Artificial intelligence and machine learning for clinical pharmacology
Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should...
Saved in:
Published in | British journal of clinical pharmacology Vol. 90; no. 3; pp. 629 - 639 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare. |
---|---|
AbstractList | Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare.Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare. Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare. |
Author | Balston, Alfred Scourfield, Andrew Ross, Jack Maclean, Rory H. Shah, Anoop D. Ryan, David K. |
Author_xml | – sequence: 1 givenname: David K. orcidid: 0000-0002-1264-7165 surname: Ryan fullname: Ryan, David K. organization: University College London Hospitals NHS Foundation Trust – sequence: 2 givenname: Rory H. surname: Maclean fullname: Maclean, Rory H. organization: University College London – sequence: 3 givenname: Alfred surname: Balston fullname: Balston, Alfred organization: Guy's and St Thomas' NHS Foundation Trust – sequence: 4 givenname: Andrew surname: Scourfield fullname: Scourfield, Andrew organization: University College London Hospitals NHS Foundation Trust – sequence: 5 givenname: Anoop D. orcidid: 0000-0002-8907-5724 surname: Shah fullname: Shah, Anoop D. organization: University College London Hospitals Biomedical Research Centre – sequence: 6 givenname: Jack orcidid: 0009-0004-6064-6919 surname: Ross fullname: Ross, Jack email: jackross@nhs.net organization: University College London Hospitals NHS Foundation Trust |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37845024$$D View this record in MEDLINE/PubMed |
BookMark | eNp90D1PwzAQBmALFdEPGPgDKCMMaf0RJ_FYKgpISDDAbDmO3Ro5drFTof57DC0MSHDLLc-d7t4xGDjvFADnCE5RqlkjN1NEGYFHYIRISXOMMB2AESSwzCmmaAjGMb5CiAgq6QkYkqouKMTFCCznoTfaSCNsZlyvrDUr5aTKhGuzTsi1cSqzSgRn3CrTPmTSGmdk4pu1CEl461e7U3CshY3q7NAn4GV587y4yx8eb-8X84dcEoZgXjDYlJg1siYVQaxBtK5ZgTFsUYOIaInEiGBRYtnWTKWXmMBa14pBLbVSmkzA5X7vJvi3rYo970yU6WrhlN9GjuuqxgxVtEz04kC3TadavgmmE2HHv39P4GoPZPAxBqV_CIL8M1eecuVfuSY7-2Wl6UVvvOuDMPa_iXdj1e7v1fx68bSf-ADi9ogB |
CitedBy_id | crossref_primary_10_1038_s41598_024_70073_7 crossref_primary_10_1111_bcp_16241 crossref_primary_10_1016_j_phrs_2024_107078 crossref_primary_10_1111_bcp_16011 crossref_primary_10_3390_ph17010022 crossref_primary_10_1016_j_compbiomed_2024_108702 crossref_primary_10_1016_j_ipha_2024_08_005 crossref_primary_10_7759_cureus_71890 crossref_primary_10_1021_acs_jmedchem_4c01684 crossref_primary_10_34133_jbioxresearch_0016 crossref_primary_10_1007_s13198_024_02441_5 crossref_primary_10_1248_bpb_b24_00506 crossref_primary_10_3389_fphar_2023_1260276 crossref_primary_10_1088_1758_5090_ad6374 crossref_primary_10_1002_bcp_70036 |
Cites_doi | 10.1161/STROKEAHA.116.016281 10.1126/scitranslmed.abf3637 10.1038/s41591-020-1034-x 10.1017/cts.2020.535 10.1145/3368555.3384468 10.1111/bcp.15068 10.1038/s41746‐021‐00505‐5 10.1038/s41746‐020‐0302‐y 10.1164/rccm.202007‐2700OC 10.1002/sim.3782 10.1111/bcp.15820 10.1093/jnci/djad013 10.1016/j.jbi.2014.12.007 10.1038/s41746‐020‐00333‐z 10.1038/s41591‐023‐02325‐4 10.1111/bcp.14045 10.3389/fphar.2022.801928 10.1016/j.acra.2021.09.002 10.1007/s40471‐020‐00259‐w 10.1186/s12911‐021‐01638‐z 10.1111/j.1541‐0420.2011.01572.x 10.1038/s41592‐020‐01008‐z 10.1002/cpt.2668 10.1038/s41467‐019‐08718‐9 10.4338/ACI‐2013‐12‐RA‐0103 10.1038/s41598-023-27416-7 10.1007/s40264‐022‐01163‐6 10.1001/jamahealthforum.2023.0397 10.1016/j.kint.2016.03.036 10.1002/cpt.1792 10.1007/s40139-019-00200-x 10.1002/cpt.1795 10.1038/s41591‐018‐0107‐6 10.1093/bioinformatics/btz111 10.1016/S0140‐6736(20)30304‐4 10.1161/JAHA.117.008081 10.1093/aje/kwt312 10.1002/cpt.1796 10.4103/picr.PICR_25_20 10.1111/bcp.14852 10.1097/FTD.0000000000001078 10.1080/17460441.2021.1910673 10.1016/j.drudis.2020.10.010 10.1007/s11831‐021‐09648‐w 10.1007/s11095‐023‐03507‐y 10.1038/s41586‐021‐03819‐2 10.1111/cts.13431 10.1038/s41551‐018‐0195‐0 10.1186/s12916-019-1426-2 10.1038/s41598‐022‐13917‐4 10.3389/fenvs.2015.00080 10.2139/ssrn.3750683 10.1016/j.hfc.2021.11.006 10.1007/s43440‐022‐00445‐1 10.1038/s41746‐021‐00453‐0 10.1136/bmjhci-2021-100450 10.1186/s12909‐021‐02870‐x 10.1111/bcp.15329 10.1016/j.jcf.2020.01.002 10.21275/ART20203995 10.1136/bmj.m1328 10.1186/s12874-022-01768-6 10.1002/cpt.1777 10.1002/pds.5407 10.7554/eLife.26726 10.1038/s43856-021-00028-w 10.1016/j.compbiomed.2021.104469 10.1371/journal.pcbi.1008399 10.1016/j.jcjq.2019.09.008 10.1016/j.artmed.2023.102524 10.1136/bmjopen‐2022‐065301 10.1038/s41591‐020‐1037‐7 10.1038/s41551‐019‐0487‐z 10.1056/NEJMc2104626 10.1016/j.jid.2018.06.175 10.1167/tvst.9.3.12 10.1136/bmj.m4786 10.1093/jamia/ocy052 10.2196/27767 |
ContentType | Journal Article |
Copyright | 2023 British Pharmacological Society. |
Copyright_xml | – notice: 2023 British Pharmacological Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/bcp.15930 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1365-2125 |
EndPage | 639 |
ExternalDocumentID | 37845024 10_1111_bcp_15930 BCP15930 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Institute for Health and Care Research |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3910-490b629bc837319b158894220d1b13ad3c2132a62cd89e1599a2ff8e90fcfeef3 |
IEDL.DBID | DR2 |
ISSN | 0306-5251 1365-2125 |
IngestDate | Thu Jul 10 19:04:20 EDT 2025 Mon Jul 21 06:05:43 EDT 2025 Tue Jul 01 01:59:33 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Jan 22 16:14:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | clinical pharmacology clinical trials real-world data machine learning artificial intelligence |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2023 British Pharmacological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3910-490b629bc837319b158894220d1b13ad3c2132a62cd89e1599a2ff8e90fcfeef3 |
Notes | Funding information D.K.R., R.H.M. and A.B. are all funded by a National Institute for Health and Care Research Academic Clinical Fellowship. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1264-7165 0009-0004-6064-6919 0000-0002-8907-5724 |
PMID | 37845024 |
PQID | 2878291756 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2878291756 pubmed_primary_37845024 crossref_primary_10_1111_bcp_15930 crossref_citationtrail_10_1111_bcp_15930 wiley_primary_10_1111_bcp_15930_BCP15930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | British journal of clinical pharmacology |
PublicationTitleAlternate | Br J Clin Pharmacol |
PublicationYear | 2024 |
References | 2023; 75 2017; 6 2021; 26 2021; 21 2017; 48 2023; 4 2019; 10 2021; 204 2021; 28 2020; 369 2019; 17 2020; 16 2022; 22 2022; 29 2020; 19 2014; 179 2020; 7 2017; 30 2020; 5 2020; 4 2014; 5 2020; 3 2018; 2 2016; 90 2023; 29 2021; 596 2018; 138 2010; 29 2020; 9 2023; 139 2020; 46 2011; 67 2022; 31 7 9 2021; 9 2019; 7 2021; 87 2023; 13 2021; 4 2020; 86 2023; 16 2019; 35 2015; 53 2022; 45 2020; 107 2022; 88 2002 2021; 385 2021; 1 2018; 25 2018; 24 2021; 13 2021; 16 2023; 40 2021; 54 2021; 12 2016; 3 2023; 45 2023; 89 2023 2021; 134 2022 2021 2020; 395 2020 2021; 18 2023; 113 2022; 12 2022; 13 2019 2020; 26 2018 2023; 115 2021; 372 2022; 18 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Karmaker SK (e_1_2_10_18_1) 2021; 54 Curth A (e_1_2_10_65_1) 2021 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 Panch T (e_1_2_10_88_1); 9 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 Yoon J (e_1_2_10_16_1) 2018 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_103_1 Vaswani A (e_1_2_10_17_1) 2017 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 European Parliament (e_1_2_10_85_1) 2022 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 17 start-page: 195 year: 2019 article-title: Key challenges for delivering clinical impact with artificial intelligence publication-title: BMC Med – volume: 9 start-page: 14 year: 2020 article-title: Introduction to machine learning, neural networks, and deep learning publication-title: Transl vis Sci Technol – volume: 45 start-page: 571 issue: 5 year: 2022 end-page: 582 article-title: Leveraging machine learning to facilitate individual case causality assessment of adverse drug reactions publication-title: Drug Saf – volume: 139 issue: 102524 year: 2023 article-title: Has machine learning over‐promised in healthcare?: A critical analysis and a proposal for improved evaluation, with evidence from Parkinson's disease publication-title: Artif Intell Med – volume: 134 year: 2021 article-title: Diagnosis of acute poisoning using explainable artificial intelligence publication-title: Comput Biol Med – volume: 29 start-page: 2043 issue: 4 year: 2022 end-page: 2070 article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis publication-title: Arch Comput Methods Eng – volume: 54 start-page: 175:1 year: 2021 end-page: 175:36 article-title: AutoML to date and beyond: challenges and opportunities publication-title: ACM Comput Surv – volume: 67 start-page: 1422 issue: 4 year: 2011 end-page: 1433 article-title: Reinforcement learning strategies for clinical trials in non‐small cell lung cancer publication-title: Biometrics – volume: 53 start-page: 3 year: 2015 end-page: 14 article-title: Cognitive informatics in biomedicine and healthcare publication-title: J Biomed Inform – volume: 29 start-page: 559 issue: 4 year: 2022 end-page: 566 article-title: FDA‐regulated AI algorithms: trends, strengths, and gaps of validation studies publication-title: Acad Radiol – volume: 75 start-page: 3 issue: 1 year: 2023 end-page: 18 article-title: Opportunities and challenges in application of artificial intelligence in pharmacology publication-title: Pharmacol Rep – volume: 2 start-page: 158 issue: 3 year: 2018 end-page: 164 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat Biomed Eng – volume: 29 start-page: 337 issue: 3 year: 2010 end-page: 346 article-title: Improving propensity score weighting using machine learning publication-title: Stat Med – volume: 372 year: 2021 article-title: Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial publication-title: BMJ – start-page: 5689 year: 2018 end-page: 5698 – year: 2021 – volume: 26 start-page: 80 issue: 1 year: 2021 end-page: 93 article-title: Artificial intelligence in drug discovery and development publication-title: Drug Discov Today – start-page: 1810 year: 2021 end-page: 1818 – volume: 113 start-page: 771 issue: 4 year: 2023 end-page: 774 article-title: Landscape analysis of the application of artificial intelligence and machine learning in regulatory submissions for drug development from 2016 to 2021 publication-title: Clin Pharmacol Ther – volume: 7 start-page: 73 year: 2019 end-page: 84 article-title: The emergence of Pathomics publication-title: Curr Pathobiol Rep – volume: 13 year: 2022 article-title: AI models to assist vancomycin dosage titration publication-title: Front Pharmacol – volume: 21 start-page: 429 issue: 1 year: 2021 article-title: The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers publication-title: BMC Med Educ – volume: 26 start-page: 1351 issue: 9 year: 2020 end-page: 1363 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT‐AI extension publication-title: Nat Med – volume: 4 start-page: 18 issue: 1 year: 2020 end-page: 27 article-title: Detection of anaemia from retinal fundus images via deep learning publication-title: Nat Biomed Eng – volume: 18 start-page: 311 issue: 2 year: 2022 end-page: 323 article-title: Utilizing conversational artificial intelligence, voice, and phonocardiography analytics in heart failure care publication-title: Heart Fail Clin – volume: 5 start-page: 802 issue: 3 year: 2014 end-page: 813 article-title: Drug interaction alert override rates in the meaningful use era: no evidence of progress publication-title: Appl Clin Inform – volume: 107 start-page: 697 issue: 4 year: 2020 end-page: 699 article-title: Artificial intelligence and machine learning: will clinical pharmacologists be needed in the next decade? The John Henry question publication-title: Clin Pharmacol Ther – volume: 10 start-page: 764 year: 2019 article-title: A mathematical‐descriptor of tumor‐mesoscopic‐structure from computed‐tomography images annotates prognostic‐ and molecular‐phenotypes of epithelial ovarian cancer publication-title: Nat Commun – volume: 3 start-page: 1 year: 2020 end-page: 7 article-title: Digitizing clinical trials publication-title: Npj Digit Med – volume: 385 start-page: 283 issue: 3 year: 2021 end-page: 286 article-title: The clinician and dataset shift in artificial intelligence publication-title: N Engl J Med – volume: 30 year: 2017 – volume: 107 start-page: 853 year: 2020 end-page: 857 article-title: Model‐informed artificial intelligence: reinforcement learning for precision dosing publication-title: Clin Pharmacol Ther – volume: 7 start-page: 212 issue: 4 year: 2020 end-page: 219 article-title: Heart failure diagnosis, readmission, and mortality prediction using machine learning and artificial intelligence models publication-title: Curr Epidemiol Rep – volume: 46 start-page: 3 issue: 1 year: 2020 end-page: 10 article-title: Using a machine learning system to identify and prevent medication prescribing errors: a clinical and cost analysis evaluation publication-title: Jt Comm J Qual Patient Saf – volume: 22 start-page: 287 year: 2022 article-title: Real‐world data: a brief review of the methods, applications, challenges and opportunities publication-title: BMC Med Res Methodol – volume: 4 year: 2023 article-title: Garbage in, garbage out—words of caution on big data and machine learning in medical practice publication-title: JAMA Health Forum – volume: 89 start-page: 2649 issue: 9 year: 2023 end-page: 2657 article-title: How to assess pharmacogenomic tests for implementation in the NHS in England publication-title: Br J Clin Pharmacol – volume: 369 year: 2020 article-title: Prediction models for diagnosis and prognosis of covid‐19: systematic review and critical appraisal publication-title: BMJ – volume: 13 year: 2023 article-title: Potentiality of algorithms and artificial intelligence adoption to improve medication management in primary care: a systematic review publication-title: BMJ Open – year: 2022 – volume: 179 start-page: 764 issue: 6 year: 2014 end-page: 774 article-title: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study publication-title: Am J Epidemiol – volume: 138 start-page: 2108 issue: 10 year: 2018 end-page: 2110 article-title: Automated classification of skin lesions: from pixels to practice publication-title: J Invest Dermatol – volume: 87 start-page: 4124 issue: 11 year: 2021 end-page: 4139 article-title: Systematic review of machine learning models for personalised dosing of heparin publication-title: Br J Clin Pharmacol – volume: 4 start-page: 1 year: 2021 end-page: 11 article-title: An artificial intelligence system for predicting the deterioration of COVID‐19 patients in the emergency department publication-title: Npj Digit. Med. – volume: 4 start-page: 133 issue: 1 year: 2021 article-title: Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome publication-title: NPJ Digit Med – volume: 5 year: 2020 article-title: Using supervised machine learning classifiers to estimate likelihood of participating in clinical trials of a de‐identified version of ResearchMatch publication-title: J Clin Transl Sci – volume: 29 start-page: 1201 issue: 5 year: 2023 end-page: 1210 article-title: Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations publication-title: Nat Med – volume: 3 start-page: 126 year: 2020 article-title: A short guide for medical professionals in the era of artificial intelligence publication-title: NPJ Digit Med – volume: 115 start-page: 365 issue: 4 year: 2023 end-page: 374 article-title: Use of artificial intelligence for cancer clinical trial enrollment: a systematic review and meta‐analysis publication-title: J Natl Cancer Inst – year: 2019 – volume: 204 start-page: 44 issue: 1 year: 2021 end-page: 52 article-title: Detecting deteriorating patients in the hospital: development and validation of a novel scoring system publication-title: Am J Respir Crit Care Med – volume: 107 start-page: 871 issue: 4 year: 2020 end-page: 885 article-title: An introduction to machine learning publication-title: Clin Pharmacol Ther – volume: 86 start-page: 2000 issue: 10 year: 2020 end-page: 2007 article-title: Medication management needs information and communications technology‐based approaches, including telehealth and artificial intelligence publication-title: Br J Clin Pharmacol – volume: 88 start-page: 1235 issue: 3 year: 2022 end-page: 1245 article-title: Identifying adverse drug reactions from free‐text electronic hospital health record notes publication-title: Br J Clin Pharmacol – volume: 16 start-page: 31 issue: 1 year: 2023 end-page: 36 article-title: Artificial intelligence in pharmacology research and practice publication-title: Clin Transl Sci – volume: 19 start-page: 6 issue: 1 year: 2020 end-page: 8 article-title: Opportunities for machine learning to transform care for people with cystic fibrosis publication-title: J Cyst Fibros – volume: 1 start-page: 1 year: 2021 end-page: 3 article-title: Mitigating bias in machine learning for medicine publication-title: Commun Med – volume: 3 start-page: 80 year: 2016 article-title: DeepTox: toxicity prediction using deep learning publication-title: Front Environ Sci – volume: 9 article-title: Artificial intelligence and algorithmic bias: implications for health systems publication-title: J Glob Health – volume: 107 start-page: 780 issue: 4 year: 2020 end-page: 785 article-title: Will artificial intelligence for drug discovery impact clinical pharmacology? publication-title: Clin Pharmacol Ther – volume: 40 start-page: 951 issue: 4 year: 2023 end-page: 959 article-title: A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction publication-title: Pharm Res – volume: 9 issue: 3 year: 2021 article-title: Accuracy of an artificial intelligence system for cancer clinical trial eligibility screening: retrospective pilot study publication-title: JMIR Med Inform – volume: 26 start-page: 1364 year: 2020 end-page: 1374 article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT‐AI extension publication-title: Nat Med – volume: 12 issue: 1 year: 2022 article-title: Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre‐treatment tumor biopsies publication-title: Sci Rep – volume: 16 start-page: 1057 issue: 9 year: 2021 end-page: 1069 article-title: Knowledge graphs and their applications in drug discovery publication-title: Expert Opin Drug Discov – volume: 48 start-page: 1416 issue: 5 year: 2017 end-page: 1419 article-title: Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy publication-title: Stroke – volume: 25 start-page: 1080 issue: 8 year: 2018 end-page: 1088 article-title: Good intentions are not enough: how informatics interventions can worsen inequality publication-title: J Am Med Inform Assoc – volume: 6 year: 2017 article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing publication-title: Elife – volume: 16 year: 2020 article-title: Transfer learning enables prediction of CYP2D6 haplotype function publication-title: PLoS Comput Biol – volume: 35 start-page: 3329 issue: 18 year: 2019 end-page: 3338 article-title: DeepAffinity: interpretable deep learning of compound‐protein affinity through unified recurrent and convolutional neural networks publication-title: Bioinformatics – volume: 88 start-page: 3943 issue: 9 year: 2022 end-page: 3946 article-title: Pharmacogenomics: relevance and opportunities for clinical pharmacology publication-title: Br J Clin Pharmacol – volume: 13 start-page: 121 year: 2023 article-title: Improving clinical trial design using interpretable machine learning based prediction of early trial termination publication-title: Sci Rep – volume: 9 start-page: 381 issue: 1 year: 2020 end-page: 386 article-title: Machine leaming algorithms ‐ a review publication-title: Int J Sci Res – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation publication-title: Nat Methods – volume: 31 start-page: 261 issue: 3 year: 2022 end-page: 269 article-title: Core concepts in pharmacoepidemiology: confounding by indication and the role of active comparators publication-title: Pharmacoepidemiol Drug Saf – volume: 13 issue: 603 year: 2021 article-title: Toward predicting CYP2D6‐mediated variable drug response from CYP2D6 gene sequencing data publication-title: Sci Transl Med. – volume: 7 article-title: Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients publication-title: J Am Heart Assoc – volume: 28 year: 2021 article-title: Exploring stakeholder attitudes towards AI in clinical practice publication-title: BMJ Health Care Inform – year: 2002 – year: 2020 – year: 2023 – volume: 45 start-page: 143 issue: 2 year: 2023 end-page: 150 article-title: Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model‐informed precision dosing publication-title: Ther Drug Monit – volume: 90 start-page: 422 issue: 2 year: 2016 end-page: 429 article-title: An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients publication-title: Kidney Int – volume: 21 start-page: 281 year: 2021 article-title: An informatics consult approach for generating clinical evidence for treatment decisions publication-title: BMC Med Inform Decis Mak – volume: 24 start-page: 1342 issue: 9 year: 2018 end-page: 1350 article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease publication-title: Nat Med – volume: 395 start-page: e30 issue: 10223 year: 2020 end-page: e31 article-title: Baricitinib as potential treatment for 2019‐nCoV acute respiratory disease publication-title: The Lancet – volume: 596 start-page: 583 issue: 7873 year: 2021 end-page: 589 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 12 start-page: 48 issue: 1 year: 2021 end-page: 52 article-title: Current status of clinical research using artificial intelligence techniques: a registry‐based audit publication-title: Perspect Clin Res – ident: e_1_2_10_64_1 doi: 10.1161/STROKEAHA.116.016281 – ident: e_1_2_10_80_1 doi: 10.1126/scitranslmed.abf3637 – ident: e_1_2_10_13_1 – ident: e_1_2_10_9_1 doi: 10.1038/s41591-020-1034-x – ident: e_1_2_10_62_1 doi: 10.1017/cts.2020.535 – ident: e_1_2_10_103_1 doi: 10.1145/3368555.3384468 – ident: e_1_2_10_27_1 doi: 10.1111/bcp.15068 – ident: e_1_2_10_59_1 doi: 10.1038/s41746‐021‐00505‐5 – ident: e_1_2_10_22_1 doi: 10.1038/s41746‐020‐0302‐y – ident: e_1_2_10_37_1 doi: 10.1164/rccm.202007‐2700OC – ident: e_1_2_10_31_1 – ident: e_1_2_10_72_1 doi: 10.1002/sim.3782 – ident: e_1_2_10_12_1 – ident: e_1_2_10_79_1 doi: 10.1111/bcp.15820 – volume: 9 ident: e_1_2_10_88_1 article-title: Artificial intelligence and algorithmic bias: implications for health systems publication-title: J Glob Health – ident: e_1_2_10_61_1 doi: 10.1093/jnci/djad013 – ident: e_1_2_10_92_1 doi: 10.1016/j.jbi.2014.12.007 – ident: e_1_2_10_5_1 doi: 10.1038/s41746‐020‐00333‐z – ident: e_1_2_10_32_1 doi: 10.1038/s41591‐023‐02325‐4 – ident: e_1_2_10_23_1 doi: 10.1111/bcp.14045 – ident: e_1_2_10_75_1 doi: 10.3389/fphar.2022.801928 – ident: e_1_2_10_7_1 doi: 10.1016/j.acra.2021.09.002 – ident: e_1_2_10_35_1 doi: 10.1007/s40471‐020‐00259‐w – ident: e_1_2_10_74_1 doi: 10.1186/s12911‐021‐01638‐z – ident: e_1_2_10_45_1 – ident: e_1_2_10_63_1 doi: 10.1111/j.1541‐0420.2011.01572.x – ident: e_1_2_10_19_1 doi: 10.1038/s41592‐020‐01008‐z – ident: e_1_2_10_21_1 doi: 10.1002/cpt.2668 – ident: e_1_2_10_48_1 doi: 10.1038/s41467‐019‐08718‐9 – ident: e_1_2_10_93_1 doi: 10.4338/ACI‐2013‐12‐RA‐0103 – ident: e_1_2_10_58_1 doi: 10.1038/s41598-023-27416-7 – ident: e_1_2_10_84_1 doi: 10.1007/s40264‐022‐01163‐6 – ident: e_1_2_10_94_1 – ident: e_1_2_10_87_1 doi: 10.1001/jamahealthforum.2023.0397 – ident: e_1_2_10_76_1 doi: 10.1016/j.kint.2016.03.036 – ident: e_1_2_10_6_1 doi: 10.1002/cpt.1792 – ident: e_1_2_10_46_1 doi: 10.1007/s40139-019-00200-x – ident: e_1_2_10_20_1 doi: 10.1002/cpt.1795 – ident: e_1_2_10_40_1 doi: 10.1038/s41591‐018‐0107‐6 – ident: e_1_2_10_51_1 doi: 10.1093/bioinformatics/btz111 – ident: e_1_2_10_56_1 doi: 10.1016/S0140‐6736(20)30304‐4 – ident: e_1_2_10_73_1 doi: 10.1161/JAHA.117.008081 – ident: e_1_2_10_66_1 doi: 10.1093/aje/kwt312 – ident: e_1_2_10_3_1 doi: 10.1002/cpt.1796 – ident: e_1_2_10_57_1 doi: 10.4103/picr.PICR_25_20 – ident: e_1_2_10_25_1 doi: 10.1111/bcp.14852 – ident: e_1_2_10_78_1 doi: 10.1097/FTD.0000000000001078 – volume-title: Artificial Intelligence in Healthcare: Applications, Risks, and Ethical and Societal Impacts year: 2022 ident: e_1_2_10_85_1 – ident: e_1_2_10_54_1 doi: 10.1080/17460441.2021.1910673 – ident: e_1_2_10_53_1 doi: 10.1016/j.drudis.2020.10.010 – ident: e_1_2_10_36_1 doi: 10.1007/s11831‐021‐09648‐w – ident: e_1_2_10_77_1 doi: 10.1007/s11095‐023‐03507‐y – ident: e_1_2_10_50_1 doi: 10.1038/s41586‐021‐03819‐2 – ident: e_1_2_10_11_1 – ident: e_1_2_10_30_1 doi: 10.1111/cts.13431 – ident: e_1_2_10_43_1 doi: 10.1038/s41551‐018‐0195‐0 – ident: e_1_2_10_83_1 – ident: e_1_2_10_105_1 doi: 10.1186/s12916-019-1426-2 – ident: e_1_2_10_47_1 doi: 10.1038/s41598‐022‐13917‐4 – ident: e_1_2_10_97_1 – ident: e_1_2_10_52_1 doi: 10.3389/fenvs.2015.00080 – ident: e_1_2_10_38_1 doi: 10.2139/ssrn.3750683 – ident: e_1_2_10_44_1 doi: 10.1016/j.hfc.2021.11.006 – ident: e_1_2_10_49_1 – ident: e_1_2_10_29_1 doi: 10.1007/s43440‐022‐00445‐1 – ident: e_1_2_10_82_1 – ident: e_1_2_10_96_1 – volume: 54 start-page: 175:1 year: 2021 ident: e_1_2_10_18_1 article-title: AutoML to date and beyond: challenges and opportunities publication-title: ACM Comput Surv – ident: e_1_2_10_34_1 doi: 10.1038/s41746‐021‐00453‐0 – ident: e_1_2_10_101_1 doi: 10.1136/bmjhci-2021-100450 – ident: e_1_2_10_99_1 – ident: e_1_2_10_10_1 doi: 10.1186/s12909‐021‐02870‐x – start-page: 1810 volume-title: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics year: 2021 ident: e_1_2_10_65_1 – ident: e_1_2_10_26_1 doi: 10.1111/bcp.15329 – ident: e_1_2_10_39_1 doi: 10.1016/j.jcf.2020.01.002 – ident: e_1_2_10_14_1 doi: 10.21275/ART20203995 – start-page: 5689 volume-title: Proceedings of the 35th International Conference on Machine Learning year: 2018 ident: e_1_2_10_16_1 – ident: e_1_2_10_33_1 doi: 10.1136/bmj.m1328 – volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_10_17_1 – ident: e_1_2_10_69_1 doi: 10.1186/s12874-022-01768-6 – ident: e_1_2_10_100_1 – ident: e_1_2_10_24_1 doi: 10.1002/cpt.1777 – ident: e_1_2_10_71_1 doi: 10.1002/pds.5407 – ident: e_1_2_10_86_1 – ident: e_1_2_10_55_1 doi: 10.7554/eLife.26726 – ident: e_1_2_10_41_1 – ident: e_1_2_10_2_1 – ident: e_1_2_10_89_1 doi: 10.1038/s43856-021-00028-w – ident: e_1_2_10_28_1 doi: 10.1016/j.compbiomed.2021.104469 – ident: e_1_2_10_81_1 doi: 10.1371/journal.pcbi.1008399 – ident: e_1_2_10_68_1 doi: 10.1016/j.jcjq.2019.09.008 – ident: e_1_2_10_4_1 doi: 10.1016/j.artmed.2023.102524 – ident: e_1_2_10_67_1 doi: 10.1136/bmjopen‐2022‐065301 – ident: e_1_2_10_8_1 doi: 10.1038/s41591‐020‐1037‐7 – ident: e_1_2_10_42_1 doi: 10.1038/s41551‐019‐0487‐z – ident: e_1_2_10_70_1 – ident: e_1_2_10_102_1 doi: 10.1056/NEJMc2104626 – ident: e_1_2_10_90_1 doi: 10.1016/j.jid.2018.06.175 – ident: e_1_2_10_95_1 – ident: e_1_2_10_98_1 – ident: e_1_2_10_15_1 doi: 10.1167/tvst.9.3.12 – ident: e_1_2_10_91_1 doi: 10.1136/bmj.m4786 – ident: e_1_2_10_104_1 doi: 10.1093/jamia/ocy052 – ident: e_1_2_10_60_1 doi: 10.2196/27767 |
SSID | ssj0013165 |
Score | 2.5198896 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 629 |
SubjectTerms | Artificial Intelligence Biomedical Technology clinical pharmacology clinical trials Drug Discovery Humans Machine Learning Pharmacology, Clinical real‐world data |
Title | Artificial intelligence and machine learning for clinical pharmacology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.15930 https://www.ncbi.nlm.nih.gov/pubmed/37845024 https://www.proquest.com/docview/2878291756 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJy--H_VFFCkeuqXJbrYJnrRYRFCKtNCDsCTZrIi6LbY91F_vZLPbhw8Qb3vIDkkms_PNZuYbhM4EszxeLPRMECce-FuwucBQL2a8aQQFkBDa2uG7-_CmF9z2Wb-ELopaGMcPMfvhZi0j-15bA5dqtGDkSg_r4It9G6_bXC0LiB7o_AaBZG0kLSSGYIuRnFXIZvHM3lz2Rd8A5jJezRxOew09FlN1eSYv9clY1fXHFxbHf65lHa3mQBRfupOzgUom3UTVjmOyntZwd16YNarhKu7MOa6nW6ht33PkE_h5gdUTyzTGb1mCpsF5R4onDMAYFyWYeLggaBv12tfd1o2Xt2TwtA_AwgtEQ4VUKA1xLRivIoxzEVDaiIkivox9TSG8lSHVMRcGliQkTRJuRCPRiTGJv4PK6SA1ewhrqYnQgCZ8oQNNiKKKaaYgXm1KrpWpoPNCOZHO-cpt24zXqIhbYNeibNcq6HQ2dOhIOn4adFJoOAITsvciMjWDySiCoJFTCFtZWEG7TvUzMX6TBwxwDMwmU-Dv8qOrVid72P_70AO0QkG4y2k7ROXx-8QcAcgZq-PsNH8CB_z2eQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hOMCFfSmrQQhxIFXjxGkscYGKqkBbVaiVekFR7DgIAaGC9lC-nrGTdGGRELccbMexPZn3bM8bgGPOtI4X8yzlRrGF_hZtzlXUiphfVpwiSPB07HCj6dU67k2XdWfgPI-FSfUhRhtu2jLM_1obuN6QnrByIXtFdMYOEvY5ndHbEKo7Oj5DsE0iSQ2KkW4xO9MV0vd4RlWnvdE3iDmNWI3LqS7Bfd7Z9KbJU3HQF0X58UXH8b9fswyLGRYlF-niWYEZlazCSSsVsx6ekfY4Nuv9jJyQ1ljmergGVV0v1Z8gjxPCniRMIvJi7mgqkiWleCCIjUkehUl6Ew2tQ6d61a7UrCwrgyUdxBaWy0vCo1xIpLZov8Jmvs9dSkuRLWwnjBxJkeGGHpWRzxV-Eg9pHPuKl2IZKxU7GzCbvCZqC4gMpc0lAgqHS1fatqCCSSaQspZDXwpVgNN8dgKZSZbrzBnPQU5dcNQCM2oFOBoV7aU6HT8VOsynOEAr0kcjYaJeB-8B8kafInNlXgE207kfNeOUfZchlMHemBn8vf3gstIyD9t_L3oA87V2ox7Ur5u3O7BA8UXpFbddmO2_DdQeYp6-2DdL-xNrBfqU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2hIiEu7EtZDUKIQ1MlTpza4sRWlVUVaqUekKLYcRAC0graA3w94yxt2STELQfbsT2ezJt45g3AnmCGx4v5lvai2EJ7izrnaWpFjNe0oAgSfJM7fH3jN9reRYd1JuCwyIXJ-CGGP9yMZqTfa6PgvSgeU3KpelW0xS7665Oeb3NzpE9v6egKwUnrSBpMjN4Wc3JaIRPGM-z62Rh9Q5ifAWtqceqzcFfMNQs0eawO-rKq3r_QOP5zMXMwkyNRcpQdnXmY0MkC7DczKuu3CmmNMrNeK2SfNEck12-LUDf9MvYJ8jBG60nCJCLPaYSmJnlJinuCyJgUOZikNzbQErTrZ62ThpXXZLCUi8jC8oQtfSqkQscWtVc6jHPhUWpHjnTcMHIVRf829KmKuNC4JBHSOOZa2LGKtY7dZSgl3USvAlGhcoRCOOEK5SnHkVQyxSQ6rLWQK6nLcFAIJ1A5Ybmpm_EUFI4L7lqQ7loZdodNexlLx0-NdgoJB6hD5mIkTHR38Bqg18gp-q3ML8NKJvrhMG6NewyBDM4mFeDv4wfHJ830Ye3vTbdhqnlaD67Oby7XYZrie7L4tg0o9V8GehMBT19upQf7A52n-Uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+machine+learning+for+clinical+pharmacology&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Ryan%2C+David+K&rft.au=Maclean%2C+Rory+H&rft.au=Balston%2C+Alfred&rft.au=Scourfield%2C+Andrew&rft.date=2024-03-01&rft.eissn=1365-2125&rft.volume=90&rft.issue=3&rft.spage=629&rft_id=info:doi/10.1111%2Fbcp.15930&rft_id=info%3Apmid%2F37845024&rft.externalDocID=37845024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon |