Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv]

Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow‐green leaf mutant (siygl1) in...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 157; no. 1; pp. 24 - 37
Main Authors Li, Wen, Tang, Sha, Zhang, Shuo, Shan, Jianguo, Tang, Chanjuan, Chen, Qiannan, Jia, Guanqing, Han, Yuanhuai, Zhi, Hui, Diao, Xianmin
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow‐green leaf mutant (siygl1) in S. italica using forward genetics approaches. Map‐based cloning revealed that SiYGL1, which is a recessive nuclear gene encoding a magnesium‐chelatase D subunit (CHLD), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase‐conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light‐use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica. The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild‐type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis (rbcL and LHCB1), thylakoid development (DEG2) and chloroplast signaling (SRP54CP). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation.
AbstractList Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow-green leaf mutant (siygl1) in S. italica using forward genetics approaches. Map-based cloning revealed that SiYGL1, which is a recessive nuclear gene encoding a magnesium-chelatase D subunit (CHLD), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase-conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light-use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica. The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild-type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis (rbcL and LHCB1), thylakoid development (DEG2) and chloroplast signaling (SRP54CP). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation.
Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow‐green leaf mutant ( siygl1 ) in S. italica using forward genetics approaches. Map‐based cloning revealed that SiYGL1 , which is a recessive nuclear gene encoding a magnesium‐chelatase D subunit ( CHLD ), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase ‐conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light‐use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica . The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild‐type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis ( rbcL and LHCB1 ), thylakoid development ( DEG2 ) and chloroplast signaling ( SRP54CP ). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation.
Author Tang, Sha
Zhang, Shuo
Chen, Qiannan
Diao, Xianmin
Jia, Guanqing
Han, Yuanhuai
Shan, Jianguo
Zhi, Hui
Tang, Chanjuan
Li, Wen
Author_xml – sequence: 1
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 2
  givenname: Sha
  surname: Tang
  fullname: Tang, Sha
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 3
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 4
  givenname: Jianguo
  surname: Shan
  fullname: Shan, Jianguo
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 5
  givenname: Chanjuan
  surname: Tang
  fullname: Tang, Chanjuan
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 6
  givenname: Qiannan
  surname: Chen
  fullname: Chen, Qiannan
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 7
  givenname: Guanqing
  surname: Jia
  fullname: Jia, Guanqing
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 8
  givenname: Yuanhuai
  surname: Han
  fullname: Han, Yuanhuai
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 9
  givenname: Hui
  surname: Zhi
  fullname: Zhi, Hui
  email: diaoxianmin@caas.cnzhihui@caas.cn
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
– sequence: 10
  givenname: Xianmin
  surname: Diao
  fullname: Diao, Xianmin
  email: diaoxianmin@caas.cnzhihui@caas.cn
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26559175$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi3Uim4LB_4AssSlPWTridd2coR-hEqhLCqILyHLTSbFxbHTOCldfj1pt-0BiblYYz3vc5h3m2z44JGQF8DmMM1-17k5pAsmnpAZ8DxPOBOLDTJjjEOSc1BbZDvGS8ZASkifkq1UCpGDEjPyp0CPtDVdZ_0FNb6mzeirwQZv3LQat4o20tDQ4SdSH67RUYemoVVwoacXt-Ez-7UogVpPm3AzGOtoa53DgX4_w8H01lA7GGcrQ3fL-R5dzukbNOP1j2dkszEu4vP7d4d8Oj76ePA2Kd8XJwevy6TiOYhEpAryLDWCMdOoTGHNeSNErWo0qoaaNzKbPlKmFhIVA15JKRkyPM8g44uc75Ddtbfrw9WIcdCtjRU6ZzyGMWpQWZpxAKUm9NU_6GUY--kKdxTkkElgE7W3pqo-xNhjo7vetqZfaWD6thA9FaLvCpnYl_fG8bzF-pF8aGAC9tfAb-tw9X-TXi7LB2WyTtg44M1jwvS_tFRcCf35tNDvvnz4dlgspT7lfwFNaaL1
CitedBy_id crossref_primary_10_1186_s12870_023_04169_z
crossref_primary_10_3390_plants12081623
crossref_primary_10_3390_ijms23010127
crossref_primary_10_1016_j_scienta_2019_108709
crossref_primary_10_3390_ijms22168982
crossref_primary_10_1371_journal_pone_0178730
crossref_primary_10_1016_j_scienta_2021_110743
crossref_primary_10_1186_s12870_022_03843_y
crossref_primary_10_1371_journal_pone_0216879
crossref_primary_10_2135_cropsci2018_01_0057
crossref_primary_10_1016_j_crope_2023_07_003
crossref_primary_10_1371_journal_pone_0179717
crossref_primary_10_1007_s11032_017_0727_4
crossref_primary_10_1016_j_plantsci_2022_111457
crossref_primary_10_1186_s12864_018_5051_9
crossref_primary_10_3389_fpls_2016_01885
crossref_primary_10_32615_ps_2020_059
crossref_primary_10_3389_fpls_2016_01781
crossref_primary_10_3389_fpls_2020_00867
crossref_primary_10_7717_peerj_11586
crossref_primary_10_1002_tpg2_20081
crossref_primary_10_1007_s00122_023_04524_6
crossref_primary_10_1007_s10528_023_10432_7
crossref_primary_10_2135_cropsci2016_11_0952
crossref_primary_10_3389_fpls_2021_743782
crossref_primary_10_1007_s00122_023_04309_x
crossref_primary_10_3389_fpls_2018_01308
crossref_primary_10_1007_s11032_016_0481_z
crossref_primary_10_3390_f10020120
crossref_primary_10_3390_ijms19061594
crossref_primary_10_1186_s12870_019_1829_4
crossref_primary_10_1038_s41477_020_0747_7
crossref_primary_10_1016_j_jia_2022_10_014
crossref_primary_10_1007_s10681_017_1894_4
crossref_primary_10_1016_j_gene_2022_147134
crossref_primary_10_1016_j_jprot_2019_103621
crossref_primary_10_3389_fpls_2018_00719
Cites_doi 10.1038/nature01204
10.1016/S1875-2780(11)60029-1
10.1105/tpc.114.133769
10.1038/nbt.2195
10.1371/journal.pone.0099564
10.1104/pp.104.2.639
10.1023/A:1022545118212
10.1104/pp.107.100321
10.1007/s00299-013-1498-y
10.1038/nbt.2196
10.1105/tpc.104.027276
10.2135/cropsci2014.07.0483
10.1046/j.1365-313X.2003.01897.x
10.15302/J-FASE-2014011
10.1104/pp.112.195446
10.1038/ng.2673
10.1007/s00438-005-1129-6
10.1111/j.1365-313X.2011.04755.x
10.1104/pp.109.136648
10.1186/1746-4811-10-36
10.1126/science.1079978
10.1093/gbe/evs127
10.1007/s13258-013-0069-5
10.1270/jsbbs.63.169
10.1007/s11103-005-2880-0
10.1016/j.molp.2015.02.001
10.1073/pnas.96.5.1941
10.1073/pnas.98.4.2053
10.1007/s11103-012-9965-3
10.1111/j.1469-8137.2011.03782.x
10.1111/j.1365-3040.2009.02040.x
10.1093/nar/gkl783
10.1038/nature05176
10.1105/tpc.106.042374
10.2307/3870056
10.1105/tpc.110.075309
10.1186/1471-2164-15-78
10.1007/s11103-006-9024-z
10.1126/science.1220177
10.1371/journal.pone.0075299
10.1093/nar/gku1003
10.1093/jxb/ers179
ContentType Journal Article
Copyright 2015 Scandinavian Plant Physiology Society
2015 Scandinavian Plant Physiology Society.
2016 Scandinavian Plant Physiology Society
Copyright_xml – notice: 2015 Scandinavian Plant Physiology Society
– notice: 2015 Scandinavian Plant Physiology Society.
– notice: 2016 Scandinavian Plant Physiology Society
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
DOI 10.1111/ppl.12405
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 37
ExternalDocumentID 4027359581
10_1111_ppl_12405
26559175
PPL12405
ark_67375_WNG_MXQZDGP6_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National High Technology Research and Development Program of China (863 Program)
  funderid: 2013AA102603
– fundername: Chinese Academy of Agricultural Sciences
  funderid: 2014ZL002
– fundername: National Natural Science Foundation of China
  funderid: 31301328; 31171560
– fundername: China Agricultural Research System
  funderid: CARS07‐12.5‐A02
– fundername: Beijing Natural Science Foundation
  funderid: 6142019
– fundername: The Agricultural Science and Technology Innovation Program of CAAS
– fundername: Fundamental Research Funds of ICS‐CAAS
  funderid: 2013007
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AETEA
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c3915-5271982a500af787ed33f55d7dea7d1d3f683f520746e7013c6660e0eb8183493
IEDL.DBID DR2
ISSN 0031-9317
IngestDate Fri Aug 16 09:59:13 EDT 2024
Thu Oct 10 16:32:38 EDT 2024
Thu Sep 26 19:16:52 EDT 2024
Sat Sep 28 08:02:11 EDT 2024
Sat Aug 24 01:05:20 EDT 2024
Wed Oct 30 09:49:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2015 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3915-5271982a500af787ed33f55d7dea7d1d3f683f520746e7013c6660e0eb8183493
Notes The Agricultural Science and Technology Innovation Program of CAAS
ark:/67375/WNG-MXQZDGP6-N
Fig. S1. Comparative analysis of the amino acid sequences of CHLD proteins in different plant species. The amino acid substitution of CHLD proteins were identified in 10 plant species (Oryza sativa, Zea mays, Setaria italica, Sorghum bicolor, Brachypodium distachyon, Panicum virgatum, Hordeum vulgare, Populus trichocarpa, Glycine max and Arabidopsis thaliana) using HMMER-InterProScan approach. Red arrows stand for the positions of specific mutated amino acids resulting from different alleles in different species.Table S1. Primers designed for map-based cloning. Table S2. Primers used in qRT-PCR analysis. Table S3. Photosynthetic indicators for the siygl1 mutant. SES, stem elongation stage; HS, heading stage; Pn, net photosynthesis rate (µmol m−2 s−1); Gs, stomatal conductance (mol m−2 s−1); Ci, concentration of intercellular CO2 (µmol CO2 mol-1); Tr, transpiration rate (µmol m−2 s−1); Fv/Fm: the primary light energy conversion of PSII; qP: photochemical quenching coefficient; qN, non-photochemical quenching; ΦPSII, quantum yield of photosystem II electron transport; ETR, apparent photosynthetic electron transport rate. Each condition included measurements for three plants, with three measurements per plant. Asterisks indicate a significant difference between siygl1 and Yugu1 plants: n = 9 leaves, Welch's two-sample t-test, P < 0.05. Table S4. Segregation of F1 and F2 populations from two crosses. Table S5. Information for genes located in the candidate region.
National Natural Science Foundation of China - No. 31301328; No. 31171560
ArticleID:PPL12405
Chinese Academy of Agricultural Sciences - No. 2014ZL002
Fundamental Research Funds of ICS-CAAS - No. 2013007
China Agricultural Research System - No. CARS07-12.5-A02
Beijing Natural Science Foundation - No. 6142019
istex:7D7D9A02D40713B176CBDEC4560516FAF80D7CCC
National High Technology Research and Development Program of China (863 Program) - No. 2013AA102603
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5825-9598
PMID 26559175
PQID 1781918610
PQPubID 1096353
PageCount 14
ParticipantIDs proquest_miscellaneous_1782831177
proquest_journals_1781918610
crossref_primary_10_1111_ppl_12405
pubmed_primary_26559175
wiley_primary_10_1111_ppl_12405_PPL12405
istex_primary_ark_67375_WNG_MXQZDGP6_N
PublicationCentury 2000
PublicationDate 2016-05
May 2016
2016-May
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plantarum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci 98: 2053-2058
Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP (2006) The maize oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60: 95-106
Yang J, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell 26: 4862-4874
Masuda T, Tanaka A, Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 51: 757-771
Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159: 118-130
Tian X, Ling Y, Fang L, Du P, Sang X, Zhao F, Li Y, Xie R, He G (2013) Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes Genomics 35: 87-93
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45: 957-961
Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68: 1039-1050
Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics 15: 78
Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schröder I, Al-Karadaghi S, Willows RD, Hansson M (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18: 3606-3616
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF (2013) Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 5: 200-216
Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32: 1633-1651
Li N, Jia J, Xia C, Liu X, Kong X (2013) Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Breed Sci 63: 169
Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039
Yu B, Gruber MY, Khachatourians GG, Zhou R, Epp DJ, Hegedus DD, Parkin IA, Welsch R, Hannoufa A (2012) Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. J Exp Bot 63: 5189-5202
Diao X, Schnable J, Bennetzen JL, Jiayang L (2014) Initiation of Setaria as a model plant. Front Agr Sci Eng 1: 16-20
Falbel TG, Staehelin LA (1994) Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol 104: 639-648
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145: 29-40
Wang Y, Wang D, Shi P, Omasa K (2014) Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 10: 1-11
Shen Y-Y, Wang X-F, Wu F-Q, Du S-Y, Cao Z, Shang Y, Wang X-L, Peng C-C, Yu X-C, Zhu S-Y (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823-826
Sun X, Wang B, Xiao Y, Wan C, Deng X, Wang P (2011) Genetic analysis and fine mapping of gene ygl98 for yellow-green leaf of rice. Acta Agronomica Sinica 37: 991-997
Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, Yuan F, Wu S, Wang Z, Yi C (2013) Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One 8: e75299
Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32: 1855-1867
You Q, Zhang L, Yi X, Zhang Z, Xu W, Su Z (2015) SIFGD: Setaria italica functional genomics database. Mol Plant 8: 967-970
Zhang H, Li J, Yoo J-H, Yoo S-C, Cho S-H, Koh H-J, Seo HS, Paek N-C (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62: 325-337
Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35: D863-D869
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30: 555-561
Shi J, Wang Y, Guo S, Ma L, Wang Z, Zhu X, Sang X, Ling Y, Wang N, Zhao F (2015) Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6) mutant in rice. Crop Sci 55: 669-680
von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336: 1671-1672
Gräfe S, Saluz H-P, Grimm B, Hänel F (1999) Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX. Proc Natl Acad Sci USA 96: 1941-1946
Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B (2005) An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Genet Genomics 273: 311-318
Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233-240
Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30: 549-554
Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421: 79-83
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43: D447-D452
Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299: 902-906
Luciński R, Misztal L, Samardakiewicz S, Jackowski G (2011) The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. New Phytol 192: 74-86
Deng X-j, H-q Z, Wang Y, He F, Liu J-l, Xiao X, Shu Z-f, Li W, Wang G-h, Wang G-l (2014) Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 9: e99564
Yoo S-C, Cho S-H, Sugimoto H, Li J, Kusumi K, Koh H-J, Iba K, Paek N-C (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150: 388-401
Miyoshi K, Ito Y, Serizawa A, Kurata N (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J 36: 532-540
Du S-Y, Zhang X-F, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang X-F, Zhang D-P (2012) Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol Biol 80: 519-537
Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22: 2537-2544
2007; 145
2012; 80
2005; 273
2013; 45
2015; 55
2013; 63
2003; 36
2014; 26
2006; 18
2011; 192
2009; 150
2011; 37
2013; 8
2003; 51
2013; 5
2015; 8
2003; 299
2007; 35
2012; 30
1995; 7
2014; 1
2010; 22
2006; 60
2009; 32
1994; 104
2006; 62
2013; 32
2013; 35
2015; 43
2014; 15
2011; 68
1999; 96
2014; 9
2012; 159
2005; 17
2003; 421
2012; 336
2014; 10
2012; 63
2001; 98
2006; 443
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 51
  start-page: 757
  year: 2003
  end-page: 771
  article-title: Chlorophyll antenna size adjustments by irradiance in involve coordinate regulation of chlorophyll a oxygenase ( ) and gene expression
  publication-title: Plant Mol Biol
– volume: 37
  start-page: 991
  year: 2011
  end-page: 997
  article-title: Genetic analysis and fine mapping of gene for yellow-green leaf of rice
  publication-title: Acta Agronomica Sinica
– volume: 30
  start-page: 549
  year: 2012
  end-page: 554
  article-title: Genome sequence of foxtail millet ( ) provides insights into grass evolution and biofuel potential
  publication-title: Nat Biotechnol
– volume: 8
  start-page: e75299
  year: 2013
  article-title: Mutation of the light‐induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice
  publication-title: PLoS One
– volume: 30
  start-page: 555
  year: 2012
  end-page: 561
  article-title: Reference genome sequence of the model plant
  publication-title: Nat Biotechnol
– volume: 443
  start-page: 823
  year: 2006
  end-page: 826
  article-title: The Mg‐chelatase H subunit is an abscisic acid receptor
  publication-title: Nature
– volume: 35
  start-page: 87
  year: 2013
  end-page: 93
  article-title: Gene cloning and functional analysis of yellow green leaf3 ( ) gene during the whole‐plant growth stage in rice
  publication-title: Genes Genomics
– volume: 421
  start-page: 79
  year: 2003
  end-page: 83
  article-title: Chloroplast to nucleus communication triggered by accumulation of Mg‐protoporphyrinIX
  publication-title: Nature
– volume: 1
  start-page: 16
  year: 2014
  end-page: 20
  article-title: Initiation of as a model plant
  publication-title: Front Agr Sci Eng
– volume: 299
  start-page: 902
  year: 2003
  end-page: 906
  article-title: GUN4, a regulator of chlorophyll synthesis and intracellular signaling
  publication-title: Science
– volume: 150
  start-page: 388
  year: 2009
  end-page: 401
  article-title: Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development
  publication-title: Plant Physiol
– volume: 45
  start-page: 957
  year: 2013
  end-page: 961
  article-title: A haplotype map of genomic variations and genome‐wide association studies of agronomic traits in foxtail millet ( )
  publication-title: Nat Genet
– volume: 5
  start-page: 200
  year: 2013
  end-page: 216
  article-title: Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis
  publication-title: Genome Biol Evol
– volume: 80
  start-page: 519
  year: 2012
  end-page: 537
  article-title: Roles of the different components of magnesium chelatase in abscisic acid signal transduction
  publication-title: Plant Mol Biol
– volume: 68
  start-page: 1039
  year: 2011
  end-page: 1050
  article-title: A plastid protein NUS1 is essential for build‐up of the genetic system for early chloroplast development under cold stress conditions
  publication-title: Plant J
– volume: 26
  start-page: 4862
  year: 2014
  end-page: 4874
  article-title: A NAP‐AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in leaves
  publication-title: Plant Cell
– volume: 63
  start-page: 169
  year: 2013
  article-title: Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat
  publication-title: Breed Sci
– volume: 18
  start-page: 3606
  year: 2006
  end-page: 3616
  article-title: Recessiveness and dominance in barley mutants deficient in Mg‐chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis
  publication-title: Plant Cell
– volume: 9
  start-page: e99564
  year: 2014
  article-title: Mapped clone and functional analysis of leaf‐color gene Ygl7 in a rice hybrid ( L. ssp. )
  publication-title: PLoS One
– volume: 8
  start-page: 967
  year: 2015
  end-page: 970
  article-title: SIFGD: functional genomics database
  publication-title: Mol Plant
– volume: 7
  start-page: 1039
  year: 1995
  article-title: Chlorophyll biosynthesis
  publication-title: Plant Cell
– volume: 96
  start-page: 1941
  year: 1999
  end-page: 1946
  article-title: Mg‐chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 233
  year: 2005
  end-page: 240
  article-title: Identification of a vinyl reductase gene for chlorophyll synthesis in and implications for the evolution of species
  publication-title: Plant Cell
– volume: 32
  start-page: 1855
  year: 2013
  end-page: 1867
  article-title: A knockdown mutation of YELLOW‐GREEN LEAF2 blocks chlorophyll biosynthesis in rice
  publication-title: Plant Cell Rep
– volume: 60
  start-page: 95
  year: 2006
  end-page: 106
  article-title: The maize oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase
  publication-title: Plant Mol Biol
– volume: 159
  start-page: 118
  year: 2012
  end-page: 130
  article-title: Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox‐mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants
  publication-title: Plant Physiol
– volume: 32
  start-page: 1633
  year: 2009
  end-page: 1651
  article-title: Co‐expression tools for plant biology: opportunities for hypothesis generation and caveats
  publication-title: Plant Cell Environ
– volume: 336
  start-page: 1671
  year: 2012
  end-page: 1672
  article-title: The development of C rice: current progress and future challenges
  publication-title: Science
– volume: 192
  start-page: 74
  year: 2011
  end-page: 86
  article-title: The thylakoid protease Deg2 is involved in stress‐related degradation of the photosystem II light‐harvesting protein Lhcb6 in
  publication-title: New Phytol
– volume: 36
  start-page: 532
  year: 2003
  end-page: 540
  article-title: OsHAP3 genes regulate chloroplast biogenesis in rice
  publication-title: Plant J
– volume: 98
  start-page: 2053
  year: 2001
  end-page: 2058
  article-title: genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg‐chelatase H subunit in plastid‐to‐nucleus signal transduction
  publication-title: Proc Natl Acad Sci
– volume: 10
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light
  publication-title: Plant Methods
– volume: 15
  start-page: 78
  year: 2014
  article-title: Development of highly polymorphic simple sequence repeat markers using genome‐wide microsatellite variant analysis in foxtail millet [ (L.) P. Beauv.]
  publication-title: BMC Genomics
– volume: 35
  start-page: D863
  year: 2007
  end-page: D869
  article-title: ATTED‐II: a database of co‐expressed genes and elements for identifying co‐regulated gene groups in
  publication-title: Nucleic Acids Res
– volume: 63
  start-page: 5189
  year: 2012
  end-page: 5202
  article-title: cpSRP54 regulates carotenoid accumulation in and
  publication-title: J Exp Bot
– volume: 104
  start-page: 639
  year: 1994
  end-page: 648
  article-title: Characterization of a family of chlorophyll‐deficient wheat ( ) and barley ( ) mutants with defects in the magnesium‐insertion step of chlorophyll biosynthesis
  publication-title: Plant Physiol
– volume: 145
  start-page: 29
  year: 2007
  end-page: 40
  article-title: A chlorophyll‐deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis
  publication-title: Plant Physiol
– volume: 273
  start-page: 311
  year: 2005
  end-page: 318
  article-title: An mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis
  publication-title: Mol Genet Genomics
– volume: 43
  start-page: D447
  year: 2015
  end-page: D452
  article-title: STRING v10: protein–protein interaction networks, integrated over the tree of life
  publication-title: Nucleic Acids Res
– volume: 62
  start-page: 325
  year: 2006
  end-page: 337
  article-title: Rice Chlorina‐1 and Chlorina‐9 encode ChlD and ChlI subunits of Mg‐chelatase, a key enzyme for chlorophyll synthesis and chloroplast development
  publication-title: Plant Mol Biol
– volume: 55
  start-page: 669
  year: 2015
  end-page: 680
  article-title: Molecular mapping and candidate gene analysis of a ( ) mutant in rice
  publication-title: Crop Sci
– volume: 22
  start-page: 2537
  year: 2010
  end-page: 2544
  article-title: : a model for C4 photosynthesis
  publication-title: Plant Cell
– ident: e_1_2_8_27_1
  doi: 10.1038/nature01204
– ident: e_1_2_8_28_1
  doi: 10.1016/S1875-2780(11)60029-1
– ident: e_1_2_8_36_1
  doi: 10.1105/tpc.114.133769
– ident: e_1_2_8_41_1
  doi: 10.1038/nbt.2195
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0099564
– ident: e_1_2_8_9_1
  doi: 10.1104/pp.104.2.639
– ident: e_1_2_8_17_1
  doi: 10.1023/A:1022545118212
– ident: e_1_2_8_35_1
  doi: 10.1104/pp.107.100321
– ident: e_1_2_8_5_1
  doi: 10.1007/s00299-013-1498-y
– ident: e_1_2_8_3_1
  doi: 10.1038/nbt.2196
– ident: e_1_2_8_20_1
  doi: 10.1105/tpc.104.027276
– ident: e_1_2_8_24_1
  doi: 10.2135/cropsci2014.07.0483
– ident: e_1_2_8_18_1
  doi: 10.1046/j.1365-313X.2003.01897.x
– ident: e_1_2_8_7_1
  doi: 10.15302/J-FASE-2014011
– ident: e_1_2_8_16_1
  doi: 10.1104/pp.112.195446
– ident: e_1_2_8_11_1
  doi: 10.1038/ng.2673
– ident: e_1_2_8_25_1
  doi: 10.1007/s00438-005-1129-6
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1365-313X.2011.04755.x
– ident: e_1_2_8_37_1
  doi: 10.1104/pp.109.136648
– ident: e_1_2_8_34_1
  doi: 10.1186/1746-4811-10-36
– ident: e_1_2_8_13_1
  doi: 10.1126/science.1079978
– ident: e_1_2_8_26_1
  doi: 10.1093/gbe/evs127
– ident: e_1_2_8_30_1
  doi: 10.1007/s13258-013-0069-5
– ident: e_1_2_8_14_1
  doi: 10.1270/jsbbs.63.169
– ident: e_1_2_8_22_1
  doi: 10.1007/s11103-005-2880-0
– ident: e_1_2_8_38_1
  doi: 10.1016/j.molp.2015.02.001
– ident: e_1_2_8_10_1
  doi: 10.1073/pnas.96.5.1941
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.98.4.2053
– ident: e_1_2_8_8_1
  doi: 10.1007/s11103-012-9965-3
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1469-8137.2011.03782.x
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1365-3040.2009.02040.x
– ident: e_1_2_8_21_1
  doi: 10.1093/nar/gkl783
– ident: e_1_2_8_23_1
  doi: 10.1038/nature05176
– ident: e_1_2_8_2_1
  doi: 10.1105/tpc.106.042374
– ident: e_1_2_8_33_1
  doi: 10.2307/3870056
– ident: e_1_2_8_4_1
  doi: 10.1105/tpc.110.075309
– ident: e_1_2_8_42_1
  doi: 10.1186/1471-2164-15-78
– ident: e_1_2_8_40_1
  doi: 10.1007/s11103-006-9024-z
– ident: e_1_2_8_32_1
  doi: 10.1126/science.1220177
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.pone.0075299
– ident: e_1_2_8_29_1
  doi: 10.1093/nar/gku1003
– ident: e_1_2_8_39_1
  doi: 10.1093/jxb/ers179
SSID ssj0016612
Score 2.4260454
Snippet Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene...
Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 24
SubjectTerms Chlorophyll - metabolism
Chromosome Mapping
Color
Gene expression
Genetics
Genomics
Genotype
Mutation
Phenotype
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - radiation effects
Setaria Plant - genetics
Setaria Plant - metabolism
Setaria Plant - radiation effects
Title Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv]
URI https://api.istex.fr/ark:/67375/WNG-MXQZDGP6-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12405
https://www.ncbi.nlm.nih.gov/pubmed/26559175
https://www.proquest.com/docview/1781918610
https://search.proquest.com/docview/1782831177
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8Q5MEXFT-LYEZjDD60ud623V58EpEj5ricIvH8SrPbTgkBWnP0CPLXO9NeGzCaGN_6sZtud3c6v9_u9DcAzymNGcWrnkvWKDcwoXVtLw3cmHImD2lsIiPrkHvjaPcgeDcNp0vwqv0XptGH6BbcxDLq77UYuLFnV4ycQZrHzqnWL_WVlnCu7Q-ddJTPfqdRCle-O2AnuVAVkiieruY1X3RDuvXiT0DzOm6tHc_ObfjWNrmJNzn25pX10svf1Bz_853uwK0FIMXXzQxahSUq7sLKVsmg8ec9uBRZajw1ouJwiKbIUBxhs37Ip42gCZY5Mo7EojynEzwhk6NoYc_wUCrvH30ejnw8KjAvLyReFSXTEVX4dZ8qZuoGJW8JzxXcHHkvceLhFpn5-ff7cLDz9uObXXeRrsFNRWWeKa32B3FfUiyYnL8DlCmVh2GmMzI68zOVRzFf6EuGE9IMPVOmTj3qkWXQoIKBegDLRVnQI8CMcYfPTMoGfRtoG5kwykOrbEi-1hQEDjxrBy750ahyJC2b4T5M6j504EU9pF0JMzuWMDYdJp_Gw2Rv-v7L9nASJWMH1tsxTxYWfJb4WqhszOjSgafdbbY92VAxBZXzugyjM9n2duBhM1e6h_Uj5mqMzRzYrEf87-1MJpNRfbD270Ufw01GblETebkOy9VsThuMjir7pDaDX4ROByw
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KK-iL3x_RqquI1IeEy22SzYEv1to7NXectqWnUpbdZFJKayJnrtT-9c4kl2BFQXzLxy7Z7OxkfjM7-Q3AM0xjQvGy56I10g1MaF3bSwM3xpychzQ2keE45HgSjfaCd7NwtgIv239hGn6ILuDGmlF_r1nBOSD9i5YTSvPIOjGB6Rqpu2S13PrYkUf5ZHkarnDpuwMyk0teIc7j6bpesEZrPLFnf4KaF5FrbXq2r8FBO-gm4-TYW1TWS89_43P837e6DleXmFS8ahbRDVjB4iZc2iwJN_64BefMTC2-GiZyOBSmyATbwiaESKcNp4koc0FQUhTlKZ6IEzS5YDrsuTjkzjtHn4aJL44KkZdnnLIquNgRVuLLDlbkrBvBpUtouYiNxHshpp7YRLM4PbgNe9tvdl-P3GXFBjdlonnyapU_iPtcZcHk9CnATMo8DDOVoVGZn8k8iulCn4ucoCL0mZL31MMeWsINMhjIO7BalAXeA5ER9PDJmbJB3wbKRiaM8tBKG6KvFAaBA09byelvDTGHbh0amkNdz6EDz2uZdi3M_Jgz2VSo9ydDPZ59-Lw1nEZ64sB6K3S9VOLv2lfszcYEMB140t0m9eM9FVNguajbEEDjnW8H7jaLpXtYPyJ3jeCZAxu1yP8-Tj2dJvXB_X9v-hguj3bHiU7eTt4_gCsE5KImEXMdVqv5Ah8SWKrso1onfgLvEQtF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9RADLaqFiFeuI9AAYMQKg-JNptzxROl7BbYrgKl6gKtRjOJU1UtSbVkq9Jfj51sIopAQrzlmFEmYzv-PON8BnhGacwo3uvZZLRn-zowtumlvh1TzsFDGutQyzrk1iTc3PHfTYPpErxs_4Vp-CG6BTexjPp7LQZ-kuW_GDmDNIedk_CXrvghq6ogoo8dd5TLjqehCvdce8BeckErJGk8XdcLzmhF5vXsT0jzInCtPc_wGuy1Y24STo6ceWWc9Pw3Osf_fKnrcHWBSPFVo0I3YImKm3BpvWTU-OMWnAsvNX7TQuNwgLrIUDxhs4DIpw2jCZY5MpDEojylYzwmnaOQYc_wQDpvH34ejV08LDAvzyRhFaXUEVX4dZsqDtU1SuESVhZcGzsvMHFwnfT8dP827AzffHq9aS_qNdip0MxzTBu5g7gvNRZ0zh8CyjwvD4IsykhHmZt5eRjzhb6UOKGIsWfKsVOPemQYNXj-wLsDy0VZ0D3AjIGHy6GU8fvGj0yogzAPjGcCcqOIfN-Cp63g1ElDy6HacIbnUNVzaMHzWqRdCz07kjy2KFC7k5Hamn74sjFKQjWxYLWVuVqY8HflRhLLxgwvLXjS3Wbjkx0VXVA5r9swPJN9bwvuNrrSPawfcrDG4MyCtVrifx-nSpJxfXD_35s-hsvJxlCN307eP4ArjOLCJgtzFZar2ZweMlKqzKPaIn4Cv3YJ9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+mapping+and+functional+analysis+of+the+novel+leaf+color+gene+SiYGL1+in+foxtail+millet+%5BSetaria+italica+%28L.%29+P.+Beauv%5D&rft.jtitle=Physiologia+plantarum&rft.au=Li%2C+Wen&rft.au=Tang%2C+Sha&rft.au=Zhang%2C+Shuo&rft.au=Shan%2C+Jianguo&rft.date=2016-05-01&rft.eissn=1399-3054&rft.volume=157&rft.issue=1&rft.spage=24&rft_id=info:doi/10.1111%2Fppl.12405&rft_id=info%3Apmid%2F26559175&rft.externalDocID=26559175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon