Conductivity and Surface Passivation Properties of Boron‐Doped Poly‐Silicon Passivated Contacts for c‐Si Solar Cells

Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiOx) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c‐Si substrate. This study focu...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 216; no. 10
Main Authors Morisset, Audrey, Cabal, Raphaël, Grange, Bernadette, Marchat, Clément, Alvarez, José, Gueunier‐Farret, Marie‐Estelle, Dubois, Sébastien, Kleider, Jean‐Paul
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.05.2019
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiOx) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c‐Si substrate. This study focuses on the development of boron‐doped poly‐Si/SiOx structure to obtain a hole selective passivated contact with a reduced recombination current density and a high photo‐voltage potential. The poly‐Si layer is obtained by depositing a hydrogen‐rich amorphous silicon layer by plasma enhanced chemical vapor deposition (PECVD) exposed then to an annealing step. Using the PECVD route enables to single side deposit the poly Si layer, however, a blistering of the layer appears due to its high hydrogen content, which leads to the degradation of the poly‐Si layer after annealing. In this study, the deposition temperature and gas flow ratio used during PECVD step are optimized to obtain blister‐free poly‐Si layer. The stability of the surface passivation properties over time is shown to depend on the blister density. The surface passivation properties are further improved thanks to a post process hydrogenation step. As a result, a mean implied photo‐voltage value of 714 mV is obtained. Boron‐doped polycrystalline silicon (poly‐Si) layer on a thin silicon oxide layer as a passivating structure for c‐Si solar cells is studied. The deposition conditions are optimized to obtain blister‐free poly‐Si layer. The surface passivation properties of the resulting passivating structure are evaluated in accordance with the blister density and the annealing temperature. Conductive‐AFM measurements are performed to study the charge carrier transport in the structure.
AbstractList Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiO x ) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c‐Si substrate. This study focuses on the development of boron‐doped poly‐Si/SiO x structure to obtain a hole selective passivated contact with a reduced recombination current density and a high photo‐voltage potential. The poly‐Si layer is obtained by depositing a hydrogen‐rich amorphous silicon layer by plasma enhanced chemical vapor deposition (PECVD) exposed then to an annealing step. Using the PECVD route enables to single side deposit the poly Si layer, however, a blistering of the layer appears due to its high hydrogen content, which leads to the degradation of the poly‐Si layer after annealing. In this study, the deposition temperature and gas flow ratio used during PECVD step are optimized to obtain blister‐free poly‐Si layer. The stability of the surface passivation properties over time is shown to depend on the blister density. The surface passivation properties are further improved thanks to a post process hydrogenation step. As a result, a mean implied photo‐voltage value of 714 mV is obtained.
Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiOx) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c‐Si substrate. This study focuses on the development of boron‐doped poly‐Si/SiOx structure to obtain a hole selective passivated contact with a reduced recombination current density and a high photo‐voltage potential. The poly‐Si layer is obtained by depositing a hydrogen‐rich amorphous silicon layer by plasma enhanced chemical vapor deposition (PECVD) exposed then to an annealing step. Using the PECVD route enables to single side deposit the poly Si layer, however, a blistering of the layer appears due to its high hydrogen content, which leads to the degradation of the poly‐Si layer after annealing. In this study, the deposition temperature and gas flow ratio used during PECVD step are optimized to obtain blister‐free poly‐Si layer. The stability of the surface passivation properties over time is shown to depend on the blister density. The surface passivation properties are further improved thanks to a post process hydrogenation step. As a result, a mean implied photo‐voltage value of 714 mV is obtained. Boron‐doped polycrystalline silicon (poly‐Si) layer on a thin silicon oxide layer as a passivating structure for c‐Si solar cells is studied. The deposition conditions are optimized to obtain blister‐free poly‐Si layer. The surface passivation properties of the resulting passivating structure are evaluated in accordance with the blister density and the annealing temperature. Conductive‐AFM measurements are performed to study the charge carrier transport in the structure.
Passivating the contacts of crystalline silicon (c-Si) solar cells with a poly-crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiO x) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c-Si substrate. This study focuses on the development of boron-doped poly-Si/SiO x structure to obtain a hole selective passivated contact with a reduced recombination current density and a high photo-voltage potential. The poly-Si layer is obtained by depositing a hydrogen-rich amorphous silicon layer by plasma enhanced chemical vapor deposition (PECVD) exposed then to an annealing step. Using the PECVD route enables to single side deposit the poly Si layer, however, a blistering of the layer appears due to its high hydrogen content, which leads to the degradation of the poly-Si layer after annealing. In this study, the deposition temperature and gas flow ratio used during PECVD step are optimized to obtain blister-free poly-Si layer. The stability of the surface passivation properties over time is shown to depend on the blister density. The surface passivation properties are further improved thanks to a post process hydrogenation step. As a result, a mean implied photo-voltage value of 714 mV is obtained.
Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiOx) film are currently of growing interest to reduce recombination at the interface between the metal electrode and the c‐Si substrate. This study focuses on the development of boron‐doped poly‐Si/SiOx structure to obtain a hole selective passivated contact with a reduced recombination current density and a high photo‐voltage potential. The poly‐Si layer is obtained by depositing a hydrogen‐rich amorphous silicon layer by plasma enhanced chemical vapor deposition (PECVD) exposed then to an annealing step. Using the PECVD route enables to single side deposit the poly Si layer, however, a blistering of the layer appears due to its high hydrogen content, which leads to the degradation of the poly‐Si layer after annealing. In this study, the deposition temperature and gas flow ratio used during PECVD step are optimized to obtain blister‐free poly‐Si layer. The stability of the surface passivation properties over time is shown to depend on the blister density. The surface passivation properties are further improved thanks to a post process hydrogenation step. As a result, a mean implied photo‐voltage value of 714 mV is obtained.
Author Grange, Bernadette
Cabal, Raphaël
Kleider, Jean‐Paul
Alvarez, José
Gueunier‐Farret, Marie‐Estelle
Marchat, Clément
Morisset, Audrey
Dubois, Sébastien
Author_xml – sequence: 1
  givenname: Audrey
  orcidid: 0000-0003-0878-6725
  surname: Morisset
  fullname: Morisset, Audrey
  email: audrey.morisset@cea.fr
  organization: Sorbonne Universités
– sequence: 2
  givenname: Raphaël
  surname: Cabal
  fullname: Cabal, Raphaël
  organization: Institute of Technologies for New Energies (CEA‐Liten)
– sequence: 3
  givenname: Bernadette
  surname: Grange
  fullname: Grange, Bernadette
  organization: Institute of Technologies for New Energies (CEA‐Liten)
– sequence: 4
  givenname: Clément
  surname: Marchat
  fullname: Marchat, Clément
  organization: Sorbonne Universités
– sequence: 5
  givenname: José
  surname: Alvarez
  fullname: Alvarez, José
  organization: Sorbonne Universités
– sequence: 6
  givenname: Marie‐Estelle
  surname: Gueunier‐Farret
  fullname: Gueunier‐Farret, Marie‐Estelle
  organization: Sorbonne Universités
– sequence: 7
  givenname: Sébastien
  surname: Dubois
  fullname: Dubois, Sébastien
  organization: Institute of Technologies for New Energies (CEA‐Liten)
– sequence: 8
  givenname: Jean‐Paul
  surname: Kleider
  fullname: Kleider, Jean‐Paul
  organization: Sorbonne Universités
BackLink https://hal.science/hal-02392467$$DView record in HAL
BookMark eNqFkc1OAjEUhRuDiYBuXTdx5QK8nZ8yXSL-YEIiyei6uXQ6sWScYjtgxpWP4DP6JBYhuHTV9vQ7Jzf39EintrUm5JzBkAFEVyvvcRgBywA4xEekyzIeDXjMROdwBzghPe-XAEmajFiXfExsXaxVYzamaSnWBc3XrkSl6Ry9NxtsjK3p3NmVdo3RntqSXltn6-_Pr5sgFnRuqzY8clMZtUX3tvATohtUjaeldVT9MjS3FTo60VXlT8lxiZXXZ_uzT57vbp8m08Hs8f5hMp4NVCxYPCghS1LgmQANuhDxginFVZJikQlkOhGYsYVimBUswaJANWKCZ5COUsFEiTzuk8td7gtWcuXMK7pWWjRyOp7JrQZRLKKEjzYssBc7duXs21r7Ri7t2tVhPBlFkQhb43ESqOGOUs5673R5iGUgt13IbRfy0EUwiJ3h3VS6_YeW8zwf_3l_AMyxksk
CitedBy_id crossref_primary_10_1016_j_solmat_2022_111890
crossref_primary_10_1002_pip_3459
crossref_primary_10_1002_solr_202300919
crossref_primary_10_1016_j_solmat_2022_111586
crossref_primary_10_1016_j_solmat_2020_110487
crossref_primary_10_1109_JPHOTOV_2020_3023506
crossref_primary_10_1038_s41598_022_18910_5
crossref_primary_10_1002_pssa_201900321
crossref_primary_10_1007_s00170_023_12172_9
crossref_primary_10_1109_TED_2022_3196327
crossref_primary_10_1063_5_0185379
Cites_doi 10.1016/j.solmat.2018.06.020
10.1016/j.solmat.2018.05.046
10.1016/j.solmat.2018.07.025
10.1016/j.egypro.2016.07.040
10.1016/j.solmat.2014.06.003
10.1016/j.solmat.2016.05.045
10.1063/1.338861
10.1016/j.solmat.2013.09.017
10.1149/1.2129737
10.1016/j.solmat.2016.09.015
10.1002/pssa.201700058
10.1016/j.solmat.2017.06.039
10.1063/1.2783972
10.1016/j.solmat.2017.05.041
10.1016/j.solmat.2014.06.015
10.1017/CBO9780511525247
10.1557/jmr.2016.77
10.1016/j.egypro.2016.07.123
10.1016/j.solmat.2018.01.008
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
VOOES
DOI 10.1002/pssa.201800603
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage n/a
ExternalDocumentID oai_HAL_hal_02392467v1
10_1002_pssa_201800603
PSSA201800603
Genre article
GrantInformation_xml – fundername: French National Research Agency
  funderid: ANR‐IEED‐002‐01; ANR‐10‐ITE‐0003; ANR‐17‐CE05‐0035
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
.Y3
AAYXX
ACBWZ
AFFNX
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
LW6
ROL
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
VOOES
ID FETCH-LOGICAL-c3913-f084506890e0ed93b1cc6c45ad89a1e49a81bc1a8d14addac719680575919fa63
IEDL.DBID DR2
ISSN 1862-6300
IngestDate Tue Oct 15 15:59:50 EDT 2024
Thu Oct 10 19:59:55 EDT 2024
Fri Aug 23 03:08:45 EDT 2024
Sat Aug 24 00:52:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3913-f084506890e0ed93b1cc6c45ad89a1e49a81bc1a8d14addac719680575919fa63
ORCID 0000-0003-0878-6725
0000-0003-4388-6326
0000-0003-1615-498X
0000-0003-3558-8302
OpenAccessLink https://hal.science/hal-02392467
PQID 2229045634
PQPubID 1036347
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_02392467v1
proquest_journals_2229045634
crossref_primary_10_1002_pssa_201800603
wiley_primary_10_1002_pssa_201800603_PSSA201800603
PublicationCentury 2000
PublicationDate May 22, 2019
PublicationDateYYYYMMDD 2019-05-22
PublicationDate_xml – month: 05
  year: 2019
  text: May 22, 2019
  day: 22
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2018; 186
2018; 185
1980; 127
2018; 187
1987; 61
2018; 178
2016; 31
2007; 91
2017; 173
2016
2015
2016; 92
2016; 158
1991
2014; 120
2014; 131
2017; 214
2017; 159
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_24_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 159
  start-page: 265
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 158
  start-page: 60
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 120
  start-page: 270
  year: 2014
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 61
  start-page: 225
  year: 1987
  publication-title: J. Appl. Phys
– volume: 91
  start-page: 112109
  year: 2007
  publication-title: Appl. Phys. Lett
– volume: 31
  start-page: 671
  year: 2016
  publication-title: J. Mater. Res
– volume: 186
  start-page: 184
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 1
  year: 2015
  end-page: 5
– volume: 92
  start-page: 427
  year: 2016
  publication-title: Energy Procedia
– volume: 131
  start-page: 46
  year: 2014
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 127
  start-page: 705
  year: 1980
  publication-title: J. Electrochem. Soc
– volume: 173
  start-page: 18
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 185
  start-page: 425
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 221
  year: 2016
  end-page: 224
– volume: 173
  start-page: 106
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 187
  start-page: 113
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 3667
  year: 2016
  end-page: 3670
– volume: 131
  start-page: 85
  year: 2014
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 1991
– volume: 214
  start-page: 1700058
  year: 2017
  publication-title: Phys. Status Solidi A
– year: 2015
– volume: 92
  start-page: 116
  year: 2016
  publication-title: Energy Procedia
– volume: 178
  start-page: 15
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– ident: e_1_2_7_2_1
  doi: 10.1016/j.solmat.2018.06.020
– ident: e_1_2_7_16_1
  doi: 10.1016/j.solmat.2018.05.046
– ident: e_1_2_7_5_1
– ident: e_1_2_7_19_1
  doi: 10.1016/j.solmat.2018.07.025
– ident: e_1_2_7_17_1
  doi: 10.1016/j.egypro.2016.07.040
– ident: e_1_2_7_8_1
  doi: 10.1016/j.solmat.2014.06.003
– ident: e_1_2_7_13_1
  doi: 10.1016/j.solmat.2016.05.045
– ident: e_1_2_7_11_1
  doi: 10.1063/1.338861
– ident: e_1_2_7_3_1
  doi: 10.1016/j.solmat.2013.09.017
– ident: e_1_2_7_22_1
– ident: e_1_2_7_24_1
  doi: 10.1149/1.2129737
– ident: e_1_2_7_9_1
  doi: 10.1016/j.solmat.2016.09.015
– ident: e_1_2_7_18_1
– ident: e_1_2_7_4_1
  doi: 10.1002/pssa.201700058
– ident: e_1_2_7_7_1
  doi: 10.1016/j.solmat.2017.06.039
– ident: e_1_2_7_23_1
  doi: 10.1063/1.2783972
– ident: e_1_2_7_14_1
  doi: 10.1016/j.solmat.2017.05.041
– ident: e_1_2_7_20_1
  doi: 10.1016/j.solmat.2014.06.015
– ident: e_1_2_7_21_1
  doi: 10.1017/CBO9780511525247
– ident: e_1_2_7_12_1
– ident: e_1_2_7_6_1
  doi: 10.1557/jmr.2016.77
– ident: e_1_2_7_10_1
  doi: 10.1016/j.egypro.2016.07.123
– ident: e_1_2_7_15_1
  doi: 10.1016/j.solmat.2018.01.008
SSID ssj0045471
Score 2.3799055
Snippet Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiOx) film...
Passivating the contacts of crystalline silicon (c‐Si) solar cells with a poly‐crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiO x ) film...
Passivating the contacts of crystalline silicon (c-Si) solar cells with a poly-crystalline silicon (poly Si) layer on top of a thin silicon oxide (SiO x) film...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Amorphous silicon
Annealing
Blistering
Boron
Condensed Matter
Crystal structure
Crystallinity
C‐AFM
c‐Si solar cells
Electric potential
Engineering Sciences
Gas flow
Hydrogen storage
Materials
Organic chemistry
passivating contacts
Passivity
Photovoltaic cells
Physics
Plasma enhanced chemical vapor deposition
plasma enhanced chemical vapor deposition (PECVD)
poly‐silicon
Properties (attributes)
Silicon
Silicon oxides
Silicon substrates
Solar cells
Surface stability
Title Conductivity and Surface Passivation Properties of Boron‐Doped Poly‐Silicon Passivated Contacts for c‐Si Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201800603
https://www.proquest.com/docview/2229045634
https://hal.science/hal-02392467
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDDgRfvIvzRhDBp85eki15nFMZojKswt5KkqYojm6sm6BPfgQ_o5_Ec9qtbr4I-ta0CW2TnOSfcPI7hByDCBbcBhZMXGqHGaYdrXni6BjxUJwpGeDh5JvbevuBXXV5d-YUf8GHKDfc0DLy8RoNXOns9BsaOsgy5AZ5ApEiiPtEmh6qoruSH4WwqnzFBbLdQbbUlNro-qfzxedmpcVH9ImcEZyzsjWfdy5XiZp-ceFu8lwbj3TNvP2AOf7nl9bIykSU0mbRi9bJgk03yFLuHGqyTfLW6qeIhc3jTFCVxjQcDxNlLO2A9J6ER6Md3NYfIp-V9hN6hmSEz_ePc7gZ006_9wqJ8KkHHS8ti8ETpGMpM8ooiGdq8jw0xOU2bdleL9siD5cX9622M4nZ4JhAeoGTuIJxty6ka10by0B7xtQN4yoWUnmWSQU62XhKxB6DoVWZBgwBAkWj9GSi6sE2qaT91O4QyhPGjTa-sNYwVwfQhUzMeEMzULFaJFVyMm2zaFCgOaICwuxHWJNRWZNVcgRNWmZCona7eR3hPTzb68Nk8eJVyf60xaOJHWcRRjtH0RuwKvHzpvvlVVEnDJtlavcvhfbIMlxLdFHw_X1SGQ3H9gCUz0gf5r37CxY-_lg
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Bb9MwFMef2BCCCzBgojDAmpA4ZUtiu7OPpWPqWDdVZJO4WbbjaBNVOjUtEjvxEfiMfBLeS5ps4zIJjnZsJbHfs_-2nn8GeI8iWMnAA7q4dpHwwkXOySJyOeGhpLCa0-Hk45P-6Ex8_irbaEI6C9PwIboNN_KMerwmB6cN6d1rauhlVRE4KFHEFOFrcB99XpJv7n_pCFKEq6rXXCjcI6JLtdzGON29Xf_WvLR2TlGRNyTnTeFazzwHT8C139wEnHzbWS7cjr_6C-f4Xz_1FB6vdCkbNIa0AfdC-Qwe1PGhvnoOV8NZSWTY-qoJZsucZct5YX1gE1TfqxvS2IR29ueEaGWzgn0kOMLvn7_2MTNnk9n0ByayiynaXtlVwycEyLJ-UTHUz8zXZVhGK242DNNp9QLODj6dDkfR6tqGyHOd8KiIlZBxX-k4xCHX3CXe972QNlfaJkFoi1LZJ1blicDR1fo9HAUU6Uad6ML2-Sasl7MyvAQmCyG986kKwYvYcbQinwu55wQKWaeKHnxoO81cNnQO03CYU0MtabqW7ME29mlXiKDao8HYUB4d703Rdr4nPdhqu9ysXLkydOE56V4uepDWfXfHq8wkywZd6tW_VHoHD0enx2MzPjw5eg2PMF9TxEKabsH6Yr4Mb1AILdzb2tT_AP_bAoc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NjtMwEMdH7CIQF74RhQUshMQpu0lsZ-1jaakKLKuIsNLeLNtxBKJKq6ZFYk88As_IkzCTtKHLBQmOdmwl8Yztv63xzwAvUAQrGXjALq5dJLxwkXOyilxJeCgprOZ0OPn9aTY9E2_P5fnOKf6OD9FvuFHPaMdr6uCLsjr6DQ1dNA1xgxJFSBG-B1dFxlNafo0_9AApolW1Sy7U7RHBpbbYxjg9ulz_0rS094mCIncU565ubSeeyS2w20_u4k2-HK5X7tBf_EFz_J9_ug03N6qUDTs3ugNXQn0XrrXRob65BxejeU1c2PaiCWbrkhXrZWV9YDlq7839aCynff0lAVrZvGKvCI3w8_uPMWaWLJ_PvmGi-DxDz6v7aviE8FjWrxqG6pn5tgwraL3NRmE2a-7D2eT1x9E02lzaEHmuEx5VsRIyzpSOQxxKzV3ifeaFtKXSNglCWxTKPrGqTASOrdYf4xigSDXqRFc24w9gv57X4SEwWQnpnU9VCF7EjqMP-VLIYydQxjpVDeDl1mZm0bE5TEdhTg21pOlbcgDP0aR9IUJqT4cnhvLocG-Ks8XXZAAHW4ubTUduDF13TqqXiwGkren-8iqTF8WwTz36l0rP4Ho-npiTN6fvHsMNzNYUrpCmB7C_Wq7DE1RBK_e0dfRf_N4BNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductivity+and+Surface+Passivation+Properties+of+Boron%E2%80%90Doped+Poly%E2%80%90Silicon+Passivated+Contacts+for+c%E2%80%90Si+Solar+Cells&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Morisset%2C+Audrey&rft.au=Cabal%2C+Rapha%C3%ABl&rft.au=Grange%2C+Bernadette&rft.au=Marchat%2C+Cl%C3%A9ment&rft.date=2019-05-22&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=216&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssa.201800603&rft.externalDBID=10.1002%252Fpssa.201800603&rft.externalDocID=PSSA201800603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon