Artificial intelligence and machine learning for clinical pharmacology

Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of clinical pharmacology Vol. 90; no. 3; pp. 629 - 639
Main Authors Ryan, David K., Maclean, Rory H., Balston, Alfred, Scourfield, Andrew, Shah, Anoop D., Ross, Jack
Format Journal Article
LanguageEnglish
Published England 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare.
AbstractList Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare.Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare.
Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized medicine, pharmacogenomics, pharmacovigilance and clinical toxicology. The rapid progress of AI in healthcare means clinical pharmacologists should have an understanding of AI and its implementation in clinical practice. As with any new therapy or health technology, it is imperative that AI tools are subject to robust and stringent evaluation to ensure that they enhance clinical practice in a safe and equitable manner. This review serves as an introduction to AI for the clinical pharmacologist, highlighting current applications, aspects of model development and issues surrounding evaluation and deployment. The aim of this article is to empower clinical pharmacologists to embrace and lead on the safe and effective use of AI within healthcare.
Author Balston, Alfred
Scourfield, Andrew
Ross, Jack
Maclean, Rory H.
Shah, Anoop D.
Ryan, David K.
Author_xml – sequence: 1
  givenname: David K.
  orcidid: 0000-0002-1264-7165
  surname: Ryan
  fullname: Ryan, David K.
  organization: University College London Hospitals NHS Foundation Trust
– sequence: 2
  givenname: Rory H.
  surname: Maclean
  fullname: Maclean, Rory H.
  organization: University College London
– sequence: 3
  givenname: Alfred
  surname: Balston
  fullname: Balston, Alfred
  organization: Guy's and St Thomas' NHS Foundation Trust
– sequence: 4
  givenname: Andrew
  surname: Scourfield
  fullname: Scourfield, Andrew
  organization: University College London Hospitals NHS Foundation Trust
– sequence: 5
  givenname: Anoop D.
  orcidid: 0000-0002-8907-5724
  surname: Shah
  fullname: Shah, Anoop D.
  organization: University College London Hospitals Biomedical Research Centre
– sequence: 6
  givenname: Jack
  orcidid: 0009-0004-6064-6919
  surname: Ross
  fullname: Ross, Jack
  email: jackross@nhs.net
  organization: University College London Hospitals NHS Foundation Trust
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37845024$$D View this record in MEDLINE/PubMed
BookMark eNp90D1PwzAQBmALFdEPGPgDKCMMaf0RJ_FYKgpISDDAbDmO3Ro5drFTof57DC0MSHDLLc-d7t4xGDjvFADnCE5RqlkjN1NEGYFHYIRISXOMMB2AESSwzCmmaAjGMb5CiAgq6QkYkqouKMTFCCznoTfaSCNsZlyvrDUr5aTKhGuzTsi1cSqzSgRn3CrTPmTSGmdk4pu1CEl461e7U3CshY3q7NAn4GV587y4yx8eb-8X84dcEoZgXjDYlJg1siYVQaxBtK5ZgTFsUYOIaInEiGBRYtnWTKWXmMBa14pBLbVSmkzA5X7vJvi3rYo970yU6WrhlN9GjuuqxgxVtEz04kC3TadavgmmE2HHv39P4GoPZPAxBqV_CIL8M1eecuVfuSY7-2Wl6UVvvOuDMPa_iXdj1e7v1fx68bSf-ADi9ogB
CitedBy_id crossref_primary_10_1038_s41598_024_70073_7
crossref_primary_10_1111_bcp_16241
crossref_primary_10_1016_j_phrs_2024_107078
crossref_primary_10_1111_bcp_16011
crossref_primary_10_3390_ph17010022
crossref_primary_10_1016_j_compbiomed_2024_108702
crossref_primary_10_1016_j_ipha_2024_08_005
crossref_primary_10_7759_cureus_71890
crossref_primary_10_1021_acs_jmedchem_4c01684
crossref_primary_10_34133_jbioxresearch_0016
crossref_primary_10_1007_s13198_024_02441_5
crossref_primary_10_1248_bpb_b24_00506
crossref_primary_10_3389_fphar_2023_1260276
crossref_primary_10_1088_1758_5090_ad6374
crossref_primary_10_1002_bcp_70036
Cites_doi 10.1161/STROKEAHA.116.016281
10.1126/scitranslmed.abf3637
10.1038/s41591-020-1034-x
10.1017/cts.2020.535
10.1145/3368555.3384468
10.1111/bcp.15068
10.1038/s41746‐021‐00505‐5
10.1038/s41746‐020‐0302‐y
10.1164/rccm.202007‐2700OC
10.1002/sim.3782
10.1111/bcp.15820
10.1093/jnci/djad013
10.1016/j.jbi.2014.12.007
10.1038/s41746‐020‐00333‐z
10.1038/s41591‐023‐02325‐4
10.1111/bcp.14045
10.3389/fphar.2022.801928
10.1016/j.acra.2021.09.002
10.1007/s40471‐020‐00259‐w
10.1186/s12911‐021‐01638‐z
10.1111/j.1541‐0420.2011.01572.x
10.1038/s41592‐020‐01008‐z
10.1002/cpt.2668
10.1038/s41467‐019‐08718‐9
10.4338/ACI‐2013‐12‐RA‐0103
10.1038/s41598-023-27416-7
10.1007/s40264‐022‐01163‐6
10.1001/jamahealthforum.2023.0397
10.1016/j.kint.2016.03.036
10.1002/cpt.1792
10.1007/s40139-019-00200-x
10.1002/cpt.1795
10.1038/s41591‐018‐0107‐6
10.1093/bioinformatics/btz111
10.1016/S0140‐6736(20)30304‐4
10.1161/JAHA.117.008081
10.1093/aje/kwt312
10.1002/cpt.1796
10.4103/picr.PICR_25_20
10.1111/bcp.14852
10.1097/FTD.0000000000001078
10.1080/17460441.2021.1910673
10.1016/j.drudis.2020.10.010
10.1007/s11831‐021‐09648‐w
10.1007/s11095‐023‐03507‐y
10.1038/s41586‐021‐03819‐2
10.1111/cts.13431
10.1038/s41551‐018‐0195‐0
10.1186/s12916-019-1426-2
10.1038/s41598‐022‐13917‐4
10.3389/fenvs.2015.00080
10.2139/ssrn.3750683
10.1016/j.hfc.2021.11.006
10.1007/s43440‐022‐00445‐1
10.1038/s41746‐021‐00453‐0
10.1136/bmjhci-2021-100450
10.1186/s12909‐021‐02870‐x
10.1111/bcp.15329
10.1016/j.jcf.2020.01.002
10.21275/ART20203995
10.1136/bmj.m1328
10.1186/s12874-022-01768-6
10.1002/cpt.1777
10.1002/pds.5407
10.7554/eLife.26726
10.1038/s43856-021-00028-w
10.1016/j.compbiomed.2021.104469
10.1371/journal.pcbi.1008399
10.1016/j.jcjq.2019.09.008
10.1016/j.artmed.2023.102524
10.1136/bmjopen‐2022‐065301
10.1038/s41591‐020‐1037‐7
10.1038/s41551‐019‐0487‐z
10.1056/NEJMc2104626
10.1016/j.jid.2018.06.175
10.1167/tvst.9.3.12
10.1136/bmj.m4786
10.1093/jamia/ocy052
10.2196/27767
ContentType Journal Article
Copyright 2023 British Pharmacological Society.
Copyright_xml – notice: 2023 British Pharmacological Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/bcp.15930
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1365-2125
EndPage 639
ExternalDocumentID 37845024
10_1111_bcp_15930
BCP15930
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Institute for Health and Care Research
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HYE
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3910-490b629bc837319b158894220d1b13ad3c2132a62cd89e1599a2ff8e90fcfeef3
IEDL.DBID DR2
ISSN 0306-5251
1365-2125
IngestDate Thu Jul 10 19:04:20 EDT 2025
Mon Jul 21 06:05:43 EDT 2025
Tue Jul 01 01:59:33 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Wed Jan 22 16:14:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords clinical pharmacology
clinical trials
real-world data
machine learning
artificial intelligence
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2023 British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3910-490b629bc837319b158894220d1b13ad3c2132a62cd89e1599a2ff8e90fcfeef3
Notes Funding information
D.K.R., R.H.M. and A.B. are all funded by a National Institute for Health and Care Research Academic Clinical Fellowship.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1264-7165
0009-0004-6064-6919
0000-0002-8907-5724
PMID 37845024
PQID 2878291756
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2878291756
pubmed_primary_37845024
crossref_primary_10_1111_bcp_15930
crossref_citationtrail_10_1111_bcp_15930
wiley_primary_10_1111_bcp_15930_BCP15930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle British journal of clinical pharmacology
PublicationTitleAlternate Br J Clin Pharmacol
PublicationYear 2024
References 2023; 75
2017; 6
2021; 26
2021; 21
2017; 48
2023; 4
2019; 10
2021; 204
2021; 28
2020; 369
2019; 17
2020; 16
2022; 22
2022; 29
2020; 19
2014; 179
2020; 7
2017; 30
2020; 5
2020; 4
2014; 5
2020; 3
2018; 2
2016; 90
2023; 29
2021; 596
2018; 138
2010; 29
2020; 9
2023; 139
2020; 46
2011; 67
2022; 31
7
9
2021; 9
2019; 7
2021; 87
2023; 13
2021; 4
2020; 86
2023; 16
2019; 35
2015; 53
2022; 45
2020; 107
2022; 88
2002
2021; 385
2021; 1
2018; 25
2018; 24
2021; 13
2021; 16
2023; 40
2021; 54
2021; 12
2016; 3
2023; 45
2023; 89
2023
2021; 134
2022
2021
2020; 395
2020
2021; 18
2023; 113
2022; 12
2022; 13
2019
2020; 26
2018
2023; 115
2021; 372
2022; 18
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Karmaker SK (e_1_2_10_18_1) 2021; 54
Curth A (e_1_2_10_65_1) 2021
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
Panch T (e_1_2_10_88_1); 9
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
Yoon J (e_1_2_10_16_1) 2018
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_103_1
Vaswani A (e_1_2_10_17_1) 2017
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
European Parliament (e_1_2_10_85_1) 2022
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 17
  start-page: 195
  year: 2019
  article-title: Key challenges for delivering clinical impact with artificial intelligence
  publication-title: BMC Med
– volume: 9
  start-page: 14
  year: 2020
  article-title: Introduction to machine learning, neural networks, and deep learning
  publication-title: Transl vis Sci Technol
– volume: 45
  start-page: 571
  issue: 5
  year: 2022
  end-page: 582
  article-title: Leveraging machine learning to facilitate individual case causality assessment of adverse drug reactions
  publication-title: Drug Saf
– volume: 139
  issue: 102524
  year: 2023
  article-title: Has machine learning over‐promised in healthcare?: A critical analysis and a proposal for improved evaluation, with evidence from Parkinson's disease
  publication-title: Artif Intell Med
– volume: 134
  year: 2021
  article-title: Diagnosis of acute poisoning using explainable artificial intelligence
  publication-title: Comput Biol Med
– volume: 29
  start-page: 2043
  issue: 4
  year: 2022
  end-page: 2070
  article-title: A systematic review of artificial intelligence techniques in cancer prediction and diagnosis
  publication-title: Arch Comput Methods Eng
– volume: 54
  start-page: 175:1
  year: 2021
  end-page: 175:36
  article-title: AutoML to date and beyond: challenges and opportunities
  publication-title: ACM Comput Surv
– volume: 67
  start-page: 1422
  issue: 4
  year: 2011
  end-page: 1433
  article-title: Reinforcement learning strategies for clinical trials in non‐small cell lung cancer
  publication-title: Biometrics
– volume: 53
  start-page: 3
  year: 2015
  end-page: 14
  article-title: Cognitive informatics in biomedicine and healthcare
  publication-title: J Biomed Inform
– volume: 29
  start-page: 559
  issue: 4
  year: 2022
  end-page: 566
  article-title: FDA‐regulated AI algorithms: trends, strengths, and gaps of validation studies
  publication-title: Acad Radiol
– volume: 75
  start-page: 3
  issue: 1
  year: 2023
  end-page: 18
  article-title: Opportunities and challenges in application of artificial intelligence in pharmacology
  publication-title: Pharmacol Rep
– volume: 2
  start-page: 158
  issue: 3
  year: 2018
  end-page: 164
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
– volume: 29
  start-page: 337
  issue: 3
  year: 2010
  end-page: 346
  article-title: Improving propensity score weighting using machine learning
  publication-title: Stat Med
– volume: 372
  year: 2021
  article-title: Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial
  publication-title: BMJ
– start-page: 5689
  year: 2018
  end-page: 5698
– year: 2021
– volume: 26
  start-page: 80
  issue: 1
  year: 2021
  end-page: 93
  article-title: Artificial intelligence in drug discovery and development
  publication-title: Drug Discov Today
– start-page: 1810
  year: 2021
  end-page: 1818
– volume: 113
  start-page: 771
  issue: 4
  year: 2023
  end-page: 774
  article-title: Landscape analysis of the application of artificial intelligence and machine learning in regulatory submissions for drug development from 2016 to 2021
  publication-title: Clin Pharmacol Ther
– volume: 7
  start-page: 73
  year: 2019
  end-page: 84
  article-title: The emergence of Pathomics
  publication-title: Curr Pathobiol Rep
– volume: 13
  year: 2022
  article-title: AI models to assist vancomycin dosage titration
  publication-title: Front Pharmacol
– volume: 21
  start-page: 429
  issue: 1
  year: 2021
  article-title: The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers
  publication-title: BMC Med Educ
– volume: 26
  start-page: 1351
  issue: 9
  year: 2020
  end-page: 1363
  article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT‐AI extension
  publication-title: Nat Med
– volume: 4
  start-page: 18
  issue: 1
  year: 2020
  end-page: 27
  article-title: Detection of anaemia from retinal fundus images via deep learning
  publication-title: Nat Biomed Eng
– volume: 18
  start-page: 311
  issue: 2
  year: 2022
  end-page: 323
  article-title: Utilizing conversational artificial intelligence, voice, and phonocardiography analytics in heart failure care
  publication-title: Heart Fail Clin
– volume: 5
  start-page: 802
  issue: 3
  year: 2014
  end-page: 813
  article-title: Drug interaction alert override rates in the meaningful use era: no evidence of progress
  publication-title: Appl Clin Inform
– volume: 107
  start-page: 697
  issue: 4
  year: 2020
  end-page: 699
  article-title: Artificial intelligence and machine learning: will clinical pharmacologists be needed in the next decade? The John Henry question
  publication-title: Clin Pharmacol Ther
– volume: 10
  start-page: 764
  year: 2019
  article-title: A mathematical‐descriptor of tumor‐mesoscopic‐structure from computed‐tomography images annotates prognostic‐ and molecular‐phenotypes of epithelial ovarian cancer
  publication-title: Nat Commun
– volume: 3
  start-page: 1
  year: 2020
  end-page: 7
  article-title: Digitizing clinical trials
  publication-title: Npj Digit Med
– volume: 385
  start-page: 283
  issue: 3
  year: 2021
  end-page: 286
  article-title: The clinician and dataset shift in artificial intelligence
  publication-title: N Engl J Med
– volume: 30
  year: 2017
– volume: 107
  start-page: 853
  year: 2020
  end-page: 857
  article-title: Model‐informed artificial intelligence: reinforcement learning for precision dosing
  publication-title: Clin Pharmacol Ther
– volume: 7
  start-page: 212
  issue: 4
  year: 2020
  end-page: 219
  article-title: Heart failure diagnosis, readmission, and mortality prediction using machine learning and artificial intelligence models
  publication-title: Curr Epidemiol Rep
– volume: 46
  start-page: 3
  issue: 1
  year: 2020
  end-page: 10
  article-title: Using a machine learning system to identify and prevent medication prescribing errors: a clinical and cost analysis evaluation
  publication-title: Jt Comm J Qual Patient Saf
– volume: 22
  start-page: 287
  year: 2022
  article-title: Real‐world data: a brief review of the methods, applications, challenges and opportunities
  publication-title: BMC Med Res Methodol
– volume: 4
  year: 2023
  article-title: Garbage in, garbage out—words of caution on big data and machine learning in medical practice
  publication-title: JAMA Health Forum
– volume: 89
  start-page: 2649
  issue: 9
  year: 2023
  end-page: 2657
  article-title: How to assess pharmacogenomic tests for implementation in the NHS in England
  publication-title: Br J Clin Pharmacol
– volume: 369
  year: 2020
  article-title: Prediction models for diagnosis and prognosis of covid‐19: systematic review and critical appraisal
  publication-title: BMJ
– volume: 13
  year: 2023
  article-title: Potentiality of algorithms and artificial intelligence adoption to improve medication management in primary care: a systematic review
  publication-title: BMJ Open
– year: 2022
– volume: 179
  start-page: 764
  issue: 6
  year: 2014
  end-page: 774
  article-title: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study
  publication-title: Am J Epidemiol
– volume: 138
  start-page: 2108
  issue: 10
  year: 2018
  end-page: 2110
  article-title: Automated classification of skin lesions: from pixels to practice
  publication-title: J Invest Dermatol
– volume: 87
  start-page: 4124
  issue: 11
  year: 2021
  end-page: 4139
  article-title: Systematic review of machine learning models for personalised dosing of heparin
  publication-title: Br J Clin Pharmacol
– volume: 4
  start-page: 1
  year: 2021
  end-page: 11
  article-title: An artificial intelligence system for predicting the deterioration of COVID‐19 patients in the emergency department
  publication-title: Npj Digit. Med.
– volume: 4
  start-page: 133
  issue: 1
  year: 2021
  article-title: Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome
  publication-title: NPJ Digit Med
– volume: 5
  year: 2020
  article-title: Using supervised machine learning classifiers to estimate likelihood of participating in clinical trials of a de‐identified version of ResearchMatch
  publication-title: J Clin Transl Sci
– volume: 29
  start-page: 1201
  issue: 5
  year: 2023
  end-page: 1210
  article-title: Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations
  publication-title: Nat Med
– volume: 3
  start-page: 126
  year: 2020
  article-title: A short guide for medical professionals in the era of artificial intelligence
  publication-title: NPJ Digit Med
– volume: 115
  start-page: 365
  issue: 4
  year: 2023
  end-page: 374
  article-title: Use of artificial intelligence for cancer clinical trial enrollment: a systematic review and meta‐analysis
  publication-title: J Natl Cancer Inst
– year: 2019
– volume: 204
  start-page: 44
  issue: 1
  year: 2021
  end-page: 52
  article-title: Detecting deteriorating patients in the hospital: development and validation of a novel scoring system
  publication-title: Am J Respir Crit Care Med
– volume: 107
  start-page: 871
  issue: 4
  year: 2020
  end-page: 885
  article-title: An introduction to machine learning
  publication-title: Clin Pharmacol Ther
– volume: 86
  start-page: 2000
  issue: 10
  year: 2020
  end-page: 2007
  article-title: Medication management needs information and communications technology‐based approaches, including telehealth and artificial intelligence
  publication-title: Br J Clin Pharmacol
– volume: 88
  start-page: 1235
  issue: 3
  year: 2022
  end-page: 1245
  article-title: Identifying adverse drug reactions from free‐text electronic hospital health record notes
  publication-title: Br J Clin Pharmacol
– volume: 16
  start-page: 31
  issue: 1
  year: 2023
  end-page: 36
  article-title: Artificial intelligence in pharmacology research and practice
  publication-title: Clin Transl Sci
– volume: 19
  start-page: 6
  issue: 1
  year: 2020
  end-page: 8
  article-title: Opportunities for machine learning to transform care for people with cystic fibrosis
  publication-title: J Cyst Fibros
– volume: 1
  start-page: 1
  year: 2021
  end-page: 3
  article-title: Mitigating bias in machine learning for medicine
  publication-title: Commun Med
– volume: 3
  start-page: 80
  year: 2016
  article-title: DeepTox: toxicity prediction using deep learning
  publication-title: Front Environ Sci
– volume: 9
  article-title: Artificial intelligence and algorithmic bias: implications for health systems
  publication-title: J Glob Health
– volume: 107
  start-page: 780
  issue: 4
  year: 2020
  end-page: 785
  article-title: Will artificial intelligence for drug discovery impact clinical pharmacology?
  publication-title: Clin Pharmacol Ther
– volume: 40
  start-page: 951
  issue: 4
  year: 2023
  end-page: 959
  article-title: A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction
  publication-title: Pharm Res
– volume: 9
  issue: 3
  year: 2021
  article-title: Accuracy of an artificial intelligence system for cancer clinical trial eligibility screening: retrospective pilot study
  publication-title: JMIR Med Inform
– volume: 26
  start-page: 1364
  year: 2020
  end-page: 1374
  article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT‐AI extension
  publication-title: Nat Med
– volume: 12
  issue: 1
  year: 2022
  article-title: Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre‐treatment tumor biopsies
  publication-title: Sci Rep
– volume: 16
  start-page: 1057
  issue: 9
  year: 2021
  end-page: 1069
  article-title: Knowledge graphs and their applications in drug discovery
  publication-title: Expert Opin Drug Discov
– volume: 48
  start-page: 1416
  issue: 5
  year: 2017
  end-page: 1419
  article-title: Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy
  publication-title: Stroke
– volume: 25
  start-page: 1080
  issue: 8
  year: 2018
  end-page: 1088
  article-title: Good intentions are not enough: how informatics interventions can worsen inequality
  publication-title: J Am Med Inform Assoc
– volume: 6
  year: 2017
  article-title: Systematic integration of biomedical knowledge prioritizes drugs for repurposing
  publication-title: Elife
– volume: 16
  year: 2020
  article-title: Transfer learning enables prediction of CYP2D6 haplotype function
  publication-title: PLoS Comput Biol
– volume: 35
  start-page: 3329
  issue: 18
  year: 2019
  end-page: 3338
  article-title: DeepAffinity: interpretable deep learning of compound‐protein affinity through unified recurrent and convolutional neural networks
  publication-title: Bioinformatics
– volume: 88
  start-page: 3943
  issue: 9
  year: 2022
  end-page: 3946
  article-title: Pharmacogenomics: relevance and opportunities for clinical pharmacology
  publication-title: Br J Clin Pharmacol
– volume: 13
  start-page: 121
  year: 2023
  article-title: Improving clinical trial design using interpretable machine learning based prediction of early trial termination
  publication-title: Sci Rep
– volume: 9
  start-page: 381
  issue: 1
  year: 2020
  end-page: 386
  article-title: Machine leaming algorithms ‐ a review
  publication-title: Int J Sci Res
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nat Methods
– volume: 31
  start-page: 261
  issue: 3
  year: 2022
  end-page: 269
  article-title: Core concepts in pharmacoepidemiology: confounding by indication and the role of active comparators
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 13
  issue: 603
  year: 2021
  article-title: Toward predicting CYP2D6‐mediated variable drug response from CYP2D6 gene sequencing data
  publication-title: Sci Transl Med.
– volume: 7
  article-title: Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients
  publication-title: J Am Heart Assoc
– volume: 28
  year: 2021
  article-title: Exploring stakeholder attitudes towards AI in clinical practice
  publication-title: BMJ Health Care Inform
– year: 2002
– year: 2020
– year: 2023
– volume: 45
  start-page: 143
  issue: 2
  year: 2023
  end-page: 150
  article-title: Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model‐informed precision dosing
  publication-title: Ther Drug Monit
– volume: 90
  start-page: 422
  issue: 2
  year: 2016
  end-page: 429
  article-title: An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients
  publication-title: Kidney Int
– volume: 21
  start-page: 281
  year: 2021
  article-title: An informatics consult approach for generating clinical evidence for treatment decisions
  publication-title: BMC Med Inform Decis Mak
– volume: 24
  start-page: 1342
  issue: 9
  year: 2018
  end-page: 1350
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
– volume: 395
  start-page: e30
  issue: 10223
  year: 2020
  end-page: e31
  article-title: Baricitinib as potential treatment for 2019‐nCoV acute respiratory disease
  publication-title: The Lancet
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  end-page: 589
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 12
  start-page: 48
  issue: 1
  year: 2021
  end-page: 52
  article-title: Current status of clinical research using artificial intelligence techniques: a registry‐based audit
  publication-title: Perspect Clin Res
– ident: e_1_2_10_64_1
  doi: 10.1161/STROKEAHA.116.016281
– ident: e_1_2_10_80_1
  doi: 10.1126/scitranslmed.abf3637
– ident: e_1_2_10_13_1
– ident: e_1_2_10_9_1
  doi: 10.1038/s41591-020-1034-x
– ident: e_1_2_10_62_1
  doi: 10.1017/cts.2020.535
– ident: e_1_2_10_103_1
  doi: 10.1145/3368555.3384468
– ident: e_1_2_10_27_1
  doi: 10.1111/bcp.15068
– ident: e_1_2_10_59_1
  doi: 10.1038/s41746‐021‐00505‐5
– ident: e_1_2_10_22_1
  doi: 10.1038/s41746‐020‐0302‐y
– ident: e_1_2_10_37_1
  doi: 10.1164/rccm.202007‐2700OC
– ident: e_1_2_10_31_1
– ident: e_1_2_10_72_1
  doi: 10.1002/sim.3782
– ident: e_1_2_10_12_1
– ident: e_1_2_10_79_1
  doi: 10.1111/bcp.15820
– volume: 9
  ident: e_1_2_10_88_1
  article-title: Artificial intelligence and algorithmic bias: implications for health systems
  publication-title: J Glob Health
– ident: e_1_2_10_61_1
  doi: 10.1093/jnci/djad013
– ident: e_1_2_10_92_1
  doi: 10.1016/j.jbi.2014.12.007
– ident: e_1_2_10_5_1
  doi: 10.1038/s41746‐020‐00333‐z
– ident: e_1_2_10_32_1
  doi: 10.1038/s41591‐023‐02325‐4
– ident: e_1_2_10_23_1
  doi: 10.1111/bcp.14045
– ident: e_1_2_10_75_1
  doi: 10.3389/fphar.2022.801928
– ident: e_1_2_10_7_1
  doi: 10.1016/j.acra.2021.09.002
– ident: e_1_2_10_35_1
  doi: 10.1007/s40471‐020‐00259‐w
– ident: e_1_2_10_74_1
  doi: 10.1186/s12911‐021‐01638‐z
– ident: e_1_2_10_45_1
– ident: e_1_2_10_63_1
  doi: 10.1111/j.1541‐0420.2011.01572.x
– ident: e_1_2_10_19_1
  doi: 10.1038/s41592‐020‐01008‐z
– ident: e_1_2_10_21_1
  doi: 10.1002/cpt.2668
– ident: e_1_2_10_48_1
  doi: 10.1038/s41467‐019‐08718‐9
– ident: e_1_2_10_93_1
  doi: 10.4338/ACI‐2013‐12‐RA‐0103
– ident: e_1_2_10_58_1
  doi: 10.1038/s41598-023-27416-7
– ident: e_1_2_10_84_1
  doi: 10.1007/s40264‐022‐01163‐6
– ident: e_1_2_10_94_1
– ident: e_1_2_10_87_1
  doi: 10.1001/jamahealthforum.2023.0397
– ident: e_1_2_10_76_1
  doi: 10.1016/j.kint.2016.03.036
– ident: e_1_2_10_6_1
  doi: 10.1002/cpt.1792
– ident: e_1_2_10_46_1
  doi: 10.1007/s40139-019-00200-x
– ident: e_1_2_10_20_1
  doi: 10.1002/cpt.1795
– ident: e_1_2_10_40_1
  doi: 10.1038/s41591‐018‐0107‐6
– ident: e_1_2_10_51_1
  doi: 10.1093/bioinformatics/btz111
– ident: e_1_2_10_56_1
  doi: 10.1016/S0140‐6736(20)30304‐4
– ident: e_1_2_10_73_1
  doi: 10.1161/JAHA.117.008081
– ident: e_1_2_10_66_1
  doi: 10.1093/aje/kwt312
– ident: e_1_2_10_3_1
  doi: 10.1002/cpt.1796
– ident: e_1_2_10_57_1
  doi: 10.4103/picr.PICR_25_20
– ident: e_1_2_10_25_1
  doi: 10.1111/bcp.14852
– ident: e_1_2_10_78_1
  doi: 10.1097/FTD.0000000000001078
– volume-title: Artificial Intelligence in Healthcare: Applications, Risks, and Ethical and Societal Impacts
  year: 2022
  ident: e_1_2_10_85_1
– ident: e_1_2_10_54_1
  doi: 10.1080/17460441.2021.1910673
– ident: e_1_2_10_53_1
  doi: 10.1016/j.drudis.2020.10.010
– ident: e_1_2_10_36_1
  doi: 10.1007/s11831‐021‐09648‐w
– ident: e_1_2_10_77_1
  doi: 10.1007/s11095‐023‐03507‐y
– ident: e_1_2_10_50_1
  doi: 10.1038/s41586‐021‐03819‐2
– ident: e_1_2_10_11_1
– ident: e_1_2_10_30_1
  doi: 10.1111/cts.13431
– ident: e_1_2_10_43_1
  doi: 10.1038/s41551‐018‐0195‐0
– ident: e_1_2_10_83_1
– ident: e_1_2_10_105_1
  doi: 10.1186/s12916-019-1426-2
– ident: e_1_2_10_47_1
  doi: 10.1038/s41598‐022‐13917‐4
– ident: e_1_2_10_97_1
– ident: e_1_2_10_52_1
  doi: 10.3389/fenvs.2015.00080
– ident: e_1_2_10_38_1
  doi: 10.2139/ssrn.3750683
– ident: e_1_2_10_44_1
  doi: 10.1016/j.hfc.2021.11.006
– ident: e_1_2_10_49_1
– ident: e_1_2_10_29_1
  doi: 10.1007/s43440‐022‐00445‐1
– ident: e_1_2_10_82_1
– ident: e_1_2_10_96_1
– volume: 54
  start-page: 175:1
  year: 2021
  ident: e_1_2_10_18_1
  article-title: AutoML to date and beyond: challenges and opportunities
  publication-title: ACM Comput Surv
– ident: e_1_2_10_34_1
  doi: 10.1038/s41746‐021‐00453‐0
– ident: e_1_2_10_101_1
  doi: 10.1136/bmjhci-2021-100450
– ident: e_1_2_10_99_1
– ident: e_1_2_10_10_1
  doi: 10.1186/s12909‐021‐02870‐x
– start-page: 1810
  volume-title: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics
  year: 2021
  ident: e_1_2_10_65_1
– ident: e_1_2_10_26_1
  doi: 10.1111/bcp.15329
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jcf.2020.01.002
– ident: e_1_2_10_14_1
  doi: 10.21275/ART20203995
– start-page: 5689
  volume-title: Proceedings of the 35th International Conference on Machine Learning
  year: 2018
  ident: e_1_2_10_16_1
– ident: e_1_2_10_33_1
  doi: 10.1136/bmj.m1328
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_10_17_1
– ident: e_1_2_10_69_1
  doi: 10.1186/s12874-022-01768-6
– ident: e_1_2_10_100_1
– ident: e_1_2_10_24_1
  doi: 10.1002/cpt.1777
– ident: e_1_2_10_71_1
  doi: 10.1002/pds.5407
– ident: e_1_2_10_86_1
– ident: e_1_2_10_55_1
  doi: 10.7554/eLife.26726
– ident: e_1_2_10_41_1
– ident: e_1_2_10_2_1
– ident: e_1_2_10_89_1
  doi: 10.1038/s43856-021-00028-w
– ident: e_1_2_10_28_1
  doi: 10.1016/j.compbiomed.2021.104469
– ident: e_1_2_10_81_1
  doi: 10.1371/journal.pcbi.1008399
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jcjq.2019.09.008
– ident: e_1_2_10_4_1
  doi: 10.1016/j.artmed.2023.102524
– ident: e_1_2_10_67_1
  doi: 10.1136/bmjopen‐2022‐065301
– ident: e_1_2_10_8_1
  doi: 10.1038/s41591‐020‐1037‐7
– ident: e_1_2_10_42_1
  doi: 10.1038/s41551‐019‐0487‐z
– ident: e_1_2_10_70_1
– ident: e_1_2_10_102_1
  doi: 10.1056/NEJMc2104626
– ident: e_1_2_10_90_1
  doi: 10.1016/j.jid.2018.06.175
– ident: e_1_2_10_95_1
– ident: e_1_2_10_98_1
– ident: e_1_2_10_15_1
  doi: 10.1167/tvst.9.3.12
– ident: e_1_2_10_91_1
  doi: 10.1136/bmj.m4786
– ident: e_1_2_10_104_1
  doi: 10.1093/jamia/ocy052
– ident: e_1_2_10_60_1
  doi: 10.2196/27767
SSID ssj0013165
Score 2.5198896
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) will impact many aspects of clinical pharmacology, including drug discovery and development, clinical trials, personalized...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 629
SubjectTerms Artificial Intelligence
Biomedical Technology
clinical pharmacology
clinical trials
Drug Discovery
Humans
Machine Learning
Pharmacology, Clinical
real‐world data
Title Artificial intelligence and machine learning for clinical pharmacology
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.15930
https://www.ncbi.nlm.nih.gov/pubmed/37845024
https://www.proquest.com/docview/2878291756
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJy--H_VFFCkeuqXJbrYJnrRYRFCKtNCDsCTZrIi6LbY91F_vZLPbhw8Qb3vIDkkms_PNZuYbhM4EszxeLPRMECce-FuwucBQL2a8aQQFkBDa2uG7-_CmF9z2Wb-ELopaGMcPMfvhZi0j-15bA5dqtGDkSg_r4It9G6_bXC0LiB7o_AaBZG0kLSSGYIuRnFXIZvHM3lz2Rd8A5jJezRxOew09FlN1eSYv9clY1fXHFxbHf65lHa3mQBRfupOzgUom3UTVjmOyntZwd16YNarhKu7MOa6nW6ht33PkE_h5gdUTyzTGb1mCpsF5R4onDMAYFyWYeLggaBv12tfd1o2Xt2TwtA_AwgtEQ4VUKA1xLRivIoxzEVDaiIkivox9TSG8lSHVMRcGliQkTRJuRCPRiTGJv4PK6SA1ewhrqYnQgCZ8oQNNiKKKaaYgXm1KrpWpoPNCOZHO-cpt24zXqIhbYNeibNcq6HQ2dOhIOn4adFJoOAITsvciMjWDySiCoJFTCFtZWEG7TvUzMX6TBwxwDMwmU-Dv8qOrVid72P_70AO0QkG4y2k7ROXx-8QcAcgZq-PsNH8CB_z2eQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hOMCFfSmrQQhxIFXjxGkscYGKqkBbVaiVekFR7DgIAaGC9lC-nrGTdGGRELccbMexPZn3bM8bgGPOtI4X8yzlRrGF_hZtzlXUiphfVpwiSPB07HCj6dU67k2XdWfgPI-FSfUhRhtu2jLM_1obuN6QnrByIXtFdMYOEvY5ndHbEKo7Oj5DsE0iSQ2KkW4xO9MV0vd4RlWnvdE3iDmNWI3LqS7Bfd7Z9KbJU3HQF0X58UXH8b9fswyLGRYlF-niWYEZlazCSSsVsx6ekfY4Nuv9jJyQ1ljmergGVV0v1Z8gjxPCniRMIvJi7mgqkiWleCCIjUkehUl6Ew2tQ6d61a7UrCwrgyUdxBaWy0vCo1xIpLZov8Jmvs9dSkuRLWwnjBxJkeGGHpWRzxV-Eg9pHPuKl2IZKxU7GzCbvCZqC4gMpc0lAgqHS1fatqCCSSaQspZDXwpVgNN8dgKZSZbrzBnPQU5dcNQCM2oFOBoV7aU6HT8VOsynOEAr0kcjYaJeB-8B8kafInNlXgE207kfNeOUfZchlMHemBn8vf3gstIyD9t_L3oA87V2ox7Ur5u3O7BA8UXpFbddmO2_DdQeYp6-2DdL-xNrBfqU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2hIiEu7EtZDUKIQ1MlTpza4sRWlVUVaqUekKLYcRAC0graA3w94yxt2STELQfbsT2ezJt45g3AnmCGx4v5lvai2EJ7izrnaWpFjNe0oAgSfJM7fH3jN9reRYd1JuCwyIXJ-CGGP9yMZqTfa6PgvSgeU3KpelW0xS7665Oeb3NzpE9v6egKwUnrSBpMjN4Wc3JaIRPGM-z62Rh9Q5ifAWtqceqzcFfMNQs0eawO-rKq3r_QOP5zMXMwkyNRcpQdnXmY0MkC7DczKuu3CmmNMrNeK2SfNEck12-LUDf9MvYJ8jBG60nCJCLPaYSmJnlJinuCyJgUOZikNzbQErTrZ62ThpXXZLCUi8jC8oQtfSqkQscWtVc6jHPhUWpHjnTcMHIVRf829KmKuNC4JBHSOOZa2LGKtY7dZSgl3USvAlGhcoRCOOEK5SnHkVQyxSQ6rLWQK6nLcFAIJ1A5Ybmpm_EUFI4L7lqQ7loZdodNexlLx0-NdgoJB6hD5mIkTHR38Bqg18gp-q3ML8NKJvrhMG6NewyBDM4mFeDv4wfHJ830Ye3vTbdhqnlaD67Oby7XYZrie7L4tg0o9V8GehMBT19upQf7A52n-Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+machine+learning+for+clinical+pharmacology&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Ryan%2C+David+K&rft.au=Maclean%2C+Rory+H&rft.au=Balston%2C+Alfred&rft.au=Scourfield%2C+Andrew&rft.date=2024-03-01&rft.eissn=1365-2125&rft.volume=90&rft.issue=3&rft.spage=629&rft_id=info:doi/10.1111%2Fbcp.15930&rft_id=info%3Apmid%2F37845024&rft.externalDocID=37845024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon