TC2015: Life cycle analysis of co‐formed coal fines and hydrochar produced in twin‐screw extruder (TSE)

Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co‐forming coal fines and hydro...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 36; no. 3; pp. 668 - 676
Main Authors Liu, Xiaowei (Vivian), Hoekman, S. Kent, Farthing, William, Felix, Larry
Format Journal Article
LanguageEnglish
Published United States Wiley 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co‐forming coal fines and hydrochar. The hydrochar is derived from loblolly pine wood via hydrothermal carbonization (HTC) conducted in a reactive twin‐screw extruder (TSE). The final product is a drop‐in replacement for coal. The life cycle impacts of the co‐formed end products are quantified from ‘cradle‐to‐grave’. Model input parameters are collected from life cycle databases, literature, experimental measurements and simulations by engineering software. Results show that electricity generated from the co‐formed products has significantly lower GHG intensity and slightly higher life cycle energy use than coal‐generated electricity. The most carbon‐intensive component in the overall hydrochar system is the HTC plant. However, this could be improved in the future by plant re‐design to recover and recycle thermal energy for more efficient operation. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 668–676, 2017
AbstractList Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co‐forming coal fines and hydrochar. The hydrochar is derived from loblolly pine wood via hydrothermal carbonization (HTC) conducted in a reactive twin‐screw extruder (TSE). The final product is a drop‐in replacement for coal. The life cycle impacts of the co‐formed end products are quantified from ‘cradle‐to‐grave’. Model input parameters are collected from life cycle databases, literature, experimental measurements and simulations by engineering software. Results show that electricity generated from the co‐formed products has significantly lower GHG intensity and slightly higher life cycle energy use than coal‐generated electricity. The most carbon‐intensive component in the overall hydrochar system is the HTC plant. However, this could be improved in the future by plant re‐design to recover and recycle thermal energy for more efficient operation. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 668–676, 2017
Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co-forming coal fines and hydrochar. The hydrochar is derived from loblolly pine wood via hydrothermal carbonization (HTC) conducted in a reactive twin-screw extruder (TSE). The final product is a drop-in replacement for coal. The life cycle impacts of the co-formed end products are quantified from ‘cradle-to-grave’. Model input parameters are collected from life cycle databases, literature, experimental measurements and simulations by engineering software. Results show that electricity generated from the co-formed products has significantly lower GHG intensity and slightly higher life cycle energy use than coal-generated electricity. The most carbon-intensive component in the overall hydrochar system is the HTC plant. However, this could be improved in the future by plant re-design to recover and recycle thermal energy for more efficient operation.
Author Liu, Xiaowei (Vivian)
Farthing, William
Felix, Larry
Hoekman, S. Kent
Author_xml – sequence: 1
  givenname: Xiaowei (Vivian)
  surname: Liu
  fullname: Liu, Xiaowei (Vivian)
  organization: Desert Research Institute
– sequence: 2
  givenname: S. Kent
  surname: Hoekman
  fullname: Hoekman, S. Kent
  email: kent.hoekman@dri.edu
  organization: Desert Research Institute
– sequence: 3
  givenname: William
  surname: Farthing
  fullname: Farthing, William
  organization: Gas Technology Institute
– sequence: 4
  givenname: Larry
  surname: Felix
  fullname: Felix, Larry
  organization: Gas Technology Institute
BackLink https://www.osti.gov/servlets/purl/1533172$$D View this record in Osti.gov
BookMark eNp10MtKAzEUBuAgCrZV8BGCq7qYmstcOu6k1AsUFKzrIU1OaHSaDMmUOjsfwWf0SYyOuBBdnX_x_WfxD9G-dRYQOqFkQglh59BMKMsytocGtEzTpEgzsv-TU3aIhiE8EZLztCwH6Hk5Y4RmF3hhNGDZyRqwsKLuggnYaSzd--ubdn4DKmZRY20shEgUXnfKO7kWHjfeqa2Mwljc7oyNlSA97DC8tH6rwOPx8mF-doQOtKgDHH_fEXq8mi9nN8ni7vp2drlIJC8pS8pUMSZWJdeZUkyJIuc5WfFUsoyRgjJNBBCdlzoCSVkB09U0ZVxoTkmeF8BH6LT_60JrqiBNC3ItnbUg24pmnNOCRTTpkfQuBA-6ik60xtnWC1NXlFSfe1bQVF97xsL4V6HxZiN89xdNerozNXT_ump-3_sPmgGFnw
CitedBy_id crossref_primary_10_1016_j_jclepro_2025_144838
crossref_primary_10_1016_j_energy_2025_134647
crossref_primary_10_3390_catal11080939
crossref_primary_10_1016_j_joei_2018_12_003
crossref_primary_10_1021_acsestengg_3c00043
crossref_primary_10_1016_j_biortech_2020_122866
crossref_primary_10_1016_j_jclepro_2021_125980
crossref_primary_10_1016_j_wasman_2023_04_043
crossref_primary_10_1080_00986445_2019_1621858
crossref_primary_10_3390_su12219026
crossref_primary_10_1016_j_biortech_2020_124399
crossref_primary_10_1016_j_rser_2020_109761
crossref_primary_10_1016_j_fuel_2023_130643
crossref_primary_10_1111_gcbb_12484
crossref_primary_10_1007_s11270_025_07881_8
crossref_primary_10_1016_j_jaap_2025_107039
crossref_primary_10_3390_c10010008
Cites_doi 10.1111/gcbb.12132
10.1002/bbb.198
10.1016/j.rser.2014.08.066
10.1016/j.enconman.2016.12.035
10.1080/17597269.2015.1012693
10.1007/s13399-012-0066-y
10.4155/bfs.10.81
10.1021/ef700292p
10.1002/ep.10385
10.1016/j.solener.2015.05.001
10.1016/j.wasman.2015.04.029
10.3390/en8043258
10.1021/ef101745n
10.2134/jeq2012.0151
10.1039/b810100k
10.1260/0958-305X.26.5.847
10.1016/j.apenergy.2010.10.016
ContentType Journal Article
Copyright 2017 American Institute of Chemical Engineers Environ Prog
Copyright_xml – notice: 2017 American Institute of Chemical Engineers Environ Prog
CorporateAuthor Gas Technology Institute, Des Plaines, IL (United States)
CorporateAuthor_xml – name: Gas Technology Institute, Des Plaines, IL (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1002/ep.12552
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1944-7450
EndPage 676
ExternalDocumentID 1533172
10_1002_ep_12552
EP12552
Genre article
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c3912-94d22ab93f5dd2da76360b34c2520712f0ae0f69f3f5c127e8b8423af310667e3
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Thu May 18 22:37:41 EDT 2023
Thu Apr 24 23:02:12 EDT 2025
Tue Jul 01 01:10:06 EDT 2025
Wed Jan 22 17:10:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3912-94d22ab93f5dd2da76360b34c2520712f0ae0f69f3f5c127e8b8423af310667e3
Notes FE0005349
USDOE Office of Fossil Energy (FE)
OpenAccessLink https://www.osti.gov/servlets/purl/1533172
PageCount 9
ParticipantIDs osti_scitechconnect_1533172
crossref_citationtrail_10_1002_ep_12552
crossref_primary_10_1002_ep_12552
wiley_primary_10_1002_ep_12552_EP12552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental progress & sustainable energy
PublicationYear 2017
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 26
2013; 3
2015; 5
2011; 2
2015; 41
2015; 43
2011; 88
2006
2015; 119
2016
2008; 22
2015
2011; 25
2013
2013; 7
2008; 1
2017; 134
2015; 8
2010; 4
2012; 41
2009; 28
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
Felix L.G. (e_1_2_7_15_1) 2015
References_xml – volume: 41
  start-page: 967
  year: 2012
  end-page: 972
  article-title: Environmental benefits of biochar
  publication-title: Journal of Environmental Quality
– volume: 25
  start-page: 1802
  year: 2011
  end-page: 1810
  article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass
  publication-title: Energy and Fuels
– volume: 43
  start-page: 203
  year: 2015
  end-page: 217
  article-title: Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes
  publication-title: Waste Management
– volume: 22
  start-page: 46
  year: 2008
  end-page: 60
  article-title: Some recent advances in hydrolysis of biomass in hot‐compressed water and its comparisons with other hydrolysis methods
  publication-title: Energy and Fuels
– volume: 41
  start-page: 568
  year: 2015
  end-page: 583
  article-title: Assessment of dry residual biomass potential for use as alternative energy source in the party of general Pueyrredon, Argentina
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 3
  start-page: 113
  year: 2013
  end-page: 126
  article-title: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks
  publication-title: Biomass Conversion and Biorefinery
– volume: 134
  start-page: 247
  year: 2017
  end-page: 259
  article-title: Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin‐screw extruder
  publication-title: Energy Conversion and Management
– volume: 7
  start-page: 1
  year: 2013
  end-page: 13
  article-title: The way forward in biochar research: Targeting trade‐offs between the potential wins
  publication-title: GCB Bioenergy
– volume: 2
  start-page: 71
  year: 2011
  end-page: 106
  article-title: Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, process and applications of wet and dry pyrolysis
  publication-title: Biofuels
– volume: 1
  start-page: 32
  year: 2008
  end-page: 65
  article-title: Thermochemical biofuel production in hydrothermal media: A review of sub‐ and supercritical water technologies
  publication-title: Energy and Environmental Science
– year: 2006
– volume: 5
  start-page: 651
  year: 2015
  end-page: 666
  article-title: Laboratory pelletization of hydrochar from woody biomass
  publication-title: Biofuels
– volume: 26
  start-page: 847
  year: 2015
  end-page: 852
  article-title: Renewable energy target for Australia—The role of fuel conversion efficiency and waste biomass valorisation
  publication-title: Energy and Environment
– volume: 8
  start-page: 3258
  year: 2015
  end-page: 3271
  article-title: Life‐cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan
  publication-title: Energies
– volume: 4
  start-page: 160
  year: 2010
  end-page: 177
  article-title: Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels Bioproducts and Biorefining
– volume: 119
  start-page: 561
  year: 2015
  end-page: 572
  article-title: Lifecycle climate impacts and economic performance of commercial‐scale solar PV systems: A study of PV systems at Nevada's Desert Research Institute (DRI)
  publication-title: Solar Energy
– volume: 28
  start-page: 435
  year: 2009
  end-page: 440
  article-title: Thermal pretreatment of lignocellulosic biomass
  publication-title: Environmental Progress and Sustainable Energy
– year: 2016
– year: 2015
– volume: 88
  start-page: 1241
  year: 2011
  end-page: 1250
  article-title: Forest biomass supply logistics for a power plant using the discrete‐event simulation approach
  publication-title: Applied Energy
– year: 2013
– ident: e_1_2_7_2_1
  doi: 10.1111/gcbb.12132
– ident: e_1_2_7_9_1
  doi: 10.1002/bbb.198
– ident: e_1_2_7_20_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.rser.2014.08.066
– ident: e_1_2_7_16_1
  doi: 10.1016/j.enconman.2016.12.035
– ident: e_1_2_7_7_1
  doi: 10.1080/17597269.2015.1012693
– ident: e_1_2_7_5_1
  doi: 10.1007/s13399-012-0066-y
– ident: e_1_2_7_13_1
  doi: 10.4155/bfs.10.81
– ident: e_1_2_7_11_1
  doi: 10.1021/ef700292p
– ident: e_1_2_7_12_1
  doi: 10.1002/ep.10385
– ident: e_1_2_7_17_1
  doi: 10.1016/j.solener.2015.05.001
– ident: e_1_2_7_6_1
  doi: 10.1016/j.wasman.2015.04.029
– ident: e_1_2_7_22_1
  doi: 10.3390/en8043258
– volume-title: First Scientific/Technical Report to U.S. DOE. DOE Award No. DE‐FE 0005349
  year: 2015
  ident: e_1_2_7_15_1
– ident: e_1_2_7_19_1
– ident: e_1_2_7_14_1
  doi: 10.1021/ef101745n
– ident: e_1_2_7_18_1
– ident: e_1_2_7_8_1
  doi: 10.2134/jeq2012.0151
– ident: e_1_2_7_10_1
  doi: 10.1039/b810100k
– ident: e_1_2_7_4_1
  doi: 10.1260/0958-305X.26.5.847
– ident: e_1_2_7_21_1
  doi: 10.1016/j.apenergy.2010.10.016
SSID ssj0063499
Score 2.2346692
Snippet Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is...
SourceID osti
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 668
SubjectTerms Engineering
ENVIRONMENTAL SCIENCES
Environmental Sciences & Ecology
fast hydrothermal carbonization
greenhouse gas
HTC
hydrochar
life cycle analysis
renewable energy
Science & Technology - Other Topics
Title TC2015: Life cycle analysis of co‐formed coal fines and hydrochar produced in twin‐screw extruder (TSE)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12552
https://www.osti.gov/servlets/purl/1533172
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FmtVVhAfh9R0s0kTbyIVERXRFgoewj6xVNJSW0RP_gR_o7_EmU1aHyiIp4TwbVh2dne-XWa-IWRbKgasOgLmJrTwuDSYrCzx3oprBp_qRmI28sVldNriZ-2wXURVYi5Mrg8xuXDDleH2a1zgQj4cfIiGmn4VnHOI2y-GaiEfup4oR0UBd6Uj4YjOvTrnbKw767ODccMvnqjUgxX1laA6D3MyR27HfcsDS7rV0VBW1fM32cb_dX6ezBbEkx7lM2WBTJlskcx8kiNcIt3mMTjq8JCed6yh6glwVBSiJbRnqeq9vbwiyTUa3uFnFmPmAaLp3ZPG2ltiQPtOQhYQnYwOHzsZNIGdyTxS8AKDkTYDute8aewvk9ZJo3l86hXFGDwVJDXmJWA7JmQS2FBrBkZEoTEZcMVCBjSFWV8Y30aJBYCqsbqJZQxUTVjgj1FUN8EKKWW9zKwSKuFMgydjHfqWC-kLGfssUbUolsqPk6hMdseGSVWhVI4FM-7TXGOZpaafuuErk60Jsp-rc_yAqaBtU2AUKIurMH5IDVPkuUDeymTH2enX5mnjyj3X_gqskGmGrt8FRa6TEoyt2QDiMpSbboq-A-Jn6Mw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcAAO_BQqQvnZSuWnB6fOeu3YSBxQmyqlaYUglXpz91dERU4UUkXhxCPwHn2VPgVPwszaDhSB1EsPnGxZs6v17szOt6uZbwDWleaIqhNEbtLIQChLycqK7q2E4fipYxVlI-8fJL1D8e4oPlqCszoXpuSHWFy4kWX4_ZoMnC6kN3-xhtpxC71zzKuIyj07n-F57cub3W1c3Oec73QHW72gKikQ6Chr8yDDEXCpssjFxnAcCtFlqUhoHnN0ttyF0oYuyRwK6Dbv2FSlCDikQxSUJB0bYb_X4DoVECei_u0PC66qJBK-WGU7EyLoCMFrptuQb9YjveD7GiO04YuQ2Pu0nTtwXs9GGcpy0jqdqpb--gdR5H8yXXfhdoWt2dvSGO7Bki2W4dZvjIv34WSwhVgkfs36Q2eZnqMckxUvCxs5pkc_vn0nHG8NvmNnjtICUMSwT3ND5cXkhI09Sy5KDAs2nQ0LbIKbr50xdHSTU2Mn7NXgY3fjARxeyd-uQKMYFfYhMIXHNjr8mzh0QqpQqjTkmW4nqdJhmiVNeFlrQq4rMnaqCfI5L2mkeW7HuV-uJqwtJMclAclfZFZJmXIETcT8qylESk9zgvKIT5vwwivGP5vn3ff--eiygs_gRm-w38_7uwd7q3CTE9LxMaCPoYHzbJ8gTpuqp94-GBxftYb9BGBGRM4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVEJwgPJTEUphkfjrwamzXm_sShxQk6ilpaoglXpz91dERY4VUkXh1Efoc_RV-hZ9ks6u7UARSFx64GTLml2td2d2vl3NfAPwSiqKqJojchNaBEwal6ws3b0V0xQ_dYx02cif9vjWAft4GB8uwHmdC1PyQ8wv3Jxl-P3aGXih7fpP0lBTtNA5x7QKqNwxsyke176_3-7i2r6mtN8bbG4FVUWBQEVpmwYpDoAKmUY21priSBxbloyYojFFX0ttKExoeWpRQLVpxyQyQbwhLIIgzjsmwn5vwSLjYerKRHQ_z6mqeMR8rcp2yljQYYzWRLchXa9Hes31NUZowtcRsXdp_ftwUU9GGcly3DqZyJb68RtP5P8xW0twr0LW5ENpCg9gweQP4e4vfIuP4HiwiUgk3iC7Q2uImqEcERUrCxlZokaXp2cOxRuN79iZdUkBKKLJ15l2xcXEmBSeIxclhjmZTIc5NsGt10wJurnxiTZj8m7wpbf2GA5u5G-XoZGPcvMEiMRDmzv66zi0TMhQyCSkqWrzRKowSXkT3taKkKmKit1VBPmWlSTSNDNF5perCS_nkkVJP_IHmRWnSxlCJsf7q1yAlJpkDsgjOm3CG68Xf22e9fb98-m_Cr6A2_vdfra7vbezAneogzk-APQZNHCazSqCtIl87q2DwNFNK9gVKf5DfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TC2015%3A+Life+cycle+analysis+of+co-formed+coal+fines+and+hydrochar+produced+in+twin-screw+extruder+%28TSE%29&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Liu%2C+Xiaowei+Vivian&rft.au=Hoekman%2C+S.+Kent&rft.au=Farthing%2C+William&rft.au=Felix%2C+Larry&rft.date=2017-05-01&rft.pub=Wiley&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fep.12552&rft.externalDocID=1533172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon