Impact of moderate pump–Stokes chirp on femtosecond coherent anti‐Stokes Raman scattering spectra
The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass...
Saved in:
Published in | Journal of Raman spectroscopy Vol. 51; no. 1; pp. 115 - 124 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2020
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0377-0486 1097-4555 |
DOI | 10.1002/jrs.5754 |
Cover
Abstract | The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass of significant thickness to reach the probe volume of interest. The effects were investigated both experimentally, by inserting disks of SF‐11 glass into the pump and Stokes beam paths, and theoretically, by incorporating pulse chirp into our time‐dependent density matrix (TDDM) simulations. Experimentally, we found that inducing moderate pump and Stokes chirp produced significant spectral narrowing of the nonresonant four‐wave mixing contribution to the CARS signal, and this allowed us to control the resonant excitation bandwidth to eliminate interferences from neighboring species. The temperature measurement accuracy and precision were essentially unchanged with respect to the unchirped pump and Stokes case. The effect of moderate pump and Stokes chirp on the narrowing of the Raman excitation efficiency envelope was investigated by solving the full set of TDDM through direct numerical integration. The numerical efficiency of the solutions was enhanced dramatically by developing a parallel version of the TDDM code. The calculated Raman excitation efficiency profile was incorporated in our phenomenological spectral fitting codes.
Effects of frequency chirp on N2 CPP fs CARS spectrum are presented. The nonresonant signal bandwidth is significantly narrowed by adding moderate amount of frequency chirp, and the degradation of Raman excitation efficiency can be accounted by performing time‐dependent density matrix calculations. The accuracy of flame thermometry obtained through N2 CPP fs CARS measurement is not significantly affected for moderately chirped pump and Stokes pulses. |
---|---|
AbstractList | The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass of significant thickness to reach the probe volume of interest. The effects were investigated both experimentally, by inserting disks of SF‐11 glass into the pump and Stokes beam paths, and theoretically, by incorporating pulse chirp into our time‐dependent density matrix (TDDM) simulations. Experimentally, we found that inducing moderate pump and Stokes chirp produced significant spectral narrowing of the nonresonant four‐wave mixing contribution to the CARS signal, and this allowed us to control the resonant excitation bandwidth to eliminate interferences from neighboring species. The temperature measurement accuracy and precision were essentially unchanged with respect to the unchirped pump and Stokes case. The effect of moderate pump and Stokes chirp on the narrowing of the Raman excitation efficiency envelope was investigated by solving the full set of TDDM through direct numerical integration. The numerical efficiency of the solutions was enhanced dramatically by developing a parallel version of the TDDM code. The calculated Raman excitation efficiency profile was incorporated in our phenomenological spectral fitting codes. The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS) spectroscopy are discussed. This is an important issue for measurements in high‐pressure systems where the CARS beams must be transmitted through glass of significant thickness to reach the probe volume of interest. The effects were investigated both experimentally, by inserting disks of SF‐11 glass into the pump and Stokes beam paths, and theoretically, by incorporating pulse chirp into our time‐dependent density matrix (TDDM) simulations. Experimentally, we found that inducing moderate pump and Stokes chirp produced significant spectral narrowing of the nonresonant four‐wave mixing contribution to the CARS signal, and this allowed us to control the resonant excitation bandwidth to eliminate interferences from neighboring species. The temperature measurement accuracy and precision were essentially unchanged with respect to the unchirped pump and Stokes case. The effect of moderate pump and Stokes chirp on the narrowing of the Raman excitation efficiency envelope was investigated by solving the full set of TDDM through direct numerical integration. The numerical efficiency of the solutions was enhanced dramatically by developing a parallel version of the TDDM code. The calculated Raman excitation efficiency profile was incorporated in our phenomenological spectral fitting codes. Effects of frequency chirp on N2 CPP fs CARS spectrum are presented. The nonresonant signal bandwidth is significantly narrowed by adding moderate amount of frequency chirp, and the degradation of Raman excitation efficiency can be accounted by performing time‐dependent density matrix calculations. The accuracy of flame thermometry obtained through N2 CPP fs CARS measurement is not significantly affected for moderately chirped pump and Stokes pulses. |
Author | Lucht, Robert P. Gu, Mingming Satija, Aman |
Author_xml | – sequence: 1 givenname: Mingming orcidid: 0000-0003-1364-3665 surname: Gu fullname: Gu, Mingming email: gu163@purdue.edu organization: Purdue University – sequence: 2 givenname: Aman surname: Satija fullname: Satija, Aman organization: Purdue University – sequence: 3 givenname: Robert P. surname: Lucht fullname: Lucht, Robert P. organization: Purdue University |
BackLink | https://www.osti.gov/biblio/1594854$$D View this record in Osti.gov |
BookMark | eNp10LFOHDEQBmArIlIOEimPYJEmzR7etb1elxEKAYQUCZLaMuPZnI9be2P7hOh4hEi8IU-C4aiipJrmm9E__z7ZCzEgIR9btmwZ647WKS-lkuINWbRMq0ZIKffIgnGlGiaG_h3Zz3nNGNO6bxcEz6bZQqFxpFN0mGxBOm-n-fH-4arEG8wUVj7NNAY64lRiRojBUYgrTBgKtaH4x_s_r_bSTjbQDLYUTD78onlGKMm-J29Hu8n44XUekJ8nX38cnzYX37-dHX-5aIDrVjTacT0612ulOPCh5-C6HhwHNnKFbMTBDYMCdY3XnRIonAJ0quuEdhJk9QfkcHc35uJNBl8QVjVwqClMK7UYpKjo0w7NKf7eYi5mHbcp1Fym41yLjg1aVbXcKUgx54Sjqdds8THUf_zGtMw8921q3-a577rw-a-FOfnJprt_0WZHb_0G7_7rzPnl1Yt_AgzrlCY |
CitedBy_id | crossref_primary_10_1039_D3NA00644A crossref_primary_10_1364_OE_519992 crossref_primary_10_1007_s00340_022_07856_1 crossref_primary_10_1364_AO_392110 crossref_primary_10_3389_fphy_2020_598420 crossref_primary_10_1016_j_proci_2020_06_134 crossref_primary_10_1016_j_combustflame_2021_111738 crossref_primary_10_1016_j_proci_2024_105737 |
Cites_doi | 10.1016/j.combustflame.2014.11.036 10.1007/s00340-011-4489-0 10.1103/PhysRevLett.90.213902 10.1016/S0009-2614(01)00819-3 10.1016/j.combustflame.2016.02.032 10.1016/S0010-2180(96)00191-5 10.1063/1.90070 10.1364/JOSAB.30.001671 10.1016/j.combustflame.2018.11.004 10.1364/OE.20.023390 10.1002/jrs.5373 10.1002/jrs.4725 10.1016/j.proci.2016.07.062 10.1364/OL.32.002858 10.1364/AO.53.006579 10.1364/AO.56.000E37 10.1063/1.5071438 10.1021/jp052416a 10.1016/j.cplett.2004.02.049 10.1364/OL.37.000229 10.1038/nature00933 10.1364/OE.20.005003 10.1364/AO.56.008797 10.1364/OL.43.004911 10.1016/j.combustflame.2016.02.033 10.1364/AO.55.004958 10.1016/j.pecs.2009.11.001 10.1364/OL.34.003857 10.1103/PhysRevA.65.043408 10.1063/1.4862980 10.1364/OL.39.006608 10.1002/jrs.4287 10.1063/1.3028346 10.1103/PhysRevLett.68.514 10.1016/0030-4018(80)90362-4 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
CorporateAuthor | Purdue Univ., West Lafayette, IN (United States) |
CorporateAuthor_xml | – name: Purdue Univ., West Lafayette, IN (United States) |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 OTOTI |
DOI | 10.1002/jrs.5754 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1097-4555 |
EndPage | 124 |
ExternalDocumentID | 1594854 10_1002_jrs_5754 JRS5754 |
Genre | article |
GrantInformation_xml | – fundername: Basic Energy Sciences funderid: DE‐FG02‐03ER15391 – fundername: King Abdullah University of Science and Technology funderid: No. 1975‐01; 1975‐01 – fundername: U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy, Solar Energy Technology Program) funderid: DE‐FG02‐03ER15391 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c3914-9d39fdd69773c3863cd26cd3c0f37e0fe8d887c7beb274e4d7ced72249d5c5863 |
IEDL.DBID | DR2 |
ISSN | 0377-0486 |
IngestDate | Fri May 19 01:10:58 EDT 2023 Fri Jul 25 10:29:45 EDT 2025 Tue Jul 01 01:39:10 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 Wed Jan 22 16:35:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3914-9d39fdd69773c3863cd26cd3c0f37e0fe8d887c7beb274e4d7ced72249d5c5863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) FG02-03ER15391 |
ORCID | 0000-0003-1364-3665 0000000313643665 0000000173882129 |
OpenAccessLink | https://www.osti.gov/biblio/1570772 |
PQID | 2339420897 |
PQPubID | 1016368 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1594854 proquest_journals_2339420897 crossref_citationtrail_10_1002_jrs_5754 crossref_primary_10_1002_jrs_5754 wiley_primary_10_1002_jrs_5754_JRS5754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis – name: United States |
PublicationTitle | Journal of Raman spectroscopy |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2015; 162 2004; 387 2001; 344 2010; 36 2012 2013; 44 1978; 32 2007 2006; 110 2006 2002; 418 2012; 37 2007; 32 2018; 43 2008; 93 2018; 49 2019; 200 2016; 55 2009; 34 2015; 46 2011; 104 2003; 90 1997; 109 2017; 36 1980; 35 2002; 65 2017; 56 2013; 30 2018 2019; 114 1992; 68 2014 2014; 39 2012; 20 2014; 104 2016; 173 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Lucht R. P. (e_1_2_7_2_1) 2006 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Marrocco M. (e_1_2_7_30_1) Thomas L. M. (e_1_2_7_40_1) 2018 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 Lucht R. P. (e_1_2_7_19_1) 2007 e_1_2_7_39_1 |
References_xml | – volume: 68 start-page: 514 year: 1992 publication-title: Physical Review Letters – volume: 32 start-page: 2858 year: 2007 publication-title: Optics letters – volume: 93 start-page: 201103 year: 2008 publication-title: Applied Physics Letters – volume: 56 start-page: 8797 year: 2017 publication-title: Applied Optics – volume: 109 start-page: 323 year: 1997 publication-title: Lucht RP Combustion and Flame – volume: 34 start-page: 3857 year: 2009 publication-title: Optics letters – volume: 36 start-page: 280 year: 2010 publication-title: Progress in Energy and Combustion Science – volume: 32 start-page: 421 year: 1978 – volume: 35 start-page: 69 year: 1980 publication-title: Eckbreth AC Optics Communications – year: 2018 publication-title: Lucht RP Combustion and Flame – publication-title: Journal of Raman Spectroscopy – volume: 37 start-page: 229 year: 2012 publication-title: Optics Letters – volume: 200 start-page: 405 year: 2019 publication-title: Combustion and Flame – volume: 44 start-page: 1344 year: 2013 publication-title: Journal of Raman Spectroscopy – volume: 46 start-page: 702 year: 2015 publication-title: Meyer TR Journal of Raman Spectroscopy – volume: 20 start-page: 5003 year: 2012 publication-title: Optics express – volume: 110 start-page: 5854 year: 2006 publication-title: Saykally RJ Journal of Physical Chemistry B – volume: 43 start-page: 4911 year: 2018 publication-title: Optics Letters – volume: 36 start-page: 4557 year: 2017 publication-title: Kliewer CJ Proceedings of the Combustion Institute – start-page: 127 year: 2007 publication-title: Journal of Chemical Physics – volume: 65 year: 2002 publication-title: Physical Review A – volume: 90 year: 2003 publication-title: Physical Review Letters – year: 2014 – volume: 418 start-page: 512 year: 2002 publication-title: Nature – volume: 39 start-page: 6608 year: 2014 publication-title: Optics Letters – year: 2012 – volume: 56 start-page: E37 year: 2017 publication-title: Applied Optics – volume: 55 start-page: 4958 year: 2016 publication-title: Applied Optics – volume: 114 year: 2019 publication-title: Applied Physics Letters – start-page: 89 year: 2006 publication-title: Applied Physics Letters – volume: 173 start-page: 441 year: 2016 publication-title: Combustion and Flame – volume: 387 start-page: 436 year: 2004 publication-title: Chemical Physics Letters – volume: 344 start-page: 407 year: 2001 publication-title: Chemical Physics Letters – volume: 30 start-page: 1671 year: 2013 publication-title: Hui RQ Journal of the Optical Society of America B‐Optical Physics – volume: 173 start-page: 454 year: 2016 publication-title: Combustion and Flame – volume: 104 year: 2014 publication-title: Applied Physics Letters – volume: 20 year: 2012 publication-title: Optics express – volume: 49 start-page: 1109 year: 2018 publication-title: Journal of Raman Spectroscopy – volume: 162 start-page: 1748 year: 2015 publication-title: Combustion and Flame – volume: 104 start-page: 699 year: 2011 publication-title: Applied Physics B‐Lasers and Optics – ident: e_1_2_7_12_1 doi: 10.1016/j.combustflame.2014.11.036 – ident: e_1_2_7_27_1 doi: 10.1007/s00340-011-4489-0 – ident: e_1_2_7_36_1 doi: 10.1103/PhysRevLett.90.213902 – ident: e_1_2_7_3_1 doi: 10.1016/S0009-2614(01)00819-3 – ident: e_1_2_7_10_1 doi: 10.1016/j.combustflame.2016.02.032 – ident: e_1_2_7_39_1 doi: 10.1016/S0010-2180(96)00191-5 – ident: e_1_2_7_38_1 doi: 10.1063/1.90070 – year: 2018 ident: e_1_2_7_40_1 publication-title: Lucht RP Combustion and Flame – ident: e_1_2_7_26_1 doi: 10.1364/JOSAB.30.001671 – ident: e_1_2_7_41_1 doi: 10.1016/j.combustflame.2018.11.004 – ident: e_1_2_7_28_1 doi: 10.1364/OE.20.023390 – ident: e_1_2_7_29_1 doi: 10.1002/jrs.5373 – ident: e_1_2_7_18_1 doi: 10.1002/jrs.4725 – start-page: 89 year: 2006 ident: e_1_2_7_2_1 publication-title: Applied Physics Letters – ident: e_1_2_7_8_1 doi: 10.1016/j.proci.2016.07.062 – ident: e_1_2_7_23_1 doi: 10.1364/OL.32.002858 – ident: e_1_2_7_25_1 doi: 10.1364/AO.53.006579 – ident: e_1_2_7_7_1 doi: 10.1364/AO.56.000E37 – ident: e_1_2_7_16_1 doi: 10.1063/1.5071438 – ident: e_1_2_7_22_1 doi: 10.1021/jp052416a – ident: e_1_2_7_21_1 doi: 10.1016/j.cplett.2004.02.049 – ident: e_1_2_7_14_1 doi: 10.1364/OL.37.000229 – ident: e_1_2_7_34_1 doi: 10.1038/nature00933 – ident: e_1_2_7_6_1 doi: 10.1364/OE.20.005003 – ident: e_1_2_7_37_1 doi: 10.1364/AO.56.008797 – ident: e_1_2_7_5_1 – ident: e_1_2_7_33_1 doi: 10.1364/OL.43.004911 – ident: e_1_2_7_11_1 doi: 10.1016/j.combustflame.2016.02.033 – ident: e_1_2_7_13_1 doi: 10.1364/AO.55.004958 – ident: e_1_2_7_4_1 doi: 10.1016/j.pecs.2009.11.001 – ident: e_1_2_7_9_1 doi: 10.1364/OL.34.003857 – ident: e_1_2_7_35_1 doi: 10.1103/PhysRevA.65.043408 – ident: e_1_2_7_15_1 doi: 10.1063/1.4862980 – ident: e_1_2_7_17_1 doi: 10.1364/OL.39.006608 – ident: e_1_2_7_32_1 doi: 10.1002/jrs.4287 – ident: e_1_2_7_24_1 doi: 10.1063/1.3028346 – start-page: 127 year: 2007 ident: e_1_2_7_19_1 publication-title: Journal of Chemical Physics – ident: e_1_2_7_30_1 publication-title: Journal of Raman Spectroscopy – ident: e_1_2_7_20_1 doi: 10.1103/PhysRevLett.68.514 – ident: e_1_2_7_31_1 doi: 10.1016/0030-4018(80)90362-4 |
SSID | ssj0009961 |
Score | 2.3233304 |
Snippet | The effects of inducing moderate chirp in the pump and Stokes beams in chirped‐probe‐pulse femtosecond coherent anti‐Stokes Raman scattering (CARS)... The effects of inducing moderate chirp in the pump and Stokes beams in chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CARS)... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Beams (radiation) Chirp coherent anti‐Stokes Raman scattering Coherent scattering Computer simulation Disks Efficiency Excitation Four-wave mixing frequency chirp Glass INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Numerical integration Raman spectra Spectroscopy Spectrum analysis Temperature measurement Time dependence ultrafast spectroscopy |
Title | Impact of moderate pump–Stokes chirp on femtosecond coherent anti‐Stokes Raman scattering spectra |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.5754 https://www.proquest.com/docview/2339420897 https://www.osti.gov/biblio/1594854 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEMdF2RLaS_NoS7d5oEJIT97Ylm1Zx5AHSWhy2E0g0IOQ9SCPxl7WziWnfIRCv2E-SWdkO4-SQunFPnhsbI9k_cfM_IaQdR7bKBImC1SUQIBiTRjkaQ6bLC4ctntxKRYKHx1n-6fJ4Vl61mVVYi1My4d4-OGGM8N_r3GCq6LefISGXs7qEWgNRIFGLENs_s74kRwFMt43y2OcB0iV67mzYbzZn_hsJRpUMKOeqcynWtUvNnvz5Ht_m22OydXopilG-vYPguP_PccCeddpULrVDppF8sqWS-TNdt_6bYnM-bxQXb8n9sBXUdLKUeyZg1wJOoURcH_3a9JUV7am-vxiNqVVSZ29bqoa42tDdXWOZYQNBb9d3N_97GzH6lqVtNae6QlrJvV1njP1gZzu7Z5s7wddZ4ZAMxElgTBMOGMyEI9Mszxj2sSZNkyHjnEbOpsb-HhpXkDczhObGK6t4aAWhEl1CvYfyaCsSvuJUKMyZYo0ZBakmYPwzzJROKFtkuZG5WpIvvZekrrDlmP3jB-yBS7HEl6gxBc4JF8eLKctquMFm2V0tAR5gYxcjclEupERQmvw6Ervf9lN5VrGjAnMQRB8SDa8I_96dXk4nuD-878aLpO3Mcbv_pfOChk0sxu7CiKnKdbI662do2-TNT-sfwP4cv4O |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT9VAEJ_gMwYv_kGNT1DXxOipj7bbdrvxZFDyQODwgISDyabdPwGR9uW1XDzxEUz8hnwSZ7YtiNHEeGkPnTbdnZnd32xmfgPwWsQ2iqTJgiJKMECxJgzyNMdLFpeO2r24lAqFd_ey6WGyfZQeLcG7oRam44e4OnAjz_DrNTk4HUivX7OGflk0EwQbyS24nSDOoMjrw-yaOwqBvG-Xx4UIiFduYJ4N4_XhzRt70ahGn7qBM39Fq3672bwPn4cf7bJMTifnbTnR337jcPzPkTyAez0MZe87u3kIS7ZageWNofvbCtzxqaG6eQR2yxdSstoxaptD1BJsjkZwefFjv61PbcP08clizuqKOXvW1g2F2Ibp-pgqCVuGqju5vPjey86Ks6Jijfa0nrhtMl_quSgew-Hmx4ONadA3Zwg0l1ESSMOlMyZD_Mg1zzOuTZxpw3XouLChs7nB9UuLEkN3kdjECG2NQMAgTapTlH8Co6qu7FNgpsgKU6Yht4jOHEaAlsvSSW2TNDdFXozh7aAmpXvmcmqg8VV1nMuxwglUNIFjeHUlOe_YOv4gs0qaVogwiCZXUz6RblVEvDX0dG0wANV7c6NiziWlIUgxhjdek3_9utqe7dP92b8KvoTl6cHujtrZ2vu0CndjCuf9Cc8ajNrFuX2OmKctX3jb_gnGFACo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BIigXHgXE0gJGQnDKNomTOD5WhVVboEJbKlXiYCV-qA-arDbphVN_AhL_sL-kM07SUgQS4pIcMoliz4z9jTXzDcBrEdsokiYLiijBAMWaMMjTHC9ZXDpq9-JSKhT-tJNt7iXb--l-n1VJtTAdP8TlgRt5hl-vycHnxq1dkYYeLZoJYo3kJtxKMgQSBIhmV9RRiON9tzwuREC0cgPxbBivDW9e24pGNbrUNZj5K1j1u830Pnwd_rNLMjmenLblRH__jcLx_wbyAO71IJStd1bzEG7YahmWNobeb8tw2yeG6uYR2C1fRslqx6hpDhFLsDmawPnZz922PrYN0weHizmrK-bsSVs3FGAbpusDqiNsGSru8PzsRy87K06KijXak3ripsl8oeeieAx70_dfNjaDvjVDoLmMkkAaLp0xGaJHrnmecW3iTBuuQ8eFDZ3NDa5eWpQYuIvEJkZoawTCBWlSnaL8ExhVdWWfAjNFVpgyDblFbOYw_rNclk5qm6S5KfJiDG8HLSnd85ZT-4xvqmNcjhVOoKIJHMOrS8l5x9XxB5kVUrRCfEEkuZqyiXSrImKtoaerg_5V78uNijmXlIQgxRjeeEX-9etqe7ZL92f_KvgS7nx-N1Uft3Y-rMDdmGJ5f7yzCqN2cWqfI-Bpyxfesi8A1vz_SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+moderate+pump%E2%80%93Stokes+chirp+on+femtosecond+coherent+anti%E2%80%90Stokes+Raman+scattering+spectra&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Gu%2C+Mingming&rft.au=Satija%2C+Aman&rft.au=Lucht%2C+Robert+P.&rft.date=2020-01-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=51&rft.issue=1&rft.spage=115&rft.epage=124&rft_id=info:doi/10.1002%2Fjrs.5754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jrs_5754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon |