYy-6EcT6LeRG6jmIx6d7Lf4EPDdxbNyIRnfQ534KKf_kbNAtzMB-_43d8T_neBfdXgJUPEwWdQ9tufY-ujlehuAfoE_jbg4NGCASG15f_TzA510K5-MvM91g3TbYwg5sAd7jmccAMPE5uA1ws20TrB27WG54ffnjNFJeh7xrnAilH6Kj0fuPbw_z5Q0NuWU1qXIhbQOISnpfVr4RnnjuNBWhXNdGrOKkcKL0TSF12fCisqTWxoiGamq00OwR2m5nrXuCsA7haFJ68DeOU0cqyRhz1nDJNHecZ-hlryv1NRFxqES5TBWISUUxZeh11OLqDX1xFjLXpFDHkwM1GU3l8ZQwNc7Q7oaaVx1oQWvweiRDL3q9K1hwIYqiWzfr5qqs4cgrGXzrcTKH9XAqOH8BQs3Qm6jUv49TDSfD-PD03199hm6lXJWQNfQcbS8uOrcDgGhhdqPl_wK95AWa
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1BfXi98f40QYR8TLbyddkBrws6nbV7h6WlhZEQiaT9NB2Vro7IJ48eRb_xP4lviQ7u6woiLeBJEzyXt7LL3kvvyD0HFZVneUVT2Xtr-RkJk-1FC6VtHKFgRLiQoLsOB8e8vfH4ngDveruwkR-iOWBm7eM4K-9gfsD6d0Va6hudI_CZqq4grbA3IlP6HozWZFHlXngIvCBtlQQxjteoYzuLpuurUZbXrBffHaknoGAXHzZ4k_Qcx3JhqVocBN96gYRM1BOe-286pmvv_E7_u8ob6EbC4yK-3FS3UYbtrmDro4WUfi76OOonUEBBpTE-pfff-7h8zZG9PHZVNdYNzU2sAgbQPh46jBgTHwOngM8bVP7CY9tuHF4-e3HSWC99qnXOHJK30OHg7cHr4fp4pGG1LCSFKmQpgZQJZ3LC1cLRxy3mgp_Y9cEuGKlsCJ3dSZ1XvOsMKTUVSVqqmmlhWb30WYzbexDhLWPSJPcgcuxnFpSSMaYNRWXTHPLeYKedcpSnyMXh4qsy1SBmFQQU4JeBDUua-iLU5-8JoU6Gu-p8WAijyaEqVGCttf0vGxAM1qC4yMJ2ukUr8DmfCBFN3bazlRewq5XMvjXgzgfVt0pYAsGIDVBL4NW_95P1R_3w8ejf6-6g64ND0b7av_d-MNjdD2mrvgkoidoc37R2qeAj-bVdjCDXxpeCbs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpAqGXvh9O20SUUnrxxpb1sOlpabpJH2vK0pBAA0LWo4ck3pDdhdJTTz2X_sT8ko6k9S5bWii9GWRhaUYz-uSZ-YTQM9hVVcYbmgrjS3IyzVMlmEsFaVypoSV3IUG25geH9O0xO15DL7tamMgPsfjh5i0j-Gtv4BfG7S5JQ1WregTOUuU1tEE5qTxx_t5oyR1V8UBF4ONsKcsL2tEKZWR30XVlM9rwcv3ikyPVBOTj4sUWf0Keq0A27ESDm-ikm0NMQDntzaZNT3_9jd7xPyd5C92YI1Tcj0vqNlqz7R20OZzH4O-iT8PZBBowYKSif_X95z4-n8V4Pj4bK4NVa7CGLVgDvsdjhwFh4nPwG-BnW-OXO7ah3vDq24_PgfPaJ17jyCh9Dx0OXn98dZDOr2hIdVHlZcqENgCphHO8dIa53FGrCPP1ujqAFSuYZdyZTChuaFbqvFJNwwxRpFFMFffRejtu7UOElY9H59yBw7GU2LwURVFY3VBRKGopTdDTTlfyIjJxyMi5TCSISQYxJeh50OLiDXV56lPXBJNH9b6sByNxNMoLOUzQ9oqaFx1IRipwe3mCdjq9S7A4H0ZRrR3PJpJXcOYVBXzrQVwOy-GUcAADiJqgF0Gpfx-n7Nf98LD176_uoM0PewP5_k397hG6HvNWfAbRY7Q-vZzZJwCOps12MIJf_EcIag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+3243A--%3EG+mutation+load+and+capacity+of+the+mitochondrial+energy-generating+system&rft.jtitle=Annals+of+neurology&rft.au=Janssen%2C+Antoon+J+M&rft.au=Schuelke%2C+Markus&rft.au=Smeitink%2C+Jan+A+M&rft.au=Trijbels%2C+Frans+J+M&rft.date=2008-04-01&rft.eissn=1531-8249&rft.volume=63&rft.issue=4&rft.spage=473&rft.epage=481&rft_id=info:doi/10.1002%2Fana.21328&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon