Capacitive Coupling of Conducting Polymer Tattoo Electrodes with the Skin
Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra...
Saved in:
Published in | Advanced materials interfaces Vol. 8; no. 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.08.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra‐conformable tattoo electrodes made of conducting polymers are focused on. The electrochemical characteristics of these electrodes differ from traditional gelled Ag/AgCl electrodes. The modeling of equivalent circuits in different skin‐electrode configurations proposes the explanation of the biopotentials transduction mechanism. The strong agreement between the circuit model and experimental values reveals the capacitive coupling of conducting polymer tattoo electrodes where circuit's values reflect the electrodes’ and skin physical characteristics. Additional studies underline an enhanced signal stability in inter/intra‐subject evaluations using dry tattoos beneficial for broad long‐term recordings. This study provides a comprehensive explanation of the skin/tattoo electrode interface model. The understanding of this interface is essential when designing next generation wearable biomonitoring devices using imperceptible interfaces.
Tattoo electrodes are dry sensors that provide outstanding conformability to the skin thanks to their ultralow thickness. These electrodes interact with the skin via capacitive coupling where the upper layers act as a dielectric. Tattoos made of conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) display great mechanical stability and a long‐term performance in detecting biopotentials from the skin despite their considerably large impedance. |
---|---|
AbstractList | Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra‐conformable tattoo electrodes made of conducting polymers are focused on. The electrochemical characteristics of these electrodes differ from traditional gelled Ag/AgCl electrodes. The modeling of equivalent circuits in different skin‐electrode configurations proposes the explanation of the biopotentials transduction mechanism. The strong agreement between the circuit model and experimental values reveals the capacitive coupling of conducting polymer tattoo electrodes where circuit's values reflect the electrodes’ and skin physical characteristics. Additional studies underline an enhanced signal stability in inter/intra‐subject evaluations using dry tattoos beneficial for broad long‐term recordings. This study provides a comprehensive explanation of the skin/tattoo electrode interface model. The understanding of this interface is essential when designing next generation wearable biomonitoring devices using imperceptible interfaces. Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring raises several interrogations on how these sensors interface with the skin. In this paper, the bioimpedance at the interface of the skin and ultra‐conformable tattoo electrodes made of conducting polymers are focused on. The electrochemical characteristics of these electrodes differ from traditional gelled Ag/AgCl electrodes. The modeling of equivalent circuits in different skin‐electrode configurations proposes the explanation of the biopotentials transduction mechanism. The strong agreement between the circuit model and experimental values reveals the capacitive coupling of conducting polymer tattoo electrodes where circuit's values reflect the electrodes’ and skin physical characteristics. Additional studies underline an enhanced signal stability in inter/intra‐subject evaluations using dry tattoos beneficial for broad long‐term recordings. This study provides a comprehensive explanation of the skin/tattoo electrode interface model. The understanding of this interface is essential when designing next generation wearable biomonitoring devices using imperceptible interfaces. Tattoo electrodes are dry sensors that provide outstanding conformability to the skin thanks to their ultralow thickness. These electrodes interact with the skin via capacitive coupling where the upper layers act as a dielectric. Tattoos made of conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) display great mechanical stability and a long‐term performance in detecting biopotentials from the skin despite their considerably large impedance. |
Author | Greco, Francesco Ferrari, Laura M. Ismailov, Usein Ismailova, Esma |
Author_xml | – sequence: 1 givenname: Laura M. surname: Ferrari fullname: Ferrari, Laura M. organization: Université Côte d'Azur – sequence: 2 givenname: Usein surname: Ismailov fullname: Ismailov, Usein organization: Centre of Microelectronics in Provence – sequence: 3 givenname: Francesco surname: Greco fullname: Greco, Francesco organization: Graz University of Technology – sequence: 4 givenname: Esma orcidid: 0000-0001-6722-6782 surname: Ismailova fullname: Ismailova, Esma email: ismailova@emse.fr organization: Centre of Microelectronics in Provence |
BackLink | https://hal.science/hal-03503743$$DView record in HAL |
BookMark | eNqFkM9LwzAUx4NMcM5dPRc8eeh8Sforx1F_bDBRcJ5D1qYus2tqmm7svzelMkUQT3kvfD8vL59zNKh0JRG6xDDBAORG5Fs1IUBcQ0NygoYEs8iPaQiDH_UZGjfNBgAwJpgkdIjmqahFpqzaSS_VbV2q6s3ThaurvM1s1z3r8rCVxlsKa7X27kqZWaNz2Xh7ZdeeXUvv5V1VF-i0EGUjx1_nCL3e3y3Tmb94epin04WfUYaJTxMq8yQnhYylTJJCSkIABwIEi_MQs3wVCFJAvMpYxDK3aOT-FCSOwAxYEtIRuu7nrkXJa6O2why4ForPpgve3TkBQOOA7rDLXvXZ2uiPVjaWb3RrKrceJ2EEGCIIIpea9KnM6KYxsjiOxcA7u7yzy492HRD8ApxBYZWurBGq_BtjPbZXpTz88wif3j7Ov9lP2diObg |
CitedBy_id | crossref_primary_10_3390_bios12050305 crossref_primary_10_1038_s41528_023_00286_9 crossref_primary_10_1088_2058_8585_acd011 crossref_primary_10_3390_bios13080823 crossref_primary_10_1021_acsaelm_4c01902 crossref_primary_10_1109_TIM_2025_3529066 crossref_primary_10_1063_5_0117278 crossref_primary_10_3390_s22218510 crossref_primary_10_1016_j_cej_2024_151595 crossref_primary_10_1002_advs_202308014 crossref_primary_10_1073_pnas_2306777120 crossref_primary_10_3390_ijms25031564 |
Cites_doi | 10.1002/adfm.201906908 10.1016/j.sbsr.2018.05.001 10.1021/cm4022003 10.1023/A:1016228730522 10.1038/s41551-019-0347-x 10.1002/adhm.201700994 10.1039/c0py00077a 10.1016/S0022-0728(97)00217-9 10.1039/C8AY02678E 10.1016/j.electacta.2009.10.065 10.1002/adhm.201900234 10.1021/acsnano.7b02182 10.1002/adma.201304140 10.1007/BF02478741 10.1088/2399-7532/aba6e3 10.3109/9781420003307 10.1021/js960198e 10.3389/fneng.2014.00013 10.1007/BF02738534 10.1109/RBME.2010.2084078 10.1038/nnano.2017.125 10.1111/j.1600-0846.2004.00050.x 10.1002/adfm.201803279 10.1016/j.glohj.2019.07.001 10.1088/0967-3334/21/2/307 10.1088/1741-2552/abbd50 10.1038/srep06074 10.1038/srep41345 10.1002/advs.201700771 10.1038/s41528-020-0067-z 10.1109/TBME.2014.2308552 10.1021/acs.chemrev.6b00146 10.1016/j.bpj.2013.05.008 10.1007/BF00510068 10.1016/S0924-4247(01)00637-9 10.1002/adhm.201400761 10.1007/BF02464037 10.1111/j.1748-1716.1945.tb03082.x 10.1002/adhm.202001322 10.1126/science.aaw9295 10.1159/000051663 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 1XC VOOES |
DOI | 10.1002/admi.202100352 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_03503743v1 10_1002_admi_202100352 ADMI202100352 |
Genre | article |
GrantInformation_xml | – fundername: BPIFrance AUTONOTEX funderid: ANR‐17‐CE19‐0010 – fundername: UCAJEDI Investments in the Future funderid: ANR‐15‐IDEX‐01 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJCF ABJNI ACCMX ADMLS AFKRA AFPKN ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 1XC VOOES |
ID | FETCH-LOGICAL-c3912-383ed8d2fe7ee88fee22014a0a97d519db4a2f07bc969c0116210488d21909853 |
ISSN | 2196-7350 |
IngestDate | Wed Aug 27 07:41:22 EDT 2025 Fri Jul 25 11:55:00 EDT 2025 Tue Jul 01 00:39:40 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Sat Aug 24 01:02:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Conformable biosensors biosignal transduction tattoo electrodes conducting polymers skin impedance |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3912-383ed8d2fe7ee88fee22014a0a97d519db4a2f07bc969c0116210488d21909853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6722-6782 |
OpenAccessLink | https://hal.science/hal-03503743 |
PQID | 2560106046 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_03503743v1 proquest_journals_2560106046 crossref_primary_10_1002_admi_202100352 crossref_citationtrail_10_1002_admi_202100352 wiley_primary_10_1002_admi_202100352_ADMI202100352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2019; 8 1997; 432 1945; 9 2010; 55 2017; 7 2001; 93 2018; 28 2019; 3 2015; 4 2012 2019; 11 1997; 86 2000; 21 2013; 104 1997; 25 1995; 12 2020; 17 2014; 26 2006 2014; 61 2018; 20 2019; 364 2001; 202 1999 2018; 7 2004; 10 2020; 4 1976; 14 2020; 3 2014; 4 2018; 5 2010; 1 2020 2017; 11 2017; 12 2020; 9 1985; 277 1983; 21 2019; 29 2016 2016; 116 1980 2010; 3 2014; 7 1966 e_1_2_8_28_1 Feher J. (e_1_2_8_3_1) 2012 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 Cosseddu P. (e_1_2_8_6_1) 2020 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 Chen Y.‐H. (e_1_2_8_44_1) 2016 e_1_2_8_1_1 e_1_2_8_41_1 Patrick Reilly J. (e_1_2_8_35_1) 2012 e_1_2_8_40_1 Tregear R. T. (e_1_2_8_32_1) 1966 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Bard A. J. (e_1_2_8_17_1) 1980 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Neuman M. (e_1_2_8_18_1) 1999 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 start-page: 32 year: 2004 publication-title: Skin Res. Technol. – volume: 364 start-page: 233 year: 2019 publication-title: Science – volume: 4 start-page: 6074 year: 2014 publication-title: Sci. Rep. – year: 1966 – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 11 start-page: 1460 year: 2019 publication-title: Anal. Methods – volume: 12 start-page: 907 year: 2017 publication-title: Nat. Nanotechnol. – volume: 432 start-page: 79 year: 1997 publication-title: J. Electroanal. Chem. – volume: 3 start-page: 194 year: 2019 publication-title: Nat. Biomed. Eng. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 104 start-page: 2639 year: 2013 publication-title: Biophys. J. – volume: 277 start-page: 489 year: 1985 publication-title: Arch. Dermatol. Res. – volume: 7 year: 2017 publication-title: Sci. Rep. – year: 2016 – volume: 9 start-page: 39 year: 1945 publication-title: Acta Physiol. Scand. – volume: 3 start-page: 62 year: 2019 publication-title: Global Health J. – year: 2012 – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 202 start-page: 308 year: 2001 publication-title: Dermatology – volume: 1 start-page: 1374 year: 2010 publication-title: Polym. Chem. – volume: 4 start-page: 983 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 7 start-page: 13 year: 2014 publication-title: Front. Neuroeng. – volume: 21 start-page: 739 year: 1983 publication-title: Med. Biol. Eng. Comput. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 25 start-page: 1 year: 1997 publication-title: Ann. Biomed. Eng. – volume: 26 start-page: 1427 year: 2014 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 12 start-page: 1605 year: 1995 publication-title: Pharm. Res. – year: 1980 – volume: 86 start-page: 1162 year: 1997 publication-title: J. Pharm. Sci. – volume: 11 start-page: 7634 year: 2017 publication-title: ACS Nano – volume: 4 start-page: 4 year: 2020 publication-title: npj Flexible Electron. – year: 2006 – volume: 3 year: 2020 publication-title: Multifunct. Mater. – year: 2020 – volume: 21 start-page: 271 year: 2000 publication-title: Physiol. Meas. – volume: 20 start-page: 9 year: 2018 publication-title: Sens. Bio‐Sens. Res. – volume: 55 start-page: 6218 year: 2010 publication-title: Electrochim. Acta – volume: 61 start-page: 1522 year: 2014 publication-title: IEEE Trans. Biomed. Eng. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 17 year: 2020 publication-title: J. Neural Eng. – volume: 93 start-page: 8 year: 2001 publication-title: Sens. Actuators, A – volume: 26 start-page: 679 year: 2014 publication-title: Chem. Mater. – volume: 14 start-page: 151 year: 1976 publication-title: Med. Biol. Eng. – volume: 3 start-page: 106 year: 2010 publication-title: IEEE Rev. Biomed. Eng. – year: 1999 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201906908 – volume-title: Quantitative Human Physiology: An Introduction year: 2012 ident: e_1_2_8_3_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.sbsr.2018.05.001 – ident: e_1_2_8_26_1 doi: 10.1021/cm4022003 – ident: e_1_2_8_34_1 doi: 10.1023/A:1016228730522 – ident: e_1_2_8_7_1 doi: 10.1038/s41551-019-0347-x – ident: e_1_2_8_8_1 doi: 10.1002/adhm.201700994 – ident: e_1_2_8_25_1 doi: 10.1039/c0py00077a – ident: e_1_2_8_36_1 doi: 10.1016/S0022-0728(97)00217-9 – ident: e_1_2_8_11_1 doi: 10.1039/C8AY02678E – ident: e_1_2_8_46_1 doi: 10.1016/j.electacta.2009.10.065 – ident: e_1_2_8_21_1 doi: 10.1002/adhm.201900234 – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.7b02182 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201304140 – ident: e_1_2_8_30_1 doi: 10.1007/BF02478741 – ident: e_1_2_8_1_1 doi: 10.1088/2399-7532/aba6e3 – ident: e_1_2_8_41_1 doi: 10.3109/9781420003307 – ident: e_1_2_8_39_1 doi: 10.1021/js960198e – volume-title: Applied Bioelectricity: From Electrical Stimulation to Electropathology year: 2012 ident: e_1_2_8_35_1 – ident: e_1_2_8_29_1 doi: 10.3389/fneng.2014.00013 – volume-title: Physical Functions of Skin year: 1966 ident: e_1_2_8_32_1 – ident: e_1_2_8_33_1 doi: 10.1007/BF02738534 – ident: e_1_2_8_4_1 doi: 10.1109/RBME.2010.2084078 – ident: e_1_2_8_10_1 doi: 10.1038/nnano.2017.125 – ident: e_1_2_8_40_1 doi: 10.1111/j.1600-0846.2004.00050.x – ident: e_1_2_8_2_1 doi: 10.1002/adfm.201803279 – ident: e_1_2_8_5_1 doi: 10.1016/j.glohj.2019.07.001 – ident: e_1_2_8_19_1 doi: 10.1088/0967-3334/21/2/307 – ident: e_1_2_8_47_1 doi: 10.1088/1741-2552/abbd50 – ident: e_1_2_8_9_1 doi: 10.1038/srep06074 – ident: e_1_2_8_13_1 doi: 10.1038/srep41345 – ident: e_1_2_8_15_1 doi: 10.1002/advs.201700771 – volume-title: Electrical Engineering Handbook year: 1999 ident: e_1_2_8_18_1 – ident: e_1_2_8_23_1 doi: 10.1038/s41528-020-0067-z – ident: e_1_2_8_37_1 doi: 10.1109/TBME.2014.2308552 – ident: e_1_2_8_27_1 doi: 10.1021/acs.chemrev.6b00146 – volume-title: Organic Flexible Electronics: Fundamentals, Devices, and Applications year: 2020 ident: e_1_2_8_6_1 – ident: e_1_2_8_31_1 doi: 10.1016/j.bpj.2013.05.008 – ident: e_1_2_8_42_1 doi: 10.1007/BF00510068 – ident: e_1_2_8_24_1 doi: 10.1016/S0924-4247(01)00637-9 – ident: e_1_2_8_12_1 doi: 10.1002/adhm.201400761 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 1980 ident: e_1_2_8_17_1 – ident: e_1_2_8_38_1 doi: 10.1007/BF02464037 – ident: e_1_2_8_45_1 doi: 10.1111/j.1748-1716.1945.tb03082.x – ident: e_1_2_8_20_1 doi: 10.1002/adhm.202001322 – volume-title: Polymer‐Based Dry Electrodes for Biopotential Measurements year: 2016 ident: e_1_2_8_44_1 – ident: e_1_2_8_28_1 doi: 10.1126/science.aaw9295 – ident: e_1_2_8_43_1 doi: 10.1159/000051663 |
SSID | ssj0001121283 |
Score | 2.3008778 |
Snippet | Tattoo electronics is one of the emerging technologies in skin compliant biosensing. The growing interest in their large application in health monitoring... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bioengineering Biomonitoring biosignal transduction Condensed Matter Conducting polymers conformable biosensors Coupling Electrodes Equivalent circuits Interfaces Life Sciences Materials Science New technology Physical properties Physics Silver chloride skin impedance Stability analysis tattoo electrodes Tattoos |
Title | Capacitive Coupling of Conducting Polymer Tattoo Electrodes with the Skin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202100352 https://www.proquest.com/docview/2560106046 https://hal.science/hal-03503743 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvY58sazfEGOyhOHPk70eTpku2thQWj7IXIVsyDSRxid1C-9fvzpY_UlLW7cXEsiLZup9Od9LpJ0I-41GplqsCIwYn2bAdyzFiS6WG40lAgGvFqcD5jtMzdxrZ3y-ci17vrru7pIiHyd3OfSX_I1VIA7niLtl_kGxTKCTAb5AvXEHCcH2UjMcw0iVV8M84u75a6gjmcbZGFle8O8-Wtyu1OZyLosiyw0l16I1UelMbWp14_FbXRA3rqACwZauPKDklNikGb3Wmn9HLrndWi3ZSdZavxGKZ3eCjKFeLBnzf0PeubWUoKsnu_6W0Yye5Hin0VAQbNYFwHYXX6i_Qha7hWRWv7FDtSNMK2O_izNmp1yueWCFXiyFWXLK4tiNYvWo_DX_y86NjfjI7-7H9tGHSnoYn_BIEjQuqFlhPN-A57zFwMVif7IW_ot9RO0M3gmG95HFt3rpm_TTZ1-132bJqnlxiTG3HYem6PaXdMn9BnmuHg4YVel6Snlq_Ik_LwN8kf01mLYZojSGapbTFENUYohWGaIshihiigCGKGHpDouPJfDw19PEaRmIFSFXpW0r6kqXKU8r3U6UYWIO2MEWAHTWQsS1YanpxErhBggt28LGg7yU0hxmAmfeW9NfZWr0jVILVO3I8AUVIO_aEn_oxQyKhkXQSN3UGxKibhyeaex6PQFnyijWbcWxO3jTngHxp8l9VrCsP5vyE4qwz7RbxgBzUwuC6--ZchxiYtjsgrBTQX6ri4dHprLl7_5iK98mztp8ckH6xuVYfwIgt4o8abX8AieeY3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RfQiPjFadRHBU2iad46htrTaFg-tiJclyW5UaBvpQ_DfO5NX24MI3rLLZkNmd3a-nZ39BuCWUqUatvTUEDfJqmkZlhoaMlYtR-AMsI0wDsjf0R_YnZH58GIV0YR0FybjhygdbqQZ6XpNCk4O6fqKNTQQkw_c4OGehTg9t6FK0MatQNV_Hr2OVo6WBq7OKR0nKqetOoalFeSNml7f7GTDOG2_U2jkGu5cR6-p-WkfwH6OG5mfDfQhbMnpEeyk8ZvR_Bi6TTR6URoHxJrJkq7ZvrEkxucpEbpS6SkZf0_kjA2DxSJJWCvLfyPknJEvliEQZJSJ6wRG7daw2VHzLAlqZHjEOOgaUrhCj6UjpevGUupo1M1ACzyStydCM9BjzQkjz_YiOnfBn0W1FSgOzUNrfQqVaTKVZ8AEgpeG5QTYhTBDJ3BjN9SJD6YhrMiOLQXUQjw8yinEKZPFmGfkxzoncfJSnArcle0_M_KMX1veoLTLRsR53fF7nOro6NNAnPPVUKBWDAbPNW3O85Ni3OYroKcD9MenuH_f75al8_-8dA27nWG_x3vdweMF7FF9FhNYg8pitpSXiFMW4VU-E38A7O3awg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RfEiPrFadRHBUzDNO8fSB622pYdWxMuSZHdVaJvSh-C_dyZJ0_YggrfsMtmQ2Z2dx85-A3BPpVJNR_paiE6yZtmmrYWmVJrtClwBjhmqgOId3Z7TGlpPr_brxi3-FB8iD7iRZCT7NQn4VKjHNWhoIMaf6N-hy0KQnrtQJKg8XNfF6svwbbiOs1Rwc07QOFE2Hc01bX2F3agbj9uDbOmm3Q_KjNwwOzeN10T7NI_gMDMbWTWd52PYkZMT2EvSN6P5KbRrqPOiJA2I1eIl3bJ9Z7HC5wnhuVKrH4--x3LGBsFiEceskZa_EXLOKBTL0A5kVIjrDIbNxqDW0rIiCVpk-gQ46JlSeMJQ0pXS85SUBup0K9ADn9jti9AKDKW7YeQ7fkTHLvizKLUC2aH7qKzPoTCJJ_ICmEDbpWK7AQ4hrNANPOWFBsHBVIQdOcougbZiD48yBHEqZDHiKfaxwYmdPGdnCR5y-mmKnfEr5R1yOyciyOtWtcOpj04-TTRzviolKK8mg2eCNufZQTF6-SUwkgn641O8Wu-289blf166hf1-vck77d7zFRxQd5oRWIbCYraU12ilLMKbbCH-AKV_2es |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitive+Coupling+of+Conducting+Polymer+Tattoo+Electrodes+with+the+Skin&rft.jtitle=Advanced+materials+interfaces&rft.au=Ferrari%2C+Laura+M&rft.au=Ismailov%2C+Usein&rft.au=Greco%2C+Francesco&rft.au=Ismailova%2C+Esma&rft.date=2021-08-01&rft.pub=Wiley&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=8&rft.issue=15&rft_id=info:doi/10.1002%2Fadmi.202100352&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03503743v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |