TC2015: Life cycle analysis of co‐formed coal fines and hydrochar produced in twin‐screw extruder (TSE)
Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co‐forming coal fines and hydro...
Saved in:
Published in | Environmental progress & sustainable energy Vol. 36; no. 3; pp. 668 - 676 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co‐forming coal fines and hydrochar. The hydrochar is derived from loblolly pine wood via hydrothermal carbonization (HTC) conducted in a reactive twin‐screw extruder (TSE). The final product is a drop‐in replacement for coal. The life cycle impacts of the co‐formed end products are quantified from ‘cradle‐to‐grave’. Model input parameters are collected from life cycle databases, literature, experimental measurements and simulations by engineering software. Results show that electricity generated from the co‐formed products has significantly lower GHG intensity and slightly higher life cycle energy use than coal‐generated electricity. The most carbon‐intensive component in the overall hydrochar system is the HTC plant. However, this could be improved in the future by plant re‐design to recover and recycle thermal energy for more efficient operation. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 668–676, 2017 |
---|---|
AbstractList | Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co‐forming coal fines and hydrochar. The hydrochar is derived from loblolly pine wood via hydrothermal carbonization (HTC) conducted in a reactive twin‐screw extruder (TSE). The final product is a drop‐in replacement for coal. The life cycle impacts of the co‐formed end products are quantified from ‘cradle‐to‐grave’. Model input parameters are collected from life cycle databases, literature, experimental measurements and simulations by engineering software. Results show that electricity generated from the co‐formed products has significantly lower GHG intensity and slightly higher life cycle energy use than coal‐generated electricity. The most carbon‐intensive component in the overall hydrochar system is the HTC plant. However, this could be improved in the future by plant re‐design to recover and recycle thermal energy for more efficient operation. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 668–676, 2017 Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is to assess the greenhouse gas (GHG) emissions and life cycle energy use associated with solid fuels produced by co-forming coal fines and hydrochar. The hydrochar is derived from loblolly pine wood via hydrothermal carbonization (HTC) conducted in a reactive twin-screw extruder (TSE). The final product is a drop-in replacement for coal. The life cycle impacts of the co-formed end products are quantified from ‘cradle-to-grave’. Model input parameters are collected from life cycle databases, literature, experimental measurements and simulations by engineering software. Results show that electricity generated from the co-formed products has significantly lower GHG intensity and slightly higher life cycle energy use than coal-generated electricity. The most carbon-intensive component in the overall hydrochar system is the HTC plant. However, this could be improved in the future by plant re-design to recover and recycle thermal energy for more efficient operation. |
Author | Liu, Xiaowei (Vivian) Farthing, William Felix, Larry Hoekman, S. Kent |
Author_xml | – sequence: 1 givenname: Xiaowei (Vivian) surname: Liu fullname: Liu, Xiaowei (Vivian) organization: Desert Research Institute – sequence: 2 givenname: S. Kent surname: Hoekman fullname: Hoekman, S. Kent email: kent.hoekman@dri.edu organization: Desert Research Institute – sequence: 3 givenname: William surname: Farthing fullname: Farthing, William organization: Gas Technology Institute – sequence: 4 givenname: Larry surname: Felix fullname: Felix, Larry organization: Gas Technology Institute |
BackLink | https://www.osti.gov/servlets/purl/1533172$$D View this record in Osti.gov |
BookMark | eNp10MtKAzEUBuAgCrZV8BGCq7qYmstcOu6k1AsUFKzrIU1OaHSaDMmUOjsfwWf0SYyOuBBdnX_x_WfxD9G-dRYQOqFkQglh59BMKMsytocGtEzTpEgzsv-TU3aIhiE8EZLztCwH6Hk5Y4RmF3hhNGDZyRqwsKLuggnYaSzd--ubdn4DKmZRY20shEgUXnfKO7kWHjfeqa2Mwljc7oyNlSA97DC8tH6rwOPx8mF-doQOtKgDHH_fEXq8mi9nN8ni7vp2drlIJC8pS8pUMSZWJdeZUkyJIuc5WfFUsoyRgjJNBBCdlzoCSVkB09U0ZVxoTkmeF8BH6LT_60JrqiBNC3ItnbUg24pmnNOCRTTpkfQuBA-6ik60xtnWC1NXlFSfe1bQVF97xsL4V6HxZiN89xdNerozNXT_ump-3_sPmgGFnw |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2025_144838 crossref_primary_10_1016_j_energy_2025_134647 crossref_primary_10_3390_catal11080939 crossref_primary_10_1016_j_joei_2018_12_003 crossref_primary_10_1021_acsestengg_3c00043 crossref_primary_10_1016_j_biortech_2020_122866 crossref_primary_10_1016_j_jclepro_2021_125980 crossref_primary_10_1016_j_wasman_2023_04_043 crossref_primary_10_1080_00986445_2019_1621858 crossref_primary_10_3390_su12219026 crossref_primary_10_1016_j_biortech_2020_124399 crossref_primary_10_1016_j_rser_2020_109761 crossref_primary_10_1016_j_fuel_2023_130643 crossref_primary_10_1111_gcbb_12484 crossref_primary_10_1007_s11270_025_07881_8 crossref_primary_10_1016_j_jaap_2025_107039 crossref_primary_10_3390_c10010008 |
Cites_doi | 10.1111/gcbb.12132 10.1002/bbb.198 10.1016/j.rser.2014.08.066 10.1016/j.enconman.2016.12.035 10.1080/17597269.2015.1012693 10.1007/s13399-012-0066-y 10.4155/bfs.10.81 10.1021/ef700292p 10.1002/ep.10385 10.1016/j.solener.2015.05.001 10.1016/j.wasman.2015.04.029 10.3390/en8043258 10.1021/ef101745n 10.2134/jeq2012.0151 10.1039/b810100k 10.1260/0958-305X.26.5.847 10.1016/j.apenergy.2010.10.016 |
ContentType | Journal Article |
Copyright | 2017 American Institute of Chemical Engineers Environ Prog |
Copyright_xml | – notice: 2017 American Institute of Chemical Engineers Environ Prog |
CorporateAuthor | Gas Technology Institute, Des Plaines, IL (United States) |
CorporateAuthor_xml | – name: Gas Technology Institute, Des Plaines, IL (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1002/ep.12552 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1944-7450 |
EndPage | 676 |
ExternalDocumentID | 1533172 10_1002_ep_12552 EP12552 |
Genre | article |
GroupedDBID | ..I .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BCU BDRZF BEC BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GUQSH H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH IX1 J0M JPC LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PATMY PQQKQ PROAC PTHSS PYCSY Q.N Q11 QB0 QRW R.K ROL RWI RX1 S0X SJFOW SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c3912-94d22ab93f5dd2da76360b34c2520712f0ae0f69f3f5c127e8b8423af310667e3 |
IEDL.DBID | DR2 |
ISSN | 1944-7442 |
IngestDate | Thu May 18 22:37:41 EDT 2023 Thu Apr 24 23:02:12 EDT 2025 Tue Jul 01 01:10:06 EDT 2025 Wed Jan 22 17:10:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3912-94d22ab93f5dd2da76360b34c2520712f0ae0f69f3f5c127e8b8423af310667e3 |
Notes | FE0005349 USDOE Office of Fossil Energy (FE) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1533172 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1533172 crossref_citationtrail_10_1002_ep_12552 crossref_primary_10_1002_ep_12552 wiley_primary_10_1002_ep_12552_EP12552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2017 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Environmental progress & sustainable energy |
PublicationYear | 2017 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2015; 26 2013; 3 2015; 5 2011; 2 2015; 41 2015; 43 2011; 88 2006 2015; 119 2016 2008; 22 2015 2011; 25 2013 2013; 7 2008; 1 2017; 134 2015; 8 2010; 4 2012; 41 2009; 28 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 Felix L.G. (e_1_2_7_15_1) 2015 |
References_xml | – volume: 41 start-page: 967 year: 2012 end-page: 972 article-title: Environmental benefits of biochar publication-title: Journal of Environmental Quality – volume: 25 start-page: 1802 year: 2011 end-page: 1810 article-title: Hydrothermal carbonization (HTC) of lignocellulosic biomass publication-title: Energy and Fuels – volume: 43 start-page: 203 year: 2015 end-page: 217 article-title: Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes publication-title: Waste Management – volume: 22 start-page: 46 year: 2008 end-page: 60 article-title: Some recent advances in hydrolysis of biomass in hot‐compressed water and its comparisons with other hydrolysis methods publication-title: Energy and Fuels – volume: 41 start-page: 568 year: 2015 end-page: 583 article-title: Assessment of dry residual biomass potential for use as alternative energy source in the party of general Pueyrredon, Argentina publication-title: Renewable and Sustainable Energy Reviews – volume: 3 start-page: 113 year: 2013 end-page: 126 article-title: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks publication-title: Biomass Conversion and Biorefinery – volume: 134 start-page: 247 year: 2017 end-page: 259 article-title: Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin‐screw extruder publication-title: Energy Conversion and Management – volume: 7 start-page: 1 year: 2013 end-page: 13 article-title: The way forward in biochar research: Targeting trade‐offs between the potential wins publication-title: GCB Bioenergy – volume: 2 start-page: 71 year: 2011 end-page: 106 article-title: Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, process and applications of wet and dry pyrolysis publication-title: Biofuels – volume: 1 start-page: 32 year: 2008 end-page: 65 article-title: Thermochemical biofuel production in hydrothermal media: A review of sub‐ and supercritical water technologies publication-title: Energy and Environmental Science – year: 2006 – volume: 5 start-page: 651 year: 2015 end-page: 666 article-title: Laboratory pelletization of hydrochar from woody biomass publication-title: Biofuels – volume: 26 start-page: 847 year: 2015 end-page: 852 article-title: Renewable energy target for Australia—The role of fuel conversion efficiency and waste biomass valorisation publication-title: Energy and Environment – volume: 8 start-page: 3258 year: 2015 end-page: 3271 article-title: Life‐cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan publication-title: Energies – volume: 4 start-page: 160 year: 2010 end-page: 177 article-title: Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels Bioproducts and Biorefining – volume: 119 start-page: 561 year: 2015 end-page: 572 article-title: Lifecycle climate impacts and economic performance of commercial‐scale solar PV systems: A study of PV systems at Nevada's Desert Research Institute (DRI) publication-title: Solar Energy – volume: 28 start-page: 435 year: 2009 end-page: 440 article-title: Thermal pretreatment of lignocellulosic biomass publication-title: Environmental Progress and Sustainable Energy – year: 2016 – year: 2015 – volume: 88 start-page: 1241 year: 2011 end-page: 1250 article-title: Forest biomass supply logistics for a power plant using the discrete‐event simulation approach publication-title: Applied Energy – year: 2013 – ident: e_1_2_7_2_1 doi: 10.1111/gcbb.12132 – ident: e_1_2_7_9_1 doi: 10.1002/bbb.198 – ident: e_1_2_7_20_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.rser.2014.08.066 – ident: e_1_2_7_16_1 doi: 10.1016/j.enconman.2016.12.035 – ident: e_1_2_7_7_1 doi: 10.1080/17597269.2015.1012693 – ident: e_1_2_7_5_1 doi: 10.1007/s13399-012-0066-y – ident: e_1_2_7_13_1 doi: 10.4155/bfs.10.81 – ident: e_1_2_7_11_1 doi: 10.1021/ef700292p – ident: e_1_2_7_12_1 doi: 10.1002/ep.10385 – ident: e_1_2_7_17_1 doi: 10.1016/j.solener.2015.05.001 – ident: e_1_2_7_6_1 doi: 10.1016/j.wasman.2015.04.029 – ident: e_1_2_7_22_1 doi: 10.3390/en8043258 – volume-title: First Scientific/Technical Report to U.S. DOE. DOE Award No. DE‐FE 0005349 year: 2015 ident: e_1_2_7_15_1 – ident: e_1_2_7_19_1 – ident: e_1_2_7_14_1 doi: 10.1021/ef101745n – ident: e_1_2_7_18_1 – ident: e_1_2_7_8_1 doi: 10.2134/jeq2012.0151 – ident: e_1_2_7_10_1 doi: 10.1039/b810100k – ident: e_1_2_7_4_1 doi: 10.1260/0958-305X.26.5.847 – ident: e_1_2_7_21_1 doi: 10.1016/j.apenergy.2010.10.016 |
SSID | ssj0063499 |
Score | 2.2346692 |
Snippet | Life cycle analysis (LCA) is a quantitative tool that evaluates the environmental performance of a process or system. The main objective of this LCA study is... |
SourceID | osti crossref wiley |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 668 |
SubjectTerms | Engineering ENVIRONMENTAL SCIENCES Environmental Sciences & Ecology fast hydrothermal carbonization greenhouse gas HTC hydrochar life cycle analysis renewable energy Science & Technology - Other Topics |
Title | TC2015: Life cycle analysis of co‐formed coal fines and hydrochar produced in twin‐screw extruder (TSE) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12552 https://www.osti.gov/servlets/purl/1533172 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FmtVVhAfh9R0s0kTbyIVERXRFgoewj6xVNJSW0RP_gR_o7_EmU1aHyiIp4TwbVh2dne-XWa-IWRbKgasOgLmJrTwuDSYrCzx3oprBp_qRmI28sVldNriZ-2wXURVYi5Mrg8xuXDDleH2a1zgQj4cfIiGmn4VnHOI2y-GaiEfup4oR0UBd6Uj4YjOvTrnbKw767ODccMvnqjUgxX1laA6D3MyR27HfcsDS7rV0VBW1fM32cb_dX6ezBbEkx7lM2WBTJlskcx8kiNcIt3mMTjq8JCed6yh6glwVBSiJbRnqeq9vbwiyTUa3uFnFmPmAaLp3ZPG2ltiQPtOQhYQnYwOHzsZNIGdyTxS8AKDkTYDute8aewvk9ZJo3l86hXFGDwVJDXmJWA7JmQS2FBrBkZEoTEZcMVCBjSFWV8Y30aJBYCqsbqJZQxUTVjgj1FUN8EKKWW9zKwSKuFMgydjHfqWC-kLGfssUbUolsqPk6hMdseGSVWhVI4FM-7TXGOZpaafuuErk60Jsp-rc_yAqaBtU2AUKIurMH5IDVPkuUDeymTH2enX5mnjyj3X_gqskGmGrt8FRa6TEoyt2QDiMpSbboq-A-Jn6Mw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcAAO_BQqQvnZSuWnB6fOeu3YSBxQmyqlaYUglXpz91dERU4UUkXhxCPwHn2VPgVPwszaDhSB1EsPnGxZs6v17szOt6uZbwDWleaIqhNEbtLIQChLycqK7q2E4fipYxVlI-8fJL1D8e4oPlqCszoXpuSHWFy4kWX4_ZoMnC6kN3-xhtpxC71zzKuIyj07n-F57cub3W1c3Oec73QHW72gKikQ6Chr8yDDEXCpssjFxnAcCtFlqUhoHnN0ttyF0oYuyRwK6Dbv2FSlCDikQxSUJB0bYb_X4DoVECei_u0PC66qJBK-WGU7EyLoCMFrptuQb9YjveD7GiO04YuQ2Pu0nTtwXs9GGcpy0jqdqpb--gdR5H8yXXfhdoWt2dvSGO7Bki2W4dZvjIv34WSwhVgkfs36Q2eZnqMckxUvCxs5pkc_vn0nHG8NvmNnjtICUMSwT3ND5cXkhI09Sy5KDAs2nQ0LbIKbr50xdHSTU2Mn7NXgY3fjARxeyd-uQKMYFfYhMIXHNjr8mzh0QqpQqjTkmW4nqdJhmiVNeFlrQq4rMnaqCfI5L2mkeW7HuV-uJqwtJMclAclfZFZJmXIETcT8qylESk9zgvKIT5vwwivGP5vn3ff--eiygs_gRm-w38_7uwd7q3CTE9LxMaCPoYHzbJ8gTpuqp94-GBxftYb9BGBGRM4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVEJwgPJTEUphkfjrwamzXm_sShxQk6ilpaoglXpz91dERY4VUkXh1Efoc_RV-hZ9ks6u7UARSFx64GTLml2td2d2vl3NfAPwSiqKqJojchNaBEwal6ws3b0V0xQ_dYx02cif9vjWAft4GB8uwHmdC1PyQ8wv3Jxl-P3aGXih7fpP0lBTtNA5x7QKqNwxsyke176_3-7i2r6mtN8bbG4FVUWBQEVpmwYpDoAKmUY21priSBxbloyYojFFX0ttKExoeWpRQLVpxyQyQbwhLIIgzjsmwn5vwSLjYerKRHQ_z6mqeMR8rcp2yljQYYzWRLchXa9Hes31NUZowtcRsXdp_ftwUU9GGcly3DqZyJb68RtP5P8xW0twr0LW5ENpCg9gweQP4e4vfIuP4HiwiUgk3iC7Q2uImqEcERUrCxlZokaXp2cOxRuN79iZdUkBKKLJ15l2xcXEmBSeIxclhjmZTIc5NsGt10wJurnxiTZj8m7wpbf2GA5u5G-XoZGPcvMEiMRDmzv66zi0TMhQyCSkqWrzRKowSXkT3taKkKmKit1VBPmWlSTSNDNF5perCS_nkkVJP_IHmRWnSxlCJsf7q1yAlJpkDsgjOm3CG68Xf22e9fb98-m_Cr6A2_vdfra7vbezAneogzk-APQZNHCazSqCtIl87q2DwNFNK9gVKf5DfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TC2015%3A+Life+cycle+analysis+of+co-formed+coal+fines+and+hydrochar+produced+in+twin-screw+extruder+%28TSE%29&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Liu%2C+Xiaowei+Vivian&rft.au=Hoekman%2C+S.+Kent&rft.au=Farthing%2C+William&rft.au=Felix%2C+Larry&rft.date=2017-05-01&rft.pub=Wiley&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fep.12552&rft.externalDocID=1533172 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon |