Capacitive Coupling of Conducting Polymer Tattoo Electrodes with the Skin

Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 8; no. 15
Main Authors Ferrari, Laura M., Ismailov, Usein, Greco, Francesco, Ismailova, Esma
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.08.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra‐conformable tattoo electrodes made of conducting polymers are focused on. The electrochemical characteristics of these electrodes differ from traditional gelled Ag/AgCl electrodes. The modeling of equivalent circuits in different skin‐electrode configurations proposes the explanation of the biopotentials transduction mechanism. The strong agreement between the circuit model and experimental values reveals the capacitive coupling of conducting polymer tattoo electrodes where circuit's values reflect the electrodes’ and skin physical characteristics. Additional studies underline an enhanced signal stability in inter/intra‐subject evaluations using dry tattoos beneficial for broad long‐term recordings. This study provides a comprehensive explanation of the skin/tattoo electrode interface model. The understanding of this interface is essential when designing next generation wearable biomonitoring devices using imperceptible interfaces. Tattoo electrodes are dry sensors that provide outstanding conformability to the skin thanks to their ultralow thickness. These electrodes interact with the skin via capacitive coupling where the upper layers act as a dielectric. Tattoos made of conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) display great mechanical stability and a long‐term performance in detecting biopotentials from the skin despite their considerably large impedance.
AbstractList Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra‐conformable tattoo electrodes made of conducting polymers are focused on. The electrochemical characteristics of these electrodes differ from traditional gelled Ag/AgCl electrodes. The modeling of equivalent circuits in different skin‐electrode configurations proposes the explanation of the biopotentials transduction mechanism. The strong agreement between the circuit model and experimental values reveals the capacitive coupling of conducting polymer tattoo electrodes where circuit's values reflect the electrodes’ and skin physical characteristics. Additional studies underline an enhanced signal stability in inter/intra‐subject evaluations using dry tattoos beneficial for broad long‐term recordings. This study provides a comprehensive explanation of the skin/tattoo electrode interface model. The understanding of this interface is essential when designing next generation wearable biomonitoring devices using imperceptible interfaces.
Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra‐conformable tattoo electrodes made of conducting polymers are focused on. The electrochemical characteristics of these electrodes differ from traditional gelled Ag/AgCl electrodes. The modeling of equivalent circuits in different skin‐electrode configurations proposes the explanation of the biopotentials transduction mechanism. The strong agreement between the circuit model and experimental values reveals the capacitive coupling of conducting polymer tattoo electrodes where circuit's values reflect the electrodes’ and skin physical characteristics. Additional studies underline an enhanced signal stability in inter/intra‐subject evaluations using dry tattoos beneficial for broad long‐term recordings. This study provides a comprehensive explanation of the skin/tattoo electrode interface model. The understanding of this interface is essential when designing next generation wearable biomonitoring devices using imperceptible interfaces. Tattoo electrodes are dry sensors that provide outstanding conformability to the skin thanks to their ultralow thickness. These electrodes interact with the skin via capacitive coupling where the upper layers act as a dielectric. Tattoos made of conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) display great mechanical stability and a long‐term performance in detecting biopotentials from the skin despite their considerably large impedance.
Author Greco, Francesco
Ferrari, Laura M.
Ismailov, Usein
Ismailova, Esma
Author_xml – sequence: 1
  givenname: Laura M.
  surname: Ferrari
  fullname: Ferrari, Laura M.
  organization: Université Côte d'Azur
– sequence: 2
  givenname: Usein
  surname: Ismailov
  fullname: Ismailov, Usein
  organization: Centre of Microelectronics in Provence
– sequence: 3
  givenname: Francesco
  surname: Greco
  fullname: Greco, Francesco
  organization: Graz University of Technology
– sequence: 4
  givenname: Esma
  orcidid: 0000-0001-6722-6782
  surname: Ismailova
  fullname: Ismailova, Esma
  email: ismailova@emse.fr
  organization: Centre of Microelectronics in Provence
BackLink https://hal.science/hal-03503743$$DView record in HAL
BookMark eNqFkM9LwzAUx4NMcM5dPRc8eeh8Sforx1F_bDBRcJ5D1qYus2tqmm7svzelMkUQT3kvfD8vL59zNKh0JRG6xDDBAORG5Fs1IUBcQ0NygoYEs8iPaQiDH_UZGjfNBgAwJpgkdIjmqahFpqzaSS_VbV2q6s3ThaurvM1s1z3r8rCVxlsKa7X27kqZWaNz2Xh7ZdeeXUvv5V1VF-i0EGUjx1_nCL3e3y3Tmb94epin04WfUYaJTxMq8yQnhYylTJJCSkIABwIEi_MQs3wVCFJAvMpYxDK3aOT-FCSOwAxYEtIRuu7nrkXJa6O2why4ForPpgve3TkBQOOA7rDLXvXZ2uiPVjaWb3RrKrceJ2EEGCIIIpea9KnM6KYxsjiOxcA7u7yzy492HRD8ApxBYZWurBGq_BtjPbZXpTz88wif3j7Ov9lP2diObg
CitedBy_id crossref_primary_10_3390_bios12050305
crossref_primary_10_1038_s41528_023_00286_9
crossref_primary_10_1088_2058_8585_acd011
crossref_primary_10_3390_bios13080823
crossref_primary_10_1021_acsaelm_4c01902
crossref_primary_10_1109_TIM_2025_3529066
crossref_primary_10_1063_5_0117278
crossref_primary_10_3390_s22218510
crossref_primary_10_1016_j_cej_2024_151595
crossref_primary_10_1002_advs_202308014
crossref_primary_10_1073_pnas_2306777120
crossref_primary_10_3390_ijms25031564
Cites_doi 10.1002/adfm.201906908
10.1016/j.sbsr.2018.05.001
10.1021/cm4022003
10.1023/A:1016228730522
10.1038/s41551-019-0347-x
10.1002/adhm.201700994
10.1039/c0py00077a
10.1016/S0022-0728(97)00217-9
10.1039/C8AY02678E
10.1016/j.electacta.2009.10.065
10.1002/adhm.201900234
10.1021/acsnano.7b02182
10.1002/adma.201304140
10.1007/BF02478741
10.1088/2399-7532/aba6e3
10.3109/9781420003307
10.1021/js960198e
10.3389/fneng.2014.00013
10.1007/BF02738534
10.1109/RBME.2010.2084078
10.1038/nnano.2017.125
10.1111/j.1600-0846.2004.00050.x
10.1002/adfm.201803279
10.1016/j.glohj.2019.07.001
10.1088/0967-3334/21/2/307
10.1088/1741-2552/abbd50
10.1038/srep06074
10.1038/srep41345
10.1002/advs.201700771
10.1038/s41528-020-0067-z
10.1109/TBME.2014.2308552
10.1021/acs.chemrev.6b00146
10.1016/j.bpj.2013.05.008
10.1007/BF00510068
10.1016/S0924-4247(01)00637-9
10.1002/adhm.201400761
10.1007/BF02464037
10.1111/j.1748-1716.1945.tb03082.x
10.1002/adhm.202001322
10.1126/science.aaw9295
10.1159/000051663
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
VOOES
DOI 10.1002/admi.202100352
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_HAL_hal_03503743v1
10_1002_admi_202100352
ADMI202100352
Genre article
GrantInformation_xml – fundername: BPIFrance AUTONOTEX
  funderid: ANR‐17‐CE19‐0010
– fundername: UCAJEDI Investments in the Future
  funderid: ANR‐15‐IDEX‐01
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AFKRA
AFPKN
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
1XC
VOOES
ID FETCH-LOGICAL-c3912-383ed8d2fe7ee88fee22014a0a97d519db4a2f07bc969c0116210488d21909853
ISSN 2196-7350
IngestDate Wed Aug 27 07:41:22 EDT 2025
Fri Jul 25 11:55:00 EDT 2025
Tue Jul 01 00:39:40 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Sat Aug 24 01:02:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Conformable biosensors
biosignal transduction
tattoo electrodes
conducting polymers
skin impedance
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3912-383ed8d2fe7ee88fee22014a0a97d519db4a2f07bc969c0116210488d21909853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6722-6782
OpenAccessLink https://hal.science/hal-03503743
PQID 2560106046
PQPubID 2034582
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03503743v1
proquest_journals_2560106046
crossref_primary_10_1002_admi_202100352
crossref_citationtrail_10_1002_admi_202100352
wiley_primary_10_1002_admi_202100352_ADMI202100352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 8
1997; 432
1945; 9
2010; 55
2017; 7
2001; 93
2018; 28
2019; 3
2015; 4
2012
2019; 11
1997; 86
2000; 21
2013; 104
1997; 25
1995; 12
2020; 17
2014; 26
2006
2014; 61
2018; 20
2019; 364
2001; 202
1999
2018; 7
2004; 10
2020; 4
1976; 14
2020; 3
2014; 4
2018; 5
2010; 1
2020
2017; 11
2017; 12
2020; 9
1985; 277
1983; 21
2019; 29
2016
2016; 116
1980
2010; 3
2014; 7
1966
e_1_2_8_28_1
Feher J. (e_1_2_8_3_1) 2012
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
Cosseddu P. (e_1_2_8_6_1) 2020
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
Chen Y.‐H. (e_1_2_8_44_1) 2016
e_1_2_8_1_1
e_1_2_8_41_1
Patrick Reilly J. (e_1_2_8_35_1) 2012
e_1_2_8_40_1
Tregear R. T. (e_1_2_8_32_1) 1966
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Bard A. J. (e_1_2_8_17_1) 1980
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Neuman M. (e_1_2_8_18_1) 1999
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 32
  year: 2004
  publication-title: Skin Res. Technol.
– volume: 364
  start-page: 233
  year: 2019
  publication-title: Science
– volume: 4
  start-page: 6074
  year: 2014
  publication-title: Sci. Rep.
– year: 1966
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 11
  start-page: 1460
  year: 2019
  publication-title: Anal. Methods
– volume: 12
  start-page: 907
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 432
  start-page: 79
  year: 1997
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 194
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 104
  start-page: 2639
  year: 2013
  publication-title: Biophys. J.
– volume: 277
  start-page: 489
  year: 1985
  publication-title: Arch. Dermatol. Res.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– year: 2016
– volume: 9
  start-page: 39
  year: 1945
  publication-title: Acta Physiol. Scand.
– volume: 3
  start-page: 62
  year: 2019
  publication-title: Global Health J.
– year: 2012
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 202
  start-page: 308
  year: 2001
  publication-title: Dermatology
– volume: 1
  start-page: 1374
  year: 2010
  publication-title: Polym. Chem.
– volume: 4
  start-page: 983
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 7
  start-page: 13
  year: 2014
  publication-title: Front. Neuroeng.
– volume: 21
  start-page: 739
  year: 1983
  publication-title: Med. Biol. Eng. Comput.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 25
  start-page: 1
  year: 1997
  publication-title: Ann. Biomed. Eng.
– volume: 26
  start-page: 1427
  year: 2014
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 12
  start-page: 1605
  year: 1995
  publication-title: Pharm. Res.
– year: 1980
– volume: 86
  start-page: 1162
  year: 1997
  publication-title: J. Pharm. Sci.
– volume: 11
  start-page: 7634
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 4
  year: 2020
  publication-title: npj Flexible Electron.
– year: 2006
– volume: 3
  year: 2020
  publication-title: Multifunct. Mater.
– year: 2020
– volume: 21
  start-page: 271
  year: 2000
  publication-title: Physiol. Meas.
– volume: 20
  start-page: 9
  year: 2018
  publication-title: Sens. Bio‐Sens. Res.
– volume: 55
  start-page: 6218
  year: 2010
  publication-title: Electrochim. Acta
– volume: 61
  start-page: 1522
  year: 2014
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 17
  year: 2020
  publication-title: J. Neural Eng.
– volume: 93
  start-page: 8
  year: 2001
  publication-title: Sens. Actuators, A
– volume: 26
  start-page: 679
  year: 2014
  publication-title: Chem. Mater.
– volume: 14
  start-page: 151
  year: 1976
  publication-title: Med. Biol. Eng.
– volume: 3
  start-page: 106
  year: 2010
  publication-title: IEEE Rev. Biomed. Eng.
– year: 1999
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201906908
– volume-title: Quantitative Human Physiology: An Introduction
  year: 2012
  ident: e_1_2_8_3_1
– ident: e_1_2_8_22_1
  doi: 10.1016/j.sbsr.2018.05.001
– ident: e_1_2_8_26_1
  doi: 10.1021/cm4022003
– ident: e_1_2_8_34_1
  doi: 10.1023/A:1016228730522
– ident: e_1_2_8_7_1
  doi: 10.1038/s41551-019-0347-x
– ident: e_1_2_8_8_1
  doi: 10.1002/adhm.201700994
– ident: e_1_2_8_25_1
  doi: 10.1039/c0py00077a
– ident: e_1_2_8_36_1
  doi: 10.1016/S0022-0728(97)00217-9
– ident: e_1_2_8_11_1
  doi: 10.1039/C8AY02678E
– ident: e_1_2_8_46_1
  doi: 10.1016/j.electacta.2009.10.065
– ident: e_1_2_8_21_1
  doi: 10.1002/adhm.201900234
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.7b02182
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201304140
– ident: e_1_2_8_30_1
  doi: 10.1007/BF02478741
– ident: e_1_2_8_1_1
  doi: 10.1088/2399-7532/aba6e3
– ident: e_1_2_8_41_1
  doi: 10.3109/9781420003307
– ident: e_1_2_8_39_1
  doi: 10.1021/js960198e
– volume-title: Applied Bioelectricity: From Electrical Stimulation to Electropathology
  year: 2012
  ident: e_1_2_8_35_1
– ident: e_1_2_8_29_1
  doi: 10.3389/fneng.2014.00013
– volume-title: Physical Functions of Skin
  year: 1966
  ident: e_1_2_8_32_1
– ident: e_1_2_8_33_1
  doi: 10.1007/BF02738534
– ident: e_1_2_8_4_1
  doi: 10.1109/RBME.2010.2084078
– ident: e_1_2_8_10_1
  doi: 10.1038/nnano.2017.125
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1600-0846.2004.00050.x
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.201803279
– ident: e_1_2_8_5_1
  doi: 10.1016/j.glohj.2019.07.001
– ident: e_1_2_8_19_1
  doi: 10.1088/0967-3334/21/2/307
– ident: e_1_2_8_47_1
  doi: 10.1088/1741-2552/abbd50
– ident: e_1_2_8_9_1
  doi: 10.1038/srep06074
– ident: e_1_2_8_13_1
  doi: 10.1038/srep41345
– ident: e_1_2_8_15_1
  doi: 10.1002/advs.201700771
– volume-title: Electrical Engineering Handbook
  year: 1999
  ident: e_1_2_8_18_1
– ident: e_1_2_8_23_1
  doi: 10.1038/s41528-020-0067-z
– ident: e_1_2_8_37_1
  doi: 10.1109/TBME.2014.2308552
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.chemrev.6b00146
– volume-title: Organic Flexible Electronics: Fundamentals, Devices, and Applications
  year: 2020
  ident: e_1_2_8_6_1
– ident: e_1_2_8_31_1
  doi: 10.1016/j.bpj.2013.05.008
– ident: e_1_2_8_42_1
  doi: 10.1007/BF00510068
– ident: e_1_2_8_24_1
  doi: 10.1016/S0924-4247(01)00637-9
– ident: e_1_2_8_12_1
  doi: 10.1002/adhm.201400761
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 1980
  ident: e_1_2_8_17_1
– ident: e_1_2_8_38_1
  doi: 10.1007/BF02464037
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1748-1716.1945.tb03082.x
– ident: e_1_2_8_20_1
  doi: 10.1002/adhm.202001322
– volume-title: Polymer‐Based Dry Electrodes for Biopotential Measurements
  year: 2016
  ident: e_1_2_8_44_1
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aaw9295
– ident: e_1_2_8_43_1
  doi: 10.1159/000051663
SSID ssj0001121283
Score 2.3008778
Snippet Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bioengineering
Biomonitoring
biosignal transduction
Condensed Matter
Conducting polymers
conformable biosensors
Coupling
Electrodes
Equivalent circuits
Interfaces
Life Sciences
Materials Science
New technology
Physical properties
Physics
Silver chloride
skin impedance
Stability analysis
tattoo electrodes
Tattoos
Title Capacitive Coupling of Conducting Polymer Tattoo Electrodes with the Skin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202100352
https://www.proquest.com/docview/2560106046
https://hal.science/hal-03503743
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvY58sazfEGOyhOHPk70eTpku2thQWj7IXIVsyDSRxid1C-9fvzpY_UlLW7cXEsiLZup9Od9LpJ0I-41GplqsCIwYn2bAdyzFiS6WG40lAgGvFqcD5jtMzdxrZ3y-ci17vrru7pIiHyd3OfSX_I1VIA7niLtl_kGxTKCTAb5AvXEHCcH2UjMcw0iVV8M84u75a6gjmcbZGFle8O8-Wtyu1OZyLosiyw0l16I1UelMbWp14_FbXRA3rqACwZauPKDklNikGb3Wmn9HLrndWi3ZSdZavxGKZ3eCjKFeLBnzf0PeubWUoKsnu_6W0Yye5Hin0VAQbNYFwHYXX6i_Qha7hWRWv7FDtSNMK2O_izNmp1yueWCFXiyFWXLK4tiNYvWo_DX_y86NjfjI7-7H9tGHSnoYn_BIEjQuqFlhPN-A57zFwMVif7IW_ot9RO0M3gmG95HFt3rpm_TTZ1-132bJqnlxiTG3HYem6PaXdMn9BnmuHg4YVel6Snlq_Ik_LwN8kf01mLYZojSGapbTFENUYohWGaIshihiigCGKGHpDouPJfDw19PEaRmIFSFXpW0r6kqXKU8r3U6UYWIO2MEWAHTWQsS1YanpxErhBggt28LGg7yU0hxmAmfeW9NfZWr0jVILVO3I8AUVIO_aEn_oxQyKhkXQSN3UGxKibhyeaex6PQFnyijWbcWxO3jTngHxp8l9VrCsP5vyE4qwz7RbxgBzUwuC6--ZchxiYtjsgrBTQX6ri4dHprLl7_5iK98mztp8ckH6xuVYfwIgt4o8abX8AieeY3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RfQiPjFadRHBU2iad46htrTaFg-tiJclyW5UaBvpQ_DfO5NX24MI3rLLZkNmd3a-nZ39BuCWUqUatvTUEDfJqmkZlhoaMlYtR-AMsI0wDsjf0R_YnZH58GIV0YR0FybjhygdbqQZ6XpNCk4O6fqKNTQQkw_c4OGehTg9t6FK0MatQNV_Hr2OVo6WBq7OKR0nKqetOoalFeSNml7f7GTDOG2_U2jkGu5cR6-p-WkfwH6OG5mfDfQhbMnpEeyk8ZvR_Bi6TTR6URoHxJrJkq7ZvrEkxucpEbpS6SkZf0_kjA2DxSJJWCvLfyPknJEvliEQZJSJ6wRG7daw2VHzLAlqZHjEOOgaUrhCj6UjpevGUupo1M1ACzyStydCM9BjzQkjz_YiOnfBn0W1FSgOzUNrfQqVaTKVZ8AEgpeG5QTYhTBDJ3BjN9SJD6YhrMiOLQXUQjw8yinEKZPFmGfkxzoncfJSnArcle0_M_KMX1veoLTLRsR53fF7nOro6NNAnPPVUKBWDAbPNW3O85Ni3OYroKcD9MenuH_f75al8_-8dA27nWG_x3vdweMF7FF9FhNYg8pitpSXiFMW4VU-E38A7O3awg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RfEiPrFadRHBUzDNO8fSB622pYdWxMuSZHdVaJvSh-C_dyZJ0_YggrfsMtmQ2Z2dx85-A3BPpVJNR_paiE6yZtmmrYWmVJrtClwBjhmqgOId3Z7TGlpPr_brxi3-FB8iD7iRZCT7NQn4VKjHNWhoIMaf6N-hy0KQnrtQJKg8XNfF6svwbbiOs1Rwc07QOFE2Hc01bX2F3agbj9uDbOmm3Q_KjNwwOzeN10T7NI_gMDMbWTWd52PYkZMT2EvSN6P5KbRrqPOiJA2I1eIl3bJ9Z7HC5wnhuVKrH4--x3LGBsFiEceskZa_EXLOKBTL0A5kVIjrDIbNxqDW0rIiCVpk-gQ46JlSeMJQ0pXS85SUBup0K9ADn9jti9AKDKW7YeQ7fkTHLvizKLUC2aH7qKzPoTCJJ_ICmEDbpWK7AQ4hrNANPOWFBsHBVIQdOcougbZiD48yBHEqZDHiKfaxwYmdPGdnCR5y-mmKnfEr5R1yOyciyOtWtcOpj04-TTRzviolKK8mg2eCNufZQTF6-SUwkgn641O8Wu-289blf166hf1-vck77d7zFRxQd5oRWIbCYraU12ilLMKbbCH-AKV_2es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitive+Coupling+of+Conducting+Polymer+Tattoo+Electrodes+with+the+Skin&rft.jtitle=Advanced+materials+interfaces&rft.au=Ferrari%2C+Laura+M&rft.au=Ismailov%2C+Usein&rft.au=Greco%2C+Francesco&rft.au=Ismailova%2C+Esma&rft.date=2021-08-01&rft.pub=Wiley&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=8&rft.issue=15&rft_id=info:doi/10.1002%2Fadmi.202100352&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03503743v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon