Impact of moderate pump–Stokes chirp on femtosecond coherent anti‐Stokes Raman scattering spectra

The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass...

Full description

Saved in:
Bibliographic Details
Published inJournal of Raman spectroscopy Vol. 51; no. 1; pp. 115 - 124
Main Authors Gu, Mingming, Satija, Aman, Lucht, Robert P.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.01.2020
Wiley
Subjects
Online AccessGet full text
ISSN0377-0486
1097-4555
DOI10.1002/jrs.5754

Cover

Abstract The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass of significant thickness to reach the probe volume of interest. The effects were investigated both experimentally, by inserting disks of SF‐11 glass into the pump and Stokes beam paths, and theoretically, by incorporating pulse chirp into our time‐dependent density matrix (TDDM) simulations. Experimentally, we found that inducing moderate pump and Stokes chirp produced significant spectral narrowing of the nonresonant four‐wave mixing contribution to the CARS signal, and this allowed us to control the resonant excitation bandwidth to eliminate interferences from neighboring species. The temperature measurement accuracy and precision were essentially unchanged with respect to the unchirped pump and Stokes case. The effect of moderate pump and Stokes chirp on the narrowing of the Raman excitation efficiency envelope was investigated by solving the full set of TDDM through direct numerical integration. The numerical efficiency of the solutions was enhanced dramatically by developing a parallel version of the TDDM code. The calculated Raman excitation efficiency profile was incorporated in our phenomenological spectral fitting codes. Effects of frequency chirp on N2 CPP fs CARS spectrum are presented. The nonresonant signal bandwidth is significantly narrowed by adding moderate amount of frequency chirp, and the degradation of Raman excitation efficiency can be accounted by performing time‐dependent density matrix calculations. The accuracy of flame thermometry obtained through N2 CPP fs CARS measurement is not significantly affected for moderately chirped pump and Stokes pulses.
AbstractList The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass of significant thickness to reach the probe volume of interest. The effects were investigated both experimentally, by inserting disks of SF‐11 glass into the pump and Stokes beam paths, and theoretically, by incorporating pulse chirp into our time‐dependent density matrix (TDDM) simulations. Experimentally, we found that inducing moderate pump and Stokes chirp produced significant spectral narrowing of the nonresonant four‐wave mixing contribution to the CARS signal, and this allowed us to control the resonant excitation bandwidth to eliminate interferences from neighboring species. The temperature measurement accuracy and precision were essentially unchanged with respect to the unchirped pump and Stokes case. The effect of moderate pump and Stokes chirp on the narrowing of the Raman excitation efficiency envelope was investigated by solving the full set of TDDM through direct numerical integration. The numerical efficiency of the solutions was enhanced dramatically by developing a parallel version of the TDDM code. The calculated Raman excitation efficiency profile was incorporated in our phenomenological spectral fitting codes.
The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass of significant thickness to reach the probe volume of interest. The effects were investigated both experimentally, by inserting disks of SF‐11 glass into the pump and Stokes beam paths, and theoretically, by incorporating pulse chirp into our time‐dependent density matrix (TDDM) simulations. Experimentally, we found that inducing moderate pump and Stokes chirp produced significant spectral narrowing of the nonresonant four‐wave mixing contribution to the CARS signal, and this allowed us to control the resonant excitation bandwidth to eliminate interferences from neighboring species. The temperature measurement accuracy and precision were essentially unchanged with respect to the unchirped pump and Stokes case. The effect of moderate pump and Stokes chirp on the narrowing of the Raman excitation efficiency envelope was investigated by solving the full set of TDDM through direct numerical integration. The numerical efficiency of the solutions was enhanced dramatically by developing a parallel version of the TDDM code. The calculated Raman excitation efficiency profile was incorporated in our phenomenological spectral fitting codes. Effects of frequency chirp on N2 CPP fs CARS spectrum are presented. The nonresonant signal bandwidth is significantly narrowed by adding moderate amount of frequency chirp, and the degradation of Raman excitation efficiency can be accounted by performing time‐dependent density matrix calculations. The accuracy of flame thermometry obtained through N2 CPP fs CARS measurement is not significantly affected for moderately chirped pump and Stokes pulses.
Author Lucht, Robert P.
Gu, Mingming
Satija, Aman
Author_xml – sequence: 1
  givenname: Mingming
  orcidid: 0000-0003-1364-3665
  surname: Gu
  fullname: Gu, Mingming
  email: gu163@purdue.edu
  organization: Purdue University
– sequence: 2
  givenname: Aman
  surname: Satija
  fullname: Satija, Aman
  organization: Purdue University
– sequence: 3
  givenname: Robert P.
  surname: Lucht
  fullname: Lucht, Robert P.
  organization: Purdue University
BackLink https://www.osti.gov/biblio/1594854$$D View this record in Osti.gov
BookMark eNp10LFOHDEQBmArIlIOEimPYJEmzR7etb1elxEKAYQUCZLaMuPZnI9be2P7hOh4hEi8IU-C4aiipJrmm9E__z7ZCzEgIR9btmwZ647WKS-lkuINWbRMq0ZIKffIgnGlGiaG_h3Zz3nNGNO6bxcEz6bZQqFxpFN0mGxBOm-n-fH-4arEG8wUVj7NNAY64lRiRojBUYgrTBgKtaH4x_s_r_bSTjbQDLYUTD78onlGKMm-J29Hu8n44XUekJ8nX38cnzYX37-dHX-5aIDrVjTacT0612ulOPCh5-C6HhwHNnKFbMTBDYMCdY3XnRIonAJ0quuEdhJk9QfkcHc35uJNBl8QVjVwqClMK7UYpKjo0w7NKf7eYi5mHbcp1Fym41yLjg1aVbXcKUgx54Sjqdds8THUf_zGtMw8921q3-a577rw-a-FOfnJprt_0WZHb_0G7_7rzPnl1Yt_AgzrlCY
CitedBy_id crossref_primary_10_1039_D3NA00644A
crossref_primary_10_1364_OE_519992
crossref_primary_10_1007_s00340_022_07856_1
crossref_primary_10_1364_AO_392110
crossref_primary_10_3389_fphy_2020_598420
crossref_primary_10_1016_j_proci_2020_06_134
crossref_primary_10_1016_j_combustflame_2021_111738
crossref_primary_10_1016_j_proci_2024_105737
Cites_doi 10.1016/j.combustflame.2014.11.036
10.1007/s00340-011-4489-0
10.1103/PhysRevLett.90.213902
10.1016/S0009-2614(01)00819-3
10.1016/j.combustflame.2016.02.032
10.1016/S0010-2180(96)00191-5
10.1063/1.90070
10.1364/JOSAB.30.001671
10.1016/j.combustflame.2018.11.004
10.1364/OE.20.023390
10.1002/jrs.5373
10.1002/jrs.4725
10.1016/j.proci.2016.07.062
10.1364/OL.32.002858
10.1364/AO.53.006579
10.1364/AO.56.000E37
10.1063/1.5071438
10.1021/jp052416a
10.1016/j.cplett.2004.02.049
10.1364/OL.37.000229
10.1038/nature00933
10.1364/OE.20.005003
10.1364/AO.56.008797
10.1364/OL.43.004911
10.1016/j.combustflame.2016.02.033
10.1364/AO.55.004958
10.1016/j.pecs.2009.11.001
10.1364/OL.34.003857
10.1103/PhysRevA.65.043408
10.1063/1.4862980
10.1364/OL.39.006608
10.1002/jrs.4287
10.1063/1.3028346
10.1103/PhysRevLett.68.514
10.1016/0030-4018(80)90362-4
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2020 John Wiley & Sons, Ltd.
CorporateAuthor Purdue Univ., West Lafayette, IN (United States)
CorporateAuthor_xml – name: Purdue Univ., West Lafayette, IN (United States)
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
OTOTI
DOI 10.1002/jrs.5754
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList CrossRef


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 124
ExternalDocumentID 1594854
10_1002_jrs_5754
JRS5754
Genre article
GrantInformation_xml – fundername: Basic Energy Sciences
  funderid: DE‐FG02‐03ER15391
– fundername: King Abdullah University of Science and Technology
  funderid: No. 1975‐01; 1975‐01
– fundername: U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy, Solar Energy Technology Program)
  funderid: DE‐FG02‐03ER15391
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c3914-9d39fdd69773c3863cd26cd3c0f37e0fe8d887c7beb274e4d7ced72249d5c5863
IEDL.DBID DR2
ISSN 0377-0486
IngestDate Fri May 19 01:10:58 EDT 2023
Fri Jul 25 10:29:45 EDT 2025
Tue Jul 01 01:39:10 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Wed Jan 22 16:35:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3914-9d39fdd69773c3863cd26cd3c0f37e0fe8d887c7beb274e4d7ced72249d5c5863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
FG02-03ER15391
ORCID 0000-0003-1364-3665
0000000313643665
0000000173882129
OpenAccessLink https://www.osti.gov/biblio/1570772
PQID 2339420897
PQPubID 1016368
PageCount 10
ParticipantIDs osti_scitechconnect_1594854
proquest_journals_2339420897
crossref_citationtrail_10_1002_jrs_5754
crossref_primary_10_1002_jrs_5754
wiley_primary_10_1002_jrs_5754_JRS5754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
– name: United States
PublicationTitle Journal of Raman spectroscopy
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 162
2004; 387
2001; 344
2010; 36
2012
2013; 44
1978; 32
2007
2006; 110
2006
2002; 418
2012; 37
2007; 32
2018; 43
2008; 93
2018; 49
2019; 200
2016; 55
2009; 34
2015; 46
2011; 104
2003; 90
1997; 109
2017; 36
1980; 35
2002; 65
2017; 56
2013; 30
2018
2019; 114
1992; 68
2014
2014; 39
2012; 20
2014; 104
2016; 173
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Lucht R. P. (e_1_2_7_2_1) 2006
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Marrocco M. (e_1_2_7_30_1)
Thomas L. M. (e_1_2_7_40_1) 2018
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Lucht R. P. (e_1_2_7_19_1) 2007
e_1_2_7_39_1
References_xml – volume: 68
  start-page: 514
  year: 1992
  publication-title: Physical Review Letters
– volume: 32
  start-page: 2858
  year: 2007
  publication-title: Optics letters
– volume: 93
  start-page: 201103
  year: 2008
  publication-title: Applied Physics Letters
– volume: 56
  start-page: 8797
  year: 2017
  publication-title: Applied Optics
– volume: 109
  start-page: 323
  year: 1997
  publication-title: Lucht RP Combustion and Flame
– volume: 34
  start-page: 3857
  year: 2009
  publication-title: Optics letters
– volume: 36
  start-page: 280
  year: 2010
  publication-title: Progress in Energy and Combustion Science
– volume: 32
  start-page: 421
  year: 1978
– volume: 35
  start-page: 69
  year: 1980
  publication-title: Eckbreth AC Optics Communications
– year: 2018
  publication-title: Lucht RP Combustion and Flame
– publication-title: Journal of Raman Spectroscopy
– volume: 37
  start-page: 229
  year: 2012
  publication-title: Optics Letters
– volume: 200
  start-page: 405
  year: 2019
  publication-title: Combustion and Flame
– volume: 44
  start-page: 1344
  year: 2013
  publication-title: Journal of Raman Spectroscopy
– volume: 46
  start-page: 702
  year: 2015
  publication-title: Meyer TR Journal of Raman Spectroscopy
– volume: 20
  start-page: 5003
  year: 2012
  publication-title: Optics express
– volume: 110
  start-page: 5854
  year: 2006
  publication-title: Saykally RJ Journal of Physical Chemistry B
– volume: 43
  start-page: 4911
  year: 2018
  publication-title: Optics Letters
– volume: 36
  start-page: 4557
  year: 2017
  publication-title: Kliewer CJ Proceedings of the Combustion Institute
– start-page: 127
  year: 2007
  publication-title: Journal of Chemical Physics
– volume: 65
  year: 2002
  publication-title: Physical Review A
– volume: 90
  year: 2003
  publication-title: Physical Review Letters
– year: 2014
– volume: 418
  start-page: 512
  year: 2002
  publication-title: Nature
– volume: 39
  start-page: 6608
  year: 2014
  publication-title: Optics Letters
– year: 2012
– volume: 56
  start-page: E37
  year: 2017
  publication-title: Applied Optics
– volume: 55
  start-page: 4958
  year: 2016
  publication-title: Applied Optics
– volume: 114
  year: 2019
  publication-title: Applied Physics Letters
– start-page: 89
  year: 2006
  publication-title: Applied Physics Letters
– volume: 173
  start-page: 441
  year: 2016
  publication-title: Combustion and Flame
– volume: 387
  start-page: 436
  year: 2004
  publication-title: Chemical Physics Letters
– volume: 344
  start-page: 407
  year: 2001
  publication-title: Chemical Physics Letters
– volume: 30
  start-page: 1671
  year: 2013
  publication-title: Hui RQ Journal of the Optical Society of America B‐Optical Physics
– volume: 173
  start-page: 454
  year: 2016
  publication-title: Combustion and Flame
– volume: 104
  year: 2014
  publication-title: Applied Physics Letters
– volume: 20
  year: 2012
  publication-title: Optics express
– volume: 49
  start-page: 1109
  year: 2018
  publication-title: Journal of Raman Spectroscopy
– volume: 162
  start-page: 1748
  year: 2015
  publication-title: Combustion and Flame
– volume: 104
  start-page: 699
  year: 2011
  publication-title: Applied Physics B‐Lasers and Optics
– ident: e_1_2_7_12_1
  doi: 10.1016/j.combustflame.2014.11.036
– ident: e_1_2_7_27_1
  doi: 10.1007/s00340-011-4489-0
– ident: e_1_2_7_36_1
  doi: 10.1103/PhysRevLett.90.213902
– ident: e_1_2_7_3_1
  doi: 10.1016/S0009-2614(01)00819-3
– ident: e_1_2_7_10_1
  doi: 10.1016/j.combustflame.2016.02.032
– ident: e_1_2_7_39_1
  doi: 10.1016/S0010-2180(96)00191-5
– ident: e_1_2_7_38_1
  doi: 10.1063/1.90070
– year: 2018
  ident: e_1_2_7_40_1
  publication-title: Lucht RP Combustion and Flame
– ident: e_1_2_7_26_1
  doi: 10.1364/JOSAB.30.001671
– ident: e_1_2_7_41_1
  doi: 10.1016/j.combustflame.2018.11.004
– ident: e_1_2_7_28_1
  doi: 10.1364/OE.20.023390
– ident: e_1_2_7_29_1
  doi: 10.1002/jrs.5373
– ident: e_1_2_7_18_1
  doi: 10.1002/jrs.4725
– start-page: 89
  year: 2006
  ident: e_1_2_7_2_1
  publication-title: Applied Physics Letters
– ident: e_1_2_7_8_1
  doi: 10.1016/j.proci.2016.07.062
– ident: e_1_2_7_23_1
  doi: 10.1364/OL.32.002858
– ident: e_1_2_7_25_1
  doi: 10.1364/AO.53.006579
– ident: e_1_2_7_7_1
  doi: 10.1364/AO.56.000E37
– ident: e_1_2_7_16_1
  doi: 10.1063/1.5071438
– ident: e_1_2_7_22_1
  doi: 10.1021/jp052416a
– ident: e_1_2_7_21_1
  doi: 10.1016/j.cplett.2004.02.049
– ident: e_1_2_7_14_1
  doi: 10.1364/OL.37.000229
– ident: e_1_2_7_34_1
  doi: 10.1038/nature00933
– ident: e_1_2_7_6_1
  doi: 10.1364/OE.20.005003
– ident: e_1_2_7_37_1
  doi: 10.1364/AO.56.008797
– ident: e_1_2_7_5_1
– ident: e_1_2_7_33_1
  doi: 10.1364/OL.43.004911
– ident: e_1_2_7_11_1
  doi: 10.1016/j.combustflame.2016.02.033
– ident: e_1_2_7_13_1
  doi: 10.1364/AO.55.004958
– ident: e_1_2_7_4_1
  doi: 10.1016/j.pecs.2009.11.001
– ident: e_1_2_7_9_1
  doi: 10.1364/OL.34.003857
– ident: e_1_2_7_35_1
  doi: 10.1103/PhysRevA.65.043408
– ident: e_1_2_7_15_1
  doi: 10.1063/1.4862980
– ident: e_1_2_7_17_1
  doi: 10.1364/OL.39.006608
– ident: e_1_2_7_32_1
  doi: 10.1002/jrs.4287
– ident: e_1_2_7_24_1
  doi: 10.1063/1.3028346
– start-page: 127
  year: 2007
  ident: e_1_2_7_19_1
  publication-title: Journal of Chemical Physics
– ident: e_1_2_7_30_1
  publication-title: Journal of Raman Spectroscopy
– ident: e_1_2_7_20_1
  doi: 10.1103/PhysRevLett.68.514
– ident: e_1_2_7_31_1
  doi: 10.1016/0030-4018(80)90362-4
SSID ssj0009961
Score 2.3233304
Snippet The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS)...
The effects of inducing moderate chirp in the pump and Stokes beams in chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CARS)...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Beams (radiation)
Chirp
coherent anti‐Stokes Raman scattering
Coherent scattering
Computer simulation
Disks
Efficiency
Excitation
Four-wave mixing
frequency chirp
Glass
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Numerical integration
Raman spectra
Spectroscopy
Spectrum analysis
Temperature measurement
Time dependence
ultrafast spectroscopy
Title Impact of moderate pump–Stokes chirp on femtosecond coherent anti‐Stokes Raman scattering spectra
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.5754
https://www.proquest.com/docview/2339420897
https://www.osti.gov/biblio/1594854
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEMdF2RLaS_NoS7d5oEJIT97Ylm1Zx5AHSWhy2E0g0IOQ9SCPxl7WziWnfIRCv2E-SWdkO4-SQunFPnhsbI9k_cfM_IaQdR7bKBImC1SUQIBiTRjkaQ6bLC4ctntxKRYKHx1n-6fJ4Vl61mVVYi1My4d4-OGGM8N_r3GCq6LefISGXs7qEWgNRIFGLENs_s74kRwFMt43y2OcB0iV67mzYbzZn_hsJRpUMKOeqcynWtUvNnvz5Ht_m22OydXopilG-vYPguP_PccCeddpULrVDppF8sqWS-TNdt_6bYnM-bxQXb8n9sBXUdLKUeyZg1wJOoURcH_3a9JUV7am-vxiNqVVSZ29bqoa42tDdXWOZYQNBb9d3N_97GzH6lqVtNae6QlrJvV1njP1gZzu7Z5s7wddZ4ZAMxElgTBMOGMyEI9Mszxj2sSZNkyHjnEbOpsb-HhpXkDczhObGK6t4aAWhEl1CvYfyaCsSvuJUKMyZYo0ZBakmYPwzzJROKFtkuZG5WpIvvZekrrDlmP3jB-yBS7HEl6gxBc4JF8eLKctquMFm2V0tAR5gYxcjclEupERQmvw6Ervf9lN5VrGjAnMQRB8SDa8I_96dXk4nuD-878aLpO3Mcbv_pfOChk0sxu7CiKnKdbI662do2-TNT-sfwP4cv4O
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT9VAEJ_gMwYv_kGNT1DXxOipj7bbdrvxZFDyQODwgISDyabdPwGR9uW1XDzxEUz8hnwSZ7YtiNHEeGkPnTbdnZnd32xmfgPwWsQ2iqTJgiJKMECxJgzyNMdLFpeO2r24lAqFd_ey6WGyfZQeLcG7oRam44e4OnAjz_DrNTk4HUivX7OGflk0EwQbyS24nSDOoMjrw-yaOwqBvG-Xx4UIiFduYJ4N4_XhzRt70ahGn7qBM39Fq3672bwPn4cf7bJMTifnbTnR337jcPzPkTyAez0MZe87u3kIS7ZageWNofvbCtzxqaG6eQR2yxdSstoxaptD1BJsjkZwefFjv61PbcP08clizuqKOXvW1g2F2Ibp-pgqCVuGqju5vPjey86Ks6Jijfa0nrhtMl_quSgew-Hmx4ONadA3Zwg0l1ESSMOlMyZD_Mg1zzOuTZxpw3XouLChs7nB9UuLEkN3kdjECG2NQMAgTapTlH8Co6qu7FNgpsgKU6Yht4jOHEaAlsvSSW2TNDdFXozh7aAmpXvmcmqg8VV1nMuxwglUNIFjeHUlOe_YOv4gs0qaVogwiCZXUz6RblVEvDX0dG0wANV7c6NiziWlIUgxhjdek3_9utqe7dP92b8KvoTl6cHujtrZ2vu0CndjCuf9Cc8ajNrFuX2OmKctX3jb_gnGFACo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BIigXHgXE0gJGQnDKNomTOD5WhVVboEJbKlXiYCV-qA-arDbphVN_AhL_sL-kM07SUgQS4pIcMoliz4z9jTXzDcBrEdsokiYLiijBAMWaMMjTHC9ZXDpq9-JSKhT-tJNt7iXb--l-n1VJtTAdP8TlgRt5hl-vycHnxq1dkYYeLZoJYo3kJtxKMgQSBIhmV9RRiON9tzwuREC0cgPxbBivDW9e24pGNbrUNZj5K1j1u830Pnwd_rNLMjmenLblRH__jcLx_wbyAO71IJStd1bzEG7YahmWNobeb8tw2yeG6uYR2C1fRslqx6hpDhFLsDmawPnZz922PrYN0weHizmrK-bsSVs3FGAbpusDqiNsGSru8PzsRy87K06KijXak3ripsl8oeeieAx70_dfNjaDvjVDoLmMkkAaLp0xGaJHrnmecW3iTBuuQ8eFDZ3NDa5eWpQYuIvEJkZoawTCBWlSnaL8ExhVdWWfAjNFVpgyDblFbOYw_rNclk5qm6S5KfJiDG8HLSnd85ZT-4xvqmNcjhVOoKIJHMOrS8l5x9XxB5kVUrRCfEEkuZqyiXSrImKtoaerg_5V78uNijmXlIQgxRjeeEX-9etqe7ZL92f_KvgS7nx-N1Uft3Y-rMDdmGJ5f7yzCqN2cWqfI-Bpyxfesi8A1vz_SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+moderate+pump%E2%80%93Stokes+chirp+on+femtosecond+coherent+anti%E2%80%90Stokes+Raman+scattering+spectra&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Gu%2C+Mingming&rft.au=Satija%2C+Aman&rft.au=Lucht%2C+Robert+P.&rft.date=2020-01-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=51&rft.issue=1&rft.spage=115&rft.epage=124&rft_id=info:doi/10.1002%2Fjrs.5754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jrs_5754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon