Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv]
Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow‐green leaf mutant (siygl1) in...
Saved in:
Published in | Physiologia plantarum Vol. 157; no. 1; pp. 24 - 37 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow‐green leaf mutant (siygl1) in S. italica using forward genetics approaches. Map‐based cloning revealed that SiYGL1, which is a recessive nuclear gene encoding a magnesium‐chelatase D subunit (CHLD), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase‐conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light‐use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica. The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild‐type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis (rbcL and LHCB1), thylakoid development (DEG2) and chloroplast signaling (SRP54CP). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation. |
---|---|
AbstractList | Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow-green leaf mutant (siygl1) in S. italica using forward genetics approaches. Map-based cloning revealed that SiYGL1, which is a recessive nuclear gene encoding a magnesium-chelatase D subunit (CHLD), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase-conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light-use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica. The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild-type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis (rbcL and LHCB1), thylakoid development (DEG2) and chloroplast signaling (SRP54CP). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation. Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow‐green leaf mutant ( siygl1 ) in S. italica using forward genetics approaches. Map‐based cloning revealed that SiYGL1 , which is a recessive nuclear gene encoding a magnesium‐chelatase D subunit ( CHLD ), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase ‐conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light‐use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica . The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild‐type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis ( rbcL and LHCB1 ), thylakoid development ( DEG2 ) and chloroplast signaling ( SRP54CP ). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation. |
Author | Tang, Sha Zhang, Shuo Chen, Qiannan Diao, Xianmin Jia, Guanqing Han, Yuanhuai Shan, Jianguo Zhi, Hui Tang, Chanjuan Li, Wen |
Author_xml | – sequence: 1 givenname: Wen surname: Li fullname: Li, Wen organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 2 givenname: Sha surname: Tang fullname: Tang, Sha organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 3 givenname: Shuo surname: Zhang fullname: Zhang, Shuo organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 4 givenname: Jianguo surname: Shan fullname: Shan, Jianguo organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 5 givenname: Chanjuan surname: Tang fullname: Tang, Chanjuan organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 6 givenname: Qiannan surname: Chen fullname: Chen, Qiannan organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 7 givenname: Guanqing surname: Jia fullname: Jia, Guanqing organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 8 givenname: Yuanhuai surname: Han fullname: Han, Yuanhuai organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 9 givenname: Hui surname: Zhi fullname: Zhi, Hui email: diaoxianmin@caas.cnzhihui@caas.cn organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China – sequence: 10 givenname: Xianmin surname: Diao fullname: Diao, Xianmin email: diaoxianmin@caas.cnzhihui@caas.cn organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26559175$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi3Uim4LB_4AssSlPWTridd2coR-hEqhLCqILyHLTSbFxbHTOCldfj1pt-0BiblYYz3vc5h3m2z44JGQF8DmMM1-17k5pAsmnpAZ8DxPOBOLDTJjjEOSc1BbZDvGS8ZASkifkq1UCpGDEjPyp0CPtDVdZ_0FNb6mzeirwQZv3LQat4o20tDQ4SdSH67RUYemoVVwoacXt-Ez-7UogVpPm3AzGOtoa53DgX4_w8H01lA7GGcrQ3fL-R5dzukbNOP1j2dkszEu4vP7d4d8Oj76ePA2Kd8XJwevy6TiOYhEpAryLDWCMdOoTGHNeSNErWo0qoaaNzKbPlKmFhIVA15JKRkyPM8g44uc75Ddtbfrw9WIcdCtjRU6ZzyGMWpQWZpxAKUm9NU_6GUY--kKdxTkkElgE7W3pqo-xNhjo7vetqZfaWD6thA9FaLvCpnYl_fG8bzF-pF8aGAC9tfAb-tw9X-TXi7LB2WyTtg44M1jwvS_tFRcCf35tNDvvnz4dlgspT7lfwFNaaL1 |
CitedBy_id | crossref_primary_10_1186_s12870_023_04169_z crossref_primary_10_3390_plants12081623 crossref_primary_10_3390_ijms23010127 crossref_primary_10_1016_j_scienta_2019_108709 crossref_primary_10_3390_ijms22168982 crossref_primary_10_1371_journal_pone_0178730 crossref_primary_10_1016_j_scienta_2021_110743 crossref_primary_10_1186_s12870_022_03843_y crossref_primary_10_1371_journal_pone_0216879 crossref_primary_10_2135_cropsci2018_01_0057 crossref_primary_10_1016_j_crope_2023_07_003 crossref_primary_10_1371_journal_pone_0179717 crossref_primary_10_1007_s11032_017_0727_4 crossref_primary_10_1016_j_plantsci_2022_111457 crossref_primary_10_1186_s12864_018_5051_9 crossref_primary_10_3389_fpls_2016_01885 crossref_primary_10_32615_ps_2020_059 crossref_primary_10_3389_fpls_2016_01781 crossref_primary_10_3389_fpls_2020_00867 crossref_primary_10_7717_peerj_11586 crossref_primary_10_1002_tpg2_20081 crossref_primary_10_1007_s00122_023_04524_6 crossref_primary_10_1007_s10528_023_10432_7 crossref_primary_10_2135_cropsci2016_11_0952 crossref_primary_10_3389_fpls_2021_743782 crossref_primary_10_1007_s00122_023_04309_x crossref_primary_10_3389_fpls_2018_01308 crossref_primary_10_1007_s11032_016_0481_z crossref_primary_10_3390_f10020120 crossref_primary_10_3390_ijms19061594 crossref_primary_10_1186_s12870_019_1829_4 crossref_primary_10_1038_s41477_020_0747_7 crossref_primary_10_1016_j_jia_2022_10_014 crossref_primary_10_1007_s10681_017_1894_4 crossref_primary_10_1016_j_gene_2022_147134 crossref_primary_10_1016_j_jprot_2019_103621 crossref_primary_10_3389_fpls_2018_00719 |
Cites_doi | 10.1038/nature01204 10.1016/S1875-2780(11)60029-1 10.1105/tpc.114.133769 10.1038/nbt.2195 10.1371/journal.pone.0099564 10.1104/pp.104.2.639 10.1023/A:1022545118212 10.1104/pp.107.100321 10.1007/s00299-013-1498-y 10.1038/nbt.2196 10.1105/tpc.104.027276 10.2135/cropsci2014.07.0483 10.1046/j.1365-313X.2003.01897.x 10.15302/J-FASE-2014011 10.1104/pp.112.195446 10.1038/ng.2673 10.1007/s00438-005-1129-6 10.1111/j.1365-313X.2011.04755.x 10.1104/pp.109.136648 10.1186/1746-4811-10-36 10.1126/science.1079978 10.1093/gbe/evs127 10.1007/s13258-013-0069-5 10.1270/jsbbs.63.169 10.1007/s11103-005-2880-0 10.1016/j.molp.2015.02.001 10.1073/pnas.96.5.1941 10.1073/pnas.98.4.2053 10.1007/s11103-012-9965-3 10.1111/j.1469-8137.2011.03782.x 10.1111/j.1365-3040.2009.02040.x 10.1093/nar/gkl783 10.1038/nature05176 10.1105/tpc.106.042374 10.2307/3870056 10.1105/tpc.110.075309 10.1186/1471-2164-15-78 10.1007/s11103-006-9024-z 10.1126/science.1220177 10.1371/journal.pone.0075299 10.1093/nar/gku1003 10.1093/jxb/ers179 |
ContentType | Journal Article |
Copyright | 2015 Scandinavian Plant Physiology Society 2015 Scandinavian Plant Physiology Society. 2016 Scandinavian Plant Physiology Society |
Copyright_xml | – notice: 2015 Scandinavian Plant Physiology Society – notice: 2015 Scandinavian Plant Physiology Society. – notice: 2016 Scandinavian Plant Physiology Society |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 |
DOI | 10.1111/ppl.12405 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 37 |
ExternalDocumentID | 4027359581 10_1111_ppl_12405 26559175 PPL12405 ark_67375_WNG_MXQZDGP6_N |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National High Technology Research and Development Program of China (863 Program) funderid: 2013AA102603 – fundername: Chinese Academy of Agricultural Sciences funderid: 2014ZL002 – fundername: National Natural Science Foundation of China funderid: 31301328; 31171560 – fundername: China Agricultural Research System funderid: CARS07‐12.5‐A02 – fundername: Beijing Natural Science Foundation funderid: 6142019 – fundername: The Agricultural Science and Technology Innovation Program of CAAS – fundername: Fundamental Research Funds of ICS‐CAAS funderid: 2013007 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AETEA CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c3915-5271982a500af787ed33f55d7dea7d1d3f683f520746e7013c6660e0eb8183493 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 |
IngestDate | Fri Aug 16 09:59:13 EDT 2024 Thu Oct 10 16:32:38 EDT 2024 Thu Sep 26 19:16:52 EDT 2024 Sat Sep 28 08:02:11 EDT 2024 Sat Aug 24 01:05:20 EDT 2024 Wed Oct 30 09:49:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2015 Scandinavian Plant Physiology Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3915-5271982a500af787ed33f55d7dea7d1d3f683f520746e7013c6660e0eb8183493 |
Notes | The Agricultural Science and Technology Innovation Program of CAAS ark:/67375/WNG-MXQZDGP6-N Fig. S1. Comparative analysis of the amino acid sequences of CHLD proteins in different plant species. The amino acid substitution of CHLD proteins were identified in 10 plant species (Oryza sativa, Zea mays, Setaria italica, Sorghum bicolor, Brachypodium distachyon, Panicum virgatum, Hordeum vulgare, Populus trichocarpa, Glycine max and Arabidopsis thaliana) using HMMER-InterProScan approach. Red arrows stand for the positions of specific mutated amino acids resulting from different alleles in different species.Table S1. Primers designed for map-based cloning. Table S2. Primers used in qRT-PCR analysis. Table S3. Photosynthetic indicators for the siygl1 mutant. SES, stem elongation stage; HS, heading stage; Pn, net photosynthesis rate (µmol m−2 s−1); Gs, stomatal conductance (mol m−2 s−1); Ci, concentration of intercellular CO2 (µmol CO2 mol-1); Tr, transpiration rate (µmol m−2 s−1); Fv/Fm: the primary light energy conversion of PSII; qP: photochemical quenching coefficient; qN, non-photochemical quenching; ΦPSII, quantum yield of photosystem II electron transport; ETR, apparent photosynthetic electron transport rate. Each condition included measurements for three plants, with three measurements per plant. Asterisks indicate a significant difference between siygl1 and Yugu1 plants: n = 9 leaves, Welch's two-sample t-test, P < 0.05. Table S4. Segregation of F1 and F2 populations from two crosses. Table S5. Information for genes located in the candidate region. National Natural Science Foundation of China - No. 31301328; No. 31171560 ArticleID:PPL12405 Chinese Academy of Agricultural Sciences - No. 2014ZL002 Fundamental Research Funds of ICS-CAAS - No. 2013007 China Agricultural Research System - No. CARS07-12.5-A02 Beijing Natural Science Foundation - No. 6142019 istex:7D7D9A02D40713B176CBDEC4560516FAF80D7CCC National High Technology Research and Development Program of China (863 Program) - No. 2013AA102603 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5825-9598 |
PMID | 26559175 |
PQID | 1781918610 |
PQPubID | 1096353 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1782831177 proquest_journals_1781918610 crossref_primary_10_1111_ppl_12405 pubmed_primary_26559175 wiley_primary_10_1111_ppl_12405_PPL12405 istex_primary_ark_67375_WNG_MXQZDGP6_N |
PublicationCentury | 2000 |
PublicationDate | 2016-05 May 2016 2016-May 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plantarum |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci 98: 2053-2058 Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP (2006) The maize oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60: 95-106 Yang J, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell 26: 4862-4874 Masuda T, Tanaka A, Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol 51: 757-771 Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159: 118-130 Tian X, Ling Y, Fang L, Du P, Sang X, Zhao F, Li Y, Xie R, He G (2013) Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes Genomics 35: 87-93 Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45: 957-961 Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68: 1039-1050 Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics 15: 78 Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schröder I, Al-Karadaghi S, Willows RD, Hansson M (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18: 3606-3616 Sousa FL, Shavit-Grievink L, Allen JF, Martin WF (2013) Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 5: 200-216 Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32: 1633-1651 Li N, Jia J, Xia C, Liu X, Kong X (2013) Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Breed Sci 63: 169 Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039 Yu B, Gruber MY, Khachatourians GG, Zhou R, Epp DJ, Hegedus DD, Parkin IA, Welsch R, Hannoufa A (2012) Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. J Exp Bot 63: 5189-5202 Diao X, Schnable J, Bennetzen JL, Jiayang L (2014) Initiation of Setaria as a model plant. Front Agr Sci Eng 1: 16-20 Falbel TG, Staehelin LA (1994) Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol 104: 639-648 Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145: 29-40 Wang Y, Wang D, Shi P, Omasa K (2014) Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 10: 1-11 Shen Y-Y, Wang X-F, Wu F-Q, Du S-Y, Cao Z, Shang Y, Wang X-L, Peng C-C, Yu X-C, Zhu S-Y (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823-826 Sun X, Wang B, Xiao Y, Wan C, Deng X, Wang P (2011) Genetic analysis and fine mapping of gene ygl98 for yellow-green leaf of rice. Acta Agronomica Sinica 37: 991-997 Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, Yuan F, Wu S, Wang Z, Yi C (2013) Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One 8: e75299 Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32: 1855-1867 You Q, Zhang L, Yi X, Zhang Z, Xu W, Su Z (2015) SIFGD: Setaria italica functional genomics database. Mol Plant 8: 967-970 Zhang H, Li J, Yoo J-H, Yoo S-C, Cho S-H, Koh H-J, Seo HS, Paek N-C (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62: 325-337 Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35: D863-D869 Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30: 555-561 Shi J, Wang Y, Guo S, Ma L, Wang Z, Zhu X, Sang X, Ling Y, Wang N, Zhao F (2015) Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6) mutant in rice. Crop Sci 55: 669-680 von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336: 1671-1672 Gräfe S, Saluz H-P, Grimm B, Hänel F (1999) Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX. Proc Natl Acad Sci USA 96: 1941-1946 Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B (2005) An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Genet Genomics 273: 311-318 Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233-240 Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30: 549-554 Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421: 79-83 Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43: D447-D452 Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299: 902-906 Luciński R, Misztal L, Samardakiewicz S, Jackowski G (2011) The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. New Phytol 192: 74-86 Deng X-j, H-q Z, Wang Y, He F, Liu J-l, Xiao X, Shu Z-f, Li W, Wang G-h, Wang G-l (2014) Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 9: e99564 Yoo S-C, Cho S-H, Sugimoto H, Li J, Kusumi K, Koh H-J, Iba K, Paek N-C (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150: 388-401 Miyoshi K, Ito Y, Serizawa A, Kurata N (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J 36: 532-540 Du S-Y, Zhang X-F, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang X-F, Zhang D-P (2012) Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol Biol 80: 519-537 Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22: 2537-2544 2007; 145 2012; 80 2005; 273 2013; 45 2015; 55 2013; 63 2003; 36 2014; 26 2006; 18 2011; 192 2009; 150 2011; 37 2013; 8 2003; 51 2013; 5 2015; 8 2003; 299 2007; 35 2012; 30 1995; 7 2014; 1 2010; 22 2006; 60 2009; 32 1994; 104 2006; 62 2013; 32 2013; 35 2015; 43 2014; 15 2011; 68 1999; 96 2014; 9 2012; 159 2005; 17 2003; 421 2012; 336 2014; 10 2012; 63 2001; 98 2006; 443 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 51 start-page: 757 year: 2003 end-page: 771 article-title: Chlorophyll antenna size adjustments by irradiance in involve coordinate regulation of chlorophyll a oxygenase ( ) and gene expression publication-title: Plant Mol Biol – volume: 37 start-page: 991 year: 2011 end-page: 997 article-title: Genetic analysis and fine mapping of gene for yellow-green leaf of rice publication-title: Acta Agronomica Sinica – volume: 30 start-page: 549 year: 2012 end-page: 554 article-title: Genome sequence of foxtail millet ( ) provides insights into grass evolution and biofuel potential publication-title: Nat Biotechnol – volume: 8 start-page: e75299 year: 2013 article-title: Mutation of the light‐induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice publication-title: PLoS One – volume: 30 start-page: 555 year: 2012 end-page: 561 article-title: Reference genome sequence of the model plant publication-title: Nat Biotechnol – volume: 443 start-page: 823 year: 2006 end-page: 826 article-title: The Mg‐chelatase H subunit is an abscisic acid receptor publication-title: Nature – volume: 35 start-page: 87 year: 2013 end-page: 93 article-title: Gene cloning and functional analysis of yellow green leaf3 ( ) gene during the whole‐plant growth stage in rice publication-title: Genes Genomics – volume: 421 start-page: 79 year: 2003 end-page: 83 article-title: Chloroplast to nucleus communication triggered by accumulation of Mg‐protoporphyrinIX publication-title: Nature – volume: 1 start-page: 16 year: 2014 end-page: 20 article-title: Initiation of as a model plant publication-title: Front Agr Sci Eng – volume: 299 start-page: 902 year: 2003 end-page: 906 article-title: GUN4, a regulator of chlorophyll synthesis and intracellular signaling publication-title: Science – volume: 150 start-page: 388 year: 2009 end-page: 401 article-title: Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development publication-title: Plant Physiol – volume: 45 start-page: 957 year: 2013 end-page: 961 article-title: A haplotype map of genomic variations and genome‐wide association studies of agronomic traits in foxtail millet ( ) publication-title: Nat Genet – volume: 5 start-page: 200 year: 2013 end-page: 216 article-title: Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis publication-title: Genome Biol Evol – volume: 80 start-page: 519 year: 2012 end-page: 537 article-title: Roles of the different components of magnesium chelatase in abscisic acid signal transduction publication-title: Plant Mol Biol – volume: 68 start-page: 1039 year: 2011 end-page: 1050 article-title: A plastid protein NUS1 is essential for build‐up of the genetic system for early chloroplast development under cold stress conditions publication-title: Plant J – volume: 26 start-page: 4862 year: 2014 end-page: 4874 article-title: A NAP‐AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in leaves publication-title: Plant Cell – volume: 63 start-page: 169 year: 2013 article-title: Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat publication-title: Breed Sci – volume: 18 start-page: 3606 year: 2006 end-page: 3616 article-title: Recessiveness and dominance in barley mutants deficient in Mg‐chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis publication-title: Plant Cell – volume: 9 start-page: e99564 year: 2014 article-title: Mapped clone and functional analysis of leaf‐color gene Ygl7 in a rice hybrid ( L. ssp. ) publication-title: PLoS One – volume: 8 start-page: 967 year: 2015 end-page: 970 article-title: SIFGD: functional genomics database publication-title: Mol Plant – volume: 7 start-page: 1039 year: 1995 article-title: Chlorophyll biosynthesis publication-title: Plant Cell – volume: 96 start-page: 1941 year: 1999 end-page: 1946 article-title: Mg‐chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 233 year: 2005 end-page: 240 article-title: Identification of a vinyl reductase gene for chlorophyll synthesis in and implications for the evolution of species publication-title: Plant Cell – volume: 32 start-page: 1855 year: 2013 end-page: 1867 article-title: A knockdown mutation of YELLOW‐GREEN LEAF2 blocks chlorophyll biosynthesis in rice publication-title: Plant Cell Rep – volume: 60 start-page: 95 year: 2006 end-page: 106 article-title: The maize oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase publication-title: Plant Mol Biol – volume: 159 start-page: 118 year: 2012 end-page: 130 article-title: Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox‐mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants publication-title: Plant Physiol – volume: 32 start-page: 1633 year: 2009 end-page: 1651 article-title: Co‐expression tools for plant biology: opportunities for hypothesis generation and caveats publication-title: Plant Cell Environ – volume: 336 start-page: 1671 year: 2012 end-page: 1672 article-title: The development of C rice: current progress and future challenges publication-title: Science – volume: 192 start-page: 74 year: 2011 end-page: 86 article-title: The thylakoid protease Deg2 is involved in stress‐related degradation of the photosystem II light‐harvesting protein Lhcb6 in publication-title: New Phytol – volume: 36 start-page: 532 year: 2003 end-page: 540 article-title: OsHAP3 genes regulate chloroplast biogenesis in rice publication-title: Plant J – volume: 98 start-page: 2053 year: 2001 end-page: 2058 article-title: genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg‐chelatase H subunit in plastid‐to‐nucleus signal transduction publication-title: Proc Natl Acad Sci – volume: 10 start-page: 1 year: 2014 end-page: 11 article-title: Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light publication-title: Plant Methods – volume: 15 start-page: 78 year: 2014 article-title: Development of highly polymorphic simple sequence repeat markers using genome‐wide microsatellite variant analysis in foxtail millet [ (L.) P. Beauv.] publication-title: BMC Genomics – volume: 35 start-page: D863 year: 2007 end-page: D869 article-title: ATTED‐II: a database of co‐expressed genes and elements for identifying co‐regulated gene groups in publication-title: Nucleic Acids Res – volume: 63 start-page: 5189 year: 2012 end-page: 5202 article-title: cpSRP54 regulates carotenoid accumulation in and publication-title: J Exp Bot – volume: 104 start-page: 639 year: 1994 end-page: 648 article-title: Characterization of a family of chlorophyll‐deficient wheat ( ) and barley ( ) mutants with defects in the magnesium‐insertion step of chlorophyll biosynthesis publication-title: Plant Physiol – volume: 145 start-page: 29 year: 2007 end-page: 40 article-title: A chlorophyll‐deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis publication-title: Plant Physiol – volume: 273 start-page: 311 year: 2005 end-page: 318 article-title: An mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis publication-title: Mol Genet Genomics – volume: 43 start-page: D447 year: 2015 end-page: D452 article-title: STRING v10: protein–protein interaction networks, integrated over the tree of life publication-title: Nucleic Acids Res – volume: 62 start-page: 325 year: 2006 end-page: 337 article-title: Rice Chlorina‐1 and Chlorina‐9 encode ChlD and ChlI subunits of Mg‐chelatase, a key enzyme for chlorophyll synthesis and chloroplast development publication-title: Plant Mol Biol – volume: 55 start-page: 669 year: 2015 end-page: 680 article-title: Molecular mapping and candidate gene analysis of a ( ) mutant in rice publication-title: Crop Sci – volume: 22 start-page: 2537 year: 2010 end-page: 2544 article-title: : a model for C4 photosynthesis publication-title: Plant Cell – ident: e_1_2_8_27_1 doi: 10.1038/nature01204 – ident: e_1_2_8_28_1 doi: 10.1016/S1875-2780(11)60029-1 – ident: e_1_2_8_36_1 doi: 10.1105/tpc.114.133769 – ident: e_1_2_8_41_1 doi: 10.1038/nbt.2195 – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0099564 – ident: e_1_2_8_9_1 doi: 10.1104/pp.104.2.639 – ident: e_1_2_8_17_1 doi: 10.1023/A:1022545118212 – ident: e_1_2_8_35_1 doi: 10.1104/pp.107.100321 – ident: e_1_2_8_5_1 doi: 10.1007/s00299-013-1498-y – ident: e_1_2_8_3_1 doi: 10.1038/nbt.2196 – ident: e_1_2_8_20_1 doi: 10.1105/tpc.104.027276 – ident: e_1_2_8_24_1 doi: 10.2135/cropsci2014.07.0483 – ident: e_1_2_8_18_1 doi: 10.1046/j.1365-313X.2003.01897.x – ident: e_1_2_8_7_1 doi: 10.15302/J-FASE-2014011 – ident: e_1_2_8_16_1 doi: 10.1104/pp.112.195446 – ident: e_1_2_8_11_1 doi: 10.1038/ng.2673 – ident: e_1_2_8_25_1 doi: 10.1007/s00438-005-1129-6 – ident: e_1_2_8_12_1 doi: 10.1111/j.1365-313X.2011.04755.x – ident: e_1_2_8_37_1 doi: 10.1104/pp.109.136648 – ident: e_1_2_8_34_1 doi: 10.1186/1746-4811-10-36 – ident: e_1_2_8_13_1 doi: 10.1126/science.1079978 – ident: e_1_2_8_26_1 doi: 10.1093/gbe/evs127 – ident: e_1_2_8_30_1 doi: 10.1007/s13258-013-0069-5 – ident: e_1_2_8_14_1 doi: 10.1270/jsbbs.63.169 – ident: e_1_2_8_22_1 doi: 10.1007/s11103-005-2880-0 – ident: e_1_2_8_38_1 doi: 10.1016/j.molp.2015.02.001 – ident: e_1_2_8_10_1 doi: 10.1073/pnas.96.5.1941 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.98.4.2053 – ident: e_1_2_8_8_1 doi: 10.1007/s11103-012-9965-3 – ident: e_1_2_8_15_1 doi: 10.1111/j.1469-8137.2011.03782.x – ident: e_1_2_8_31_1 doi: 10.1111/j.1365-3040.2009.02040.x – ident: e_1_2_8_21_1 doi: 10.1093/nar/gkl783 – ident: e_1_2_8_23_1 doi: 10.1038/nature05176 – ident: e_1_2_8_2_1 doi: 10.1105/tpc.106.042374 – ident: e_1_2_8_33_1 doi: 10.2307/3870056 – ident: e_1_2_8_4_1 doi: 10.1105/tpc.110.075309 – ident: e_1_2_8_42_1 doi: 10.1186/1471-2164-15-78 – ident: e_1_2_8_40_1 doi: 10.1007/s11103-006-9024-z – ident: e_1_2_8_32_1 doi: 10.1126/science.1220177 – ident: e_1_2_8_43_1 doi: 10.1371/journal.pone.0075299 – ident: e_1_2_8_29_1 doi: 10.1093/nar/gku1003 – ident: e_1_2_8_39_1 doi: 10.1093/jxb/ers179 |
SSID | ssj0016612 |
Score | 2.4260454 |
Snippet | Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene... Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 24 |
SubjectTerms | Chlorophyll - metabolism Chromosome Mapping Color Gene expression Genetics Genomics Genotype Mutation Phenotype Plant Leaves - genetics Plant Leaves - metabolism Plant Leaves - radiation effects Setaria Plant - genetics Setaria Plant - metabolism Setaria Plant - radiation effects |
Title | Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv] |
URI | https://api.istex.fr/ark:/67375/WNG-MXQZDGP6-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12405 https://www.ncbi.nlm.nih.gov/pubmed/26559175 https://www.proquest.com/docview/1781918610 https://search.proquest.com/docview/1782831177 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8Q5MEXFT-LYEZjDD60ud623V58EpEj5ricIvH8SrPbTgkBWnP0CPLXO9NeGzCaGN_6sZtud3c6v9_u9DcAzymNGcWrnkvWKDcwoXVtLw3cmHImD2lsIiPrkHvjaPcgeDcNp0vwqv0XptGH6BbcxDLq77UYuLFnV4ycQZrHzqnWL_WVlnCu7Q-ddJTPfqdRCle-O2AnuVAVkiieruY1X3RDuvXiT0DzOm6tHc_ObfjWNrmJNzn25pX10svf1Bz_853uwK0FIMXXzQxahSUq7sLKVsmg8ec9uBRZajw1ouJwiKbIUBxhs37Ip42gCZY5Mo7EojynEzwhk6NoYc_wUCrvH30ejnw8KjAvLyReFSXTEVX4dZ8qZuoGJW8JzxXcHHkvceLhFpn5-ff7cLDz9uObXXeRrsFNRWWeKa32B3FfUiyYnL8DlCmVh2GmMzI68zOVRzFf6EuGE9IMPVOmTj3qkWXQoIKBegDLRVnQI8CMcYfPTMoGfRtoG5kwykOrbEi-1hQEDjxrBy750ahyJC2b4T5M6j504EU9pF0JMzuWMDYdJp_Gw2Rv-v7L9nASJWMH1tsxTxYWfJb4WqhszOjSgafdbbY92VAxBZXzugyjM9n2duBhM1e6h_Uj5mqMzRzYrEf87-1MJpNRfbD270Ufw01GblETebkOy9VsThuMjir7pDaDX4ROByw |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KK-iL3x_RqquI1IeEy22SzYEv1to7NXectqWnUpbdZFJKayJnrtT-9c4kl2BFQXzLxy7Z7OxkfjM7-Q3AM0xjQvGy56I10g1MaF3bSwM3xpychzQ2keE45HgSjfaCd7NwtgIv239hGn6ILuDGmlF_r1nBOSD9i5YTSvPIOjGB6Rqpu2S13PrYkUf5ZHkarnDpuwMyk0teIc7j6bpesEZrPLFnf4KaF5FrbXq2r8FBO-gm4-TYW1TWS89_43P837e6DleXmFS8ahbRDVjB4iZc2iwJN_64BefMTC2-GiZyOBSmyATbwiaESKcNp4koc0FQUhTlKZ6IEzS5YDrsuTjkzjtHn4aJL44KkZdnnLIquNgRVuLLDlbkrBvBpUtouYiNxHshpp7YRLM4PbgNe9tvdl-P3GXFBjdlonnyapU_iPtcZcHk9CnATMo8DDOVoVGZn8k8iulCn4ucoCL0mZL31MMeWsINMhjIO7BalAXeA5ER9PDJmbJB3wbKRiaM8tBKG6KvFAaBA09byelvDTGHbh0amkNdz6EDz2uZdi3M_Jgz2VSo9ydDPZ59-Lw1nEZ64sB6K3S9VOLv2lfszcYEMB140t0m9eM9FVNguajbEEDjnW8H7jaLpXtYPyJ3jeCZAxu1yP8-Tj2dJvXB_X9v-hguj3bHiU7eTt4_gCsE5KImEXMdVqv5Ah8SWKrso1onfgLvEQtF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9RADLaqFiFeuI9AAYMQKg-JNptzxROl7BbYrgKl6gKtRjOJU1UtSbVkq9Jfj51sIopAQrzlmFEmYzv-PON8BnhGacwo3uvZZLRn-zowtumlvh1TzsFDGutQyzrk1iTc3PHfTYPpErxs_4Vp-CG6BTexjPp7LQZ-kuW_GDmDNIedk_CXrvghq6ogoo8dd5TLjqehCvdce8BeckErJGk8XdcLzmhF5vXsT0jzInCtPc_wGuy1Y24STo6ceWWc9Pw3Osf_fKnrcHWBSPFVo0I3YImKm3BpvWTU-OMWnAsvNX7TQuNwgLrIUDxhs4DIpw2jCZY5MpDEojylYzwmnaOQYc_wQDpvH34ejV08LDAvzyRhFaXUEVX4dZsqDtU1SuESVhZcGzsvMHFwnfT8dP827AzffHq9aS_qNdip0MxzTBu5g7gvNRZ0zh8CyjwvD4IsykhHmZt5eRjzhb6UOKGIsWfKsVOPemQYNXj-wLsDy0VZ0D3AjIGHy6GU8fvGj0yogzAPjGcCcqOIfN-Cp63g1ElDy6HacIbnUNVzaMHzWqRdCz07kjy2KFC7k5Hamn74sjFKQjWxYLWVuVqY8HflRhLLxgwvLXjS3Wbjkx0VXVA5r9swPJN9bwvuNrrSPawfcrDG4MyCtVrifx-nSpJxfXD_35s-hsvJxlCN307eP4ArjOLCJgtzFZar2ZweMlKqzKPaIn4Cv3YJ9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+mapping+and+functional+analysis+of+the+novel+leaf+color+gene+SiYGL1+in+foxtail+millet+%5BSetaria+italica+%28L.%29+P.+Beauv%5D&rft.jtitle=Physiologia+plantarum&rft.au=Li%2C+Wen&rft.au=Tang%2C+Sha&rft.au=Zhang%2C+Shuo&rft.au=Shan%2C+Jianguo&rft.date=2016-05-01&rft.eissn=1399-3054&rft.volume=157&rft.issue=1&rft.spage=24&rft_id=info:doi/10.1111%2Fppl.12405&rft_id=info%3Apmid%2F26559175&rft.externalDocID=26559175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |